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a b s t r a c t

This work describes the out-of-plane linear elastic mechanical properties of trichiral, tetrachiral and hex-
achiral honeycomb configurations. Analytical models are developed to calculate the transverse Young’s
modulus and the Voigt and Reuss bounds for the transverse shear stiffness. Finite Element models are
developed to validate the analytical results, and to identify the dependence of the transverse shear stiff-
ness vs. the gauge thickness of the honeycombs. The models are then validated with experimental results
from flatwise compressive and simple shear tests on samples produced with rapid prototype (RP)-based
techniques.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Honeycomb structures are widely used as sandwich panel cores
in applications such as aerospace components, due to their excellent
density specific properties [1]. However, the design of honeycomb
structures has changed little since their introduction over 60 years
ago. The requirement for lower mass and cost for components for
use in transport applications is becoming increasingly important,
and one response to these pressures has been to introduce multi-
functionality into existing components [2]. An excellent candidate
for this is the redesign of the conventional hexagonal cell geometry
of the honeycomb cores in sandwich panels. Current conventional
hexagonal geometry honeycomb panels exhibit anticlastic or sad-
dle-shaped curvatures when deformed out of plane [3], conse-
quently current methods of producing dome shaped panels, e.g. by
deforming a flat sheet of conventional honeycomb into the desired
shape, or by machining a block to the required profile often lead to
increased costs or localised damage [3]. The problem of creating
domed structures can be overcome if the in-plane Poisson’s ratios
of a honeycomb are negative (auxetic) due to the change of cell shape
from hexagonal to re-entrant bow-tie shapes. In such a case, domed
or synclastic bending geometries can be achieved relatively easily,
without further machining [4]. Other benefits provided by auxetic
honeycombs include an increased in-plane shear modulus and
enhanced indentation resistance.
ll rights reserved.
The field of negative Poisson’s ratio (auxetic) materials goes
beyond just honeycombs and includes crystalline materials [5],
foams [6], biomaterials [7] and liquid crystals [8]. For comprehensive
reviews see [9–11]. Auxetic behaviour in honeycombs can be
achieved via specific cell geometries, including centre-symmetric
re-entrant bow tie shaped cells [4,12] which exhibit reflective and
rotational symmetry, or by non centre-symmetric chiral cells
[13–20], which have rotational symmetry but not reflective symme-
try as in conventional honeycombs. However, it is possible to design
cell geometries which are non centre-symmetric and are similar to
the chiral geometries but which do exhibit reflective symmetry,
which will be referred to as ‘anti-chiral’. The chiral and anti-chiral
geometries are the subject of the present work. In 1989, Wojcie-
chowski [21] suggested for the first time an auxetic chiral configura-
tion based on rotating disks and nearest neighbour inverse nth
power interactions. A chiral honeycomb providing a theoretical in-
plane Poisson’s ratio of �1 was introduced by Prall and Lakes [14].

Chiral cellular solids provide significant advantages over con-
ventional hexagonal honeycombs, the compressive and shear
strengths are partially decoupled between the cylinders and the
ligaments and both the off axis deformations and the electromag-
netic functionality of the honeycomb is tuneable through variation
of honeycomb geometry [16,20]. Most previous work on chiral
structures has concentrated on interesting and potentially useful
in-plane behaviour, but relatively little has been conducted on
through thickness behaviour, aside from flatwise compression
[15,16] and initial transverse shear in hexagonal honeycomb con-
figurations [22]. However, through-the-thickness properties

http://dx.doi.org/10.1016/j.compscitech.2009.07.008
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http://www.sciencedirect.com/science/journal/02663538
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become important for the multifunctional behaviour of sandwich
panels, for example flexural stiffness, energy absorption, resistance
to wrinkling, and sound and electromagnetic insulation [1].

