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Cognitive radio wireless sensor networks (CRWSN) is a promising technology for developing bandwidth
constrained applications. Future Internet of Things (IoT) applications may extensively use CRWSN.
CRWSN consists of cognitive radio enabled sensor nodes which are energy constrained, in general.
Hierarchical cluster based approach for overall network management is suitable for network stability
and scalability. Thus node clustering is an important problem in CRWSN setup. Objective of this work
is to develop a suitable node clustering algorithm for CRWSN, in which nodes are expected to be mobile.
A node clustering protocol for CRWSN has been proposed in this paper. The proposed clustering protocol
is based on evolutionary game theory (EGT). Initial clusters are formed through a simple partitioning
approach. Eventually, initial clusters are merged to form the final clusters. After forming the clusters
by the resourceful sink node, the cluster head nodes for respective clusters are determined. The sink node
runs the EGT based algorithm to identify the most capable node as the cluster head. The strength of this
approach is that while identifying the cluster head node, various parameters such as residual energy
level, geographic location, mobility, and the probability of primary user (PU) arrival are considered.
The clusters and therefore, the cluster head nodes are distributed uniformly in the geographical area.
The proposed clustering protocol has been compared with LEACH, RARE and the spectrum aware cluster-
ing algorithm. The simulation results show that the proposed clustering protocol outperforms all these
similar node clustering protocols. On average, the proposed protocol outperforms the benchmarks proto-
cols by 25% in terms of number of high energy nodes selected as cluster head, by 37% in terms of uniform
geographical distribution of cluster head nodes, by 23% in terms of total energy consumed during the
simulation time, and by 27% in terms of network lifetime. The future scope of the work has been outlined.
� 2022 THE AUTHORS. Published by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
1. Introduction

Cognitive radio networks have opened up the possibilities for
opportunistic usage of the available spectrum. In Cognitive Radio
Wireless Sensor Networks (CRWSN), the sensor nodes are expected
to be cognitive radio enabled. The licensed users are known as Pri-
mary Users (PU) and the opportunistic users (i.e., unlicensed) are
known as Secondary Users (SU). In a CRWSN setup, the sensor
nodes are resource-constrained in terms of low computing power,
low available memory capacity, limited available communication
bandwidth, and also limited on-board battery power. However,
CRWSN is expected to resolve the issues like highly growing wire-
less network traffic due to extensive usage of handheld and other
mobile devices connected to the Internet, and spectrum scarcity
[24]. Even the CRWSN has capabilities to meet the stringent user
requirements in terms of Quality of Services (QoS) if the available
spectrum is used optimally [25].

Wireless sensor networks are nowadays integrated with the
Internet of Things (IoT) [26]. Thus, production processes are opti-
mized, operational efficiencies in the enterprises are improved,
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and delivery of high-quality services is now possible. Various types
of devices are getting connected to the Internet and it is estimated
that 10 billion different devices used in industries are now con-
nected to the Internet. CRWSN is going to play a vital role in the
Industrial Internet of Things (IIoT), in the days to come. Moreover,
research and development in the area of wireless sensor networks
for various research issues such as energy efficiency, load balanc-
ing, congestion control, etc are still ongoing and recent publica-
tions are available [33,34].

Routing is an important task in any network including CRWSN.
Such a network is always energy-constrained, and therefore, hier-
archical routing or cluster-based routing is considered to be an
energy-efficient approach. Cluster formation in a CRWSN setup,
considering the geographically closed nodes together inside one
cluster, is again a computationally challenging task. When the sen-
sor nodes are mobile, the situation becomes even more complex.
Still, communications can effectively be managed in distributed
wireless systems through clustering [27]. Properly designed clus-
tering protocols can improve network performance, can ensure
stable operations, and also can handle network scaling issues. Clus-
tering is highly important for CRWSN considering the dynamics
involved in such networks. Node mobility, unpredictable arrival
of PUs, availability of channels in cognitive radio environment
(which is highly dynamic), and unavailability of sensor nodes
(which are SUs) due to various reasons like untimely depletion of
battery power, etc., make CRWSN highly dynamic. To exploit the
advantages of clustering in network operation, the clustering pro-
tocol must take care of these aspects. Therefore, the design of an
appropriate node clustering protocol for CRWSN is a problem that
has attracted researchers in recent times.

Clustering of points is a well-studied problem in statistics as
well as in the context of data mining. Let us consider a set of n
patterns X, where X = {x1, x2, x3,. . ...,xn}; here xi is a vector with
N dimensions in given space of features. Clustering essentially
means the grouping of the patterns in such a way that patterns
belonging to one group are more similar to each other than the pat-
terns belonging to other distinct groups. Similarity may be mea-
sured in terms of distance. In the context of sensor networks,
clustering also means the grouping of the sensor nodes into clus-
ters considering similarities concerning different parameters as
applicable. Clustering of nodes in the network setup is necessary
because it enables better management of the network in terms of
routing and other dimensions. There are various clustering
approaches used for cognitive radio sensor networks. For example,
the Bayesian method for channel clustering was adopted in [30].
This method is based on unsupervised clustering methodology,
and it outperforms the K-means clustering algorithm. In [29], an
enhanced version of LEACH (Low Energy Adaptive Clustering Hier-
archy) named CogLEACH which a spectrum-aware clustering pro-
tocol for cognitive radio networks was proposed. This protocol
performs better than LEACH but does not take care of issues related
to topology and channel quality properly. Clustering is essential for
taking care of the issues like energy expenditure optimization and
scalability.

