
Objectives: Study of the behavior of an M/M/1 queue by discrete sim-
ulation. Programming in Java for the management of the event list. Com-
parison by simulation with the theoretical quantities studied in class for this
type of queue.

Generalities

The Markov chain of an M/M/1 queue is a birth-and-death process. Ar-
rivals are determined by a Poisson process (inter-arrival times following an
exponential distribution with parameter λ), and the service times follow an
exponential distribution with parameter µ.
Simulations will be carried out with λ < µ, in order to obtain stability in
steady state.

Durations following an exponential distribu-

tion

Recall: the exponential law with parameter λ has the probability density
function

p(X = x) = λe−λx (x > 0)

An interesting property is that a random variable X following an exponential
law with parameter λ has an expected value

E(X) =
1

λ
.

To generate durations following an exponential distribution with parameter
λ, we use the cumulative distribution function F (X) = 1− e−λX . We know
that F (X) ∈]0, 1[. Thus, we can draw a random variable R = F (X) uni-
formly distributed between 0 and 1, and find the corresponding X.

We then have:

R = 1− e−λX ⇔ 1−R = e−λX ⇔ ln(1−R) = −λX ⇔ X = −1

λ
ln(1−R)

Therefore, inter-arrival or service durations following an exponential law with
parameter λ can be expressed as:

ti+1 = ti +
− log(1− x)

λ
(x : uniform random variable in ]0, 1[)

1



Events and Event List (Scheduler)

In the case of an M/M/1 queue, there are two types of events: arrivals and
departures. To initialize the event list, simply place one arrival event at
t = 0.

Processing an arrival event for customer n triggers the creation of two
new events:

� the future arrival of customer n + 1 (inter–arrival times follow an ex-
ponential law with parameter λ, see previous section). One of your
simulation parameters will be the simulated horizon; therefore, do not
create arrival events whose time would be later than the end of the
simulation, otherwise the simulation would never terminate;

� the future departure of customer n (service time follows an exponential
law with parameter µ, see previous section).

To predict the departure time, there are two cases:

– if the queue is empty: this is easy—draw a service time and add
it to the current time (i.e., the arrival time of customer n);

– if the queue is not empty: the departure time of customer n then
depends on the departure time of customer n − 1. To simplify
matters, since arrivals are handled in order, you may use a variable
that stores the latest (most recent) computed departure time so
far.

The simulation ends when the event list is empty.

Implementation

You will implement the simulation process in Java by creating the following
classes:

� MM1: main class;

� Evt: event class;

� Ech: event-list (scheduler) class. You may use the Java API class
LinkedList to store Evt objects in a linked list;

� Stats: class that collects and displays the simulation results;

2



� Util: class grouping all useful static methods (random draws, expo-
nential law, . . . ).

The input parameters will be λ, µ, the simulated duration, and a switch
to enable debugging mode (i.e., display every processed event).

Results

The objective of this simulation is to statistically recover certain theoretical
values studied in class for the M/M/1 queue:

� Probability of service without waiting (empty queue upon an arrival):

1− λ

µ

� Utilization rate = probability that the server is busy:

λ

µ

� Throughput:
λ

� Average number of customers in the system:

ρ

1− ρ

� Average time spent in the system:

1

µ(1− ρ)

The simulation results are not exact: you can observe this by varying
the simulation duration and measuring the difference from the theoretical
results, as well as by calculating the variances or standard deviations of
the results obtained from multiple simulations. Perform several runs and
compute confidence intervals.

3



Example of Execution

> java MM1 5 6 1000 1

Date=0.0 Arrive client #0

Date=0.03627054952825975 Depart client #0 arrive at t=0.0

Date=0.3129462895233852 Arrive client #1

Date=0.3229906252413475 Depart client #1 arrive at t=0.3129462895233852

Date=0.424299442998096 Arrive client #2

Date=0.575492786687346 Depart client #2 arrive at t=0.424299442998096

Date=0.8382389796147136 Arrive client #3

Date=1.0334555371545838 Arrive client #4

Date=1.0470496555022897 Depart client #3 arrive at t=0.8382389796147136

Date=1.220592510488126 Arrive client #5

[...]

Date=999.7903751479797 Depart client #4992 arrive at t=998.0708779291505

Date=999.79041431310723 Depart client #4993 arrive at t=998.1454900318407

Date=999.8132794264721 Arrive client #5002

Date=1000.0116446615608 Depart client #4994 arrive at t=998.1885168192186

Date=1000.1378729402567 Depart client #4995 arrive at t=998.3940000355528

Date=1000.3294044541082 Depart client #4996 arrive at t=998.5175124230218

Date=1000.476042788417 Depart client #4997 arrive at t=998.8305172502718

Date=1001.075832604617 Depart client #4998 arrive at t=999.3667698695706

Date=1001.4573867204617 Depart client #4999 arrive at t=999.4639073372005

Date=1001.484174790929 Depart client #5000 arrive at t=999.5846147300545

Date=1001.5500147799029 Depart client #5001 arrive at t=999.7242365292011

Date=1001.5950008671978 Depart client #5002 arrive at t=999.8132179246271

—————-
THEORETICAL RESULTS
—————-

lambda < mu : stable queue

rho (lambda/mu) = 0.8333333333333334

Expected number of clients (lambda Ö duration) = 5000.0

Probability of service without waiting (1 - rho) = 0.16666666666666663

Server busy probability (rho) = 0.8333333333333334

Throughput (lambda) = 5.0

Expected number of clients (rho / (1 - rho)) = 5.000000000000002

Average residence time (1 / (mu(1 - rho))) = 1.000000000000002

—————-

4



SIMULATION RESULTS
—————-

Total number of clients = 5003

Proportion of clients served without waiting = 0.17489506296222265

Proportion of clients that waited = 0.8251049370377773

Throughput = 5.03

Average number of clients in the system = 3.98552146993969

Average residence time = 0.7966263181970213

What to Submit?

You will submit your work on Moodle, in the form of an archive containing:

Java Source Code

All of your commented Java source files; it is not necessary to include the
compiled .class files.

Report

A PDF report covering the following points:

� Comparison between the simulation results and the theoretical results
studied in class. Provide annotated figures showing the impact of cer-
tain parameters on the obtained simulation results and their deviation
from the theoretical values. Explain and justify the statistical calcula-
tions you performed on your simulation results.

� Performance of your simulator: Explain what allowed you to reduce
the simulation time (reference execution time on Turing with λ = 5,
µ = 6, duration=10,000,000, debug=0: between 7 and 11 seconds).

5


