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Abstract
Reliability–redundancy allocation problem (RRAP) plays a vital role in reliability improvement and designing of systems which

depend on the arrangement of components, reliability of the components, and redundancy allocation for the components. Higher

reliability is the primary requisite for essential systems such as fire extinguisher drones (FEDs) which are very valuable for

firefighters in tackling emergencies in non-reachable areas. In this work, a FED is considered with the aim of system designing

for maximum reliability while considering the limited availability of resources such as volume, cost, and weight of the system. A

total of five possible arrangements of the redundant components are investigated, and a mixed-integer nonlinear programming

problem is solved for system reliability optimization. For optimization purposes, a recently developed metaheuristic hybrid

particle swarm grey wolf optimizer (HPSGWO) is implemented. The HPSGWO is a powerful fusion of PSO’s exploitation

property and GWO’s exploration property. Solving RRAP by using HPSGWO provides 99% reliability of the proposed FED

under the limited availability of resources. To validate the superiority of the HPSGWO, a comparative study is explained.

Keywords Reliability–redundancy allocation problem � Fire extinguisher drone � Optimization � Mixed-integer nonlinear

programming � Hybrid PSO–GWO

1 Introduction

Reliability is explained as the expectation that a product,

structure, or resource will execute its intentional use acceptably

for a prescribed time or will use in a specified domain without

negligence. Product quality determines the success of the effect.

One of the main features is the presentation of the product is

fixed by reliability and redundancy. Reliability expands the

current capability and expectations. To grow the overall relia-

bility of any system, the reliability allocation problem (RAP)

has turned into a question of extraordinary concern and interest

recently. RAP is a kind of upgrade issue for restricting the

system costs subject to the objective reliability limits (Yang

et al. 1989). RAP means to choose two decision factors, the kind

of parts and the number of parts, which is known as the excess

level for each subsystem. In RAP, it is reliably acknowledged

that there are some limited determinations of parts with pre-

defined properties, for instance, reliability, weight, cost, and

volume. In 1968, the specified procedure to handle RAP was

portrayed, which was planned for the decision of the optimal

course of action (Fyffe et al. 1968). After this, a few researchers

proposed different procedures to address RAP in which the

exact methods were done at first which were long handling

techniques (Bellman and Dreyfus 1958; Tillman 1969; Luus

1975; Nam and Mitsuo Gen 1975), and later heuristic

methodologies such as GA, PSO, hybrid GA–PSO, and hybrid

PSO were considered (Nakagawa and Nakashima 1977; Yang

et al. 1999; Sheikhalishahi et al. 2013; Liang et al. 2016). These

heuristic methodologies were giving approximated results in

almost no time when stood out from exact methods.
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On the other hand, the reliability–redundancy allocation

problem (RRAP) attempts to find the best plan for a system,

while the traits of parts are considered as decision factors. This

issue makes the RRAP truly a testing issue for system designers

and a more tangled issue for researchers. In this domain of

reliability allocation, the greater part of the work and study is

focused on the RRAP. The RRAP is a seriously difficult issue

that can be detailed as a nonlinear mixed-integer programming

problem with a specific set of nonlinear constraints. The

essential goal of RRAP is to observe the number of repetitive

parts and the reliability levels of every part to amplify the

system’s reliability. It has now been demonstrated that some

RRAP can be NP-hard and for addressing such RRAP

researchers have created numerous techniques and calculations

(Chern 1992; Ardakan and Hamadani 2014; Hsieh et al. 1998;

Wu et al. 2011; Wang and Li 2012; Afonso et al. 2013; Abouei

Ardakan and Zeinal Hamadani 2014; Kim and Kim 2017;

Kanagaraj et al. 2013). In this space, a penalty-guided artificial

immune algorithm was introduced to tackle the reliability

allocation problem. This calculation was competent to find the

doable area for optimal arrangement (Chen 2006). A penalty-

guided artificial bee colony calculation (ABC) was likewise

executed to address RRAP where the goal was the reliability of

parts, and the requirement was the expense of the system.