Game theory is a theory of decision-making. It was developed
by John Von Neumann, who is a Hungarian-born American math-
ematician, in the year 1944 [32]. In the present scenario, it has
been increasingly used in network research. There are few papers
recently published that explore the application of game theory in
cognitive radio networks [3–5]. Evolutionary game theory is an
enhancement over the classical game theory that can handle the
dynamics of a system where population change over time. Tradi-
tional game theory is more static. This mathematical extension
to traditional game theory has recently been explored for solving
issues in different engineering systems. There are few papers
recently published in which evolutionary game theory has been
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applied for solving some of the issues in wireless sensor networks
[6,12,14].

In this paper, a node clustering protocol for CRWSN has been
proposed. During the design process, evolutionary game theory
has been applied. Various characteristics of CRWSN such as node
mobility, dynamically available communication channels, the
residual energy level of nodes, and geographic locations of the
nodes are considered as input parameters to the clustering
algorithm.

1.1. Motivation

The sensor networks are resource constrained. Topology is
highly dynamic and when mobility is added to the sensor nodes,
the issue of managing the network with limited energy in the
nodes becomes more complex. Thus, energy efficiency is an essen-
tial requirement for the longer lifetime of such networks. Cluster-
based management of the network reduces the communication
overhead, and therefore, is more energy-efficient. Moreover,
cluster-based hierarchy-based management of the network makes
it more scalable. In a cognitive radio network setup, PU arrivals
make the network unstable in the sense that the SUs are compelled
to leave their ongoing transmissions. Again, mobility of the nodes
creates a highly dynamic topology.

Considering these aspects, providing a proper cluster-based
stable network management approach for cognitive radio wireless
sensor networks is the motivation behind this work. The first
requirement in this direction is to develop a node clustering
scheme that is spectrum aware, node mobility aware, and also
energy aware.

1.2. The contributions made in this paper are as mentioned below:

A node clustering algorithm for CRWSN has been proposed. The
proposed clustering algorithm considers mobility, available
energy, and also channel availability in terms of the probability
of PU arrival while selecting cluster head nodes.

� A game theory (evolutionary) based node clustering protocol for
CRWSN has been proposed. The proposed protocol involves
minimum message exchange (communication).

� The proposed node clustering algorithm can also select geo-
graphically uniformly distributed cluster head nodes.

� The node clustering algorithm that involves minimum compu-
tation in the resource-constrained sensor nodes is the major
contribution in this work; moreover, the proposed algorithm
is energy efficient.

� A theoretical analysis of the proposed node clustering approach
is also provided in this study.

The rest of the paper is organized as follows. Section 2 presents
the related work along with a background of this work. The system
model is highlighted in section 3. The proposed protocol is pre-
sented in section 4 followed by a theoretical analysis of the proto-
col presented in section 5. Simulation results related to the
performance evaluation of the proposed protocol are presented
in section 6. The paper is concluded in section 7.
2. Related work and background

There are several papers published in the area of node
clustering and cluster-based routing in wireless sensor networks
[19–21]. The energy efficiency issue in the context of resource-
constrained wireless sensor networks has been extensively stud-
ied. Relevant protocols for different layers of the protocol stack
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including the network layer have been developed [22,23]. More-
over, node clustering protocol and medium access control protocol
for cognitive radio ad hoc networks is proposed in [35]. In this sec-
tion, a few papers in the line of game theory-based node clustering
for wireless sensor networks, and CRWSN are highlighted.

A game theory-cluster-based routing protocol for wireless sen-
sor networks is proposed in [1]. Energy efficiency is the major con-
cern in this paper. Evolutionary game theory has been used in
clustering the nodes in the WSN setup. In this work, node mobility
is not considered, and the cognitive radio (CR) aspect is out of
scope. However, the performance of the proposed protocol is com-
pared with LEACH [2], and LEACH-C [2]. The proposed game
theory-based protocol shows improved performance.

A game theory-based distributed clustering approach for wire-
less sensor networks is proposed in [3]. A non-cooperative game
theory-based algorithm is proposed in this work to control the sen-
sor node’s energy consumption in the network. The work shows
that it is better in terms of energy consumption, and therefore, net-
work lifetime to use game theory-based protocols than protocols
without game theory. This approach does not consider the mobility
of nodes as well as the CR aspect of the sensor network.

A game theory-based clustering algorithm for wireless sensor
networks is proposed in [4]. The proposed approach is based on
LEACH [2] and CROSS [5], and a game-theoretic approach is consid-
ered during the selection of cluster heads. The proposed work
achieves an even distribution of cluster heads and uniform energy
consumption across the network. However, the proposed approach
does not consider the mobility of the nodes and the CR aspect of
the network.

Evolutionary game-based routing protocol for wireless multi-
media sensor networks is proposed in [6]. After cluster formation
in the network, the cluster head node for each cluster is elected
by using the evolutionary game. The proposed approach shows
improved performance in terms of energy efficiency, end-to-end
delay, packet delivery ratio, network lifetime, and cluster forma-
tion time.

A spectrum-aware version of LEACH was proposed in [7] that is
applicable for CRWSN. The proposed protocol was named CogLE-
ACH. In this enhanced version, the number of free channels was
considered as a weight in computing the probability of each sensor
node for becoming cluster head. CogLEACH outperformed LEACH.
However, the issues of network topology, mobility of nodes, and
channel quality were not properly considered in the design.

A spectrum-aware clustering approach was proposed in [8] for
CRWSN. In this work, network topology and spectrum availability
were represented jointly through an undirected bipartite graph.
Spectrum aware clusters were formed by constructing bicliques
of maximum size from the bipartite graph. This protocol does not
consider the residual energy of the nodes and incurs heavy compu-
tational loads. Node mobility was also not considered.

A cluster formation approach was introduced in [9] considering
variousweighted clusteringmetrics such as temporal-spatial corre-
lation, confidence level, and residual energy level that are applicable
for CRWSN. The assumptions made in this work were very firm, for
example, the Euclidean distance between any two nodes is known
and it does not change. Channel state was also not considered.

