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The brain and body operate together through the inte-
grated activity of the central and autonomic nervous 
systems (CNS and ANS, respectively). These relation-
ships are typically conceived in terms of top-down con-
trol of peripheral physiological activity by the CNS, but 
there is emerging evidence of ANS physiology regulat-
ing and even organizing large-scale neural activity (Raut 
et  al., 2021). Heart rate variability (HRV) is a well-
established manifestation of ANS function that has 
remarkably robust associations with various domains 
of psychological functioning. Mather and Thayer (2018) 
proposed that, rather than simply reflecting shared sys-
tems supporting physiological and psychological regu-
lation, associations between HRV and psychological 
health may reflect a causal influence of cardiac rhythms 
on neural activity. The present study examined oscilla-
tory coupling between heart rate fluctuations as an 

index of ANS activity and electroencephalogram (EEG) 
rhythms as a measure of CNS function to determine a 
potential physiological mechanism through which the 
brain and body are dynamically co-regulated.

HRV is commonly interpreted as reflecting an ability 
to respond flexibly and adaptively to demands of the 
environment (Friedman & Thayer, 1998; Porges, 2001; 
Thayer & Lane, 2000). High-frequency HRV (HF-HRV), 
which reflects 0.15-to-0.4-Hz cyclical fluctuations in 
heart rate associated with respiration (see Fig. 1A), 
provides an index of the parasympathetic contribution 
to cardiac activity and is predominantly mediated 
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Abstract
Oscillations serve a critical role in organizing biological systems. In the brain, oscillatory coupling is a fundamental 
mechanism of communication. The possibility that neural oscillations interact directly with slower physiological 
rhythms (e.g., heart rate, respiration) is largely unexplored and may have important implications for psychological 
functioning. Oscillations in heart rate, an aspect of heart rate variability (HRV), show remarkably robust associations 
with psychological health. Mather and Thayer proposed coupling between high-frequency HRV (HF-HRV) and neural 
oscillations as a mechanism that partially accounts for such relationships. We tested this hypothesis by measuring 
phase-amplitude coupling between HF-HRV and neural oscillations in 37 healthy adults at rest. Robust coupling was 
detected in all frequency bands. Granger causality analyses indicated stronger heart-to-brain than brain-to-heart effects 
in all frequency bands except gamma. These findings suggest that cardiac rhythms play a causal role in modulating 
neural oscillations, which may have important implications for mental health.

Keywords
cognitive neuroscience, electrophysiology, human body

Received 8/17/23; Revision accepted 2/8/24

https://us.sagepub.com/en-us/journals-permissions
http://www.psychologicalscience.org/ps
mailto:kaiasargent@g.ucla.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F09567976241235932&domain=pdf&date_stamp=2024-04-03


2	 Sargent et al.

through the vagus nerve. Research on individual differ-
ences in HRV, and particularly HF-HRV, has shown con-
sistent links to various domains of psychological 
functioning. Higher HRV is associated with better emo-
tion regulation (Appelhans & Luecken, 2006; Beauchaine, 
2001; Porges, 1991), executive functioning (Forte et al., 
2019; Thayer et  al., 2009), ability to cope with stress 
(Fabes & Eisenberg, 1997), and overall mental well-being 
(Beauchaine & Thayer, 2015; Shaffer et al., 2014). Intrigu-
ingly, HRV biofeedback, in which participants learn to 
increase HRV through real-time feedback and breathing 
techniques, has been reliably found to improve function-
ing in several of these domains, most prominently, cogni-
tive function and emotion regulation (Lehrer & Gevirtz, 
2014). These findings suggest a directional pathway 
between HRV and CNS function, although the mecha-
nism of such a relationship is unknown.