This paper presents the through thickness linear elastic behav-
iour of five chiral based geometry structures, using mechanical
characterisation, numerical and analytical modelling. The chiral
topologies consist of a hexagonal chiral (hexachiral) with six con-
nectivities, a tetrachiral (four connectivities), and a trichiral (three
connectivities). For the tetrachiral and trichiral configurations, it is
also possible to identify antitetra and antitrichiral layouts, where
the ribs are connected to the same side of the cylinder [23] (see
Fig. 1). The linear elastic properties (compressive modulus and
shear modulus) are modelled using a combination of analytical
and numerical (finite element) techniques, with validation pro-
vided by experimental results from flatwise compression and shear
tests according to ASTM standards. The through thickness Poisson’s
ratios are not reported in this work because they are simply deter-
mined by the Poisson’s ratio of the constituent material and rela-
tive density ratios [12] – the honeycombs are not designed to
have auxetic behaviour through the thickness.
Fig. 2. Diagram of tetrachiral structure showing parameters nomenclature.
2. Analytical and numerical models

Fig. 1 shows the overall in-plane layouts of the chiral configura-
tions considered. The cell geometries are defined using a common
set of non-dimensional parameters (a, b and c, where a is L/r, b = t/r
Fig. 1. Cell geometries for the auxetic chiral, anti-chiral, and conventional centre-symm
tetra chiral, and (e) anti tri chiral.
and c = b/r). These are shown in Fig. 2 for a tetrachiral structure.
The parameters L, t and r represent the rib length, wall thickness
of the node and rib, and radius of the node, respectively. The depth
of the cell b is not shown.

The flatwise compressive modulus was calculated analytically, as
the ratio between the load bearing area and total area of the unit cell
[12]. For the shear loading, the chiral configurations were modelled
using the finite element codes ABAQUS [24] and ANSYS [25]. For the
ANSYS models, three-dimensional elements SOLID45 with eight
nodes, three degrees of freedom and Lagrange interpolation func-
tions were used within a mapped meshed technique to provide three
linear elements per minimum dimension of the unit cells. For the
trichiral configurations, SHELL63 elements were also used. The
minimum size for the elements was identified after a mesh
etric and hexagonal structures: (a) hexachiral, (b) tetrachiral, (c) trichiral, (d) anti
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convergence analysis. A similar approach was used with the ABAQUS
code, implementing C3D20R 20 node quadratic reduced integration
brick elements. The transverse shear loading was simulated apply-
ing boundary conditions as devised by Grediac [26]. For the 13 sur-
face loading (Fig. 3), the upper surface of the cell was loaded with
an imposed non-zero displacement u along the 1-direction, while
restraining the other two degrees of freedom. The lower surface
was completely clamped, while the vertical edges were only con-
strained along the 3-direction. The shear strain c13 was calculated
as u/b, where b is the gauge thickness of the honeycomb along the
3-direction. The resulting shear stress s23 was calculated as F/S,
where F is the resultant of the shear forces on the upper surface of
the cell after solving a linear elastic problem, and S is the area of
the chiral cell. The transverse shear modulus was then calculated
as the ratio between the shear stress and shear strain.

From a theoretical point of view, the transverse shear modulus
of general honeycomb cores is bounded between an upper bound
(Voigt), and lower bound (Reuss). The two bounds can be calcu-
lated using either unit load and unit displacement methods [17],
or the theorems of minimum strain energy and minimum comple-
mentary strain energy [16]. It is possible to determine closed form
solutions for the Voigt bounds, while the Reuss can be determined
by solving a non-linear minimisation problem. A unique value for
the transverse shear can be identified through an interpolation be-
tween the bounds based on the effect of the gauge thickness of the
honeycomb over the shear stress distributions in the cell [17].

2.1. Compressive modulus

The compressive modulus of a honeycomb structure can be cal-
culated considering the density of the cellular solid itself [20]:

Ez

Ecore
¼ q

qcore
ð1Þ

where Ecore and qcore are the modulus and density of the solid
material.

Considering the non-dimensional geometry parameters of the
unit cells, and a uniform thickness for both the ribs and the nodes,
the load bearing area of a node, Anode, is:

Anode ¼ pr2bð2� bÞ ð2Þ

and the area of a rib, Arib, is:

Arib ¼ abr2 ð3Þ
Fig. 3. Tetrachiral unit cell with BC under shear. Top – loaded surface. Side (red) –
periodic BC shear conditions (for interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
For honeycombs where the thickness of the ribs and nodes can-
not be neglected it is necessary to consider the area of overlap,
Ajunc, at the junction between a node and rib. This is given by the
area of segment AOC minus the area of triangle BOC in Fig. 4:

Ajunc ¼
r2

2
½/� ð1� bÞ sin /� ð4Þ

where u = cos�1(1�b).
The relative density of each honeycomb is then given by the ra-

tio of the area of solid material, Acore, within a representative unit
cell to the area of the unit cell, Au�c:

q
qcore

¼ Acore

Au�c
¼ nribArib þ nnodeAnode � njuncAjunc

Au�c
ð5Þ

where nrib, nnode and njunc are the numbers of ribs, nodes and junc-
tions, respectively, in the unit cell. The areas of the unit cells (shown
as boxes) in Fig. 1 are
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From Eqs. (2)–(5), (6a)–(6e) the following expressions for the
density ratios of the chiral and anti-chiral honeycomb configura-
tions are obtained:
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Fig. 4. Rib-node junction.
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The compressive modulus for each configuration was then pre-
dicted by substituting the relevant equation from (7a) to (7e) into
Eq. (1).

2.2. Transverse shear

The upper limit of the transverse shear modulus can be evalu-
ated using the theorem of minimum potential energy [17] which,
for a general honeycomb configuration loaded with a uniform
strain on the 13 plane, can be stated as:

1
2

G13c2
13V 6

1
2

X
i

ðGcorec2
i V iÞ ð8Þ

where Vi is a volume component of the unit cell. Considering the
hexachiral configuration, the various volumes of the unit cell can
be calculated as follows:

dVrib1 ¼ dVrib2 ¼ dVrib3 ¼ t dl
2 b

dVcir ¼ rtb�dh

(
ð9Þ

The shear strains in the individual volumes are:

crib1 ¼ c13 cosð�hÞ
crib2 ¼ c13 cos �hþ p

3

� �
crib3 ¼ c13 cos �hþ 2p

3

� �
ccir ¼ c13 cos hþ p
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� �
¼ c13 sin h

8>>><
>>>:

ð10Þ

where sinh = 2r/R, tanh = 2r/L and R is the centre-to-centre distance
between two connected nodes. Inserting (10) and (9) in (8), one
obtains:
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Solving the integrals in (11) and making use of the definitions
for the non-dimensional geometry parameters a and b, the Voigt
limit for the transverse shear modulus G13 is:

G13

Gcore
6
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3Þ þ cos2 �hþ 2p
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For the tetrachiral configuration, similar geometric consider-
ations lead to the following upper limit:

G13

Gcore
6

cos2ðhÞ þ cos2ð�hþ p
2Þ
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aþ p

� 

1þ a2 b ð13Þ

The Voigt limit for the antitetrachiral is:

G13

Gcore
6

aþ p
a2 b ð14Þ

The upper limit transverse shear scales linearly with the relative
density b, as expected in general honeycomb configurations [16,20].
Due to the hexagonal symmetry of the chiral topologies, the upper
limits for the transverse shear modulus G23 assume the same formu-
lations as in (14), (13), (12). For the Reuss bound, it is possible to ap-
ply the theorem of the minimum of the complementary potential
energy, which for a general honeycomb configuration loaded in
shear over the 13 plane assumes the following form:
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Considering an external uniform stress s13 applied to the unit
cell, the equilibrium of the resultant forces due to shear stress dis-
tributions in the volume components gives the following:
2t
l
2
ðsrib1 þ srib2 þ srib3Þ þ 2prtscir ¼ s132

ffiffiffi
3
p

r2

sin2 h
ð16Þ

At the intersection points between ribs and nodes, the equilib-
rium between the shear stresses provides the following 3 equilib-
rium equations:

s1þ
cir ¼ s1�

cir þ srib1 ð17aÞ
s2þ

cir ¼ s2�
cir þ srib2 ð17bÞ

s3þ
cir ¼ s3�

cir þ srib3 ð17cÞ

where the sign + and � for the shear stresses in the connecting sec-
tions stands for positive (out) and negative (in) flows. The system of
Eqs. (15)–(17) is not analytically solvable, because the function
scir(h) assumes zero values for h = 0 or 3/2/p (only bending contribu-
tion), and non-zero values for all the other cases.

It must be noticed that, for isotropic centresymmetric regular
hexagonal structures, the upper and lower bounds do coincide
[20,21]. Although hexachiral, tetrachiral and trichiral honeycombs
are in-plane isotropic, two different bounds exist.

