
Math 5300, Fall 2022 (Roos) – Homework 4 – Solutions.
Due Wednesday, Nov 2.

Important: Please submit your homework as a single compressed pdf file
(< 2 MB if possible, scans of handwritten work are okay, use an appropriate
app) online via Blackboard. Problem 1 must appear on top of the first page.

Only Problem 1 will be graded. The other problems are strongly recom-
mended, but will not be graded. Problems marked with an asterisk (*) may
be more challenging.

1 (Graded). (i) Determine the exact solution to the IVP{
y′ = sin(x)y
y(1) = 2

(ii) Implement the 4-stage Runge-Kutta method given by the Butcher
tableau

0
1
3

1
3

2
3 −1

3 1
1 1 −1 1

1
8

3
8

3
8

1
8

Test it on the IVP from (i) on the interval I = [1, 6] (so a = 5): Generate a
scatter plot of the approximate solution for step size h = 1

5 (plot each point
of the approximation, do not connect the points) and also plot the curve
of the exact solution (in the same plot). Output the decimal value of the
global approximation error

|EN | = |y(6)− yN |

where y = y(x) is the exact solution from (i) and yN is the approximation
that your program produced (note N = a/h = 25).

(iii) Confirm that the order of the method is 4 by computing the ap-
proximation error for various small step sizes, say h = 2−i for i = 2, . . . , 9,
then plotting log |EN | against log(h) and estimating the slope of the line (as
shown in class or differently).

Note: To receive full credit for (ii), (iii) it suffices to include the source
code and its output including plots. Include brief comments in your source
code to explain what you are doing.

Solution: (i) This ODE can be solved by separation of variables:∫
dy

y
=

∫
sin(x)dx

1

2

log |y| = − cos(x) + C

|y(x)| = e− cos(x)+C

y(x) = ±eCe− cos(x)

The constant ±eC can be any non-zero real number. Also note that y(x) = 0
is a solution. The general solution can be written as

y(x) = Ce− cos(x)

with a real parameter C (different C than above). We can determine C by
plugging in the initial condition y(1) = 2:

2 = Ce− cos(1)

Therefore

C = 2ecos(1)

and the solution to the IVP is

y(x) = 2ecos(1)−cos(x).

As interval of definition we can use I = (−∞,∞).

Common mistakes:

• An approximate decimal value was given for C instead of the exact
value. This introduces an unnecessary error.
• The value for C was computed, but not plugged back into the general

solution (no final answer given).

(ii) Following the implementation seen in class:

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def onestep(F, x0 , y0 , a, N, Phi):

5 y = np.zeros(N+1)

6 h = a/N

7 x = x0

8 y[0] = y0

9 for j in range(N):

10 y[j+1] = y[j] + h*Phi(F, x, y[j], h)

11 x += h

12 return y

13

14 def rk38(F, x, y, h):

15 k1 = F(x,y)

16 k2 = F(x+ h/3, y+1/3*h*k1)

17 k3 = F(x+ 2/3*h, y-1/3*h*k1+ h*k2)

18 k4 = F(x+h, y + h*k1 - h*k2 + h*k3)

19 return 1/8*k1 + 3/8*k2 + 3/8*k3 + 1/8*k4

20

21 def approx_and_plot(F, x0 , y0 , a, y_exact , N, method):

3

22 x, y = np.linspace(x0, x0+a, N+1), onestep(F, x0, y0, a, N,

method)

23 plt.plot(x, y, ".")

24 error = np.abs(y-y_exact(x))[-1]

25

26 x = np.linspace(x0,x0+a,int(np.ceil(a*100)))

27 plt.plot(x, y_exact(x))

28 return error

29

30 F = lambda x,y: np.sin(x)*y

31 y_exact = lambda x: 2*np.exp(np.cos (1)-np.cos(x))

32 x0, y0, a = 1, 2, 5

33 approx_and_plot(F, x0, y0, a, y_exact , 25, method=rk38)

Code output:

1 1.5413897263893972e-05

Common mistakes:

• Plot did not meet specifications (it was supposed to be a scatter plot
of the approximate solution with h = 1/5 and a curve plot of the
exact solution in the same coordinate system).
• Code did not output global error or the given global error was too

large (usually indicates a bug in the code – it can happen that a
method is incorrectly implemented, so does not have the correct
order, but is still consistent).
• Please never write code using pen and paper. Also avoid using cam-

era photos of your screen.

