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A B S T R A C T

The aim of this paper is the development of an effective model based on deep learning for geological facies
classification in wells. Facies classification is carried out by studying the lithological properties of rocks, which
are characteristic of modern sediments, accumulating in certain physical and geographical conditions. In this
study, a new 1D-CNN model, which is trained on various optimization algorithms, is proposed. The photoelectric
effect, gamma ray, resistivity logging, neutron-density porosity difference, average neutron density porosity and
geologic constraining variables are considered as input data of the model. Acceptable accuracy and the use of
conventional well log data are the main advantages of the proposed intellectual model. The proposed model is
compared with a recurrent neural network model, a long short-term memory model, a support vector machine
model, and a k-nearest neighbor model and shows more accurate results in comparison with them. The model
shows successful results in the study of well log data and can, therefore, be recommended as a suitable and
effective approach for well log data processing required for lithological discrimination.

1. Introduction

The most popular geophysical research of the well, conducted with
the purpose of revealing oil in a geological section, is logging. Well logs
are physical and chemical measurements of rocks recorded by lowering
specialized sensors into the wells after drilling. It allows determining
the porosity, permeability, fluid composition, information about oil and
gas saturation, etc. With the help of logging the character of the drilled
layers is determined without core selection.

The facies (part of the layer that differs from the adjacent layers by
lithological composition) contain characteristic features found in the
core of reservoir rock samples that were taken from wells. They are the
basis for characterizing the reservoir and constructing its model.
Experts analyze them to determine the type and sequence of facies. This
task is tedious and time-consuming. The process of wells drilling and
cores obtaining for well analysis is expensive. These costs increase
significantly as the number of wells increases. Therefore, it is necessary
to develop approaches for facies determination using well log data.

Oil wells' characteristics are measured by various petrophysical in-
struments that help petrophysicists to differentiate the facies. The
problem of facies prediction based on well log data was solved using
various approaches.

Most researchers suggest using artificial neural networks (ANN).
Neural networks can solve problems that cannot be solved with the help
of conventional calculations and discover very complex relationships

between several variables. ANN methods have a remarkable ability to
establish a complex mapping between nonlinearly coupled input and
output data (Nakutnyy et al., 2008). In petroleum engineering, these
networks are used when there is not enough data to interpret (Auda and
Kamel, 1999) (Ayala and Ertekin, 2005).

ANN is used to estimate all unknown reservoir parameters. The
coefficients of interpolating Chebyshev polynomials were considered as
input to the ANN (Adibifard et al., 2014). Different training algorithms
used to train ANN, and the optimum number of neurons for each al-
gorithm were obtained by minimizing the mean relative error (MRE)
over test data. Levenberg-Marquardt algorithm showed the best result.

Methods based on two different types of intelligent approaches,
including ANN linked to the particle swarm optimization (PSO) tool,
was developed to evaluate the productivity of horizontal oil wells
(Ahmadi et al., 2015). The authors of the paper suggest that the pre-
sented prognostic model can be used for effective forecasting of well
productivity, in particular, at the initial stages of the evolvement of
horizontal well drilling.

An approach based on the principal component analysis (PCA) and
ANN was proposed (Gao et al., 2016) to implement an accurate and
effective reservoir well productivity prediction using fluvial facies. The
proposed approach takes into account the reservoir complexity and the
filtering mechanisms to predict the well productivity.

Porosity was noted as the main attractive attribute, and selection of
petrofacies is the preferred way of permeability estimation in the
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uncored wells (Chehrazi and Rezaee, 2012). The fuzzy c-means (FCM)
clustering method was applied for the subdivision of the data space into
petrofacies, and the corresponding relationships between porosity and
permeability for each facies were determined.

An alternative method of porosity prediction, which is based on
integration between wavelet theory and ANN, was presented (Saljooghi
and Hezarkhani, 2014). In this study, different wavelets are applied as
activation functions to predict the porosity from well log data.

Data mining and machine learning approach with MICP (mercury
injection capillary pressure) was proposed for predicting the pore
structure of Mesozoic strata (Wang et al., 2018). Pore structure para-
meters were calculated and characterized according to MICP data. The
paper explains the capability of well log and core data reflect the in-
formation of pore structure. The model is established by the decision
tree method with the overall accuracy rate of 90.9% and the cross-va-
lidation rate 75%.