In a recent landmark study, Raut et al. (2021) pro-
posed a mechanism for how fluctuations in ANS activity 
impact large-scale spatiotemporal organization of the 
brain. They showed that functional magnetic resonance 
imaging (fMRI) signal fluctuations in humans corre-
spond to the phase of ANS oscillations indexed by respi-
ratory volume, HRV, and pupil size and that these signal 
fluctuations map onto the structure of functional neural 
networks. Raut and colleagues proposed that traveling 
waves of ANS activity contribute to the formation of 
functional neural networks, as they produce coherent 

activity in disparate brain regions that varies system-
atically as a function of ANS oscillatory phase. Thus, 
ANS oscillations appear to serve a fundamental role in 
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Fig. 1.  Schematic illustration of physiological oscillations and hypothesized coupling. Oscillation describes cyclical variation, com-
mon in physiological signals. Panel a illustrates sinusoidal increases and decreases in heart rate that correspond to the distance 
between peaks of the electrocardiogram. Panel b illustrates oscillatory coupling between theta and gamma oscillations, where 
gamma amplitude is greatest at the peak of the theta oscillation. Panel c illustrates the potential for coupling between an oscilla-
tory pattern in heart rate (high-frequency heart rate variability) and each of five traditional electroencephalogram frequency bands.

Statement of Relevance

Heart rate variability (HRV), or natural increases 
and decreases in heart rate, is strongly associated 
with mental health. These associations have typi-
cally been explained by the brain’s role in “top-
down” control of physiological activity. The present 
study tested whether cardiac rhythms might also 
play a “bottom-up” role in modulating neural activ-
ity, which would have important implications for 
understanding brain-body interactions and how 
they relate to psychological health. We found that 
electrical activity in the brain was strongly coupled 
to fluctuations in heart rate, with stronger heart-to-
brain effects than brain-to-heart effects. These find-
ings indicate that the link between HRV and mental 
health may be due in part to a causal influence 
of heart rhythms on brain activity. Understand-
ing brain-body interactions as a bidirectional sys-
tem can inform how we think about psychological 
functioning and offer new avenues for improving 
mental health.
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organizing neural activity by modulating brainwide 
excitability in a spatiotemporally patterned manner.

Other investigators have proposed that oscillations 
in heart rate may foster oscillatory activity in the brain 
through cross-frequency coupling (e.g., Klimesch, 
2018). Specifically, phase-amplitude coupling (PAC) is 
a mechanism by which the phase of a slow oscillation 
modulates the amplitude of a faster oscillation (Canolty 
& Knight, 2010). Although PAC has been primarily 
examined in neural oscillations (see Fig. 1b), several 
researchers have theorized that this mechanism of orga-
nization extends across physiological systems (e.g., 
Azzalini et al., 2019; McCraty & Zayas, 2014). Coupling 
has been observed between the phase of the infra-slow 
(~0.05 Hz) rhythm generated by the stomach and the 
amplitude of the EEG alpha rhythm (Richter et  al., 
2017), with the predominant direction of effects from 
the stomach to the brain. Other work has found that 
slow-paced breathing affects hemodynamic oscillations 
in the brain at 0.1 Hz (Vaschillo et al., 2016). Such find-
ings demonstrate that oscillatory interactions previously 
examined only in the brain extend to brain-periphery 
interactions and that bottom-up visceral signals may 
serve a modulatory role in ongoing neural activity. 
Mather and Thayer (2018) proposed that PAC between 
heart rate oscillations and cortical activity (see Fig. 1C) 
may induce synchronized neural oscillations that 
enhance functional connectivity in brain networks sup-
porting cognition and emotion regulation, which may 
also explain observed relationships between HRV and 
psychological functioning.

Neuroimaging studies have consistently shown that 
higher HRV—as either a between-subjects or a task-
based difference—is associated with greater activity and 
connectivity of prefrontal regions (e.g., Jennings et al., 
2016; Thayer et al., 2012). However, assessing interac-
tions between HRV and neural activity on a finer tem-
poral scale presents a distinct challenge, as measuring 
variability necessarily requires a defined period of time, 
with at least 1 min in the case of HF-HRV (Shaffer & 
Ginsberg, 2017). The few studies assessing time-varying 
relationships between HRV and EEG have relied on 
continuous monitoring of seizure activity in patients 
with epilepsy (e.g., Piper et al., 2014) or multiple-hour 
sleep recordings (e.g., Jurysta et al., 2003). These stud-
ies have demonstrated correlations between HRV fluc-
tuations and EEG power, particularly in the delta band 
(1–4 Hz). It is unclear whether these associations are 
specific to pathological or sleep-related EEG changes 
or whether they reflect general principles of coupling 
between heart and brain rhythms. Furthermore, it is 
impossible to infer a causal relationship or physiologi-
cal mechanism based on correlated time series alone.

