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a b s t r a c t

This paper presents a new damage detection methodology for beams. It applies wavelet
analysis to locate the damage from changes in the mode shapes (geometric based
analysis). The proposed methodology requires the mode shapes of a reference undamaged
state as well as those of the potentially damaged one. Once obtained, a continuous
wavelet transform is applied to the difference of the mode shape vectors to obtain
information of the changes in each of them. Finally, the results for each mode are added
up to compute an overall result along the structure. For the addition, the wavelet
coefficients of each mode are weighted according to the corresponding variation of the
natural frequency. By doing so, emphasis is given on those modes that are more likely to
be affected by damage. On the other hand, mode shapes that have not changed their
natural frequencies are disregarded. The proposed methodology also includes mathema-
tical techniques to avoid wavelet transform edge effect, experimental noise reduction in
mode shapes and creation of new virtual measuring points. It has been validated by
experimental analysis of steel beams with cracks of different sizes and at different
locations. The results show that the method is sensitive to little damage. The paper
analyses the severity threshold of damage and the required number of sensors to obtain
successful results.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration based Structural Health Monitoring (SHM) became an interesting research topic in structural mechanics
around 30 years ago [1,2]. It is based on the fact that the loss of stiffness due to damage affects the dynamic response of the
structure. Therefore, damage can be detected by monitoring and identifying the dynamic properties of a structure. Those
parameters are mainly modal parameters such as natural frequencies, mode shapes and damping ratios.

Vibration based SHM is mainly attractive because of its ability to monitor and detect damage from a global testing of the
structure. Thus, vibration based SHM is especially advantageous when compared with traditional SHM based on non-
destructive testing methods (X-ray, Eddy-current examination, thermography, acoustic or ultrasonic waves, etc.), which
require accessibility and measuring at any potentially damaged area.

In order to detect changes in the response of the structure induced by damage, the wavelet transform is a promising
mathematical tool. Although wavelet transform background comes from the beginning of last century [3], its development
as an engineering signal analysis tool is rather new. Wavelet transform is mainly attractive because of its ability to compress
and encode information, to reduce noise, or to detect any local singular behavior of a signal. It is considered that the
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pioneering application of wavelet transform to SHM was published in 1994 [4]. Since then, wavelet transform applications
to damage detection have been developed by many authors [5,6]. For instance, Ren and Sun [7] defined the so-called
wavelet entropy parameter, based on the Shanon entropy, as an efficient tool to detect changes in the time response of a
structure. They could detect change in the natural frequencies and also the time when this change occurred. Sohn et al. [8]
analyzed the time response of structures monitored with piezoelectric sensors and Deng et al. [9] studied the transient
response of a steel beam and a composite panel due to an impact load to detect damage. For buildings, Yan et al. [10] defined
a damage detection parameter from the accelerations of a rather large amount of sensors, and they could also detect the
time when the damage appeared.

Wavelet transform is not only applied to time signals but also to space defined signals. When using a space based wavelet
analysis, static deflection or mode shapes of the structure can be used [5,6]. It can be applied to one dimensional (beams) as
well as two dimensional analysis (plates) [5,11]. Initially, Liew and Wang [12] and Wang and Deng [13] analyzed static
deflections of beams for damage detection. After that, there have been numerical and experimental validations and analysis
of multiple load situations [14–19]. When using multiple load situations, the displacements [18] or their difference to a
reference state [19] may be combined to obtain an overall information of the structure.