An approach based on the ANN, adaptive neuro-fuzzy inference
system (ANFIS), and support vector machine (SVM) was developed
(Elkatatny and Mahmoud, 2018). The approach was designed to de-
termine the oil formation volume factor (OFVF) based on the specific
gravity of gas, the dissolved gas to oil ratio, the oil specific gravity, and
the temperature of the reservoir.

Log data is used for lithological analysis, which is an integral part of
facies analysis, taking into account lithological features of rocks
(composition, structure, presence of mineral indicators of the environ-
ment, etc.) (Serra, 1984). Rocks that have numerous physical and
chemical properties can be used in classification.

Self-organizing map neural network (SOM-ANN) and hierarchical
cluster analysis (HCA) were utilized to characterize lithofacies in un-
cored but logged wells (Sfidari et al., 2014). The electrofacies derived
from the SOM networks showed a good agreement with reservoir
geological (lithofacies) and petrophysical data.

Variations in petrophysical lithofacies were evaluated, and struc-
tural facies-controls were identified (Ohl and Raef, 2014). A neural
network petrophysical facies classification was based on training and
validation using three petrophysically-different wells and three volume
seismic attributes, including the wavelet of the reservoir-top reflection.

Natural fractures have a significant influence on the petroleum re-
servoir behavior and performance. Three types of fractures are ob-
served: opened, sealed and closed fractures. The developed ANN model
(Zazoun, 2013) can predict fracture density by using conventional well
log data. The application of artificial intelligence to fractured reservoir
indicates that a neural network can be successfully used to predict the
fracture density in boreholes using conventional well log data. The
results of this study show that conventional well log data such as
gamma ray (GR), sonic interval transit time, caliper, neutron porosity
and bulk density logs, and the core depth data are suitable inputs to
build an ANN modeling.

However, at present, there is a growing need to develop new ap-
proaches for well facies classification. More and more attention is being
drawn to deep neural networks. The presence of a large number of
layers allows the neural network to construct a conception of the re-
search object from simple features gradually moving to more complex
ones.

In this paper, an architecture based on a one-dimensional con-
volutional neural network (1D-CNN) is proposed for facies classifica-
tion. The photoelectric effect (PE), GR, resistivity logging (RL), neutron-
density porosity difference (DPHI), average neutron density porosity
(PHIA) and geologic constraining variables are considered as input data
of the model.

Fig. 1. Flowchart of the proposed ap-
proach.

Fig. 2. The overall architecture of 1D-CNN.

Y. Imamverdiyev, L. Sukhostat Journal of Petroleum Science and Engineering 174 (2019) 216–228

217

Ali Hs
Highlight

Ali Hs
Highlight

Ali Hs
Highlight

lenovo
Highlight



Fig. 3. Facies and seven log curves of ten wells.
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Fig. 3. (continued)
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The rest of the paper is organized as follows. Section 2 describes the
area of the study. Section 3 presents the architecture of the proposed
1D-CNN model. Section 4 evaluates the proposed model using various
optimization algorithms to illustrate the benefits of the proposed im-
plementation according to computational efficiency and classification
accuracy. Then a discussion of the results is given, followed by con-
clusions in Section 5.

2. Area of study

The research area is a hydrocarbon field located in the southwest of
Kansas known as the Hugoton basin, a northern shelf expansion greater
and deeper part located under Oklahoma and Texas. For millions of
years, thousands of feet of carbonate (limestone and dolomite) deposits
and shale have been accumulated.

Fig. 3. (continued)

Table 1
The color scheme of nine facies.

Fig. 4. The description of adjacent facies in wells.
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The Hugoton gas field makes a significant contribution to the
economy of Kansas. The fields constitute the largest gas producing zone
in North America, acquiring 963 billion m3 of gas from 412,000 wells.

Hugoton has the deepest wells in Kansas State reaching up to 5000
feet. Most of the gas is produced by the Chase and Council Grove
Groups. The rocks were precipitated during the Permian period (Dubois
et al., 2003). Council Grove Group production is limited to the Panoma
field, which is under and geographically covered by the Hugoton field
(Dubois et al., 2006). The study area includes the location of approxi-
mately 515 wells with measured and derived predictor variables
(Dubois et al., 2007). The work of this particular field is studied in this
paper.

