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a b s t r a c t

This paper describes a new system for short-term speculation in the foreign exchange market, based
on recent reinforcement learning (RL) developments. Neural networks with three hidden layers of
ReLU neurons are trained as RL agents under the Q-learning algorithm by a novel simulated market
environment framework which consistently induces stable learning that generalizes to out-of-sample
data. This framework includes new state and reward signals, and a method for more efficient use of
available historical tick data that provides improved training quality and testing accuracy. In the EUR/USD
market from 2010 to 2017 the system yielded, over 10 tests with varying initial conditions, an average
total profit of 114.0 ± 19.6% for an yearly average of 16.3 ± 2.8%.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a sub-field of machine learning
in which a system learns to act within a certain environment in a
way that maximizes its accumulation of rewards, scalars received
as feedback for actions. It has of late come into a sort of Renaissance
that has made it very much cutting-edge for a variety of control
problems. Some high-profile successes ushered in this new era of
reinforcement learning. First, in 2013, a London-based artificial in-
telligence (AI) company called Deepmind, stunned the AI commu-
nity with a system based on the RL paradigm that had taught itself
to play 7 different Atari video-games, 3 of them at human-expert
level, using simply pixel positions and game scores as input and
without any changes of architecture or learning algorithmbetween
games [1]. Deepmind was bought by Google, and by 2015 the
system was achieving performances comparable to professional
human game testers in over 20 different Atari games [2]. Then,
that same company achieved wide mainstream exposure when
its Go-playing program AlphaGo, which uses a somewhat similar
approach to the Atari playing system, beat the best Go player in
the world in an event that reached peaks of 60 million viewers.
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This was made possible by the use of neural networks, another
sub-field of machine learning. These networks consist of intercon-
nected artificial neurons inspired by the biological brain which
process information by their dynamic state response to external
inputs. This combination has been used before but often proved
unreliable, especially formore complex neural networks. Advances
in the neural networks field such as the ReLU neuron and gra-
dient descent algorithms with adaptive learning rate, along with
contributions from Mnih et al. [1] (and many others afterwards)
aimed specifically at this mixed approach, have made it much
more effective. From the point of view of reinforcement learning,
neural networks provide much needed generalization power to
find patterns for decisionmaking that lead to greater reward. From
the point of view of neural networks, reinforcement learning is
useful because it automatically generates great amounts of labeled
data, even if the data is more weakly labeled than through direct
human intervention, which is usually a limiting factor for neural
networks [3].

In this paper our aim is to find how to adapt these new devel-
opments in RL to the creation of an algorithmic system that gen-
erates profitable trading signals in financial markets. This requires
successfully accomplishing the following steps:
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Fig. 1. The RL learning framework.

• Obtain a system that is able to stably, without diverging, learn
and thus improve its financial performance on the dataset it
is being trained on;

• Show that the system’s learning generalizes to unseen data
and that this generalization power can be harnessed to gen-
erate profitable decisions on a realistic simulation of live
trading.

The foreign exchange market (Forex) was chosen as the testing
ground for accomplishing these goals as having the largest volume
of trades out of all financial markets, with roughly 25% of that
volume concentrated on the EUR/USD pair [4] makes it ideal for
short-term speculation. To reach the objectives above the main
contributions offered in this work are:

• First adaptation of various state of the art reinforcement
learning methodologies to foreign exchange trading:

– ReLU (rectified linear unit) neurons and a gradient de-
scent algorithm with adaptive learning rate to allow
stable learning with deeper topology;

– Experience replay mechanic and auxiliary Q-network
for update targets from Mnih et al. [2], with double Q-
learning by van Hasselt et al. [5];

• Introduction of a novel framework for trading using tick
data, which includes a customizable preprocessing procedure
shown to extract features which allow the agent to learn
patterns that consistently generalize to out-of-sample data;

• Creation of a method for more efficient use of historical
tick data resulting in both better training and more accurate
testing;

This paper is organized as follows: Section 2 provides some back-
ground on the RL paradigm, the role of neural networks in RL and
its adaptation to Forex trading, while Section 3 briefly overviews
past work on automated trading with RL. In Section 4 we discuss
our implementation of the RL signals, the simulated market envi-
ronmentwhich trains a neural network to trade by interactingwith
those signals, and the choice of hyper-parameters. The testing pro-
cedure and results of testing the system on the EUR/USD currency
pair are detailed in Section 5. Finally, Section 6 draws conclusions
from the results obtained and suggests futurework to improve this
approach.

2. Background

The problem in reinforcement learning is, to put it succinctly,
that of learning from interaction how to achieve a certain goal [6].
We frame this problem by identifying within it two distinct ele-
ments and detailing their interactions, as depicted in Fig. 1. The ele-
ments are the learner/decision-makerwhichwe call the agent, and
that with which the agent interacts, known as the environment.

Considering discrete steps t = 0, 1, 2, 3, . . ., at each t the agent
receives some representation of the environment’s state, St ∈ S,
where S is the set of possible states, and uses that information
to select an action At ∈ A(St ), where A(St ) is the set of actions

available in state St . The agent chooses an action according to its
policy πt , where πt (s) represents the action chosen if St = s for a
deterministic policy. On the next time step t+1, the agent receives
its reward Rt+1 as a consequence of action At , and information
about the new state St+1. The goal is to find a policy πt that
maximizes the sequence of rewards an agentwill receive after step
t:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =

∞∑
k=0

γ kRt+k+1, (1)

where γ is a discount rate that allows for a prioritization of imme-
diate versus future rewards. To relate this discounted sum Gt with
a policy π , we use the action-value function qπ . This function tells
us how valuable we expect to be performing a certain action a in a
given state s, and then following a policy π thereafter:

qπ (s, a)
.
= Eπ [Gt | St = s, At = a]. (2)

Q-learning [7] works by trying to estimate the action-value
function q∗(s, a) associated with the optimal policy, the policy
which maximizes expected Gt for any state. Q-learning takes ad-
vantage of an identity known as the Bellman optimality equation:

q∗(s, a)
.
= E[Rt + γ max

a′
q∗(St+1, a′) | St = s, At = a], (3)

by turning it into an update rule that can build an approximation
of q∗(s, a) iteratively:

qk+1(s, a) = (1 − α)qk(s, a) + α[r + γ max
a′

qk(s′, a′)], (4)

where r is the reward obtained in the transition from s to s′ with
action a.