If a modal analysis is performed, then wavelet analysis can be applied to mode shape vectors or their derivatives to detect
changes induced by damage [11,20–30]. It has been successfully applied to beams made of aluminum [21], wood [22] or
plexiglass [11]. Zhong and Oyadiji [21,23] proposed a methodology for damage detection in beams based on the difference of
wavelet coefficients of each half of the beam. They analyzed the effect of the sampling distance, and they introduced a spline
interpolation to increase the number of input points for the wavelet transform. They also proposed a damage parameter
based on the addition of the results for all the mode shapes. Gokdag and Kopmaz [26] proposed another methodology that
obtains the information of the undamaged state from the damaged mode shapes, so a preliminary test of the undamaged
structure is not required. The undamaged mode shapes are approached from the approximation coefficients of a Discrete
Wavelet Analysis of the damaged mode shapes. Recently, Radziensky et al. [27] proposed a hybrid damage detection method
for beams. They employed the change in natural frequencies and modal curvatures to define a damage probability function
which was used to weight the wavelet coefficients along the beam for each mode shape, and eventually results for each
mode shape were added up. There are also papers devoted to analyze the effect of not only crack positions but crack depth
and the effect of multiple cracks [24,25,28].

In this paper, a new wavelet based damage detection method is proposed in which modal parameters and wavelet
analysis are combined. It is based on the analysis and addition of the coefficients of the continuous wavelet transform of the
difference of mode shapes between an undamaged and a damaged state. For the addition, changes in natural frequencies are
used to weight the difference in mode shapes. The wavelet coefficients obtained for each mode shape, as well as the
addition for all the mode shapes are used as damage detection parameters. This paper deals with modal testing of steel
beams for which the presence and location of damage is analyzed. This kind of testing could be applied to quality control
and health monitoring of any beam like structural element. However, it could be extended to beam like civil structures or
any structure which can be considered to be one dimensional for monitoring and for which any information about the
behavior of the cross section is not needed. Such kind of structures could be bridges [31], masts [32], slender buildings, etc.

The paper is organized as follows. Firstly, the paper reviews the definition of the wavelet transform, as well as some of its
mathematical properties and requirements. Then, the proposed methodology is described, and the results that have been
obtained for steel beams with cracks of different size and located at different positions are presented. Finally, conclusions
are drawn.

2. Wavelet transform

This section presents some basic ideas and definitions about wavelet transform. It is focused on the understanding of
wavelet transform meaning, application and utility. It is not aimed at giving an exhaustive and rigorous mathematical
review of the wavelet transform, so it will consider only some basic concepts and definitions. Further fundamental
explanations can be found elsewhere (e.g. [33]). Firstly, the wavelet transform is compared to the well known Fourier
transform in order to illustrate some of its main features and provide an easy understanding of its meaning. Then, some
mathematical definitions and properties of wavelet analysis are introduced.

2.1. Fourier and wavelet transforms

A linear transformation of function f(t) can be defined as

T ¼
Z ∞

−∞
ϕðtÞ � f ðtÞ dt ð1Þ

The resulting function T shows how similar is the original function to the integration function ϕðtÞ. For a Fourier
transformation, function ϕðtÞ is a stationary harmonic function of type eiωt , where ω is the harmonic frequency. Thus, the
resulting function T depends only on ω and it only gives information about the harmonic frequency content of the overall
original signal. Fourier transform does not retain any time information of the signal, such as the time evolution of its
frequency content.
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In order to obtain some time information about the frequency content, one may apply a Short Time Fourier Transform
(STFT). In that case, the harmonic transforming function would be affected by a window function wðt−τÞ that could be a
rectangular, exponential of any window function that is null out of the window interval. Therefore, it is considered only a
certain part of the original signal for each value of τ. By translation of the window function (modifying parameter τ), the
original signal is divided into windows and a Fourier transform is applied to each window. Therefore, some time information
is obtained from the time windowing and the resulting transformed function T not only depends on ω but also on the
convolution parameter τ.

When using the wavelet transform, function ϕ is a wavelet family defined through translation and dilatation of a function
Ψ ðtÞ:

ϕu;sðtÞ ¼
1ffiffi
s

p Ψ
t−u
s

� �
ð2Þ

Parameter u is known as the translation parameter and u=s is equivalent to the STFT convolution parameter τ. Parameter s is
defined as the scale of the wavelet transform. It defines the shrinking or stretching of the wavelet function and 1=s plays an
equivalent role to Fourier frequency ω. The resulting wavelet transformed function T will depend on scale s and translation
parameter u. Function Twill indicate how similar the original function is to the wavelet function for a specific location, given
by the value of the translation parameter, and for a specific scale.