The lithofacies identified in this study are based on a visual ex-
amination of a 4149-foot core of nine wells. Physical and chemical

properties of rocks were determined using logging tools. Well logs in-
clude five wireline log curves (GR, resistivity logging (RL), photo-
electric effect (PE), neutron-density porosity difference (DPHI) and
average neutron density porosity (PHIA)) and two geologic con-
straining variables (nonmarine-marine indicator (NM_M) and relative
position (RP)). Digital measurements are recorded at half-foot (0.15m)
intervals (Dubois et al., 2007).

The analyzed sequence represents by nonmarine sandstone, coarse
and fine siltstone, marine siltstone and shale, mudstone, wackestone,
dolomite, packstone-grainstone, and phylloid-algal bafflestone.

3. Methodology

The lithofacies from the core, associated well log variables, served

Table 2
Evaluation of the proposed approach with RNN and LSTM models.

Training loss Validation loss Training accuracy (%) Validation accuracy (%) Adjacent facies classification accuracy for validation dataset (%)

1D-CNN (Adagrad) 0.2173 1.4345 96.44 76.97 93.20
1D-CNN (Adadelta) 0.6331 1.1844 85.65 73.88 93.20
1D-CNN (Adamax) 0.7495 1.1945 81.20 69.09 92.12
RNN 1.0246 1.0995 59.28 57.38 90.36
LSTM 0.7631 1.0289 70.43 62.95 90.48

Fig. 5. Facies classification loss and accuracy curves for the training and validation datasets for 1D-CNN(Adagrad) (a,b), 1D-CNN(Adadelta)(c,d) and 1D-CNN
(Adamax)(e,f).
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as the input data for the training of a deep convolutional neural net-
work model. The model is used to evaluate lithofacies in wells without
core data, but having the appropriate logging curves. Testing was car-
ried out in parallel with the model construction and served to verify the
properties and the working process of the model.

3.1. The workflow of the proposed approach

Fig. 1 shows the general workflow of a deep convolutional network
classifier. The development of the classifier consists of the following
steps:

1) Obtaining well logs and building training set and testing set to verify
the performance of the model.

2) Data preprocessing.
3) Construction of a deep convolutional neural network as a classifier

of well facies. Determine the number of neurons for each hidden
layer.

4) Training of the classifier on the well log data, taking into account
the core data to obtain the optimal solution.

5) Evaluation of the obtained classifier, its application to an unknown
log dataset.

3.2. The architecture of the proposed model

The architecture of the proposed 1D-CNN model consists of an input

layer, four convolutional layers with ReLU (a rectified linear unit) as a
nonlinear activation function, two maxpooling layers and three fully-
connected layers. The last layer is the output layer, which assigns a
label to the input data. Below is a detailed explanation of the proposed
architecture (Fig. 2).

The input vector is given to the input layer and is then propagated
through several successive convolutional and pulling layers to extract
features. Pooling layers are used for a subsample to reduce the network
dimension, which can help reduce computation and control overfitting.
Each convolution layer has several one-dimensional convolutional fil-
ters (kernels). The size of the kernel is a hyperparameter and depends
on the data.

Let us denote the input data vector as =X x x x R( , , ..., )N
n

1 2 , where
n is the length of the input vector. In the first convolutional layer, a set
of d filters = ( , , ..., )d1 2 is given to the input vector through the
convolution operation ( ) to obtain a feature map:

= =F f f f g X( , , ..., ) ( )N1 2 (1)

where g is a nonlinear activation function, such as hyperbolic tangent
or ReLU. ReLU is defined as

=g x x( ) max(0, ) (2)

It became the most used activation function in CNN.
After applying the ReLU function, the feature maps are sent to the

second convolution layer with filters of the same size as in the first
convolutional layer. The generated feature maps are then sent to the

Table 3
Comparison of facies classification results using the proposed approach with RNN, LSTM, SVM, and KNN.