The classic implementation, a tablewith an entry for each state–
action pair Q (s, a) ≈ q∗(s, a) updated through Eq. (4), has been
shown to converge to q∗ with probability 1 under a few simple
assumptions [6]. This tabular implementation is insufficient for
complex problems such as financial trading. The state space is
too large to be represented through a table and since the action-
value function is estimated separately for each sequence there is
no generalization power, which is essential for trading.

Neural networks acting as action value function approximators,
Q-networks, are known for their capacity to process both linear and
nonlinear relationships and for being the best available method
for generalization power [3]. The Q-network computes a function
Q (s, a;W) ≈ q∗(s, a), where W is the set of parameters of the
network. The approximation is improved by adjusting its set of
parametersW in away thatminimizes a sequence of cost functions
computed using observed transitions e = [s, a, r, s′], as described
in the next section.

These concepts are applied to Forex trading by devising suitable
reinforcement learning signals. Reward should be either the finan-
cial profit directly or a quantity correlated with financial profit,
so that the estimated action-values steer the system to profitable
actions. The action signal should mimic the actions available to
a Forex trader, namely, opening and closing positions. The state
signal is more elusive. To make consistent financial gains, the
system must base its decisions on information with potential for
price prediction. There is no academic consensus about such infor-
mation, but technical analysis, which focuses on finding patterns
in historical market data has a sizable amount of literature [8]
supporting its effectiveness and surveys show that it is generally
the main approach used by Forex traders [9,10].

Weusemarket data in the formof ticks, the smallest granularity
available, which allows for amore accurate portrayal of themarket
state and for a maximization of the amount of data available to our
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Q-network. A tick Ti is put outwhenever themarket updates prices:

Ti =
[
Bi Ai Vbi Vai

]
, (5)

where Bi, Ai are the bid price and ask price at the time Ti was put
out and Vbi, Vai were the volume of units traded at those respective
prices.

3. Related work

In this section we briefly discuss some previous applications of
RL to financial trading. Table 1 summarizes the results obtained by
those systems which were tested in the foreign exchange market.
Unfortunately, these are few and far between as most systems
focus solely on stock trading.

Direct reinforcement approaches disregard the use of value
functions, and simply optimize the policy directly under the dis-
cussed RL framework. This is a popular approach for financial
trading agents since Moody and Saffell [11] in 2001 introduced
a direct reinforcement approach dubbed recurrent reinforcement
learning (RRL) which outperformed a Q-learning implementation.
Moody’s RRL trader is a threshold unit representing the policy, in
essence a one layer NN, which takes as input the past eight returns
and its previous output and aims to maximize a function of risk-
adjusted profit. This trader was tested on the first 8 months of
1996 with the currency pair USD/GBP, half-hourly data, achieving
an annualized profit of 15%.

Gold [12] further tested the RRL approach on other currency
markets with half hourly data from the entire year of 1996. Final
profit level varied considerably across the different currency pairs,
from −82.1% to 49.3%, with an average of 4.2% over ten pairs. In
2004 Dempster and Leemans [13] introducedwhat they dubbed as
adaptive reinforcement learning (ARL), which was built upon the
RRL approach. Using a RRL trader at its core, also with returns as
the input, their system had an added risk management layer and
dynamic hyper-parameter optimization layer. The ARL systemwas
tested on 2 years of EUR/USD historical data, from January 2000
to January 2002, with 1 min granularity, achieving an average 26%
annual return.

Deng et al. [15] created a systemcombiningdeepNNwithDirect
RL and using fuzzy learning to summarize the market trend. It was
concluded that the system was able to select features from raw
data due to the DL mechanism and learn effectively. This is one
of the few examples, other than the work presented here, of state
of the art RL methodologies applied to the creation of a financial
trading system, however, it was developed and tested only for
stock trading.

Value-based reinforcement, the category of methods in which
this work falls into, has not been nearly as popular as the direct
reinforcement approaches for Forex trading. Cumming [14] in 2015
introduced a RL trading algorithm based on least-squares temporal
difference (LSTD), a technique that estimates the state value func-
tion. Their state signal consists of the open, highest, lowest and
close prices (bid only) from the last 8 periods, where each period
covers a minute. The reward given to the agent is purely the profit
from each transaction. Training and testing used one minute data
from 2014-01-02 to 2014-12-19. The reported annualized profit
for the EUR/USD pair was 1.64%.

The main advantage of our system is its adaptability as it has
shown an ability to accumulate profits with remarkably low draw-
downs across a much larger span of time, which attests to its low
risk across a variety of market conditions. Furthermore, its annual-
ized profitability is quite high especially taking into consideration
the fact that it is averaged over a larger span of time, and thusmore
reliable, and that these results were obtained with much more
recent data, which is considered more difficult to be profitable in
since profit opportunities from technical rules have declined over
time [16].