The present study sought to determine whether heart 
rate oscillations modulate neural activity by assessing 
PAC between HF-HRV and EEG oscillations in healthy 
participants at rest. Despite the strong associations 
between HRV and psychological functioning, as well 
as evidence that oscillatory coupling extends across 
physiological systems, to our knowledge no study has 
explicitly tested this hypothesis. HF-HRV was modeled 
as a sine wave, allowing us to determine whether the 
amplitude of EEG oscillations in the canonical fre-
quency bands (delta, theta, alpha, beta, and gamma) 
varied consistently as a function of HF-HRV phase. 
Granger causality analyses were performed to assess 
directional effects between HF-HRV phase and EEG 
amplitude, which we hypothesized would be stronger 
from HRV phase to EEG amplitude relative to the oppo-
site direction. It was hypothesized that HRV-EEG cou-
pling would be observed in prefrontal regions, as HRV 
has shown associations with prefrontal activity and 
connectivity in both within-subjects (Thayer et  al., 
2012) and between-subjects ( Jennings et al., 2016) stud-
ies. Evidence of HRV phase-modulating EEG amplitude 
may reflect a mechanism through which ANS fluctua-
tions influence neural activity and thus contribute to 
psychological functioning.

Method

Participants

The study included 37 participants (mean age = 21.2, 
SD = 3.0; 11 women; race/ethnicity: 11 White or Euro-
pean American, 11 Hispanic or Latinx, six Asian Ameri-
can, three Black or African American, six Other). 
Participants were recruited from the Greater Los Ange-
les community to participate in a larger study as healthy 
comparison participants. The Structured Clinical Inter-
view for the Diagnostic and Statistical Manual of 
Mental Disorders (5th ed.), Research Version (SCID-
5-RV; First et al., 2015), was used to determine eligibil-
ity for the larger study, and individuals were excluded 
from participation if they had a history of any schizo-
phrenia spectrum or other psychotic disorders, current 
or recurrent major depression, bipolar disorder, obses-
sive-compulsive disorder, posttraumatic stress disorder, 
neurological disorders, history of a significant head 
injury, alcohol or substance dependence history, or 
alcohol or substance abuse in the past 6 months. Addi-
tionally, participants were excluded from the larger 
study if they had contraindications for MRI or if they 
were not a demographic match for the patient sample. 
In total, 41 participants were excluded (mean age = 
21.2, SD = 2.0; 19 women; eight White or European 
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American, 16 Hispanic or Latinx, eight Asian American, 
six Black or African American, three Other). Eighteen 
participants were excluded because of personal or fam-
ily history of psychiatric or neurological disorder, five 
participants were excluded because of MRI contraindi-
cations, 15 participants elected to discontinue the study 
before participating in any study protocols beyond the 
SCID, and three participants were excluded because 
they were not a demographic match for the patient 
sample for the larger study.

The University of California, Los Angeles, Institu-
tional Review Board approved all procedures, and all 
37 participants provided written informed consent. Par-
ticipants were instructed to refrain from using drugs or 
alcohol within 24 hr of the laboratory visit and to 
refrain from smoking cigarettes or consuming caffeine 
at least 1 hr prior to the study visit. Participants were 
debriefed and compensated at a rate of $25 per hour 
at the conclusion of the session.

Psychophysiological recording

Participants were instructed to keep their eyes open 
and fixate on a white cross at the center of a black 
screen for a 5-min resting-state recording subsequent 
to an auditory task. Only eyes-open resting-state data 
were used for analysis. Electrocardiogram (EKG) was 
recorded at 2000 Hz with electrodes placed symmetri-
cally on the right and left lower ribs and a ground 
electrode located approximately two inches below and 
medial to the electrode on the side corresponding to 
the participant’s nondominant hand. Vertical and hori-
zontal electrooculogram (EOG) was recorded from 
electrodes placed above and below each pupil and 
adjacent to the outer canthus of each eye and refer-
enced to the same left mastoid electrode as EEG elec-
trodes. EEG data were obtained using a Brain Products 
actiCHamp active electrode system with a 10-5 distribu-
tion of 90 scalp electrodes (including mastoids) and six 
EOG sites and sampled at 2000 Hz. EOG and EEG sites 
were referenced online to the left mastoid and rerefer-
enced offline to average mastoids (Miller et al., 1991). 
Electrode impedances were kept below 25 kΩ per ven-
dor guidance. Three-dimensional coordinates of elec-
trode positions were recorded using a CapTrak spatial 
digitizer, with fiducial landmarks placed on the  
forehead and preauricular points to aid in spatial 
reconstruction.