Method Evaluation metrics Facies

NS NCS NFS MSS M W D P_G P_AB Total

RNN Accuracy (%) 75.86 65.00 62.05 58.70 18.18 42.50 46.15 49.72 80.00 56.39
F-measure (%) 53.01 67.29 64.78 55.10 10.53 43.97 43.64 57.69 52.46 55.22

LSTM Accuracy (%) 81.25 69.36 68.92 50.85 44.00 50.39 72.73 58.13 83.87 63.13
F-measure (%) 60.47 74.09 68.00 54.05 27.85 53.94 40.00 63.92 72.22 62.22

SVM Accuracy (%) 78.00 75.23 76.06 73.47 58.82 62.07 83.33 76.34 88.89 73.73
F-measure (%) 75.00 78.22 73.47 71.29 57.14 63.16 75.47 76.34 93.02 73.64

KNN Accuracy (%) 73.08 74.31 74.66 64.62 56.25 58.87 83.33 77.27 76.74 71.33
F-measure (%) 71.70 76.60 73.15 71.19 52.94 61.86 75.47 70.83 78.57 71.32

1D-CNN (Adagrad) Accuracy (%) 84.09 77.63 76.82 74.55 70.69 67.89 86.67 78.15 88.89 76.87
F-measure (%) 75.51 80.38 76.57 71.93 70.69 67.58 80.00 78.81 93.02 76.78

1D-CNN (Adadelta) Accuracy (%) 79.59 75.77 76.47 74.55 61.36 62.07 84.62 77.50 85.97 74.58
F-measure (%) 75.00 78.54 74.02 77.36 55.10 64.87 80.00 75.30 89.91 74.44

1D-CNN (Adamax) Accuracy (%) 78.57 75.23 76.43 73.68 58.62 61.39 84.62 76.61 81.25 73.37
F-measure (%) 77.19 78.10 73.29 75.00 59.13 58.77 77.19 76.92 88.64 73.20

The best results according to the accuracy and f-measure metrics are marked in bold.

Table 4
Comparison of adjacent facies classification results using the proposed approach with RNN, LSTM, SVM, and KNN.

Method Evaluation metrics Facies

NS NCS NFS MSS M W D P_G P_AB Total

RNN Accuracy (%) 98.08 99.51 94.94 64.58 83.72 83.62 89.66 84.29 94.87 90.36
F-measure (%) 96.23 99.51 96.77 62.00 74.23 85.09 89.66 87.08 92.50 90.20

LSTM Accuracy (%) 92.73 99.51 95.48 56.90 86.67 86.73 100.00 86.33 94.87 90.48
F-measure (%) 93.58 99.51 96.42 60.00 78.79 87.11 84.00 88.89 92.50 90.50

SVM Accuracy (%) 94.44 98.54 95.48 78.72 89.29 91.96 100.00 91.67 93.18 93.73
F-measure (%) 94.44 98.54 96.42 74.75 90.91 91.96 92.59 92.02 96.47 93.67

KNN Accuracy (%) 92.73 99.03 96.77 70.49 81.36 88.89 100.00 95.00 83.33 92.17
F-measure (%) 93.58 99.27 97.72 76.11 84.96 87.27 90.57 90.84 84.34 92.24

1D-CNN (Adagrad) Accuracy (%) 98.18 100.00 97.42 79.25 90.48 92.73 100.00 95.90 95.56 95.54
F-measure (%) 99.08 99.75 98.37 80.00 93.44 92.73 98.04 92.86 96.63 95.54

1D-CNN (Adadelta) Accuracy (%) 96.61 99.51 97.26 79.25 89.29 93.52 100.00 95.35 93.75 95.18
F-measure (%) 97.44 99.76 97.26 84.85 90.09 91.82 89.29 94.25 96.77 95.19

1D-CNN (Adamax) Accuracy (%) 95.00 99.51 96.67 80.36 87.50 92.45 100.00 94.96 93.48 94.58
F-measure (%) 96.61 99.51 97.64 81.82 89.60 90.74 92.31 93.00 96.63 94.57

The best results according to the accuracy and f-measure metrics are marked in bold.
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first maxpooling layer. The maxpooling layers reduce the samples of
output features of the previous layer for better control of high-dimen-
sional data.