3. Manufacturing and testing

Samples of chiral honeycombs were produced using a Rapid
Prototyping (RP) FDM Stratasys machine (Stratasys Inc., USA),
using ABS plastics, and a SLS machine (3D Systems Corp, USA) with
a combination of geometric parameters as indicated in Tables 1
and 2. The FDM samples had a lower relative density b compared
to the SLS samples. For all the RP models, the ABS plastics used
had a Young’s modulus of 1.0 GPa measured from a tensile test
according to the ASTM D6738 standard, while the SLS core material
had a Young’s modulus of 1.6 GPa. The honeycomb samples had
overall front dimensions of 225 � 220 mm, and variable gauge
thickness according to the non-dimensional height specified in Ta-
ble 1.

The flatwise compressive tests were performed according to the
ASTM standard C-393 – 00. The hexachiral and tetrachiral samples
were subjected to a constant displacement rate of 0.5 mm min�1,
with the maximum load occurring between 3 and 6 min. The load
was distributed through self-aligned plates, taking care to distrib-
ute the deformation in the most uniform way to avoid failure
occurring solely at the edges. The trichiral samples were tested
at a strain rate of 1 mm min�1 with the maximum strain being 3%.

For the shear tests, the SLS and FDM hexachiral and tetrachiral
samples were attached to steel plates using a two-part epoxy glue
Redux 810, with nominal tensile lap shear strength of 43 MPa. The
samples were cured for 5 days at 22 �C, and then attached to an In-
stron 1342 servohydraulic test machine with 100 kN load cell. The
fixtures for the samples were custom designed based on the ASTM
C 273-00 standard. The samples were loaded in shear under dis-
placement control with a video-extensometer at a rate of
0.5 mm s�1. The force–displacement curves were post-processed
to obtain the shear stress and strain as indicated in the ASTM C
273-00 standard. An analogous setup was designed for the trichiral
and antitrichiral FDM samples, using also in this case an Instron
1342 machine with the same technical specifications used for the
hexachiral and tetrachiral honeycombs. The shear strain rate used
in this case was 1 mm min�1.

4. Results and discussion

Table 2 provides a comparison between the analytical and
experimental values of the chiral configurations considered for
the flatwise compressive tests. The analytical solutions overesti-
mate the results from the flatwise compressive tests. From visual
inspection, it appears that during the compressive loading, the



Table 1
Comparison of numerical and experimental results for shear testing.

Sample geometry FE (MPa) Experimental (MPa)

Antitetrachiral SLS sample 1 r = 4 mm 48.4 52.5
a = 5.4
b = 0.5
c = 6.3

Antitetrachiral SLS sample 2 r = 4.25 mm 44.8 50.2
a = 6.2
b = 0.35
c = 11.8

Tetrachiral FDM r = 5 mm 7.9 8.5
a = 5.0
b = 0.12
c = 10

Hexachiral FDM r = 6 mm 10.1 11.8
a = 4
b = 0.10
c = 5.9

Trichiral SLS Sample 1 r = 5 mm 15.5 16.3
a = 5
b = 0.30
c = 2

Trichiral SLS Sample 2 r = 5 mm 28.1 22.7
a = 4
b = 0.40
c = 2

Antitrichiral SLS Sample 1 r = 5 mm 15.0 14.9
a = 5
b = 0.30
c = 2

Antitrichiral SLS Sample 2 r = 5 mm 25.3 18.9
a = 4
b = 0.40
c = 2

Table 2
Comparison between experimental and analytical compressive modulus (r = 5 mm).

Cell geometry Dimensions (mm) Experimental (MPa) Analytical (MPa)

Antitetrachiral L = 25, t = 1.5, d = 25 108.9 160.4
Tetrachiral L = 25, t = 1.5, d = 25 73.7 143.8
Hexachiral L = 25, t = 1.5, d = 25 113.4 215.9
Antitetrachiral L = 20, t = 2, d = 25 183.3 269.8
Tetrachiral L = 20, t = 2, d = 25 134.9 232.5
Hexachiral L = 20, t = 2, d = 25 180.7 340.2
Trichiral L = 25, t = 1.5, d = 25 50.8 94.1
Trichiral L = 20, t = 2, d = 25 120.4 155.1
Antitrichiral L = 25, t = 1.5, d = 25 67.6 105.0
Antitrichiral L = 20, t = 2, d = 25 141.8 179.9

Fig. 5. Nondimensional Voigt bounds for antitetrachiral, hexa and tetrachiral
configurations.