EKG processing

The full 5 min of continuous EKG data were processed 
initially using QRSTool (Allen et al., 2007). Automated 
beat detection was used to identify each R-wave, and 

trained research assistants visually inspected and cor-
rected each time series for missed beats. The corrected 
interbeat interval (IBI) time series was transformed from 
cardiac time to real time, producing a vector of IBI 
values, one per millisecond, with each entry being the 
duration of the IBI during which that time point 
occurred. For example, for a 700-ms IBI, the value 700 
would be stored for 700 samples (i.e., the duration of 
the IBI). This provided temporal alignment between the 
IBI and EEG time series. Autoregressive modeling was 
then performed for each IBI time series using Kubios 
software (Niskanen et al., 2004) to identify a peak in 
the power spectrum in the HF-HRV range (0.15–0.4 Hz) 
for each participant, which was subsequently used to 
extract sinusoidal variation in heart rate (HF-HRV) at 
the participant’s most prominent frequency.

EEG processing

EEG were visually inspected for myogenic artifact and 
other noise by trained research assistants. After artifac-
tual segments and noisy channels were removed from 
the data, independent component analysis (ICA) was 
conducted using the Extended Infomax algorithm 
implemented in EEGLAB (DeLorme & Makeig, 2004)  
with the principal component decomposition limited 
to the first 30 components after applying a 1-Hz high-
pass filter.

All components were visually inspected by the first 
author. Artifactual components corresponding to eye 
blink, eye movement, and cardiac activity were identi-
fied, with consultation about any ambiguous compo-
nents. The resulting ICA weights excluding artifactual 
components were then applied to the original dataset 
(without artifactual segments removed and without the 
1-Hz high-pass filter) such that the temporal structure 
of the dataset was preserved. The data were then recon-
structed and down-sampled to 1000 Hz.

Phase-amplitude coupling

Each participant’s real-time IBI timeseries was filtered to 
retain just their HF-HRV peak frequency (± 0.05 Hz) to 
foreground the HF-HRV oscillation. A finite impulse 
response (FIR) filter was designed with its order set to 
capture three cycles of the lower-bound frequency for 
each participant. The filter was applied with a Hamming 
window point by point over the length of the time series. 
The filtered time series was then Hilbert-transformed to 
compute a time series of phase angles for the HF-HRV 
oscillation. The EEG time series was averaged over select 
frontal channels (Fz, FCz, F1, F2, and AFz) into a single 
continuous time series, which was then filtered for each 
frequency band (delta, 1–4 Hz; theta, 4–8 Hz; alpha, 8–12 
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Fig. 2.  Processing steps for a representative study participant. (a) Interbeat interval (IBI) time series in real time. (b) Autoregressive power 
spectrum of IBI time series. Low-frequency HRV range (0.04 – 0.15 Hz) is shown in orange, and high-frequency range (0.15 – 0.4 Hz) is shown 
in blue. (c) IBI time series in real time, filtered at the participant’s peak high-frequency heart rate variability (HF-HRV) and visible as peak 
in blue segment of Figure 2b (0.273 ± 0.05 Hz). (d) Phase angle time series for HF-HRV oscillation in 20-s time window. (e) Amplitude time 
series for alpha oscillation in the corresponding 20-s time window.
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Fig. 3.  Average amplitude of the alpha oscillation in each phase bin 
of the high-frequency heart rate variability oscillation for a represen-
tative participant. Modulation index = 0.830e-3.