The most common form is a pooling layer with filters of length 2.
After applying this layer, the depth (size) remains unchanged, but the
length is reduced by half.

The resulting output volume is sent to the third convolution layer in
the proposed architecture. This layer is intended to further refine the
feature maps by processing each element one by one. Next comes the
fourth convolutional layer. Again, after applying the ReLU function, the
feature maps generated on the previous layer are sent to the second
maxpooling layer, with the 2×1 kernel.

The extracted high-level features will then be flattened to a vector of
fixed size to pass through the fully connected layers. 2500 and 1500
indicate the number of units in the first and second fully connected
layers, respectively. These two layers calculate their output as

= +y f w y b( )k k k k1 (3)

where wk are weight matrices, bk are bias vectors, yk 1 is the output of
the previous layer, and the activation function f ( ) is ReLU, =k 1,3.
Further, the output of the second fully connected layer is sent to the
third fully connected layer, which uses the softmax activation function
to calculate the predictive probabilities for all classes.

This can be achieved by:

= =
+

+=

p y j x
w x b

w x b
( ˆ | )

exp( )
exp( )

j
T

j

i
K

i
T

i1 (4)

where wj and bj are parameters of the softmax function for the jth class,
ŷ is the predicted class, and K is the number of classes (in our case

=K 9).
An additional and customized screening mechanism was applied to

the second and fourth convolutional layers, as well as to the first fully
connected layer, to avoid the overfitting problems. The dropout method
discards some randomly selected hidden neurons, and they are not used
in the back-propagation stage (Hinton et al., 2012).

Batch normalization layers usually follow convolutional layers to
normalize output. It allows to increase the training speed significantly
and makes the network less sensitive to initialization (Ioffe and
Szegedy, 2015). We also applied batch normalization after the first fully
connected layer.

Then the network is trained. The neural network training is aimed at
finding the best parameters (network weights) to minimize the loss
function, which, in the classification problem, measures the compat-
ibility between the prediction (for example, class scores in the classi-
fication) and the true label.

A cross-entropy loss is considered to determine the loss of the pro-
posed 1D-CNN model. It is defined as follows (Ceci et al., 2017):

=
=

ˆL
N

y p y1 log( ( ))
i

N

i i
1 (5)

where yi is the true class of the ith sample, N is the number of training
samples.

The entire consecutive network (all weights and biases) can be
optimized by an optimization algorithm using cross-entropy as training
metric. Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and
Adamax (Kingma and Ba, 2015) are used in this work.

4. Experimental results and discussion

The 1D-CNN model is implemented in Python 2.7.13 using various
libraries, including Tensorflow and Keras. All experiments were con-
ducted on Intel Xeon (R), CPU X5670 @ 2.93 GHz×4 with 10 GB of

Fig. 6. Evaluation results of the CRAWFORD well.
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RAM machine.
We use well log data to train the proposed 1D-CNN model to classify

facies. In the considered dataset, there are data from nine wells con-
taining 4149 samples. A pseudo-well “Recruit F9″ was introduced to
improve the ninth facies (phylloid-algal bafflestone, P_AB) classification
accuracy (Dubois et al., 2007). It was necessary since other wells

contain only a few P_AB facies, which makes it difficult to classify them.
Thus, the dataset uses log data from 10 wells (SHRIMPLIN, ALEXAN-
DER D, SHANKLE, LUKE G U, KIMZEY A, CROSS H CATTLE, NOLAN,
Recruit F9, NEWBY, and CHURCHMAN BIBLE) that were labeled with a
facies type based on the core data (Fig. 3).

The feature vector is constructed using the following physical

Fig. 7. Evaluation results of the STUART well.

Fig. 8. Boxplot diagram of the performance evaluation of classification models.
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properties: GR, RL, PE, DPHI, PHIA and two geologic constraining
variables (NM_M and RP). Measured properties and their transforma-
tions are potential elements of feature vectors.

The dataset contains the following facies types: nonmarine sand-
stone (NS), nonmarine coarse siltstone (NCS), nonmarine fine siltstone
(NFS), marine siltstone and shale (MSS), mudstone (limestone) (M),
wackestone (limestone) (W), dolomite (D), packstone-grainstone
(limestone) (P_G) and P_AB (limestone). Two facies are of continental
origin, namely NCS and NFS, and six of them are of marine origin (MSS,
M, W, D, P_G, and P_AB). In the non-marine area, NCS typically has a
higher permeability than NFS for a given porosity. The input color map
for the nine rocks is presented in Table 1 to establish a lithological
description of the interpreted well.