Fig. 6. Nondimensional Voigt bound for tetrachiral configurations for various a
(b = 0.05).
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combination of the edge deflection and the finite size of the sam-
ples induce some significant rotation effects and lateral movement
of the honeycombs. Moreover, the analytical models prescribe a
clamped base for the unit cells, providing a further stiffening effect,
which is not present in the real experimental situation and these
effects could account for the mismatch seen in Table 2. However,
the models do capture well the dependency of the compressive
modulus vs. the honeycomb configuration. This is particularly true
when comparing the results for a = 5 and b = 0.3 (i.e. L = 25 mm,
t = 1.5 mm and r = 5 mm), where the modulus increases according
to the following order: trichiral ? antitrichiral ? tetrachi-
ral ? antitetrachiral ? hexachiral. This trend is consistent with
the rib and node number densities increasing with increasing coor-
dination number (from 3- to 4- to 6-ribs per node), and the anti-
chirals displaying a lower cross-sectional area for the same area
of solid material with respect to their chiral equivalents. The ana-
lytical predictions for a = 4 and b = 0.4 (i.e. L = 20 mm, t = 2 mm
and r = 5 mm) also follow the aforementioned trend, although
the experimental data show the ordering of the antitrichiral (3-
connectivity) and tetrachiral (4-connectivity) honeycombs is re-
versed, as is that for the antitetrachiral (4-connectivity) and hex-
achiral (6-connectivity) honeycombs.

For the shear modulus, the hexachiral topologies provide an
higher Voigt bound compared to the two tetrachiral ones (Fig. 5),
with the hexachiral configuration showing a quasi uniform in-
crease by 42% compared to the tetra and antitetrachiral configura-
tions from aspect ratios a starting from 6. The tetrachiral
configurations outperform the hexachiral layout only for a lower
than three, with the antitetrachiral providing an higher Voigt
bound (33%) compared to the one for the hexagonal chiral honey-
comb for a = 2. Fig. 6 shows, as an example, the transverse shear
values calculated through the FE models for the tetrachiral config-
urations. The dependence of the shear modulus on gauge thickness
ratio c shows a typical inverse dependence of the type c�1, as in
hexagonal regular [21] and auxetic re-entrant honeycombs [21].
An estimation for the lower (Reuss) bound can be performed con-
sidering honeycomb configurations with gauge thickness ratio
around 20, with shear modulus almost constant for c > 17 for a gi-
ven set of wall aspect ratios and relative density values. A non-lin-
ear least square (NLLS) fitting over 200 configurations of hexachiral
and tetrachiral unit cells provides the following estimation for the
Reuss bound:
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Glow

Gcoreb
ffi a

k1

1þ a � k2
ð18Þ

where k1 = 0.045 and k2 = 0.67 for the tetrachiral cases, and
k1 = 0.045, k2 = 0.23 for the hexachiral one. For the Voigt bound,
the hexachiral configuration provides consistently higher values
than the tetrachiral ones. A unique value for the transverse shear
modulus depending on the gauge thickness can be calculated using
an approach similar to the one of Grediac [26] and refined for aux-
etic centresymmetric configurations by Scarpa and Tomlin [27].
After a NLLS procedure on 200 samples similar to the one performed
for the estimation of the Reuss bound, the transverse shear modulus
can therefore be expressed as:

G ¼ Glow þ
K
c
ðGup � GlowÞ ð19Þ

where K is 1.35 for hexachiral configurations, and 1.57 for the tetr-
achiral ones. It is worth noticing that the analogous value of K for
re-entrant auxetic honeycombs [27] is 1.34.

Fig. 7 shows a plot of the non-dimensional transverse shear
modulus G/b/Gcore against a for the hexachiral, tetrachiral and both
trichiral and antitrichiral configurations generated by FE. As is the
case for the in-plane plots for these honeycombs [23], the modulus
decreases as the number of ribs attached to each node decreases.

Table 3 shows a comparison between the FE and experimental
results related to the four sets of hexachiral and tetrachiral sam-
0
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3 4 5 6 7 8
α

G
/( β
G
co
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Fig. 7. G/(bGcore) vs. a (c = 5, b = 0.05) for hexachiral, tetrachiral, antitrichiral and
trichiral configurations generated by FE.