4. Implementation

Our system, a Q-network, interacts with a simulated market
environment designed to train and test it in a manner consistent
with trading in the real foreign exchangemarket. In this sectionwe
describe how this simulated market environment coordinates the
flow of information that reaches the system, the implementation
of the three RL signals communicated between environment and
system, the Q-network’s topology and learning mechanisms, and
the hyper-parameter selection.

4.1. Market environment

The market simulation follows prices from a tick dataset T =

{T0, . . . , TK }, but the system is only allowed to make a decision
every time_skip ticks, set according to the desired trading fre-
quency. We selected and optimized the system for time_skip =

5000, which on average is somewhat less than two hours for 2013
EUR/USD tick data. This fitswith our aimof a short-term speculator
without being so high frequency as to be overly affected by practi-
cal concerns such as latency and lack of broker liquidity. The use of
tick data with the time_skip parameter, over simply using market
data with granularity of the desired trading frequency, allows for a
more efficient use of available market history as will be described
later in this subsection.

At each step t the market environment is at the price in tick
Ti=t·time_skip+b, where b is the chosen starting point for that passage
over the data. A state St is sent to the system and a response in the
form of an action signal At is received. The market environment
goes to the price in Ti+time_skip and drafts a new state St+1 and a
scalar reward Rt+1 for the action At , which are both sent to the
system.

In training passages over the data, the actions selected by the
system have an exploratory component. The system has a proba-
bility ϵ to select a random action rather than the one with highest
estimated action value. Also, observed experiences are stored and
used to update the network weights. In test passages the action
with highest estimated action value is always chosen, no updates
are performed to the Q-network and profit obtained over the
passage is recorded as a measure of performance.

To train the network we repeatedly perform training passages
through a training dataset and two tests. First a test on the training
dataset itself, to assess learning progress, and then a test on a
validation dataset. The validation dataset contains data from a
period of time immediately following the training dataset and is
meant to assess ability to generalize to out-of-sample data.We rely
on validation performance to tell us how many epochs to train for
via early stopping [17]. The first few epochs are ignored in the early
stop procedure to allow the Q-network to leave vicinity of weight
hyperspace where it was randomly initialized.

Having a flexible starting point b is a core addition to ourmarket
environment. Changing b between each passage results in different
paths taken through the dataset. This dynamic, made possible by
the surplus of data from using tick granularity but only trading
every time_skip ticks, is defined by a nr_paths parameter:

b ∈ { x ·
time_skip
nr_paths

| x ∈ N0, x < nr_paths }. (6)

The relationship between time_skip and nr_paths is depicted
schematically in Fig. 2.

The paths depicted in Fig. 2 would be very similar, but for larger
values of time_skip the distance between ticks visited in different
paths increases and so does the quality of information added by
this dynamic.

We select a new value of b for each training passage. With this
mechanism the network experiences greater variety of data, in-
creasing learning quality. Fig. 3 shows the impact of thismechanic:
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Table 1
Summary of performance obtained by RL trading systems tested on the foreign exchange market.
Paper Method Asset Time Frame Annualized

Profit

Moody and Saffell [11] RRL USD/GBP First 8 months
of 1996

15%

Gold [12] RRL Average over 10
currency pairs

Full year of
1996

4.2%

Dempster and Leemans [13] ARL EUR/USD January 2000 to
January 2002

26%

Cumming [14] EUR/USD LSTD January 2014 to
December 2014

1.64%

Fig. 2. Schematic of the simulatedmarket environment passing through the tick dataset with nr_paths = 2, one path depicted with black arrows and a second one in orange
arrows. Top: time_skip = 2, Bottom: time_skip = 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example of learning curves with and without the nr_paths dynamic. Training dataset: 01/2011 to 01/2012. Validation dataset: 01/2012 to 07/2012.

performance in the validation dataset improves and overfitting is
delayed and less severe.

Furthermore, standard testing approaches deliver a path-
dependent distribution of gains thus increasing the chances of
a ‘‘lucky’’ trading strategy. Making each test result an average
over a number of test passages starting from all different initial
ticks Tb strongly mitigates this issue. The standard deviation of
performance between these passages also provides a measure
of uncertainty of the assessment. This makes our results more
accurate representations of the expected real trading performance.

4.2. State signal

The state signal in this work was created to make gradient
learning faster, more stable and less prone to getting stuck in local
minima by instilling, as far as possible, the following characteris-
tics [18]:

• Uncorrelated input variables;
• Input variables with a similar range;

• Input variableswith an average over the trainingdataset close
to zero for each input variable.

Themain component of the state signal St are features extracted
from market data with the aim of creating a compact representa-
tion of tick data which contains most relevant information while
reducing its dimensionality. With the simulated market at tick Ti
we divide the tick data preceding it into windows described by the
parameter array:

TW =
[
TW0 = 0 TW1 TW2 . . . TWN

]
so that the nth window, where n ∈ [1, 2, . . . ,N], includes the ticks
Tk with k ∈ [i−TWn−1, i−TWn]. From eachwindow, features F n

i are
extracted to build a feature array Fi = F 1

i ∪F 1
i ∪· · ·∪FN

i . Parameter
TW is set empirically to strike a balance between the level of
detail (number of ticks per window), the scope (total number of
ticks included) and the dimensionality (number ofwindows) of our
compact representation of tick data.
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Fig. 4. Features extracted from 400,000 ticks divided into 500-tick windows. Data
is EUR/USD pair market data from 2013, retrieved from Duskacopy broker.

Fig. 5. Same as Fig. 4, but with our solution for feature correlation.

The features extracted from each window are simple descrip-
tive statistics – mean, maximum, standard deviation and mini-
mum values – for the different components of tick data: bid/ask
prices and volumes. Since the bid and ask prices are almost per-
fectly correlated, we replace ask price with spread Si ≡ Ai − Bi.