The standardization procedure was applied to the data so that it had
a zero mean and unit variance. PE feature is not available for all wells.
It is available for only 3232 samples out of 4149 possible. We replaced
missing values with mean values of the PE column.

The proximity of facies with each other leads to their mixing. The
facies and their approximate neighbors are indicated and marked by
abbreviations and consistent colors in Fig. 4. Experiments are also
conducted on a data from unknown wells that do not have facies labels.

The first step in the experiments was to change the configuration
parameters of the convolutional neural network to obtain the best
possible classification accuracy in the dataset by cross-validation. The
input data is divided into training and validation sets (20% of the da-
taset) to conduct the experiments. Batch size was determined as 10, and
the loss function was chosen as the categorical cross-entropy. Each
experimental result was obtained over 4000 epochs to provide con-
sistent comparisons.

The proposed model is trained on various optimization methods,
such as Adagrad, Adadelta, and Adamax and is denoted as 1D-CNN
(Adagrad), 1D-CNN(Adadelta) and 1D-CNN(Adamax), respectively. It is
compared with such neural networks as the recurrent neural network
(RNN) (Jordan, 1986) and long-short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997). The results are compared and shown in
Table 2.

The accuracy (which reflects the prediction ability of the model)
and the loss function's tendencies when applying the three optimization
methods to the proposed model are shown in Fig. 5.

The figure shows the cross-entropy error of the proposed CNN
model as a function of the iteration number when different optimizers
are used. It decreases with the increase of iteration number when all
three optimizers are used, which shows quite a high accuracy of the

model.
In comparison with the other two models, 1D-CNN(Adagrad) is the

most stable (with the increase of iteration number). Thus, a model
trained with Adamax fails in this experiment. Its training and validation
accuracies are 81.20% and 69.09%, respectively. However, the gap for
1D-CNN(Adagrad) is 19.47%, in contrast to the other two models
(11.77% for 1D-CNN(Adadelta) and 12.11% for 1D-CNN(Adamax)).
The use of Adagrad results in the highest validation and training ac-
curacies.

The accuracy of both training and validation datasets using 1D-CNN
(Adamax) is the lowest but showed a higher result than RNN and LSTM.
In general, the model, trained with the Adagrad optimizer, surpasses
the models trained by Adamax and Adadelta.

A comparative analysis of the proposed model using Adagrad,
Adadelta and Adamax optimizers with RNN, LSTM, SVM (Cortes and
Vapnik, 1995) (Hall, 2016)) and k-nearest neighbors (KNN) (Cover and
Hart, 1968) based on accuracy and F-measure metrics is shown in
Table 3. The best results are marked in bold for a more detailed eva-
luation of the classification characteristics of the proposed model at the
end of the 4000th epoch.

According to Table 3, the best results were obtained for the classi-
fication of NS, NCS, D, P_G, and P_AB (84.09%, 77.63%, 86.67%,
78.15%, and 88.89%, respectively) for 1D-CNN (Adagrad). And the
accuracy of M and W rocks classification led to the lowest results
(70.69% and 67.89%, respectively).

After considering RNN, LSTM, SVM, and KNN models and com-
paring them with each other, it was obtained that the best accuracy is
achieved for NCS, NFS, MSS, M and W facies (75.23%, 76.06%, 73.47%,
58.82 and 62.07%, respectively) using SVM model. But for NS and P_AB
facies it yielded to LSTM, and for P_G facies - KNN.

At the same time, the classification accuracy of the MSS facies for
1D-CNN(Adagrad) and 1D-CNN(Adadelta) coincided (74.55%), and the
F-measure showed a higher result for the second model. According to
the F-measure values for the D facies, both models showed the same
result.