Network Stability Aware Clustering protocol (NSAC) has
recently been proposed in [10] for CRWSN. This protocol considers
power consumption and spectrum dynamics simultaneously.
Channel quality has been considered as a metric while cluster head
nodes were selected. A modified version of NSAC applicable for
CRWSN has very recently been proposed in [11]. However, both
protocols do not consider node mobility in CRWSN.

In [15], a node clustering approach for heterogeneous cognitive
radio wireless sensor networks has been proposed. The scheme
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aims at energy saving. However, node mobility is not considered
in the network.

Thus, there is a research gap considering the issue of node clus-
tering in CRWSN in which a solution handles node mobility, spec-
trum availability, and energy availability simultaneously. In this
work, all these above-mentioned three dimensions are considered
while clusters are being formed in a given CRWSN setup.

In the following part of this section, a brief introduction to Evo-
lutionary Game Theory (EGT) is presented. The EGT concept was
first introduced in 1973 by John Maynard Smith and G. R. Price
[12,13]. In recent times, game theory has widely been used in
the area of computer networks. The biological evolution with
organism and mutation process has been included in the concept
of EGT and it is different from the classical Game Theory. In EGT,
each player is interacting with other players, and they learn and
adapt from each other’s strategies. In EGT, players are known as
a population that consists of individual players, and the expected
payoff is known as the fitness of individuals. Therefore, in EGT, an
individual can observe the activities of other individuals and learn
from these observations, and subsequently adapt its strategy so
that the entire population reaches equilibrium. EGT helps to under-
stand the dynamics of interactions among individuals in a popula-
tion [14]. Also, when the entire population is using the same
strategy, there can be a small group of invaders within the popula-
tion using a different strategy. However, these invaders will even-
tually die off over multiple generations as they learn from other
individuals and adapt to the best strategy.

There are two basic concepts involved in EGT, i.e., evolutionary
stable strategy (ESS) and replicator dynamics.

i) Evolutionary Stable Strategy (ESS): A strategy S is an ESS if
there is a (small) positive number y such that when any
other strategy T invades S at any level x < y, the fitness of
an organism playing S is strictly greater than the fitness of
an organism playing T. For all the strategy T S–Tð Þ, then
ESS is given by such that

U S; xT þ 1� xð ÞSð Þ > U T; xT þ 1� xð ÞSð Þ ð1Þ
where x 2 0; yð Þ, y is invasion bound, which is a constant associated
with strategy T , andxT þ 1� xð ÞS is computed from groups that
select the ESS and groups that adopt a mutation strategy.

ii) Replicator Dynamics: It is used to analyse the behaviour of
the entire population based on the ‘‘survival of the fittest”
principle of evolution theory. The equation that determines
population behaviour is given as

X tð Þ ¼ dx
dt

¼ Xi tð Þ Ui tð Þ � U tð Þ� � ð2Þ

where Xi tð Þ represents the group in the population choosing strat-
egy i at timet;Ui tð Þ represents the payoff of individuals in the group
who select strategy i at time t, and U tð Þ is the average payoff
received by each individual in the group at time t [12]. It indicates
that the group with better fitness will grow whereas the group hav-
ing less fitness will be diminishing in size slowly.
3. System model

In this section, the entire system model adopted in this work
has been detailed.

Network model: The sensor nodes are cognitive radio enabled.
The sensor nodes are distributed randomly in the sensor field. The
cognitive radio sensor nodes are resource-constrained, and the
nodes are mobile with low speed, 2–4 m/min. The sink node is



Fig. 2. Interference in different channels by different entities.
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located outside the sensor field. The sink node is static. It has been
assumed that the PUs who are licensed users arrive in the system
following the Poison Arrival process. Cognitive radio-enabled sen-
sor nodes are opportunistic users and are also known as the SUs.
The SUs are going to form the clusters and finally, the communica-
tion shall take place through a cluster-based hierarchical approach
among the SUs considering the sink as the destination. Fig. 1 shows
this network model.

The nodes are deployed randomly in inaccessible environments.
The sensor field is unattended and also of hostile nature. The nodes
are deployed by uncontrolled means, for example, from helicopter
or airplane. It has been assumed that as per the above considera-
tion, the deployment of nodes follows poison distribution. Thus,
the probability that there are m nodes within area s is given by
the following expression [28].

P mð Þ ¼ ksð Þm
m!

e�ks ð3Þ

Channel model: It is considered that there are Nchannels avail-
able to be accessed by the SUs opportunistically. Each of these N
channels is licensed to the PUs. All the channels can be modelled
as Rayleigh fading channels. Based on the proximity of the commu-
nicating nodes, there can be interference among the SUs. The terms
SU node and CR node are used interchangeably. Fig. 2 shows how
the CR nodes (i.e., nodes numbered as 1,2,3, & 4) can interfere with
each other. The figure also shows how the CR nodes can interfere
with the PU even. It is assumed that the interference radius is dou-
ble the communication radius.

Energy model: In CRWSN, the CR nodes apart from data trans-
mission and reception perform additional tasks of spectrum sens-
ing and switching. Hence, the energy consumption is more in
CRWSN as compared to traditional WSN. So, while designing the
energy consumption model all four tasks have to be considered.
Assume, Ess to be the energy consumed during spectrum sensing,
Esw to be the energy consumed during spectrum switching. The

energy consumed by ith SU during data transmission of L bits is
expressed as mentioned below [15,31].

Etx;i Lð Þ ¼
eRF þ eampd

2
� �

� L; d < d0

eRF þ e
0
ampd

4
� �

� L; d � d0

8><
>:

ð4Þ
Fig. 1. Cluster-based hierarchical communication among the SUs.
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where eRF is the energy consumed by the radio frequency circuit to
receive and transmit the signal,eamp and e0

amp are the amplifier
energy related to path loss model used, d is the distance
between transmitter node to receiver node, and d0 is the distance
threshold used to differentiate path loss model where

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eamp=e

0
amp

q
[16].