Creators all the while investigated the number of repetitive parts

and their respective reliability to amplify the system’s relia-

bility (Yeh and Hsieh 2011). Other methods such as soft

computing approach (Gen and Yun 2006), simulated annealing

approach (Kim et al. 2006), genetic algorithm (GA) (Yokota

et al. 1996), immune-based two-phase approach (Hsieh and

You 2011), cuckoo search (CS) (Valian and Valian 2013), and

hybrid CS–GA algorithm (Kanagaraj et al. 2013) are also

implemented to solve RRAP for the benchmark systems and

improve reliability. Recently proposed algorithm hybrid PSO–

GWO (Bhandari et al. 2023) has shown remarkable outcomes

among the literature results for RRAP. The proposed hybrid

PSO–GWO has obtained a reliability level of 93% for the series

system and 99% for bridge, series–parallel, and overspeed

protection system for gas turbine. Many creators have likewise

dealt with the multi-objective reliability–redundancy problem

(MORRAP) where reliability and cost had been taken as two

unique goals for a system and the two targets were enhanced. In

MORRAP, the execution of PSO gave Pareto-optimal solution

rather than a single optimal (Zhang and Chen 2016; Garg and

Sharma 2013; Khalili-Damghani et al. 2013).

By and large, there are two ordinary and seen sorts of

redundancy called active and cold backup excess. In the last

part of the 1990s, much work has been accounted for active

redundancy allocation. For a series system, the issue of equal

lifetime distributed components has been considered in

Shaked and Shanthikumar (1992) and Singh and Singh

(1997). Several authors have dealt with a couple of active

redundancies designation to a k-out-of-n: G system to work

on the system in the feeling of the likelihood request (Boland

et al. 1992; Mi 1999) and multiple active redundancies in k-

out-of-n: G system was concentrated (Garg and Sharma 2013;

Shaked and Shanthikumar 1992; da Costa Bueno and do

Carmo 2007). The cold-standby redundancy methodology

was executed with a modified genetic algorithm (GA). This

technique was applied to take care of nonlinear mixed-integer

issues, and the outcomes were superior to past arrangements

(Ardakan and Hamadani 2014; Hsieh et al. 1998; Wu et al.

2011; Wang and Li 2012; Afonso et al. 2013; Abouei

Ardakan and Zeinal Hamadani 2014; Zou et al. 2011).

Regarding the optimal excess procedure, progressed RRAP

was presented for a cold-standby redundancy. This high-level

RRAP with a nonlinear mixed-integer problem was addressed

by parallel GA (Kim and Kim 2017). Afterwards, a hybrid

technique was carried out other than active and standby

redundancy to settle RRAP. Without a doubt, this procedure

had shown a surprising improvement in optimal solutions

(Abouei Ardakan et al. 2016). In the space of metaheuristic

procedures, RRAP was likewise tackled by cuckoo search

(CS) which was hybridized with GA. This hybridization

yielded incredibly productive and powerful optimal solutions

(Kanagaraj et al. 2013), but recently proposed algorithm

hybrid PSO–GWO (Bhandari et al. 2022) for cold-standby

strategy has shown better results in comparison with previous

algorithms for RRAP.

2 Related work and motivation

Though, titanic work has been done in RAP and RRAP in

which a few critical ways of thinking and techniques are

applied to find the specific or the optimal answer for any

system to be profoundly dependable. In a similar domain,

Mellal and Williams implemented GA, PSO, and CS to solve

a large-scale system reliability–redundancy allocation prob-

lem involving 20 subsystems (Arezki Mellal and Williams

2018). The reliability of a supervisory control and data

acquisition system (SCADA) of Tehran was optimized by

using RAP with limited availability of budget and other

resources. In the presented work, cost minimization and

reliability maximization were two objectives and therefore a

bi-objective RAP was considered and multi-objective PSO

was implemented to attain solutions (Dolatshahi-Zand and

Khalili-Damghani 2015). Yeh and Lin considered smart

sensor systems for RAP implementation, and the parallel

simplified swarm algorithm (PSSO) was proposed for opti-

mization purposes (Yeh and Lin 2018). Recently, the RRAP

was investigated in a multistate flow network (MFN) in terms

of cost minimization or reliability maximization under

resource restrictions. The authors offered a basic cut-based

approximation approach to convert NP-hard mixed-integer

nonlinear programming problem into an integer programming
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problem (Zhang et al. 2022). Other than system engineering,

the optimization process is also implemented in the medical

and food sectors. In this domain, modified convolutional

(CNN) and convolutional autoencoder (Conv-AE) neural

networks (NNs) were implemented for classifying data from

scalp EEG recordings into Alzheimer’s disease (AD), mild

cognitive impairment (MCI), and healthy control (HC)