Table 4 gives the results of the adjacent facies classification. Ap-
plying Adagrad to the proposed 1D-CNN model for the NS, NCS, NFS,
M, D, P_G and P_AB adjacent facies resulted in 98.18%, 100%, 97.42%,
90.48%, 100%, 95.90%, and 95.56%, respectively, according to the
accuracy. According to the F-measure, the proposed model showed the
best result. The use of the Adamax optimizer in comparison with
Adagrad and Adadelta increased the classification accuracy of the MSS
facies (80.36%).

Table 5
Parameters of the boxplot.

RNN LSTM SVM KNN 1D-CNN (Adagrad) 1D-CNN (Adadelta) 1D-CNN (Adamax)

Minimum 18.18 44.00 58.82 56.25 67.89 61.36 58.62
Q1 18.18 44.00 58.82 56.25 67.89 61.36 58.62
Median 58.70 68.92 76.06 74.31 77.63 76.47 76.43
Mean 55.35 64.39 74.69 71.01 78.38 75.32 74.04
Q3 67.72 74.86 79.33 76.87 84.74 80.85 79.24
Maximum 80.00 83.87 88.89 83.33 88.89 85.97 84.62

(a)

RNN LSTM SVM KNN 1D-CNN (Adagrad) 1D-CNN (Adadelta) 1D-CNN (Adamax)

Minimum 64.58 56.90 78.72 70.49 79.25 79.25 80.36
Q1 64.58 56.90 78.72 70.49 79.25 79.25 80.36
Median 89.66 92.73 93.18 92.73 95.90 95.35 94.96
Mean 88.14 88.80 92.59 89.73 94.39 93.84 93.33
Q3 95.73 96.49 96.25 97.34 98.64 97.82 97.38
Maximum 99.51 100 100 100 100 100 100

(b)

The best results according to the accuracy and f-measure metrics are marked in bold.
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According to the table, rather good accuracy results for the classi-
fication of adjacent facies showed RNN for NS, NCS, D, and P_AB facies;
LSTM for NCS and P_AB; SVM for MSS, M, and W, and KNN for NFS
facies and P_G. The D facies were accurately identified and showed a
100% result for the proposed model, and the LSTM, SVM and KNN
models. The F-measure, as a common measure of the relevance of the
classifier, correctly classifies NS with a classification accuracy of
99.08%, NFS - 98.37% and D - 98.04%.

In summary, the accuracy of the validation data for the optimizers
Adamax and Adadelta are close and inferior to Adagrad. Consequently,
Adagrad is superior to Adadelta and Adamax in this experiment.

A set of two wells (830 samples, where 474 refer to STUART, and

356 to CRAWFORD) which do not have labels is used to test the trained
model. The obtained results can be estimated from the well log data.

Logging curves have a stratigraphic meaning. It is possible to de-
termine sections of well logs with physical significance. Therefore,
zoning according to well logs is a very important step in the pre-
processing of well data.

Comparison of the results obtained in the peaks of the log curves
makes it possible to evaluate the correctness of the proposed model in
the corresponding zone of the well. By the nature of the deflections of
the DPHI and PHIA curves, the permeability and porosity of formations
can be determined. The remoteness of the curves from each other in-
dicates the type of fluid. High resistivity and permeability may indicate

Fig. 9. Pairwise comparison between models.
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the content of hydrocarbons.
Fig. 6 shows that the proposed model with three optimizers (Ada-

grad, Adadelta, and Adamax), together with the considered models
accurately determine the location of the NCS, D, P_G and W rocks for
the CRAWFORD well.

As for the STUART well (Fig. 7), the results of all models are almost
consistent with the detection of P_G, NCS, MSS, NFS, and W facies.

According to Fig. 7, the proposed model with the Adagrad optimizer
clearly distinguishes shale from sand, as well as LSTM and SVM. It is
confirmed by the reaction of GR (first curve). The curve receives high
values for shale and low for sand. For the CRAWFORD well (Fig. 6), 1D-
CNN(Adagrad) detects the shale along with the RNN model. The high
values of the second curve RL indicate the hydrocarbon zone and the
low values for the water-saturated zone.

For the CRAWFORD well, the DPHI and PHIA curves in the section
from 3000 to 3025 feet are placed sufficiently close to each other,
suggesting the presence of limestone. The PE curve in this section ap-
proaches 5 b/electron. It is confirmed by the proposed model (1D-CNN
(Adagrad) and 1D-CNN(Adadelta)), unlike SVM, which assumes the
presence of NFS.