Hz; beta, 12–30 Hz; gamma, 30–50 Hz). A FIR filter with 
a Hamming window was applied for each frequency 
band, with filter order set to capture three cycles of the 
lower-bound frequency for each band. Filtered time 
series were then Hilbert-transformed to extract the 
amplitude envelope for each EEG frequency band.  
Figure 2 illustrates results of key processing steps for a 
representative study participant.

For each participant and each EEG band, the HF-HRV 
phase series and the EEG amplitude time series were 
used to compute a modulation index (MI) following 
methods developed by Tort et al. (2010). For each EEG 
frequency, the HF-HRV phase angles were sorted into 
18 equally distributed bins spanning –pi to pi, and the 
average EEG amplitude was calculated for each HF-HRV 
phase bin. If no PAC exists between frequencies, then 
EEG amplitude will be distributed uniformly across HF-
HRV phase bins. Deviations from a uniform distribution 
were quantified with the MI, with higher values (rang-
ing between 0 and 1) indicating systematic variance in 
EEG power over HF-HRV phase bins and, therefore, 
reflecting PAC.

To assess statistical significance of PAC for each EEG 
frequency, a null distribution of MI values for each 
participant was constructed by randomly shuffling HF-
HRV phase angles and recomputing MI. The percentage 
of randomly permuted MI values that exceeded the 
observed MI reflects the probability of obtaining an MI 
equal to or more extreme than the observed MI due to 
chance alone. A total of 5,000 permutations were per-
formed, providing a p-value resolution of .0002.

To assess group-level statistical significance and 
magnitude of effects, the mean MI of the null distribu-
tion was calculated for each participant and each EEG 

frequency band. A Welch’s t test was conducted for 
each EEG frequency band to provide a comparison of 
the mean observed MI to the mean null MI at the group 
level. To correct for multiple comparisons given inclu-
sion of five EEG frequency bands, a Bonferroni correc-
tion was applied with the critical alpha level adjusted 
to 0.05 / 5 = 0.01. Because tests of different EEG fre-
quency bands are not independent of each other, such 
a Bonferroni correction is highly conservative.

To assess the direction of effects, Granger causality 
analyses were performed. Granger causality assesses 
the extent to which a time series X provides information 
that is useful in predicting future values of time series 
Y. Variable X is said to Granger-cause variable Y if 
values of X and Y together provide better predictions 
of future Y values than do past values of Y alone. In 
the present study, Granger analyses were performed 
using methods similar to those described in Munia and 
Aviyente (2021) using the same HF-HRV phase and EEG 
amplitude time series for each frequency band. Welch’s 
t tests were performed using the Granger F statistics to 
compare the magnitude of heart-to-brain versus brain-
to-heart effects, with the same conservative Bonferroni 
correction.

Results

Phase-amplitude coupling

The sample showed systematic, statistically reliable 
variation in EEG amplitude as a function of HF-HRV 
phase in every frequency band. Across all participants 
and all EEG frequency bands, there were no permuted 
MI values that exceeded the observed MI (all p values < 
.0002). Figure 3 shows average alpha amplitude at each 
phase bin of the HF-HRV oscillation for a representative 
participant, illustrating that EEG alpha tracked HF-HRV 
phase systematically.

Table 1 provides test statistics and effect sizes. Every 
band showed a significant difference between group-
mean observed MI values and mean null (permuted) 
MI values. According to standard guidelines for inter-
preting effect sizes (Cohen, 1992), HRV-EEG PAC 
showed a large effect (> 0.8) in each EEG frequency 
band. Alpha exhibited the largest effect, followed by 
delta, beta, theta, and then gamma.

It can be noted that the relative order of the effect 
sizes among the frequency bands differs from the rela-
tive order of the MI values. The seemingly discrepant 
pattern of results reflects differences in MI standard 
deviations across bands (e.g., theta has the largest MI 
value but also the largest standard deviation, thus a 
smaller effect size).