(Fouladi et al. 2022). Similarly, image processing techniques,

texturing, neural networks, and adaptive network-based fuzzy

inference system (ANFIS) classifiers were also proposed to

diagnose Alternaria disease and leaf miner pest (Nazari et al.

2022). Other than reliability optimization, metaheuristic

algorithms are also implemented in other fields such as

adaptive polyploid memetic algorithm (APMA) implemented

for the problem of scheduling CDT trucks that can assist with

proper CDT operations planning (Dulebenets 2021). A uni-

versal island-based metaheuristic algorithm (UIMA) was

proposed to handle the spatially constrained berth scheduling

problem. This population-based metaheuristic algorithm was

implemented to solve the berth scheduling problem and

minimize the total cost of serving the arriving vessels at the

marine container terminals (Kavoosi et al. 2020). Non-dom-

inated sorting genetic algorithm II (NSGA-II) and multi-ob-

jective particle swarm optimization (MOPSO) are used to find

high-quality solutions for ambulance routes in a short period

and minimize the latest service completion time as well as the

number of patients whose condition worsens due to receiving

delayed medical services (Rabbani et al. 2022).

Most of the work in the literature in the domain of RRAP is

dedicated to improving the reliability of benchmark systems

with different algorithms and different strategies. As discussed

above, some authors have contributed to the reliability analysis

and optimization of some complex and useful systems; thus, in

this research work RRAP is applied meanwhile for a very useful

complex system FED. The RRAP tended in this paper is of

incredible useful importance. System designers work to make

decisions concerning the level of redundancy in all subsystems

to achieve maximum reliability while setting the cost, volume,

and weight of the system as low as possible. System designers

can defeat this issue either by using redundant parts to make the

system desired reliable or by further developing the reliability

of the parts which will achieve reliability improvement of parts.

Notwithstanding, by then, the essential issue arises that directly

affects the cost of the whole system. Therefore, our point in this

work is to pick which design or arrangement is more com-

pelling for the designers in keeping the cost low. Additionally,

the HPSGWO algorithm is developed for addressing the non-

linear mixed-integer programming problem. The main high-

lights of the proposed work are as follows:

• RRAP is applied on FED to maximize the system

reliability with some imperatives such as parts and the

system’s cost, weight, and volume.

• The notable HPSGWO algorithm is developed for

addressing the nonlinear mixed-integer programming

problem.

• The study of standard deviation between GWO and

HPSGWO shows a high convergence of HPSGWO than

GWO.

• A total of five designs of FED with different levels of

redundancy are solved for reliability optimization.

• The comparative study of maximum reliability among

all designs makes it easy for system designers to choose

a highly reliable system.

• Also, the comparative study among the slack variables

or unused resources opens another dimension for

system designers to think of. Designers can make an

ideally designed system by considering the trade-off

between system reliability and slack variables.

We have isolated this work into nine areas. The first

section depicts the introduction of RAP and RRAP, and the

second section explains the motivation for the current

work. The third section explains the components and

workings of the FED. The fourth section portrays the

assumptions and notations which are implemented in this

work. The fifth section explains the mathematical model

for FED in which the nonlinear mixed-integer program-

ming problem is stated. The sixth section is an explanation

of the working procedure of the GWO algorithm, while the

seventh section describes the working and efficiency of

HPSGWO. The eighth section presents and discusses the

outcomes obtained from the implementation of the

HPSGWO algorithm to optimize the reliability of FED, and

the last section concludes and explains the future scopes of

this work in system designing.

3 Fire extinguisher drone

The FEDs are very valuable for firefighters in tackling

emergencies in non-reachable areas. Fire sometimes makes

gigantic misfortune to our untamed life, normal assets,

woods, human existence, etc. According to the Times of

India report, in 2017 out of 27,027 demises, each fifth Fire-

associated demise on the planet occurred in India.