Considering the ith SU receives L bits of data, the energy con-
sumed during the reception mode is

Erx;i Lð Þ ¼ eRF �L ð5Þ
Mobility model: The objective behind this work is to achieve

stable clusters. Therefore, the cluster head nodes are expected to
be the nodes with relatively low mobility. To characterize the
instantaneous nodal mobility Mi, the following expression is used
[17,18].

Mi ¼ 1
T

XT
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt � xt�1ð Þ2 þ yt � yt�1ð Þ2

q
ð6Þ

where xt ; ytð Þ and xt�1; yt�1ð Þ are coordinates of a node ni at time
instants t and t � 1 respectively. Again, T is the period for which this
parameter is going to be estimated. It is also assumed that the
nodes move following the random waypoint mobility model.

Mi is defined to be the movement profile of a node i, and is com-
puted by using (6).

4. Proposed clustering approach

In this section, a node clustering algorithm for cognitive radio
wireless sensor networks is proposed. The majority of the comput-
ing burdens have been shifted to the sink as the sink is considered
to be a resourceful node.

Assumptions. There are a few assumptions made concerning the
characteristics of the nodes. It is assumed that the sensor nodes (i.e.,
the PU or CR nodes) know their residual energy level and geographic
location. Movement profile as per (6) is also computed by each node.
Moreover, it has been assumed that each node is aware of the
probability of PU arrival at its proximity that can be interfered with by
itself. The phenomenon of interference is shown in Fig. 2.

The entire process of node clustering may be presented in terms
of various stages as mentioned below.

Stage 1: In this stage, the sink collects data from the participat-
ing nodes. The important parameters collected from the nodes
are node_id, residual energy level, geographic location, PU arrival
probability, and the movement profile.
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Stage 2: The sink node creates the topology of the cognitive
radio sensor network. This topology is created based on the geo-
graphic location and movement profiles of the sensor nodes.
Stage 3: The sink node forms the clusters after forming virtual
grids across the sensor field. Grids are merged based on the
necessity to form clusters.
Stage 4: The sink node classifies the participating nodes inside
each cluster, into two classes as eligible ECHð Þ and ineligible
NECHð Þ.
Stage 5: The sink node runs Evolutionary Game Theory-based
computations and selects the respective cluster head nodes
inside each cluster.

The advantage of this approach is that as the computational
overhead is shifted toward the sink, and communication overhead
is minimized, the sensor nodes save energy. Moreover, the cluster
head nodes selected are always the nodes having a balanced cumu-
lative value among various parameters such as residual energy
level, mobility, PU arrival probability, and geographic locations.
Therefore, the cluster head nodes tend to be geographically uni-
formly distributed. The entire process of cluster formation and
cluster head selection has been depicted in Fig. 3.

Details of the stages are mentioned below.
In stage 1, the sink node collects the following five different

parameters from each of the nodes: <node_id, residual energy level,
geographic location, PU arrival probability, and the movement
profile > .
Start 

Sink collects data from the 
participating sensor nodes

Sink creates topology based on the 
geographic location and movement 

profiles of the sensor nodes and 
forms initial clusters.

Sink creates final clusters

Merge 
clusters 

If no. of nodes within 
a cluster < 

Yes 

No

Sink classifies nodes within each 
cluster into two classes: eligible 
( ) and ineligible ( )

Sink initiates EGT based CH 
selection game for each clusters

CH is selected 

Stop

Fig. 3. Cluster formation and cluster head selection process.
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In stage 2, once the sink node gathers the information from all
the sensor nodes, it creates the topology of the cognitive radio sen-
sor network. This initial topology is created based on the geo-
graphic locations, and the movement profiles of the sensor nodes.

In stage 3, the sink node forms various clusters covering the
entire sensor field. Depending on the location of the nodes, the sink
node forms the initial cluster by dividing the deployed area into
nbyn grids. Each grid is initially considered as a cluster. Then the
number of nodes within each cluster is examined. Each cluster
should have a minimum threshold number of nodes. For example,
a minimum of 10% of the total nodes deployed in the field may be
considered as the threshold, to determine the minimum number of
nodes required inside each cluster. The clusters are scanned from
left to right and top to bottom, as given below:

a. The sink node divides the deployed are into nbyn equal vir-
tual grids. Each grid forms one cluster. Therefore, there will
be n2 clusters initially.

b. A minimum number of nodes that each cluster should have
is pre-decided, and a threshold value, NTH, is set; for exam-
ple, NTH ¼ 10%ofTotalnumberofnodesdeployed:

c. The sink node scans each cluster (from left to right in the
entire grid set) and checks the number of nodes present in
the cluster. If the cluster i has less then NTH then it checks
its neighbour clusters horizontally, and the nodes within
cluster i are assigned to its neighbour (the cluster on the
right side). The maximum number of merge operations that
are permitted to occur in a horizontal row of the initial grid
set is n=2þ 1. And thus, the minimum number of individual
clusters that can form in a given row isn/2

d. Step c is repeated until all the clusters are scanned. There-
fore, from the initial n2 clusters, the final clusters are
formed; and this final number of clusters is generally less
than n2. This is due to the merging of initial clusters for
the low density of the nodes inside initial clusters.

e. The sink classifies all the nodes into different final clusters.

[Note: if after the maximum number of permitted merge oper-
ations, some clusters in a row, are left with less than the threshold
number of sensor nodes, then it is left as it is; vertical merging is
not attempted in this work.]