The DPHI and PHIA curves in conjunction with PE sufficiently de-
monstrate the presence of limestone for the STUART well (Fig. 7). In
this case, the high PE peaks (for example, at a depth of 2900–2950 feet)
are the response to iron. High values of GR and average values of PE
characterize the areas with MSS for both wells.

Low GR, relatively low DPHI and high PHIA values characterize the
presence of D facies, which is confirmed by the results of the proposed
model for the Adagrad and Adadelta optimizers. Sections with low
PHIA indicate the presence of W facies. The experimental results show
that the all considered models classify the marine and non-marine zones
quite accurately, which is confirmed by the NM_M curve.

The boxplot diagrams are given below for a visual comparison of the
considered models' performances for facies (Fig. 8(a)) and adjacent
facies (Fig. 8(b)) classification. It can be seen that the maximum ac-
curacy and the highest minimum accuracy are observed for 1D-CNN
(Adagrad).

The proposed model also surpassed SVM for more than 50% of the
results. The worst performance, according to the boxplot (Fig. 8(a)), is
observed for RNN. According to Fig. 8 (b) 1D-CNN(Adagrad) and 1D-
CNN(Adadelta) outperformed SVM by maximum accuracy and 1D-CNN
(Adamax) by medium accuracy. According to the analysis mentioned
above, it can be concluded that the proposed 1D-CNN(Adagrad) model
provides significantly high accuracy for well facies classification.

The visual analysis shows the advantages of applying the proposed
approach. Table 5 lists the parameters used in the boxplot construction
(Fig. 8), where Q1 and Q2 are the first and third quartile, respectively.
The best values are marked in bold.

The following shows the pairwise matrices of the seven models
when classifying facies (Fig. 9 (a)) and adjacent facies (Fig. 9 (b)). The
lower triangle shows the correlations of the differences of the accuracy
for each pair of approaches. The upper triangle represents the corre-
sponding p-values of the correlated t-test (de Assis Boldt et al., 2017).
The level of significance is equal to 0.05 ( = 0.05). The names of the
models are indicated on the main diagonal.

Fig. 9 shows the differences between the considered models. A
statistically significant difference is highlighted in bold. The smallest p-
value (Fig. 9 (a)) is equal to 0.001145, and the largest is 0.006902.
According to Fig. 9 (b) the largest p-value= 0.009132, and the smallest
p-value= 0.005405 for the adjacent facies classification.

In other words, the proposed 1D-CNN(Adagrad) model is statisti-
cally significantly better than the RNN, LSTM and KNN (Fig. 9 (a)). And
for the adjacent facies classification, 1D-CNN(Adagrad) is statistically
significantly better than RNN and SVM.

5. Conclusions

Many studies have been focused on facies classification using well
logs. At present, this problem is solved using various machine learning
methods. An approach based on CNN was proposed in this paper as an
effective method for facies classification based on well logging mea-
surements. The proposed model was validated with a real dataset col-
lected and organized in conjunction with the Hugoton and Panoma
modeling project (Dubois et al., 2003) (Dubois et al., 2006). The model
was evaluated using Adagrad, Adadelta and Adamax optimizers. The
PE, GR, RL, DPHI, PHIA and geologic constraining variables are con-
sidered as features. The results showed that the best network response
predictions were obtained for the Adagrad case. Moreover, the 1D-CNN
model showed more accurate results compared to SVM, KNN, RNN, and
LSTM. Application of the proposed approach to the facies classification
showed significant results for marine origin (dolomite, phylloid-algal
bafflestone, and packstone-grainstone) and continental origin (coarse
siltstone and sandstone) facies. The case study presented and con-
sidered in this paper proves the high efficiency of the proposed 1D-CNN
model. The proposed 1D-CNN(Adagrad) model showed a statistically
significant improvement in the classification of facies and adjacent fa-
cies. It is suitable for lithological identification of complex geological
structures. The proposed approach can be considered as a preliminary
stage of quantitative petrophysical analysis of wells. Summarizing the
above, an analysis of the evaluation of the proposed model based on
deep learning can be useful for future research and facies identification.
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