Approximately 90 lakh Fire occurrences and 1.2 lakh

demises were noted around the world that year. Thirty-five

Indians pass on in these fire mishaps every day, according

to the National Crime Records Bureau (NCRB). Quick

admittance to fire and moment quenching are vital to

counter fire dangers, and the drone procedure is probably

the most ideal way of dousing the fire as it works where

people cannot reach because of the most exceedingly ter-

rible state of fire. Indeed, even here and there it quenches

the fire before it transforms into a devil. There are some
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problems that firefighters face in various situations such as

some forest wildfires that begin in central forest areas that

are difficult to get control by the time firefighters reach

there with a water supply and fire brigade the fire already

covers other areas of forest. Firefighting transport supplies

water for showering on multi-story building fires, leading

to major misplays. These buildings are residents for thou-

sands of people. Firefighters risk their lives to secure oth-

ers’ life in fire emergency zones. Risks include heat

exhaustion, burns, and physical and mental stress. The

drone helps firefighters calm fire beat out without being in

danger. Secondly, instantly it can access forest areas which

would consume hours for fire equipment and humans to

reach the emergency zones and quickly reach multi-story

building windows along with fire extinguishers.

3.1 Components of FEDs

The main components of FED are a fire extinguisher ball,

camera, LED lights, motors, controller, propellers, sensors, and

transmitter. Fireball is constructed on revolutionary mechanics

which supply much more up-to-date solutions compared with

transportable fire extinguishers. The constraints and issues

related to ordinary techniques of extinction (conservation,

training, etc.) are at the beginning of its expansion. It is com-

fortable to utilize and supply shelter as it is self-concern in the

existence of a blaze in the absence of human interference.

The passive infrared (PIR) motion detectors are outlined

for safety and enhanced to accurately discover human

beings, big pets, and extra huge friendly working things.

Also, we could utilize a thermal visualizing camera. The

supply of light is needed in unlighted places, and it is also

helpful to get dazzling and sharp pictures from the camera.

The motors used in drones are of two types: brushed and

brushless motors. These motors differ in the method they

perform tasks. The brushless method is extra significant for its

heaviness than brushed motors, and they rearmost way pro-

longed. The drone regulator permits the drone commander to

manage the drone utilizing radio waves. Electronic speed

controllers are gadgets that permit drone flight regulators to

manage and alter the speed of the drone. All unmanned aerial

vehicles (UAV) are driven by a set of revolving blades,

raising them onward to force them to fly. Drone rotors are the

revolving wings that behave as the quadcopter’s pennon or

wings which generate current to raise it in the direction of air.

Tilt detectors or sensors merged with gyros and

accelerometers, supply instructions to flight management

structures conducive to continuing the level flight.

Drone radio transmitter is an electronic gadget that makes

use of radio signals to circulate order wirelessly through a set

radio recurrence above the radio receiver, which is attached to

an aircraft or aero drone being remotely managed.

3.2 Working of FED

Initially, the signals of fire situations are transmitted through

transmitters which are received by the drone receiver. Then,

these signals go to the accelerometer and gyroscope sensors

via the flight controller. The refined sign will be passed on to

the ESC, which allows the particular add-up to the motor

depending on the sign it gets. The propellers are consequently

combined with the motors with the goal that they can turn and

create push. A servo engine controlled through a transmitter is

applied to open the shell in which the discharge quencher ball

is held inside. The stream cost of the pump can likewise be

controlled through the transmitter.

4 Assumptions and notations

Before delving into the reliability–redundancy allocation

problem, we specify the following: assumptions and nota-

tion, which will be used throughout the work. The nota-

tions are shown in nomenclature section, and the

assumptions are as follows (Kundu and Garg 2022):

• There is an infinite supply of components.

• Each component in a subsystem has the same reliabil-

ity, cost, weight, and volume.

• Failing components do not do any harm to the system

and are not getting repaired.

• All redundancies are active: the hazard function is the

same whether it is used or not used.

• Individual component failures are independent.

The list of notations used in the HPSGWO algorithm for

optimization is given in Table 1 (Kundu and Garg 2022).