Fig. 4 depicts the process of cluster formation. Initially, virtual
grids are formed. The scan happens from left to right and top to
bottom. Initially, each grid is a cluster. Due to the fewer number
of nodes inside each initial cluster, the adjacent clusters are
merged. For example, cluster (1,1) and (1,2) are merged. Similarly,
the remaining three initial clusters in the same row are merged
and one cluster is formed. The black solid arrow indicates the
merging of initial clusters.

In stage 4, nodes are classified as eligible ECHð Þ and ineligible
NECHð Þ respectively.

The sink node collects various node information during stage 1.
Various information collected from the nodes are as mentioned
below: < node_id, residual energy level, geographic location, PU arri-
val probability, and the movement profile > . These parameters are
processed by the sink node and the sensor nodes inside each clus-
ter are classified into two sets: eligible ECHð Þ and ineligible NECHð Þ.

Three main parameters contribute the maximum in selecting
the elements for the above mentioned two sets ECH and NECH . The
parameters are residual energy level, PU arrival probability, and the
movement profile. Ideally, the node with higher residual energy, hav-
ing lower PU arrival probability, and being relatively a more stable
one, although all the nodes are mobile, is the most suitable node
for the cluster head role.



(1,1) 

(2,1) 

(1,2) 

Sensor Node 

Fig. 4. Schematic diagram demonstrating the process of clustering.
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Then a weighted cumulative value for each node i (denoted as
Wi), considering these three parameters is computed.

Wi= W1 (residual energy level) + W2 /(PU arrival probability) +
W3 /(mobility in terms of movement profile)

Wi ¼ W1 � Ei þW2

Pi
þW3

Mi
ð7Þ

where W1 þW2 þW3 ¼ 1 and 0 � Pi � 1 ; Mi is computed using
(6).

Thus, the nodes having the }Wi} value above a threshold WTHð Þ,
become members of ECH set, and the remaining nodes become
members of NECH set.

ECH ¼ nijniisthei
thsensornodeandWi � WTH

n o
ð8aÞ

NECH ¼ njjnjisthej
thsensornodeandWj < WTH

n o
ð8bÞ

Moreover, ECH [ NECH ¼ Ns, where Ns is the set of all the cogni-
tive radio sensor nodes deployed in the field.

The nodes in the ECH set shall compete for the cluster head role
and the nodes in the NECH set shall remain as ordinary cluster
member nodes.

In stage 5, the sink node does the necessary computation, as
mentioned below, to select the most suitable nodes, as respective
cluster head nodes for each of the clusters.

A game is designed for the selection of cluster heads based on
evolutionary game theory inspired by the work presented in [6].
Let the cluster head selection game be denoted by
CHSG < P; S;U > where P represents the player set, S represents
the strategy set that will be used by the players, and U represents
the utility or payoff earned while playing a certain strategy.

The sink node classifies the sensor nodes within each cluster
into two classes i.e., eligible EPð Þ and ineligible NEPð Þ as mentioned
in stage 4. It is worth mentioning that eligible EPð Þ and ineligible
NEPð Þ node sets are equivalent to eligible ECHð Þ and ineligible
NECHð Þ node-set mentioned in stage 4, respectively; the reason
behind the symbol p being used instead of CH is that, in stage 5,
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the nodes are now players (p) as per the game theory under
consideration.

If a node has a residual energy percentage greater than a certain
energy threshold percentage RETð Þ then it is grouped into EP other-
wise into NEP . Therefore, the player set P ¼ EP [ NEP . The strategy
that the players can choose is either to become a cluster head
sCHð Þ or not be a cluster head sNCHð Þ. Therefore, the strategy set is
given as

S ¼ fsCH; sNCHg ð9Þ
Depending on the strategy selected by a node i within a cluster,

the utility function of node i is defined as

Ui ¼ Ri � Pi ð10Þ
where Ri denotes the reward earned and Pi denotes the penalty
imposed for the strategy selected during the game. The reward
and penalty are essential because there should be some incentive
for performing the role of cluster head and penalty for escaping to
be a cluster head. The cluster head nodes have to perform additional
tasks therefore, the energy depletion will be higher compared to
normal nodes and many nodes can act selfishly to conserve their
energy. So, we consider that the reward gained for becoming a clus-
ter head by a node 2 EP is h and the reward gained by nodes 2 NEP is
x. Also, a step of incentive or disincentive (represented by d) for
becoming a cluster head is assumed.

In evolutionary game theory, it is very important to formulate
the ESS. An ESS is a state in the game that ensures that different
species in a population co-exist together and do not threaten each
other by increasing the extinction probability through a selfish
choice of strategies. For this CHSG (Cluster Head Selection Game)
game, the ESS is the nodes in EP subset should select the strategy
sCH and the nodes in NEP subset should select the strategy, sNCH .

Suppose we consider that the nodes belonging to EP subset
selects the strategy sCH with the probability p then the probability
for selecting the strategy sNCH will be 1� pð Þ. Similarly, for the
nodes belonging to the subset NEP , the probability of choosing
the strategy sCH is q then the probability for selecting the strategy



Table 1
Interpretation of various symbols used in the mathematical framework.

Symbol Interpretation Symbol Interpretation

P Player set q The probability that nodes
belonging to NEP subset
selects the strategy sCH

S Strategy Set d A step of incentive or
disincentive for becoming a
cluster head

Ui Utility function for node
i

UEP ðsCH Þ The expected utility or
payoff earned by nodes 2 EP
to become cluster head by
selecting the strategy sCH

Ri Reward earned for node i UEP ðsNCHÞ The expected utility or
payoff earned by nodes 2 EP
choosing strategy sNCH i.e.,
not to become cluster head

Pi Penalty imposed for
node i

UEP
The total payoff for nodes in
EP

h The reward gained for
becoming a cluster head
by a node 2 EP

UNEP ðsCH Þ The expected utility or
payoff earned by nodes
2 NEP to become cluster
head by selecting the
strategy sCH

x The reward gained for
becoming a cluster head
by nodes 2 NEP

UNEP ðsNCH Þ The expected utility or
payoff earned by nodes
2 NEP choosing strategy
sNCH i.e., not to become
cluster head

p The probability that
nodes belonging to EP
subset selects the
strategy sCH

UNEP
The total payoff for nodes in
N EP
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sNCH will be 1� qð Þ. Using these probabilities and rewards, a payoff
matrix can be formulated as shown in Fig. 5.