Psychological Science XX(X)	 7

Granger causality

To assess directional effects between HF-HRV and EEG 
oscillations, Granger causality analyses were performed 
using the same phase and amplitude time series that 
were used to compute MI. In each frequency band 
except gamma, the majority of study participants 
showed a significant heart-to-brain effect, whereas few 
showed a significant brain-to-heart effect. To evaluate 
the relative strength of effects in each direction, Granger 
F statistics were log-transformed to normalize the dis-
tributions and compared (heart to brain vs. brain to 
heart) using Welch’s t tests for each EEG frequency 
band. Table 2 shows the number of participants exhibit-
ing significant Granger causality in each direction. 
Across all EEG frequency bands except gamma, the 
group average heart-to-brain effect was significantly 
stronger than the brain-to-heart effect.

To avoid false detections of causal interactions, we 
performed the same Granger analyses using time-
reversed signals. This procedure is based on the rationale 
of Haufe and colleagues (2012), who argued that if tem-
poral order is necessary to distinguish cause and effect, 
directed information flow should be reduced if temporal 
order is reversed. Granger estimates using the time-
reversed signals were indeed consistently lower, with no 
F statistics exceeding the critical value.

Given that the EEG signal is comprised of both oscil-
latory and aperiodic (nonoscillatory) activity, we con-
ducted additional analyses to provide evidence that the 
aforementioned results were attributable to oscillatory 
activity in each frequency band. We submitted each 
subject’s EEG power spectrum to specparam (Donoghue 
et al., 2020; Ostlund et al., 2022) to remove aperiodic 
(1/f ) activity and identify oscillatory peaks in the residu-
alized power spectrum. For each subject, we identified 
the maximal value in each EEG frequency band and 
used the corresponding frequency to filter each subject’s 
EEG data at the subject’s peak frequency for each band. 
We then repeated all PAC and Granger analyses 
described earlier. These analyses replicated the afore-
mentioned findings with only trivial differences, and 
results are reported in Supplementary Materials.

Exploratory analyses to examine scalp 
topography of Granger effects

Analyses reported thus far relied on EEG amplitude 
computed over frontal channels. Apart from showing 
HRV-EEG oscillatory coupling and the direction of the 
effect, it is unclear if the observed associations extend 
to other cortical regions of the brain. On an exploratory 
basis, we examined whether the scalp topography of 

Table 1.  Test Statistics and Effect Sizes Comparing Mean Observed Modulation Index (MI) to 
Mean Null MI for Each Electroencephalogram Frequency Band

Frequency band
Mean observed 
MI ×10–3 (SD)

Mean permuted 
MI ×10–3 (SD) t (df = 37) p Cohen’s d

Delta (1–4 Hz) 0.747 (0.423) 0.004 (0.001) 10.83 5.02e-13 2.48
Theta (4–8 Hz) 0.832 (0.600) 0.004 (0.001) 8.51 3.12e-10 1.95
Alpha (8–12 Hz) 0.681 (0.349) 0.004 (0.001) 11.93 3.01e-14 2.73
Beta (12–30 Hz) 0.313 (0.201) 0.003 (0.001) 9.51 1.76e-11 2.18
Gamma (30–50 Hz) 0.648 (0.756) 0.006 (0.007) 5.23 6.81e-06 1.20

Table 2.  Number of Study Participants Showing Significant Granger Causality in Heart-to-Brain and Brain-to-
Heart Directions in Each Electroencephalogram Frequency Band

Frequency band

N with 
sig. heart-
to-brain

N with 
sig. brain-
to-heart

Mean heart-
to-brain

F stat (SD)

Mean brain-
to-heart

F stat (SD) t p Cohen’s d

Delta 21 3 33.41 (55.12) 1.21 (1.56) 6.10 5.68e-08 0.83
Theta 29 3 36.68 (39.05) 1.56 (1.51) 7.60 2.47e-10 1.27
Alpha 23 0 26.13 (43.93) 0.76 (0.97) 7.01 1.25e-09 0.82
Beta 7 4 3.27 (5.60) 1.23 (1.67) 2.76 0.0075 0.49
Gamma 2 0 1.30 (1.59) 0.90 (0.88) 0.44 0.66 0.31