5 Mathematical formulation of FED

Figure 1 represents the block diagram of FED where four

subsystems are arranged in series. The second and fourth

subsystem has two and four components arranged in par-

allel, respectively. Here in this paper, five cases for opti-

mization are considered where each case has a different

design or redundancy arrangement. All the designs satisfy

the constraints utilizing cost, volume, and weight. The

mathematical modelling for FED reliability optimization is

explained as follows (Kanagaraj et al. 2013):

Maximizef r; nð Þ ¼
Ym

i¼1

RiðniðjÞÞ ð1Þ

Subject to

g1 r; nð Þ ¼
Xm

i¼1

wi � v2
i � ni jð Þ2 �V ð2Þ
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g2 r; nð Þ ¼
Xm

i¼1

ai � � 1000

lnri

� �bi

� ½ni þ e0:25ni jð Þ2

� �C ð3Þ

g3 r; nð Þ ¼
Xm

i¼1

wi � ni � e0:25niðjÞ �W ð4Þ

where, ni 2 Zþ, 0� ri � 1; ri 2 R; 1� j� 5

Equations (2), (3), and (4) represent the constraints that

are volume, cost, and weight of the system, respectively.

Here, constraint (2) is a product of the weight, volume, and

redundancy level of the system which is restricted by the

maximum required volume for the system. Constraint (3) is

a cost constraint for the system that depends on the relia-

bility of the component, and constraint (4) is a combination

of weight and redundancy level of the system. Table 2

depicts the list of the values of the input parameters that are

used in the constraints. ai and bi represent the physical

features of ith subsystem. The values of all the input

parameters are considered the same as (Dhillon et al.

2022). The similar values of ai; bi, wi:v
2
i , and wi are con-

sidered in Kanagaraj et al. (2013), Kim et al. (2006), Hsieh

and You (2011), Kanagaraj et al. (2013), Bhandari et al.

(2023), Kim and Kim (2017), and Li et al. (2022).

6 Overview of GWO

The GWO algorithm is inspired by grey wolves (Canis

lupus). The GWO algorithm mimics the leadership hier-

archy and hunting mechanism of grey wolves in nature.

Table 1 Notations
m The number of subsystems in the system

ni The number of components in ith subsystem

n � ðn1;n2; . . .;nmÞ the vector of the redundancy allocation for the system

ri The reliability of each component in ith subsystem

r � ðr1; r2; . . .; rmÞ the vector of the component reliabilities for the system

R System reliability

gi ith constraint

vi The volume of each component in ith subsystem

wi The weight of each component in ith subsystem

ci The cost of each component in ith subsystem

V The upper limit on the volume of the system

C The upper limit on the cost of the system

W The upper limit on the weight of the system

f ðr; nÞ System reliability

Bold values mean the improved results

Fig. 1 Block diagram of FED
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The social direct and moderate mindset among the wolves

are ruling, and this lead prompts a useful hunting part

(Mirjalili et al. 2014). This social information on the

wolves, the power of the pioneer wolf that is alpha ðaÞ; and

the other three in number wolves in the pack that is beta

ðbÞ, delta ðdÞ, and omega ðxÞ close by the adaptable part of

looking, moving closer, in conclusion, hunting the prey are

the three essential prodding factors behind the reasonable

working of the GWO computation. This is copied in find-

ing the overall ideal arrangement from complex issues of

different fields of designing and innovation. The hunting

system of wolves incorporates pursuing, enclosing, and

hunting which is numerically shown in the following.

6.1 Social hierarchy

In the inclusion of mathematical representation, when

plotting GWO, the social hierarchy of wolves examines the

best solution as the alpha ðaÞ. Thus, the second and third

finest solutions are termed beta ðbÞ and delta ðdÞ, respec-

tively. The remaining possible solutions are presumed to be

omega ðxÞ. The hunting is led by a, b; and d in the GWO

process. These three wolves are followed by x wolves.

6.2 Encircling prey

In addition to mathematically model circumscribing habits,

the following calculations are suggested:

D
!¼ jC!� X!pðtÞ � X

!ðtÞj ð5Þ

X
!ðt þ 1Þ ¼ X

!
pðtÞ � A

!� D! ð6Þ

where t denotes the current iteration, A
!

and C
!

are the

coefficient vectors, X
!

p is the position vector of the predator,

and X
!

indicates the position vector of a grey wolf.