Using the payoff matrix, the expected utility or payoff earned by
nodes in EP set by choosing the strategy to become cluster head i.e.,
sCH is

UEP ðsCH Þ ¼ qhþ 1� qð Þ hþ 2dð Þ ¼ hþ 2d� 2dq ð11Þ
The expected utility or payoff earned by nodes in EP set by

choosing the strategy not to become cluster head i.e., sNCH is

UEP ðsNCHÞ ¼ q h� dð Þ þ 1� qð Þ �dð Þ ¼ qh� d ð12Þ
Therefore, the total reward for nodes in EP set will be

UEP ¼ p hþ 2d� 2dqð Þ þ 1� pð Þ qh� dð Þ ð13Þ
Similarly, the expected utility or payoff earned by nodes in NEP

set is formulated as

UNEPðsCHÞ ¼ pxþ 1� pð Þ xþ dð Þ ¼ xþ d� dp ð14Þ

UNEPðsNCHÞ ¼ p xþ 2dð Þ þ 1� pð Þ �dð Þ ¼ xpþ 3dp� d ð15Þ
Therefore, the total reward for nodes in NEP set will be

UNEP ¼ q xþ d� dpð Þ þ 1� qð Þ xpþ 3dp� dð Þ ð16Þ
Using eq. (11) and (14), the utility of each node within a cluster

is calculated. The node having the highest utility value is elected as
cluster head and other nodes act as cluster members.

Interpretations of various symbols used in the above mathe-
matical framework (eq. 9–16) are given in Table 1.

Finally, the sink node sends a < cluster_info > message to all the
nodes, which contains the information about the cluster to which a
node belongs. The message format will contain < node_id, clus-
ter_id, clusterhead_id > .

Following are the various data structures necessary to be used
in the proposed approach (Table 2):

5. Analysis of the proposed clustering approach

In this section, an analysis of the presented clustering approach
is presented.

5.1. Theoretical analysis

Lemma 1. Formed clusters are mutually exclusive.

Proof: The sink node forms the clusters. The sensor field is geo-
graphically virtually partitioned into the grids. In the process of
forming the final clusters, initial clusters are merged sometimes,
if the total number of nodes inside a cluster does not reach at least
the threshold number. Thus, there is no chance that a sensor node
can become a member of more than one cluster. As the sensor node
does not choose a cluster head node, rather it is the sink node that
forms the clusters and also selects the cluster head nodes, the
formed clusters are always mutually exclusive.
(1 )

, + 2 , + 2

(1 ) , + ,

Fig. 5. Payoff matrix.
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Theorem 1. The number of clusters to be formed Nð Þ satisfies the
condition n=2 � N � n2 where n is the initial number of grids in a row
after partitioning the sensor field into n� n grids.

Proof: During the initial stage of the clustering process, the sen-
sor field is logically partitioned into n � n grids. At this stage, the
number of clusters NTH . Then the grids are scanned from left to
right and top to bottom. Considering the geographic locations of
the sensor nodes, if the number of sensor nodes inside a cluster
is less than a threshold value NTHð Þ, then horizontally adjacent
grids are merged one by one to form a new cluster; this process
continues till the number of nodes inside each cluster > NTH. Thus,
depending on the geographic distribution of the sensor nodes, and
the value of NTH , the largest possible number of clusters is n2. On
the other hand, the merging of grids in a particular row can con-
tinue for a maximum of n/2 times. Thus, the number of clusters
in each row can never be lesser than n=2, provided each grid con-
tains at least one sensor node. And it has been assumed that
although the sensor nodes are deployed randomly, each virtual
grid contains at least one sensor node.

Theorem 2. Uniform geographic distribution of the cluster heads is
ensured.

Proof: The cluster head nodes are selected after the formation
of the clusters. Again, the clusters are either the initially formed
grids or merged grids. Due to the virtual partitions created in the
sensor field in terms of grids, and the process of conditional merg-
ing of grids, the final clusters are geographically uniformly dis-
tributed. Cluster head nodes are selected in such a way that the
most suitable node in terms of parameters such as < noterid, resid-
ual energy level, geographic location, PU arrival probability, and the
movement profile > becomes the cluster head for the respective
cluster. Thus, the cluster head nodes are uniformly geographically
distributed.



Table 2
Data Structures used.

Available channel list for the cognitive nodes (i.e., the sensor nodes)

List of cluster head nodes
List of cluster members for the cluster ci
List of common channels between any two cognitive nodes
Residual energy levels of the cognitive nodes
Movement profile/mobility of the cognitive nodes
PU arrival probability against each available channel for cognitive nodes.

Table 3
Simulation setup.