Note: T statistics compare mean Granger F statistics in heart-to-brain versus brain-to-heart direction in each electroencephalogram 
frequency band. Degrees of freedom for the five bands ranged from 59.63 to 71.99.
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heart-to-brain versus brain-to-heart coupling effects 
were frontally specific or distributed over the scalp. 
Using a strategy similar to that described earlier, Granger 
causality was examined at every scalp channel. This 
resulted in topographic maps of t statistics illustrating 
the relative magnitude of heart-to-brain versus brain-to-
heart effects in each EEG frequency band, as shown in 
Figure 4. Channels that showed a significantly stronger 
heart-to-brain effect than brain-to-heart effect are 
depicted in black. As EEG provides approximately 40 
degrees of freedom at most (Taulu & Larson, 2021),  
a Bonferroni correction with critical alpha adjusted to 
0.05 / 40 = 0.00125 was used. (Because observations at 
each channel are not independent of each other, an 
unadjusted Bonferroni correction would be extraordi-
narily conservative.) In all frequency bands except 
gamma, the majority of channels showed a stronger 
heart-to-brain versus brain-to-heart effect, with effects 
at most sites far exceeding statistical significance.

Discussion

Present findings validate the prediction of Mather and 
Thayer (2018) by demonstrating robust coupling between 
phase of the HF-HRV oscillation and amplitude of neural 
oscillations, with stronger evidence of Granger causality 
in the heart-to-brain direction than in the brain-to-heart 

direction across the scalp in all EEG frequency bands 
except gamma. These results provide evidence for oscil-
latory coupling between heart and brain rhythms in 
which cardiac activity plays a directional role in modulat-
ing neural oscillations. Such oscillatory coupling may 
reflect a physiological mechanism through which the 
ANS and CNS are dynamically integrated and potentially 
account for robust relationships between HRV and vari-
ous indices of psychological health.

Neural entrainment to peripheral 
physiological rhythms

To our knowledge, CNS entrainment to heart rate oscil-
lations has not been previously reported, which is sur-
prising given that entrainment is observed with other 
physiological rhythms (Azzalini et  al., 2019; Lakatos 
et  al., 2019). Fluctuations in alpha oscillations have 
been found to vary with the phase of gastric rhythms 
(Richter et al., 2017). Neural entrainment to respiration 
has also been studied extensively in the rodent brain 
(e.g., Adrian, 1942; Tort et al., 2018) and more recently 
in humans (Herrero et al., 2018; Zelano et al., 2016). 
Given that HF-HRV is intrinsically related to respiration, 
HRV-EEG coupling may be related to respiratory-EEG 
coupling. Disentangling these virtually inseparable pro-
cesses may not be possible, and instead, cardiac and 
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Fig. 4.  Topographic distribution of t statistics comparing magnitude of effects (Granger F statistics) in heart-to-brain versus brain-to-
heart direction. Color bar reflects t statistics, with warmer colors indicating stronger heart-to-brain relative to brain-to-heart effects. 
Electrode sites that show a significant difference in heart-to-brain versus brain-to-heart effects are depicted in black.
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respiratory activity can be thought of as distinct but 
highly coupled oscillators exhibiting bidirectional rela-
tionships. For example, cardiovascular activity modu-
lates ventilatory patterns in addition to respiration 
affecting heart rate, as inhalation tends to start at a 
preferred latency after the last heartbeat in exhalation 
(Dick & Morris, 2004). Therefore, HRV-EEG coupling is 
best considered within a broader perspective of mul-
tiple interacting oscillators in the brain and body.

Considerable research has been conducted on EEG 
changes in response to individual heartbeats by mea-
suring event-related brain potentials time-locked to 
EKG R-waves, known as “heartbeat-evoked potentials” 
(HEPs; Schandry et al., 1986). HEP amplitude correlates 
with HRV and is similarly thought to reflect vagal affer-
ent functioning (Huang et al., 2018; MacKinnon et al., 
2013). Although less research has examined oscillatory 
EEG changes following heartbeats, there is evidence 
that heartbeats induce a phase reset of neural oscilla-
tions that may contribute to HEP generation (Lechinger 
et al., 2015; Park et al., 2018). It is possible that more 
frequent heartbeats (higher heart rate) increase the 
amplitude of EEG rhythms by phase-synchronizing 
ongoing oscillatory activity.