Table 3
Comparison of numerical, experimental and analytical results for shear modulus of 4 and

Sample geometry FE (MPa) Experimental

Antitetrachiral SLS sample 1 r = 4 mm 48.4 52.5
a = 5.4
b = 0.5
c = 6.3

Antitetrachiral SLS sample 2 r = 4.25 mm 44.8 50.2
a = 6.2
b = 0.35
c = 11.8

Tetrachiral FDM r = 5 mm 7.9 8.5
a = 5.0
b = 0.12
c = 10

Hexachiral FDM r = 6 mm 10.1 11.8
a = 4
b = 0.10
c = 5.9
ples, together with the estimation of their upper and lower bounds.
A convergence test was carried out. The tests were small strain,
thus meaning that there should not be any non-linear effects in
the deflection. The agreement is generally good, with the antitetr-
achiral SLS sample 1 and tetrachiral FDM sample providing per-
centage error between 7.1% and 7.8%. The second antitetrachiral
sample shows a percentage error of 10.7%, while the FDM hexachi-
ral has a slightly larger error of 14.4%. For all cases, the experimen-
tal results have a higher magnitude compared to the one provided
by the models which could be due to material variations. The inter-
polation from Eq. (21) gives a satisfactory agreement with the
experimental and FE results (12% and 18% of discrepancy with
the experiments for the FDM samples), although the interpolated
transverse shear modulus offers a conservative estimation. For
the samples with the higher relative density (antitetrachiral SLS),
the discrepancy is significantly higher, with 23% and 50% for the
antitetrachiral samples 1 and 2. Sample 2, in particular, shows a
very high experimental shear modulus, anomaly close to the theo-
retical Voigt bound for the particular gauge aspect ratio considered
(c = 6.3). Table 1 shows the comparison for the trichiral configura-
tions between FE and experimental results and good agreement is
shown. While a more significant discrepancy exists for the honey-
combs with the highest relative density (b = 0.4), a very satisfac-
tory concurrence can be recorded for the thinner honeycombs,
with errors around the 5% level.

Fig. 8 shows the transverse shear modulus data of Fig. 7 re-plot-
ted as G/Gcore vs. relative density (q/qcore) calculated using Eqs.
(7a)–(7e) with a least squares fit line to each data set. Interestingly,
the shear modulus is predicted to be highly density dependent for
the 3-coordinated systems (shear modulus increasing with
increasing density) whereas it is largely insensitive to density vari-
ations for the 6-coordinated system over the same range of a
(3 < a < 7). At low density the trichiral system has lower transverse
shear modulus than the antitrichiral system. However, at q/
qcore = 0.026 these two systems have the same shear modulus
and linear extrapolation of the trichiral data to higher density
(i.e. a < 3.5) would indicate a higher shear modulus for the trichiral
honeycomb with respect to the antitrichiral honeycomb for q/
qcore > 0.026. Indeed such an extrapolation would also indicate
the 3-connected systems have similar transverse shear modulus
values as the hexachiral system at q/qcore � 0.05.

Previous work [15] has benchmarked the hexachiral configura-
tions with both the re-entrant and traditional hexagonal configura-
tions in terms of local and global buckling. In this case, chiral
topologies require higher local buckling loads, thus providing an
improvement in behaviour for the same relative density and there-
fore weight of structure [15].
6 connectivity chiral honeycombs.
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Fig. 8. G/Gcore vs. q/qcore (c = 5, b = 0.05) for hexachiral, tetrachiral, antitrichiral and
trichiral configurations generated by FE.
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5. Conclusions

The out-of-plane linear elastic properties of hexachiral, tetr-
achiral and trichiral honeycombs have been investigated using
analytical, finite element and experimental results. All the different
types of honeycombs show an overall sensitivity to cell wall aspect
ratios, relative density and gauge thickness similar to the one of
hexagonal centresymmetric honeycombs. However, the chiral hon-
eycombs show two distinct upper and lower bounds for the differ-
ent connectivities, while regular hexagonal honeycombs have
coincident bounds. Hexachiral and tetrachiral configurations are
also more sensitive to the gauge thickness dependence, while
trichiral honeycombs tend to have a lower Voigt and Reuss bound
mismatch, and converge to a common shear value after 5–6 non-
dimensional c parameters. For applications where low weight is
important (e.g. aerospace sandwich panel components) then it is
clear that the higher connectivity honeycombs offer superior trans-
verse shear modulus response than the lower connectivity
honeycombs.
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