The price distribution is strongly non-stationary, there is a large
slow-varying underlying bias value around which prices fluctuate.
For this reason themean,maximumandminimumbid price values
from a given window are all strongly correlated between them-
selves andwith values from neighboringwindows, as illustrated in
Fig. 4. This would make learning very difficult for the neural net-
work. Our solution is to subtract from these features an estimate
of the underlying bias: the bid value of the current tick Bi. Fig. 5
depicts how this change solves the problem. Moreover, looking at
Fig. 4 if we divided the data there into a left half for a training
dataset and a right half for a validation dataset, we see that the
range of values for these features obtained while training could
be completely different from those found out-of-sample. With our
solution the range of values ismuchmore predictable and uniform,
making generalization of acquired knowledge easier.

Thus, the features F n
i extracted from each window of ticks are:⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

µ
k∈[i−TWn−1,i−TWn]

Bk − Bi µ
k∈[i−TWn−1,i−TWn]

Sk

µ
k∈[i−TWn−1,i−TWn]

Vbk µ
k∈[i−TWn−1,i−TWn]

Vak

max
k∈[i−TWn−1,i−TWn]

Bk − Bi max
k∈[i−TWn−1,i−TWn]

Sk

max
k∈[i−TWn−1,i−TWn]

Vbk max
k∈[i−TWn−1,i−TWn]

Vak

std
k∈[i−TWn−1,i−TWn]

Bk std
k∈[i−TWn−1,i−TWn]

Sk

std
k∈[i−TWn−1,i−TWn]

Vbk std
k∈[i−TWn−1,i−TWn]

Vak

min
k∈[i−TWn−1,i−TWn]

Bk − Bi

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
whereµ, max, std andmin are themean,maximum, standard devi-
ation and minimum values in the interval. Features
mink∈[i−TWN−1,i−L] Sk, mink∈[i−TWN−1,i−L] Vbk and mink∈[i−TWN−1,i−L]
Vak were removed from the feature array as analysis of their
distribution and empirical tests both indicated they do not contain
useful information1 and simply contributed to overfitting.

To remove outliers from these features we apply a simple
percentile-based filter. The qth percentile of feature xj, qth(xj), is
computed as the value q

100 of the way from the minimum to the
maximum of a sorted copy of an array containing all entries of the
feature for a dataset. The filter rule used is:

xj,i =

⎧⎨⎩
(1 − q)th(xj), if xj,i < (1 − q)th(xj)
qth(xj), if xj,i > qth(xj)
xj,i, otherwise

(7)

where xj,i is the jth element of Fi. With outliers removed each
feature can be normalized to the range [−1, 1] via min–max nor-
malization without skewing the main body of the distribution and
compromising sensitivity.

The market may have higher volume and volatility at certain
hours of the day due to the working hours of the major trading
hubs, thus we want to relay that information to the system to aid
in its interpretation of the market. We use two input variables to
encode the hour:

time1i = sin(2π
secondsi
86400

)

time2i = cos(2π
secondsi
86400

)

where secondsi is the time when Ti was put out converted to
seconds. This encoding method effectively conveys the cyclical
nature of hours to the neural network.

Price prediction features are the bulk of the state signal, but
there are also a few ‘‘functional’’ inputs. We relay to the system if
it currently has a position open and the value of that position using
an integer scalar ht :

ht =

⎧⎨⎩
1, if long position open
0, if no position open
−1, if short position open

(8)

and a float scalar vt with the unrealized profit of the currently open
position. vt is normalized to the range [−1, 1] through min–max
normalization.

Finally, a float scalar ct is included which tells the system the
current size of the account compared its initial size. ct is normal-
ized and clipped to the range [−1, 1], where the maximum and

1 Values for these features seemed artificial, maybe due to a lower bound
imposed by the broker on the data making it non-representative of the real market
conditions when below a certain threshold of activity.
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Table 2
Interpretation of each value of the scalar action signal by the market environment.
Signal Current position Action

a0
Long Hold
None Nothing
Short Hold

a1
Long Hold
None Open Long
Short Close Short

a2
Long Close Long
None Open Short
Short Hold

minimumextremes represent, respectively, a safe and failure levels
set by the user. Should the current account size reach the failure
threshold, the system flags it as a RL terminal state. The terminal
state condition was added for its anchoring effect, by providing
the system a state with an exactly known action value, and to
further punish strings of consecutive bad decisions. Empirically we
verified that a failure threshold closer to 1,meaningmore instances
of terminal states, increases learning speed, although if it is set too
close to 1 learning quality is disrupted.

4.3. Action signal

We impose that the agent can only invest one unit of constant
size position_size of the chosen asset at a time. Therefore the action
signal can be simplified to A(s) = [a0, a1, a2] ∀s ∈ S, where
[a0, a1, a2] are interpreted by the environment as described in
Table 2.

4.4. Reward signal

A reward signal based only on the profit obtained was tested,
but it was observed to introduce consistent behavioral flaws. Since
the system is not punished for holding into positionswith negative
unrealized profits, but is punished at moment of their closing, it
learns to keep a position open until its unrealized profit bounces
back to positive values however long that may take, as observed in
Fig. 6. This is a critical flaw, the asset may never regain its former
value or take so long to do so as to make the system inviable.

With our solution actions to close positions are still rewardedby
the resulting profit, but a new reward component is added. Actions
to open positions or hold positions open are rewarded with the
variation of unrealized profit: the difference between unrealized
profit in the state St in which they were taken and the unrealized
profit in the state St+1 to which they lead. Tests showed both
approaches obtain similar profit, but that this second approach
effectively corrects for the behavior flaws previously observed, as
exemplified in Fig. 7, which means that profit is obtained with less
risk.