The inverse of s can be interpreted as a pseudo-frequency, since it modulates the frequency content of the wavelet
function, but the wavelet function is not a harmonic function itself. Higher scales corresponds to lower frequencies and vice
versa. A value of the corresponding pseudo-frequency for each scale can be obtained from the following expression [34,35]:

Fa ¼ Fc � f s
a

ð3Þ

where Fa is the pseudo-frequency for scale a, fs is the sampling frequency, and Fc is the center frequency of the wavelet. Fc
can be interpreted either as the frequency that gives a maximum of the Fourier transform of the wavelet function, or the
frequency of a harmonic function that maximizes the wavelet transform coefficients. Thus, a harmonic function of a
frequency equal to the center frequency captures the main wavelet oscillations (Fig. 1). The center frequency is a convenient
and simple characterization of the dominant frequency of the wavelet.

Therefore, the wavelet transform gives time information of the frequency content of the signal, whereas no time
information is obtained with Fourier analysis and certain time information is obtained with STFT. On the other hand, the
wavelet analysis can provide higher time resolution for higher frequencies and lower time resolution for lower frequencies,
since the convolution parameter (u=s) can be adapted according to frequency.

The previous analysis based on time and frequency can be identically applied in terms of a linear geometric coordinate
and geometric frequency. Thus, t, τ and u could be referred to a geometric dimension. In that case, the transformation gives
information about the spatial evolution of the original function. In this paper, the wavelet transform is applied to signals
(mode shapes) defined along a geometric coordinate (position along a beam).
2.2. Continuous wavelet transform background

In order to be a good candidate for wavelet analysis, a wavelet family should fulfill several mathematical requirements,
although not all of them are mandatory for every application.
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Fig. 1. Wavelet function Daubechies type with two vanishing moments (solid line) and its associated center frequency based approximation (dashed line).
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The wavelet function Ψ is an oscillatory function that must have a zero average and finite length, that is, compact
support:Z þ∞

−∞
Ψ ðxÞ dx¼ 0 ð4Þ

The stationary behavior of a harmonic function does not fulfill the compact support requirement.
Ψ is centered at x¼0 and it also must fulfill the wavelet admissibility condition [36]:Z þ∞

0

jΨ ðωÞj2
ω

dωo∞ ð5Þ

where Ψ ðωÞ is the Fourier transform of Ψ ðtÞ.
The Continuous Wavelet Transform (CWT) of a function f(t) can be defined as

CWTf ðu; sÞ ¼
1ffiffi
s

p
Z þ∞

−∞
f ðxÞΨn x−u

s

� �
dx ð6Þ

where Ψn indicates the complex conjugate of the wavelet function. CWTf ðu; sÞ indicates the content of the scaled wavelet
shape in the original function f(x) at a specific location. This can be understood in the sense of time evolution of frequency
content, as it was explained above.

As for the Fourier transform, there is a Discrete Wavelet Transform (DWT) for which discrete values of translation and
scales are used. The DWT is more efficient than CWT for computation and signal encoding. Typically, the DWT is computed
following a multi-resolution analysis [5,37], that gives an adaptive time (or space) – frequency (or scale) resolution. In that
case, only coefficients for a certain discrete numbers of scales and translation parameters are obtained. When using the
CWT, translation and scale parameters are continuous, giving more coefficients than necessary to strictly obtain the
necessary information of the signal. For instance, more coefficients than needed to reconstruct the original signal. However,
this redundancy provides a more clear information to detect changes or singularities in the original function, and therefore
CWT is usually preferred for SHM applications.

An important feature of a wavelet function is its number of vanishing moments. If a wavelet function has N vanishing
moments, thenZ þ∞

−∞
xkΨ ðxÞ dx¼ 0 for k¼ 0…N−1 ð7Þ

For any polynomial of smaller order than the number of vanishing moments, the wavelet transform will give null values.
Therefore, the number of vanishing moments indicates how sensitive is the wavelet to low order signals, and it can be
chosen so as to take only into account the components of the signal above certain order value.