The vectors A
!

and C
!

are considered in this way:

A
!¼ 2 a!� r!1 � a! ð7Þ

C
!¼ 2 � r!2 ð8Þ

where elements of a! are directly reduced from 2 to 0

above the course of repetitions and r1; r2 are the random

vectors in [0, 1].

6.3 Hunting

Grey wolves first recognize the position of prey and then

encircle them, and this is one of their abilities. The chase is

generally led by the alpha. The beta and delta may also

engage in chasing traditionally. But, in a theoretical probe

location, we have no indeed suggestion regarding the sit-

uation of the predator. In addition to mathematically imi-

tating the chasing habit of grey wolves, we assume that the

alpha, beta, and delta have a finer understanding regarding

the possible position of prey.

The following formulas are preferred in this view:

D
!
a ¼ C

!
1 � X

!
a� X

!���
���; D!b ¼ C

!
2 � X

!
b � X

!���
���; D!d

¼ C
!

3 � X
!

d � X
!���
��� ð9Þ

X
!

1 ¼ X
!
a� A

!
1 � D

!
a

� �
; X
!

2 ¼ X
!

b � A
!

2 � D
!

b

� �
; X
!

3

¼ X
!

d � A
!

3 � ðD
!

dÞ
ð10Þ

X
!

tþ1 ¼ ðX!1 þ X
!

2 þ X
!

3Þ=3 ð11Þ

It is noticeable that the last location would be at an

arbitrary point within a circle which is explained by the

locations of alpha, beta, and delta in the hunt area.

6.4 Attacking predators

When the predator ends moving, the grey wolves complete

the hunt by striking the predator. In conducive to mathe-

matical imitation proceed towards the predator, we degrade

the value of a!. Record that the movement interval of A
!

is

further diminished by a!. In addition, A
!

is an arbitrary

value in the interval [- 2a, 2a] where a is diminished from

2 to 0 throughout repetitions. Whenever arbitrary values of

A
!

lie in [1,1], the upcoming location of an explorer agent

could be in any location between its present location and

the location of the predator.

6.5 Searching for predators

Grey wolves mainly hunt confirming the location of the

alpha, beta, and delta. They separate from one another to hunt

Table 2 Values of the constraints used in the optimization problem

n 105:ai bi wi:v
2
i

wi V C W

1 2.330 1.5 1 7 400 300 350

2 1.450 1.5 2 8

3 0.541 1.5 3 8

4 8.050 1.5 4 6

5 1.950 1.5 2 9
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for predators and assemble to pounce on predators. According

to mathematical model divergence, we employ A
!

with gen-

eral values above 1 or below - 1 to bind a search agent to

deviate from the predator. This highlights the survey and

permits the GWO technique to hunt worldwide.

To look at how GWO is capable of tackling optimiza-

tion problems, several points can be prominent:

The suggested organized grading helps GWO to rescue

the finest solutions acquired until now over the journey of

repetition. The preferred surrounding process describes the

circle-formed locality throughout the solutions which could

be prolonged to excessive measurements as a hyper-sphere.

The arbitrary variables A and C help applicant solutions to

have hyper-spheres with discrete arbitrary radii. The sug-

gested trapping technique permits applicant solutions to find

the expected place of the predator. Investigation and misuse

are promised by the flexible values of a and A. The flexible

values of variables a and A allow GWO to evenly change

between survey and misuse. With slackening A, partially of

the repetition are constant to investigation and the other parts

are devoted to misuse. In GWO, there are only two important

variables that have to be balanced (A and C).

7 Proposed Algorithm: HPSGWO

The proposed HPSGWO calculation has been done without

changing the general movement of the PSO and GWO

calculations. The PSO calculation is adequately proficient

to track down upgraded outcomes in practically all intricate

issues (Kennedy 1995). In any case, there is a requirement

for the diminished opportunities for the PSO to stall out

into the nearby ideal arrangements. In HPSGWO, the

GWO calculation helps the PSO calculation to reduce the

shot of falling into an area ideal (Şenel et al. 2019).