The most common methods to adjust profit for risk are the
Sharpe ratio, which divides the profit by the standard deviation
of unrealized profit, and its modification the Sortino ratio, which
divides profits by the downside deviation of unrealized profit. Both
aim to penalize large variations of unrealized profit, which are
interpreted as risk.

Our reward is in essence very similar, especially to the Sortino
ratio since positive volatility is not punished but rewarded. The dif-
ference is that rather than introduce the risk punishment/reward
at the end of the transaction by adjusting the profit reward, it
is spread out over its life cycle with the variation at each step.
We observed this to have the benefit of speeding up the learning
process, possibly by alleviating the credit assignment problem [6].

The reward signal is normalized to the range [−1, 1]withmin–
max normalization to make learning more stable by limiting the

size of the cost function gradients [2]. In the case of the variation
of unrealized profit, it is first subjected to a percentile filter to clip
values above a percentile return_percentile of all possible unreal-
ized profit variations in a given training dataset. This filtering is
essential as it prevents weekend-gap variations or other outliers
from skewing the reward distribution, and also allows for control
over how much importance the system gives to unrealized profit
variation rewards compared to profit rewards.

4.5. Q-network

The core of the system is a fully connected neural network,
depicted schematically in Fig. 8. This network is tasked with com-
puting Q (s;Wk), where Wk is the set of weights and biases of
the network at iteration k, an approximation of the action value
function for the market environment.

The input layer has a number of neurons defined by the ele-
ments in our state signal (constructed as described in Section 4.2),
which per the hyper-parameter TW chosen in Section 4.6 results
in 148 input neurons (i.e. the state signal has 148 dimensions).
This input layer is followed by three hidden layers with 20 ReLU
neurons each.

The ReLu activation functionwas chosen due to its documented
superiority for training multi-layer neural networks [19,20] over
other widely used activations. Number of hidden neurons and
layers was determined through observing changes in performance
and learning curve shape during various informal tests (see [17]
and [18] for practical recommendations) using the same datasets
used for all hyper-parameter selection, and choosing those settings
which offered the most satisfactory results. This process was per-
formed in tandem with the choice of parameter TW to make sure
there was a balance between power of the network and number
of input variables. We found this balance hard to achieve, with the
Q-network easily slipping into overfitting, not surprising given the
noisy nature of financial data.

Tests with L1 regularization, L2 regularization and dropout
regularization to prevent overfitting were not successful and no
such methods were included in the final architecture. We found
significant performance gain from the three hidden layer topology
versus a two hidden layer or a single hidden layer with the same
total number of neurons, although adding a fourth layer made
training difficult and resulted in decayed performance.

The output layer has three neurons with linear activations to
represent action values, which may take any real value. With this
topology we have chosen to approximate the optimal action value
function in its vectorial form:

Q (s;Wk) ≈ (q∗(s, a0), q∗(s, a1), q∗(s, a2)), (9)

rather than the arguably more intuitive:

Q (s, an;Wk) ≈ q∗(s, an), (10)

as this second option would require a forward propagation to
obtain theQ-value of each possible action,while this approach pro-
posed byMnih et al. [1], requires only a single forward propagation,
saving computational resources.

The above-described Q-network is initialized with a random
set of weights where each weight is drawn from an independent
normal distribution with range [−1, 1]. As the network interacts
with the market environment in a training passage, it collects and
stores observed transitions in a slidingwindowbuffer of sizeN . Ev-
ery update_q steps a set of observed transitions, Sk = {e1, . . . , eB}
where ep = [sp, ap, rp, s′p], is randomly drawn from the buffer to be
used for learning. This is the experience replay mechanism, which
is regarded as more efficient than using consecutive observations
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Fig. 6. Behavior with the initial reward approach on a 6 month validation dataset from 2012.01 to 2012.06. Each step skips 5000 ticks. Green arrows are long positions and
red arrows are short positions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example of behavior with the final approach to reward on a 6 month validation dataset from 2012.01 to 2012.06. Each step skips 5000 ticks. Green arrows are long
positions and red arrows are short positions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to learn [21]. The mean squared error between desired and actual
output of the Q-network is computed for that set:

E(Wk) =

B∑
p=1

Ep(Wk)
B

=

B∑
p=1

(yp − Qap (sp;Wk))2

B
, (11)

where yp is the target output. Adapting Q-learning (Eq. (4)) directly
would yield yp = rp +maxa Qa(s′p,Wk). However, this target often
causes learning issues with Q-networks.

As proposed by Mnih et al. [2] we introduce an auxiliary
Q-Network, Q (s,W−), topologically identical to the original Q-
Network. Its weights W− are static and periodically copied from
the original set Wk every update_q− updates. This auxiliary Q-
network is used to generate the targets for updates, yp = rp +

maxa Qa(s′p,W−). This prevents them from shifting in a correlated
manner with the Q-value estimations, which could make learning
more difficult and cause it to spiral out of control through feedback
loops. A last modification known as double Q-learning, imple-
mented as suggested by van Hasselt et al. [5], decouples action
choice from the target Q-value generation:

yp = rp + Qa(s′p,W−) with a = argmax
n

Qn(s′p,Wk), (12)

which is known to otherwise introduce a bias in the action value
estimation resulting in poorer policies.

With E(Wk) computed, backpropagation [22] provides an ef-
ficient way of finding ∇WkE(Wk). The gradient is then used in
a gradient descent algorithm to improve Wk, i.e. to learn. The
gradient descent implementation we used is known as RMSProp
(Root Mean Square Propagation) [23]. RMSProp has been shown
to work very well in a variety of benchmarks and practical applica-
tions [24,25] and has been successfully utilized for Q-Networks [2].