Parameter Value

Node deployment area 200 m � 200 m
Sink position (250, 100)
Number of sensor nodes deployed 200
Number of primary users 5
Number of available channels 5
Initial energy of the sensor nodes 0.5 J
eRF 50 nJ/bit
eamp 10 pJ/bit/m2

e
0
amp

0.0013 pJ/bit/m2

d0 87 m
Data packet size 50 bytes
Control packet size 20 bytes
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Theorem 3. Communication overhead is minimized.
Proof: The process of cluster formation involves the broadcast-

ing of only one packet originated by each node containing the
parameters mentioned as < nomeid, residual energy level, geographic
location, PU arrival probability, and the movement profile>. Although
the intermediate nodes in the sensor field may have to forward
other packets as well, originated elsewhere, as per the broadcast
policy. Then the sink node creates clusters and also selects the
cluster head node for each cluster. Then each cluster head node
advertises its role, and subsequently, cluster member nodes join
the respective cluster just by sending one < ack > message. There-
fore, it is evident that the number of communications involved in
the process of cluster formation, cluster head selection, and joining
the clusters by member nodes is the minimum, and the communi-
cation complexity is O (1).

Theorem 4. Unique clusters are formed.
Proof: The process of cluster head node selection is based on

evolutionary game theory and inspired by the process depicted
in [6]. However, the outcome of our protocol in terms of cluster
formation is different and unique. This is so because the way sen-
sor nodes are classified into eligible, and ineligible is unique, and
different from that of [6].

Theorem 5. In the event of executing the cluster formation protocol,
every sensor node receives a role either cluster member or cluster
head.

Proof: The sink node is responsible for forming the clusters and
also for identifying one cluster head node per cluster. After the for-
mation of the clusters, the sink node classifies all the sensor nodes
belonging to each cluster into two sets, namely, eligible ECHð Þ and
ineligible (NECH) set of nodes (stage 4 of the procedure). Eventually
the most suitable node from the eligible ECHð Þ set receives the role
of cluster head. The remaining nodes of the eligible ECHð Þ set, and
all the elements of the ineligible (NECH) set become cluster mem-
bers. It is already stated that ECH [ NECH ¼ Ns, where Ns is the set
of all the nodes deployed in the field. Therefore, every node
deployed in the field receives a role either cluster member or clus-
ter head.

Theorem 6. The cluster formation and cluster head selection algo-
rithms terminate.

Proof: The sink node collects various node information initially.
This data collection happens for a suitable period. The movement
profile also includes the direction of movement, apart from relative
speed. Once preliminary data collection is over, the rest is only a
matter of processing. Being the sink node a resourceful one, it
can form the clusters and also select the cluster head nodes by run-
ning appropriate algorithms as discussed. Since the processing of
initial data takes place in the sink, and this processing does not
need any more intermediate data from the sensor nodes, the for-
mation of clusters and the selection of cluster head nodes eventu-
ally come to an end within a finite time. Had there been any
necessity of data from the sensor nodes, in the middle of the com-
putation, there could have been a situation under which the algo-
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rithms would have gone into loops. The collected movement
profile of a node is sufficient to estimate the location of the node
at a different instance of time, then the time of data collection.
6. Performance evaluation

The proposed clustering scheme is simulated for its perfor-
mance evaluation. A cognitive radio wireless sensor network setup
consisting of wireless sensor nodes enabled with cognitive radio
has been considered. The simulation has been carried out in
MATLAB 7.1. The sensor nodes are considered to be deployed ran-
domly. The sink node is located outside the sensor field. The sensor
nodes have mobility; however, the sink node is considered to be
static. Each simulation ran for 1800 s. There were six rounds each
of 250 s, in each simulation. During one round, the cluster setup
was considered to be the same. Various essential parameters con-
sidered for simulation are presented in Table 3. The presented val-
ues of different parameters are an average of six different
simulations taken repeatedly.

In this section, various results showing the performance of the
proposed clustering scheme are presented.

As mentioned earlier, the sensor nodes are deployed randomly.
Fig. 6 depicts initial random node deployment across the sensor
field.

Fig. 7 shows the initial cluster formation as per the proposed
clustering protocol. At this stage, the merging of clusters consider-
ing the number of nodes inside each cluster has not taken place.
Different colours are used to show unique clusters.

Fig. 8 shows the final cluster formation as per the proposed pro-
tocol. At this stage, the merging of initial clusters formed has taken
place. The clusters are geographically uniformly distributed. Since
the nodes are mobile, the presented scenario is valid for a duration
t only. Figs. 6, 7, and 8 represent the snapshots at appropriate
instants, during the entire simulation duration.

Fig. 9 presents the status regarding energy consumption during
cluster formation. This energy consumption is due to necessary
communication by the nodes as per the clustering protocol and
required computation. The blue-coloured portion represents the
total initial energy in the entire system of a varying number of



Fig. 6. Random deployment of 40 nodes.

Fig. 7. Initial cluster formation.

Fig. 8. Final cluster formation.
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Fig. 9. Energy consumption against cluster formation.
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nodes, whereas the red portion represents the average energy
spent in the entire system, due to cluster formation. It is observed
that the average energy spent in the system decreases as the num-
ber of nodes increases. This is because, with the growth in the
number of nodes, the network becomes dense. As a result, the
physical distance between two nodes that need to be traversed
reduces, and this incurs less energy as per the energy model con-
sidered (eq. (4)) in this work.
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Fig. 10 presents the rate of energy depletion during cluster for-
mation. The rate of energy depletion is calculated as per the
expression given in (17). The rate of energy depletion during clus-
ter formation varies along with the number of nodes in the system.
The rate declines along with the increase in the number of
deployed nodes. This is because, as the number of nodes increases,
the sensor field becomes denser, and the relative distances
between the nodes decrease. As a result, the energy requirements
for communication are reduced proportionally.
Rateofenergydepletion ¼ InitialTotalEnergy� RemainingTotalEnergy
InitialTotalEnergy

� 100%

ð17Þ
Energy expenditure that occurred during the process of cluster

head selection is shown in Fig. 11. Again, the blue-coloured potion
represents the total energy available in the network system consid-
ering all the sensor nodes, whereas the red portion represents the
average energy spent during the cluster head node selection. The
average energy spent during cluster head node selection increases
along with the increase in the number of nodes in the system. This
is because as the number of nodes increases the number of cluster
head (CH) nodes also increase. However, the energy spent is quite
less as compared to the cluster formation process, because as per
the protocol the sink nodes select the CH nodes based on the initial
information collected. Thus, processing happens in the sink node
only. Finally, the sink node informs all other nodes about the
selected cluster head nodes. Thus, the sensor nodes spend energy
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in receiving such messages sent by the sink. As a result, the energy
consumption is very less in the process of CH selection, and
increases proportionally, as the number of nodes increase.