Additionally, the GWO calculation’s investigation quality

forestalls the odds of particles creating some distance from

the worldwide ideal by guiding the particles to advanced

situations rather than new arbitrary positions. HPSGWO is

constituted by the combination of the upgraded GWO and

improved PSO. Firstly, set the frameworks and deallocate

the positions and velocities of the particles anyhow.

Compute the strength value of each representative, classify

the population in decreasing order as stated by the fitness

values, and decidegbest; pbest, Xa,Xb, and Xd. For the benefit

of expression, gbest and Xa are two discrete forms of the

worldwide finest solution. Choose the modernized method

to renovate the current particle following the poor-for-

change policy. Accurate the velocities and places of all the

particles and compute the fitness values. Organize the

population in a decreasing order following the fitness val-

ues and renovate gbest; pbest, Xa, Xb, andXd. Decide whether

the conclusion condition is well pleased or not. If the

condition is not satisfied, go back to Step 3, or else, output

the best answer.
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Fig. 2 Benchmark functions from F1–F23, A 2D function plot and B convergence characteristics with the proposed algorithm
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Fig. 2 continued
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Figure 2 depicts the performance of the suggested

approach for the 23 benchmark functions F1–F23. Fig-

ure 2A depicts the two-dimensional (2D) representation of

the three-dimensional (3D) parameter space, and Fig. 2B

depicts the convergence characteristics of the proposed

technique with respect to the number of iterations. The

convergence characteristics are plotted by taking into

account the mean values of optimal values for the ten

different runs in each iteration, and the proposed algorithm

has the mixed behaviour of integrated algorithms, resulting

in efficient system performance. Table 3 shows the results

of the statistical analysis using the proposed technique on

the benchmark functions. To analyse the efficiency of the

proposed hybrid PSO–GWO, the proposed method is

compared to the most recent hybrid algorithm called

MGWO–SCA–CSA using algorithm parameters of popu-

lation size 100 and total number of iterations 500. Table 2

shows the mean, standard deviation, best, and worst values

obtained from ten different runs (Dey et al. 2021).

The outcomes are presented in Table 3, which explains

the efficiency of the proposed algorithm to achieve global

optimal for an optimization problem. The high standard

deviation for iterations is due to the high exploration

property of GWO, and the best outcomes are achieved by

the high exploitation property of PSO (Şenel et al. 2019).

8 Outcomes and discussion

In Table 3, the results were obtained from a developed

algorithm for RRAP from MATLAB software. The dif-

ferent redundancy levels best, worst, mean, and standard

deviation of the GWO and HPSGWO are mentioned in

Table 4. ni is the redundancy level for subsystems, f(r,n)

best is the maximum value of system reliability, and f(r,n)

worst is the minimum value for all 20 runs.

In Table 5, the maximum achieved reliability for the

FED and optimal reliability for the components in each

redundancy level of FED are presented. Also, the com-

parison of the system’s as well as components’ reliability

between the GWO and HPSGWO is mentioned. It is evi-

dent from Table 5 that in all the considered redundancy

levels for the system the HPSGWO has achieved better

reliability as compared to GWO. In terms of highly reliable

allocation of redundancy, the system with redundancy level

[5 2 2 6 2] can be an ideal choice for designers. Other

factors like resources like consumption of cost, weight, and

volume are calculated for each redundancy level and

optimal reliability in Table 6.

Table 6 shows the remaining amount of available

resources after attaining optimal reliability which can be an

important prospect for system designers. Designers can opt

for such a system design that meets their particular

requirements perfectly. The designers can check the usage

of available resources from Table 6 and construct some

F21 F22

F23

Fig. 2 continued
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Table 4 Convergence results of

the objective function (20 runs)