For a given parameter θi,k ∈ Wk, the learning rate is adjusted with
a exponentially decaying average of squared previous gradients vk:

vk = 0.9vk−1 + 0.1(

∑B
p=1 ∇θi,kEp(Wk)

B
)2

θi,k+1 = θi,k −
α

vk

∑B
p=1 ∇θi,kEp(Wk)

B

(13)

where α is the general base learning rate.
This approach which uses a subset of size B of the training cases

in computing the error, and thus the update direction, is known
as the mini-batch. It is a middle ground between the stochastic
(one training case per update) and the full batch (all training cases
per update) gradient descent methods. Each update with the first
method is cheaper computationally, while each update with the
second method is presumably a better step. But since batch up-
dates can take advantage of the speed-up of matrix–matrix prod-
ucts over matrix–vector products [17] they somewhat lessen the
computational cost gap. Thus, for convex, or relatively smooth cost
manifolds batch updatesmaybepreferred. But since gradients only
represent the steepest descent locally, when the cost manifolds
are highly non-convex even an error-less gradient update may not
have the desired direction. In fact, it may become helpful to have
some noise in the gradient updates: updates with less error will
discover the minimum of whatever basin the weights are initially
place in, while noisier updates can result in the weights jumping
into the basin of another, potentially deeper local minimum [18].

Thus, we used the mini-batch with a carefully empirically cho-
sen parameter B, small enough to avoid some of the poor localmin-
ima, but large enough that it does not avoid the global minima or
better-performing local minima2 and reaps advantage of matrix–
matrix computational gains.

2 This assumes that the bestminima have a larger and deeper basin of attraction,
and are therefore easier to fall into.
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Fig. 8. Schematic of the trading system’s Q-network. sn is the nth element of the
vector representing the state s. Hidden and output neurons have ReLU and Linear
activations respectively.

Table 3
Hyper-parameters chosen for the trading system.
Hyperparameter Value Description

q 99 Percentile filter for features
time_skip 5000 Ticks skipped on each step
nr_paths time_skip

500 Nr. of paths through data
return_percentile 90 Percentile filter for returns
failure/safe 0.8/2.0 Parameters for terminal state
update_q 8 Steps between main NN updates
update_q− 5000 Steps between aux. NN copy
B 60 Nr. elements in mini-batch
N 60000 Size of experience buffer
γ 0.99 Q-learning discount
α 0.001 RMSProp learning rate
ϵ0/ϵf 1/0.3 Initial/final value of ϵ
init_acc_size 10000 Initial account size
position_size 10000 Units invested per trade

4.6. Hyper-parameters

To assess each configuration of hyper-parameters it is neces-
sary to fully train the network and test its performance, a time
consuming process. Also, there is a somewhat large number hyper-
parameters to tune and they are related to each other in complex
ways: changing one of them means a number of others may no
longer be optimal. This made it unfeasible to perform a system-
atic grid search for the optimal set of hyper-parameters with the
available resources.

Instead, the hyper-parameters were selected by performing an
informal search using three EUR/USD datasets with 12 months of
training and 6 months validation, with the goal of obtaining the
most stable learning curve with the highest generalization capa-
bility as measured by peak performance on the validation dataset.
The hyper-parameters thus selected are detailed in Table 3.

Distinct account size and position size parameters in the system
allow for future implementation of a variable position size scheme
to optimize profitability. Tests performed in Section 5 do not in-
clude such optimization, init_acc_size = position_size =10,000
was set as a placeholder value. The RL discount rate parameter

Fig. 9. Rolling window approach to testing.

γ is close to 1, meaning future rewards are weighed heavily.
This reflects the fact that a successful transaction requires future-
oriented decision making. The learning rate α was kept at its
default value for RMSProp of 0.001 [26], as it offered satisfactory
results and deviations from this value did not result in improved
learning. Parameter ϵ for action selection is made to decay over
the training process from a initial value ϵ0 and final value ϵf so that
the system takes advantage of acquired knowledge proportionally
to the quality of that knowledge. We have found that nr_paths =
time_skip

500 = 10, meaning 10 different paths with a distance of
500 ticks between them, is a balanced value for both testing and
training passages, and use it throughout this work.

As for the parameter array TW , whose elements define the tick
windows fromwhich to extract features, the following valueswere
selected:

TW =

[
0 1 2 3 4 5
6 7 8 9 10 60

]
·
time_skip

2

which for time_skip = 5000 means 10 windows with 2500 ticks
each, followed by a single window with 125,000 ticks. This offers
a detailed account of the recent past mixed with an overview of a
much more distant past, which may help by giving context to the
more detailed segment. TW is defined in termsof time_skip to allow
a seamless transition to other time_skip values, although it should
ideally be re-optimized.

5. Testing

While performance on the validation dataset is a good measure
of generalization power, it has a positive bias over performance on
actual live trading since training is stopped based onwhere valida-
tion performance reaches its peak. A test dataset is introduced to
deliver an unbiased estimate of live trading performance by testing
the model chosen through the training procedure on it.

The working premise is that a model that has learned to per-
form well on the training dataset and subsequently also performs
well out-of-sample on a validation dataset is more likely to then
be profitable on the test dataset. However, markets are known
to be non-stationary [27,28] and if market dynamics change too
much from the training/validation period to the testing period this
assumption will not hold. Therefore we perform the tests using a
rolling window as depicted in Fig. 9.

Theoretically, smaller steps of the rolling window, meaning
smaller test datasets, tackle non-stationarity more effectively.
However, this does entail a greater number of tests. Considering
the running time of each test with our resources, we decided on a
test dataset size of 4 months.