As per eq. (17), the energy depletion rate during the process of
cluster head selection is computed. Fig. 12 represents this energy
depletion rate. This energy depletion is due to the necessary com-
munications between the sensor nodes and the sink node. Here,
this parameter represents the rate of reduction or depletion of
energy levels in the nodes during the cluster head selection. The
rate declines along with the increase in the number of deployed
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nodes. However, the rate of increase is very low because as the
number of nodes increases, the total energy of the network
increases. It is also observed that the rate of energy depletion is
lower during CH selection as compared to cluster formation.

The performance of the proposed clustering protocol in terms of
the quality of the selected CH node has been compared with the
protocol proposed in [9], RARE [35] and LEACH [2]. Here, the qual-
ity of the selected cluster head node indicates two parameters. The
first one is the percentage of high-energy sensor nodes that has got
selected as cluster head. High energy indicates that the residual
energy level of the selected cluster head node is above a certain
threshold. Here this threshold has been considered as 75% of the
initial energy level. The second parameter is the geographical distri-
bution of the selected cluster head nodes. The way, the selected
cluster head nodes are geographically uniformly distributed in
the parameter under consideration. No two selected cluster head
nodes are expected to be geographically close to each other.
Although this term ‘‘close” is qualitative, intuition has been consid-
ered in judging the uniform distribution of the cluster head nodes
in terms of geographic location. Since the simulated system is rel-
atively smaller in terms of the number of deployed nodes, this was
quite possible to determine without any hassle.

Fig. 13 shows the percentage of high-energy nodes that have
been selected as cluster head nodes, during the entire simulation
duration. This parameter is calculated under the influence of the
proposed protocol, LEACH [2], RARE [35] and the protocol reported
in [9].

It is observed that the proposed protocol outperforms protocol
in [9] by 23%, LEACH by 26%, and RARE by 28%. This is because
the residual energy in the nodes has been considered as a param-
eter while selecting the nodes suitable as candidate nodes for the
cluster head role.

Fig. 14 presents the geographic distribution of the selected clus-
ter head nodes under the influence of the proposed protocol,
LEACH, RARE and the protocol reported in [9].

It is observed that the proposed protocol outperforms the pro-
tocol in [9] by 28%, LEACH by 40%, and RARE by 43%. This is
because, the way grids are formed in the sensor field, and the
way grids are merged to form the final clusters, naturally lead
toward the uniform geographic distribution of the cluster head
nodes.

Fig. 15 presents the total energy consumed in the system due to
packet transfer under the influence of various protocols over the
simulation span.
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It is observed that the proposed protocol reduces energy con-
sumption by 17% as compared to the protocol in [9], by 31% as
compared to LEACH, and by 23% as compared to RARE.

This is mainly because of the geographically uniform distribu-
tion of the cluster head nodes under the influence of the proposed
protocol.

Fig. 16 presents the network lifetime analysis under the influ-
ence of various protocols. Lifetime is considered to be the time
duration elapsed, till the death of 50% of the nodes deployed in
the field.

It is observed that the proposed protocol increases the network
lifetime by 20% as compared to the protocol in [9], by 33% as com-
pared to LEACH, and 28% as compared to RARE.This is again due to
the energy saving in the system and most of the energy saved
under the influence of the proposed protocol is mainly due to uni-
form geographic distribution of the cluster head nodes, and lesser
PU arrival in the channels of the CH nodes.
7. Conclusion and future work

In this paper, a node clustering protocol for CRWSN has been
proposed. The sensor nodes are considered to be mobile. The pro-
posed protocol is based on EGT. The sensor field is virtually parti-
tioned into a suitable number of grids. Then grids are subsequently
merged to form an optimal number of clusters depending on the
geographical locations of the nodes. The sensor nodes are classified
into two sets as {eligible}, and {ineligible} containing the identity
of the nodes that are suitable to become cluster head, and not suit-
able to become cluster head, respectively. Once classification is
done, the most suitable candidate node is selected as the CH for
a particular cluster. This selection procedure is based on EGT.
Moreover, as an outcome of this protocol, the most suitable candi-
date node inside each cluster, in terms of residual energy, geo-
graphic location, and movement profile, is selected as the CH
node. The entire computing burden is shifted to the sink node.
The proposed protocol outperforms the similar protocol proposed
in [9], RARE [35] and also LEACH [2]. The performance of the pro-
posed protocol was analysed in terms of the parameters like the
number of high energy nodes selected as CH node, the percentage
of uniform geographical distribution of CH nodes, the total energy
consumed during the simulation time, and also the network life-
time. Shifting of computational load from the sensor nodes to the
sink node is highly essential since the sink node is resourceful
and it also possible to refuel the sink node. Moreover, uniform geo-
graphical distribution of the CH nodes is also important consider-
ing the uniform coverage of the sensor field and also to minimize
the energy expenditure due to communication. Again, sensor
nodes with higher level of residual energy should be selected as
the CH nodes as it helps in prolonging the network lifetime by
avoiding the necessity of frequent re-clustering.

As a future scope of the work, a hierarchical routing protocol for
CRWSN may be designed that can use the clustering protocol pro-
posed in this paper, to create clusters and select CH nodes.
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