Slower physiological oscillations could help regulate 
cortical excitability and serve a role in coordinating the 
synchronized rhythmic activity of neural assemblies. 
Such organization is critical for efficient neural com-
munication and cognitive function. The robust asso
ciations between HRV and various measures of 
psychological health may be substantially due to the 
role of peripheral physiological activity in regulating 
CNS excitability to promote effective neural communi-
cation. HRV-EEG coupling observed in the present 
study might also serve as a means of coordinating 
peripheral and central neural states to respond flexibly 
and adaptively to the environment as a single, inte-
grated system.

Directional effects between cardiac 
and neural activity

Several previous studies have employed Granger cau-
sality or similar methods to examine directional interac-
tions between EEG and heart rate, raw EKG, or HRV 
power time series. Contrary to results of the present 
study, the majority of these studies have reported stron-
ger brain-to-heart than heart-to-brain effects (Abdalbari 
et al., 2022; Greco et al., 2019; Lin et al., 2016; Pardo-
Rodriguez et  al., 2021). However, one study showed 
that HF-HRV power changes preceded changes in the 
delta band during sleep ( Jurysta et  al., 2003), and 
another showed stronger heart-to-brain interactions 
during an emotion elicitation paradigm (Candia-Rivera 
et al., 2022). The discrepant results may be explained 

by differing experimental paradigms and methods; our 
study is unique in that it employed phase measures of 
the HF-HRV oscillation.

On the basis of present and other findings, it is 
apparent that heart-brain interactions are bidirectional 
and dynamic, with multiple interacting feedback loops 
and mechanisms. The vagus nerve comprises both affer-
ent (80%) and efferent (20%) connections between the 
brain and heart, allowing for complex feedback and 
feedforward connections that can be understood 
through a dynamical systems framework (e.g., Thayer 
& Lane, 2000). The present study foregrounds PAC as 
one mechanism through which cardiac rhythms exert 
a directional, modulatory influence over neural activity 
within a complex dynamic system.

Limitations

It is difficult to determine whether cardiac activity 
exerts a direct, causal influence over neural activity via 
rhythmic entrainment or whether HF-HRV serves as an 
indirect measure of ANS fluctuations that are associated 
with corresponding changes in the global EEG signal. 
The two possibilities are not mutually exclusive, and 
both may contribute to HRV-EEG coupling. Further-
more, it is difficult to definitively identify directionality 
in PAC, particularly in relationships involving vastly 
different time scales. The development of mathematical 
techniques to model nonlinear and embedded relation-
ships across time scales will contribute to our under-
standing of dynamically interacting biological processes. 
Finally, it is possible that the lack of significant heart-
to-brain effects in the gamma band is due in part to a 
general signal-to-noise ratio (SNR) confound (it had the 
smallest PAC effect size; see Table 1). However, PAC 
analyses and Granger analyses differed in the relative 
magnitude of effects across frequency bands, with 
alpha showing strongest PAC and theta showing stron-
gest heart-to-brain Granger causality. If the rank order 
of effect sizes was driven largely by SNR, the observed 
pattern should be consistent across all frequency bands 
for PAC and Granger causality.

Implications and future directions

The present study tested a physiological mechanism 
that could account for robust relationships between 
HRV and psychological health. Present results support 
Mather and Thayer’s (2018) proposal that high-amplitude 
oscillations in heart rate induce oscillatory activity  
in the brain, which may contribute to functional con-
nectivity in networks supporting emotion regulation 
and cognitive function. Determining whether and how 
HRV-EEG coupling modulates functional connectivity 
and potentially contributes to psychological health will 
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be important next steps for future research. Such evi-
dence would indicate that HRV-EEG coupling is a prom-
ising phenomenon on which to base development of 
novel, physiologically grounded approaches for improv-
ing mental health.

Oscillatory coupling between heart rhythms and 
brain rhythms may also have implications for concep-
tualizing cognition and emotion. Cognitive neurosci-
ence has tended to conceive of regulatory processes in 
terms of top-down control. Present findings support the 
role of reciprocal and bottom-up peripheral physiologi-
cal regulation of central neural activity that may support 
psychological phenomena. Future research may benefit 
from incorporating more nuanced, dynamic, and com-
prehensive models of reciprocal regulatory processes 
in the brain and body.
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