for the FED system using GWO

and HPSGWO

Algorithm ni f(r,n) best f(r,n) worst Mean Standard deviation

GWO [4 3 3 4 4] 0.9997952654 0.9993643922 0.9997030267 1.3721907e - 04

[4 4 5 2 3] 0.9986015023 0.9964571882 0.9979454068 0.0006162371

[4 4 4 4 4] 0.9998620296 0.9995771064 0.9997355099 9.0143132e - 05

[5 5 4 3 3] 0.9998620086 0.9993076885 0.9996985681 0.0001313735

[5 2 2 6 2] 0.9998589722 0.9993308848 0.9997193323 0.0001295686

HPSGWO [4 3 3 4 4] 0.9999012585 0.9998860791 0.9998985325 5.0247741e - 06

[4 4 5 2 3] 0.9991398821 0.9989167074 0.9991152434 4.9910537e - 05

[4 4 4 4 4] 0.9999180064 0.9998985177 0.9999161568 4.3135261e - 06

[5 5 4 3 3] 0.9999140900 0.9998925693 0.9999117458 4.7870377e - 06

[5 2 2 6 2] 0.9999387780 0.9999204537 0.9999351080 5.6176289e - 06

Table 5 System reliability and

components’ reliability for FED
Redundancy level Parameters GWO HPSGWO

[4 3 3 4 4] Rsystem 0.999795265420947 0.999899747608588

r1 0.898363507342117 0.90972267301366

r2 0.810356036764371 0.761213640113273

r3 0.881103491628621 0.907357745283414

r4 0.903625594230794 0.931906835870775

r5 0.608344603658741 0.567336687730478

[4 4 5 2 3] Rsystem 0.998601502346172 0.999139882128989

r1 0.860536792391562 0.876639558984553

r2 0.790695557445282 0.604999315358789

r3 0.627737508801209 0.766116002068882

r4 0.968268948142934 0.975413150992711

r5 0.776229994461219 0.627458076911624

[4 4 4 4 4] Rsystem 0.999862029651366 0.999918006368587

r1 0.918350921123968 0.913032119384787

r2 0.604481122962660 0.720467822584888

r3 0.819032277069205 0.834132914830470

r4 0.909650581767270 0.933916908331804

r5 0.589440265509490 0.575828717398966

[5 5 4 3 3] Rsystem 0.999862008622391 0.999914090046997

r1 .847427339971806 0.873517606218948

r2 0.802179306057867 0.666724644714909

r3 0.749865802726117 0.823244333397443

r4 0.962173945123998 0.963625603139065

r5 0.782178936779238 0.674757448125840

[5 2 2 6 2] Rsystem 0.999858972183810 0.999938777964879

r1 0.863700128934150 0.877125082431281

r2 0.870379752584762 0.902449184112017

r3 0.928388104991992 0.948984803928944

r4 0.867818778271268 0.867012041915946

r5 0.800629701502485 0.796728615755417

Bold values mean the improved results
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other redundancy levels for the system with a certain limit

of weight and volume. The availability of these resources

can comprise more redundant components that will directly

affect the system’s reliability proportionally. In view of

Table 6, the system with redundancy level [5 2 2 6 2] has

maximum weight, while the redundancy level [4 4 5 2 3]

has minimum. Similarly, redundancy levels [5 5 4 3 3] and

[4 3 3 4 4] have maximum and minimum volume,

respectively, and the redundancy level [5 2 2 6 2] costs

maximum to achieve the optimal reliability level, whereas

the redundancy level [4 3 3 4 4] consumes minimum cost to

achieve the global optimal reliability. All the above dis-

cussion indicates that for the FED, the first design with

redundancy level [4 3 3 4 4] is the best choice for a system

designer for a highly reliable and cost-efficient system.

9 Conclusion

This research work has examined an essential system FED

for RRAP. For optimization purposes, a powerful meta-

heuristic hybrid PSO–GWO is developed and a mixed-in-

teger nonlinear programming problem is solved. Different

levels of redundancies are considered for system design.

The obtained outcomes profoundly help the system

designers to create a system that is either highly reliable,

cost-efficient, or less resource consumable. Also, the

effectiveness of hybrid PSO–GWO is examined by testing

it for all the CEC benchmark functions and comparing it

with a triple hybrid algorithm.

In the future, more advanced and complex algorithms

can be implemented to solve the proposed decision prob-

lem. Also, the proposed algorithm can be implemented for

other challenging decision problems such as online learn-

ing, scheduling, multi-objective optimization, transporta-

tion, medicine, and data classification.
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