As for training and validation datasets, if they are smaller the
data the network learns (training dataset) and the filter through
which the model is selected (validation dataset) should be more
similar to the test dataset and thus suffer less fromnon-stationarity.
But since market data is remarkably noisy, if the training dataset is
too small it will simply learn noise and lose generalization power.
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If the validation dataset is too small the overall performance on
the dataset ismore easily influenced by noisy unpredictable events
andwill tend to selectmodels that randomly performwell on those
events rather than those that truly generalize well. A training and
validation dataset size of 24 and 6 months was chosen through in-
formal testing with one of the hyper-parameter selection datasets.

Below we describe the results of testing the system on post-
2008 crisis EUR/USD pair data: from 2010 to 2017. These tests are
meant to assess the hypothetical validity of the trading system
by confirming a positive expectation of gains, rather than attempt
to accurately project its full revenue potential. Thus, execution is
not financially optimized: position sizing was set a priori and kept
constant and no stop-loss or take-profit orders were used. While
bid–ask spread commission is included, the volume commission is
not as the rates depend strongly on a specific trader’s resources.

5.1. Results

We refer to each test by year followed by quadrimester. In
Fig. 10 a sample of the learning curves responsible for the se-
lection of the final model for each of the tests is displayed. We
observed again and again that training led to improved out-of-
sample validation performance, which solidified the notion that
this architecture is indeed capable of learning real predictive mar-
ket patterns. The shape of the learning curves is, however, very
dataset dependent, presumably due to noisy market events and
variable degrees of market non-stationarity.

For the three 2010 test datasets we curtailed the training and
validation dataset size to 12/1, 12/1 and 18/3 months respectively,
to avoid including data from the 2008 crisis. For the 2011 p.3 test,
the standard training/validation dataset size resulted in learning
curves from which no candidate could be selected (validation
performance only worsened with training). Halving the validation
to 3 months solved this issue, suggesting a portion of the removed
3 months was incompatible with the training dataset. The final
exception was the 2016 p.2 test. There was a marked increase in
tick density in the last two quadrimesters of 2016 from an average
of 6,738,296 ± 2,339,367 ticks in the remaining quadrimesters to
15,969,628 and 19.281.366. We could not ascertain the reason for
this increase,most likely an internal change in the broker’smethod
of producing tick data.We halved the validation dataset size for the
2016 p.2 test to include, proportionally, more data with the altered
tick density so it would select a candidate that performs well in
these new conditions, without success.

Table 4 details the test results in both absolute profit and profit
relative to the initial account size. Note that results shown are an
average of 10 test passages from different initial points following
the nr_paths methodology, and their uncertainty is the standard
deviation over those passages. The system is profitable in all but
three tests, 2012 p.3, 2016 p.2 and 2016 p.3, although in two
other cases, 2011 p.2 and 2012 p.1, it just about breaks even. This
means it generated significant profit in roughly 75% of the tests,
and significant losses in only 14%.

The simple and compounded total test results are concisely de-
scribed in Table 5.We chose to use a fixed position size during each
test and compound between tests, ie. change the fixed position size
at the onset of a test by including the total profit of the previous
tests in the account.

In Table 6 we look at the trades individually for a better insight
into the behavior of the system. It is apparent that the system
generally relies on a large number of quick trades, roughly 550
trades per year with 0.2% profit/loss per trade, which are profitable
53.5% of the time. There is a slight tendency to favor the short
position, especially in trades that end up being profitable. This can
be explained the fact that the Euro has on average been losing value
relative to the Dollar since 2010. The duration that each position
stays open is similar in both profitable and unprofitable trades,
showing that the systemhas no problem cutting its losses and does
not overly wait for rebounds.

Fig. 10. Sample of validation learning curves. Red circle represents chosen model.

5.2. Result analysis

It was observed that validation profit is not a good predictor
of test profit, with a Pearson correlation coefficient of −0.28 at p-
value significance of 0.2 indicating no correlation between annu-
alized validation and test profits. It is clear that while the training
process creates a positive expectation for profits in a test setting,
results are too dataset dependent to create an expectation on the
magnitude of those profits.

On the other hand, the standard deviation between different
paths obtained by the model in the validation dataset compared
to that of the test dataset has a Pearson correlation coefficient
of 0.73 with p-value significance 0.0002. This means that stabler
candidates can be selected based on the validation process. Con-
sidering that our total profit, with triannual compounding, has an
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Fig. 11. Bid prices for EUR/USD pair (top) and equity growth curve with and without compounding (bottom). Light area around equity curves represents their uncertainty.
X-axis is in units of ticks.

Table 4
Overview of the test results.
Test Name Test Profit

Abs. (EUR) Rel. (%)

2010 p.1 605 ± 312 6.1 ± 3.1
2010 p.2 159 ± 368 1.6 ± 3.7
2010 p.3 322 ± 377 3.2 ± 3.8
2011 p.1 1011 ± 75 10.1 ± 0.8
2011 p.2 36 ± 228 0.4 ± 2.3
2011 p.3 320 ± 343 3.2 ± 3.4
2012 p.1 70 ± 87 0.7 ± 0.9
2012 p.2 323 ± 218 3.2 ± 2.2
2012 p.3 −327 ± 78 −3.3 ± 0.8
2013 p.1 388 ± 231 3.9 ± 2.3
2013 p.2 342 ± 173 3.4 ± 1.7
2013 p.3 434 ± 69 4.3 ± 0.7
2014 p.1 249 ± 70 2.5 ± 0.7
2014 p.2 296 ± 141 3.0 ± 1.4
2014 p.3 841 ± 51 8.4 ± 0.5
2015 p.1 767 ± 36 7.7 ± 0.4
2015 p.2 131 ± 112 1.3 ± 1.1
2015 p.3 328 ± 227 3.3 ± 2.3
2016 p.1 962 ± 131 9.6 ± 1.3
2016 p.2 −264 ± 311 −2.6 ± 3.1
2016 p.3 −212 ± 222 −2.1 ± 2.2