4

(iii) Using the code from above:

1 def get_errors(F, x0 , y0 , a, y_exact , N_values , method):

2 errors = []

3 for N in N_values:

4 x, y = np.linspace(x0, x0+a, N+1), onestep(F, x0, y0, a

, N, method)

5 errors += [np.abs(y-y_exact(x))[-1]]

6 return errors

7

8 N_values = np.array ([a*2**i for i in range (2 ,9+1)])

9 errors = get_errors(F, 1, 2, a, y_exact , N_values , method=rk38)

10 print(errors)

We can plot the errors logarithmically as follows:

1 h_values = a/N_values

2 plt.plot(np.log(h_values), np.log(errors), ’.’)

The output is

As expected, the scatter plot suggests that there is a linear relation be-
tween log(h) and the logarithm of the error. This confirms that we have
used reasonable values for h (not too small, not too large). To determine
the slope of the line one can use several methods (as discussed in class). One
method not discussed in class is by linear regression:

1 from sklearn.linear_model import LinearRegression

2 x = np.log(h_values.reshape ((-1,1)))

3 y = np.log(errors)

4 m = LinearRegression ()

5

5 m = m.fit(x, y)

6 print("Slope of fitted line: %f"%m.coef_)

7 print("R^2 on training data: %f"%m.score(x, y))

8 plt.plot(x, y, ’.’, x, m.predict(x))

We use linear regression to fit the best line to the data (the standard
algorithm is to minimize mean squared error). The output is

1 Slope of fitted line: 4.151299

2 R^2 on training data: 0.999569

Since we know the order of the method has to be an integer, this provides
good evidence that the order of this method is 4 (which can be proved
mathematically).

Common mistakes:

• Attempts at handwritten sketches of the error plot were not sufficient
(it would be in theory, if you did it with sufficient accuracy).
• Using only two points for the slope comparison is sometimes not

sufficient evidence (especially not when the plot is missing).
• Some ran the code for several h values manually and used Excel to

produce the logarithmic plot and fit a line through it. This works
here, but is not good practice (it’s better to write a loop over h).
(No points deducted.)

6

2. Consider the second-order linear ODE

y′′ = −y + 2y′

(i) Determine the general solution.
(ii) Determine the solution with initial conditions y(0) = 1, y′(2) = −1.
(iii) Determine all solutions (that is, the general solution) of the inhomo-

geneous equation
y′′ = −y + 2y′ + 3.

Solution:
(i) This is a second-order linear ODE with constant coefficients and its

characteristic polynomial is

P (u) = u2 − 2u + 1 = (u− 1)2

The polynomial has a zero of multiplicity 2 at u = 1. Thus, the general
solution is given by

y(x) = C1e
x + C2xe

x.

(ii) Plugging in the initial condition y(0) = 1 we get the equation

1 = C1e
0 + C2 · 0 · e0 = C1,

so C1 = 1. To plug in the other initial condition, we first need to compute

y′(x) = ex + C2e
x + C2xe

x = ex + C2(1 + x)ex

Plugging in the initial condition y′(2) = −1 we get the equation

−1 = e2 + C2(1 + 2)e2,

so
C2 = −1

3(1 + e−2)

and
y(x) = ex − 1

3(1 + e−2)xex.

(iii) We first need to determine a particular solution to the inhomogeneous
equation. From looking at the inhomogeneity we guess that the constant
function y(x) = 3 is a solution, which is indeed the case. By the super-
position principle, the general solution to the inhomogeneous equation is
therefore given by

y(x) = C1e
x + C2xe

x + 3.

3. (Extra Credit!) Extend your code from the in-class programming
session in such a way that it covers also systems of first-order ODEs. Test
your code on the system

y′1 = y2, y
′
2 = −4y1

with initial conditions y1(0) = 1, y2(0) = 2 (first determine the exact solu-
tion).

Produce graphs that show the exact solution beside the numerical so-
lutions using methods A,B,C,D from Exercise 3.52. Produce graphs that
demonstrate the different orders of methods A,B,C,D empirically using the

7

given system (double-logarithmic error plots).

Comments:

• Submissions without pictures will not receive any credit.
• The problems asks for an implementation that works for systems

of arbitrary size (i.e. arbitrarily many equations), but if you only
implement it for systems of two equations to cover the given example,
you may still receive some credit.
• To determine the exact solution of the system, you may want to

recognize it as a linear second-order equation in disguise.

4. Recall the definition of linear multistep methods from class.
(i) Define reasonable notions of truncation error, consistency and order

for linear multistep methods (review the corresponding notions for one-step
methods). (You can compare with the actual definitions in Süli-Mayers, Ch.
12.6).

(ii) Prove that the truncation error converges to zero for the linear two-
step Adams-Bashforth method

yn+2 − yn+1 = h(32Fn+1 − 1
2Fn)

and show that it has order 2.

Comment: For the solutions, see Süli-Mayers, Ch. 12.6.