Table 5
Simple and compounded total test profit.
Compounding
frequency

Total Test
Profit (%)

Yearly Avg.
Test Profit (%)

None 67.8 ± 9.8 9.7 ± 1.4
Yearly 89.8 ± 16.9 12.8 ± 2.4
Triannual 92.5 ± 18.4 13.2 ± 2.6

uncertainty of almost 20%, our choice of candidate solely through
peak validation performance was misguided, and exploring this
correlation could be an important avenue for improving the sys-
tem’s performance.

We continue our result analysis by looking at equity growth
trajectory. By equity we mean the current size of the account
plus the value of any currently open positions, relative to the

Table 6
Trade-by-trade analysis. Note that trades from all 10 paths are included. Duration
is in number of ticks.

Profitable trades Unprofitable trades

Nr. 21038 18249
Avg. profit (%) 0.215 ± 0.337 −0.211 ± 29.9
Avg. Duration 33679 ± 96107 36066 ± 77264
% Longs 48.8 49.6

initial account size. Fig. 11 shows the equity curve obtained by our
system, with the bid price over the 7 years of testing for context.

The equity curve is somewhat regular, with no extreme draw-
downs at any point, which is made more clear with Fig. 12. The
maximum drawdown is −9.9 ± 12.1%, without compounding,
and −16.6 ± 20.0% with triannual compounding. These are rel-
atively low values, albeit with a large uncertainty due to how it
is propagated, accumulating from both the peak and the drought.
This amount of drawdown would allow for a comfortable use of
leverage L = 2, which would have doubled our final profit.

Since a Q-network is a black box system and markets are
a mostly inscrutable environment it is difficult to interpret the
system’s performance fluctuations over the datasets. However, a
closer look at Fig. 11 can provide some speculation. It seems there
is a pattern of struggling when there is no overall trend to the
price changes, when the market is sideways. This is clear during
the year 2012, where equity barely rises. Also, in the years 2011
and 2015, while they are successful years overall, gains come from
the beginning and the end of the year where there are clear trends.
In the middle, where there is mostly sideways movement, there is
little to no equity growth. Possibly, when the market has a clear
trend there are distinguishing patterns in the input features that
allow exploitation, while more indecisive periods result in noisier
inputs.

This is exacerbated in the two final datasets, 2016 p.2 and 2016
p.3, which add to a mostly sideways moving market the sudden
change in tick density by the broker. Due to how our system is
designed, larger tick density leads to larger trading frequency.
Thus, the system is forced to trade much more frequently than
during training in a market context where it has been shown to
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Fig. 12. Average drawdowns, uncertainty was not included for clarity. X-axis is in
units of ticks.

Table 7
Simple and compounded total test profit for a mix of 5000 and 10,000 time_skip.
Compounding
frequency

Total Test
Profit (%)

Yearly Avg.
Test Profit (%)

None 78.5 ± 9.5 11.2 ± 1.4
Yearly 109.1 ± 17.8 15.6 ± 2.5
Triannual 114.0 ± 19.6 16.3 ± 2.8

struggle, which unsurprisingly results in the largest losses of the
whole testing period. It is only natural that upon realizing the
change in tracking tick data by the broker, time_skip would be
accordingly adjusted to maintain a trading frequency that had so
far yielded results. An easy correction would be to increase the
time_skip parameter to 10,000 once the larger tick frequency was
detected. Doing somakes both those tests profitable, 2.5±2.2% and
3.4± 2.0% respectively, and brings the results to those depicted in
Table 7.

6. Conclusions

The challenges speculation trading present are completely dif-
ferent from those posed by environments such as Atari games
or Go. Financial markets are not deterministic and the data on
which the system bases its decisions is non-stationary and very
noisy. Despite these challenges themain goals for this architecture
were achieved. Learning in the training dataset is stable and it is
apparent from a number of validation learning curves that the Q-
network is indeed capable of finding relationships in financial data
that translate to out-of-sample decisionmaking. It was also shown
that the model obtained from the training procedure can then be
harnessed for profitable trading in a test dataset.

Overall, this approach has a great deal of potential to be ex-
plored. With more powerful optimization efforts for parameters
such as TW for feature extraction, and design decisions such as
network topology, weight initialization scheme (Glorot initializa-
tion [19] was briefly tested but with inconclusive results), choice
of cost function and activation functions of the hidden layers,
a performance boost could certainly be obtained without even
changing the overall framework laid out in this paper. Topology
in particular could be removed as a design decision by employing
neuroevolution techniques [29]. Besides stronger optimization,
there are two main weaknesses in this trading system that should
merit further work:

• Training/validation/testing dataset size: a more interesting
alternative based on identifyingmarket regimes, for example,
could be conjectured. Otherwise, our fixed size approach
could be improved by exhaustive search rather than our
limited informal testing.

• Model candidate selection: our approach to choose themodel
with highest validation performancewas already shown to be
overly simplistic when it became clear that the uncertainty of
the model should have been taken into account. Moreover,
rather than using just one candidate the trading account
could be split among a number of candidates which would
help dilute the risk through diversification.

Other than changes to the system itself, future work could focus on
improving the financial facets of this work such as the use of other
types of financial data and optimizing order execution.
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