The sensitivity of the wavelet transform to changes induced by damage depends on the wavelet family and the number
of vanishing moments of the wavelet function. The choice of these parameters should be based on a mathematical analysis
of the nature of the signal to be studied as well as the expected effect of damage [15,30]. However, this mathematical
analysis is not always clear a priori and in most applications these parameters are chosen depending on previous results or
on trial and error [5].

In this paper, the well-known Daubechies [36] wavelet family with 2 vanishing moments has been used. This number is
considered as the minimum value for crack detection [30,38]. For the beams analyzed in this paper, a higher number of
vanishing moments proved to be less sensitive to damage detection and location. That may suggest that the effect of damage
induces a change of order 2 in mode shapes that should not be neglected. The next sections include some additional
comments and results about the significance and influence of the number of vanishing moments.

3. Combined modal-wavelet methodology for damage detection

In this section, the proposed methodology for damage detection in beams is described step by step.

3.1. Modal analysis

The first task of the proposed methodology is to obtain the mode shapes and natural frequencies of the structure. As any
vibration based damage detection method, it requires modal information about the undamaged and damaged state.

If the structure to be analyzed can be tested in laboratory conditions, an Experimental Modal Analysis (EMA) can be
performed. A controlled and measured input force is applied to the structure and the dynamic response at certain
measuring points are analyzed to obtain natural frequencies and mass normalized mode shapes [39]. If the structure is large
and/or must keep under service loads (bridges, masts, etc.) then an Operational Modal Analysis (OMA) can be carried out
[40,41]. In that case, the ambient excitation forces are unknown and scaled mode shapes are not obtained. If some
exogenous controlled force is introduced, then a Combined Stochastic Subspace Identification (CSSI) can be applied and
scaled mode shapes are obtained [42]. As it was stated at the first section of the paper, the proposed damage detection
methodology could be applied to different kind of structures. Thus, the system identification method is not relevant for the
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methodology proposed in the present paper, and the choice would depend on the specific application where it is used. The
contribution of the paper is focused on how to deal with damage detection once the mode shapes and frequencies have
been identified.

3.2. Extension of mode shapes

The next step of the methodology deals with a very important issue in wavelet analysis, especially when applied to space
based damage detection. The wavelet transform is defined for an infinite integration interval, whereas the original signal is
defined over a finite interval. When the wavelet transform is performed, there is a singular behavior at the beginning and at
the end of the signal. The signal starts and finishes at those points, so there is a significant local change there, unless the
signal trends softly in an asymptomatic way to a constant value, which will never be the case for a mode shape. This
phenomenon is similar to the leakage effect in the Fourier transform, as it is due to the finite and non-stationary nature of
the original signal, being inconsistent with the infinite integral of the Fourier transform.

This unstable behavior of the wavelet coefficients in the vicinity of the beginning and the end of the analyzed signal is
known as the edge effect, and it is a serious drawback of the wavelet transform when the damage is close to the beginning
or the end of the signal. Moreover, the high values of wavelet coefficients near those regions of the signal can mask the
structural damage effect on the wavelet transform along the structure.

A detailed discussion about this issue can be found in the work of Messina [43]. He proposed some advanced methods to
avoid the edge effect based on isomorphism and self-minimization applied to an extension of the original signal. An
alternative and simplified methodology has been proposed by Rucka and Wilde [16], applying an extension of four points
using a cubic spline. Previous works [20,44] also proposed the use of a window function to weight the wavelet coefficients,
so the coefficients near the edges were reduced, but that implies that information is not reliable for these areas. This paper
applies a simpler method to avoid edge effects. It consists of an antisymmetric extension of the signal of the same length of
the original signal at both ends [33]. Fig. 2 illustrates the extension technique. The wavelet analysis will be performed on the
extended signal so the edge effects will appear at the beginning and at the end of this signal. The interesting results will only
be those related to the original signal, that will be free of edge effects.

3.3. Smoothing, interpolation and noise reduction of mode shapes

Another important issue when analyzing mode shapes is the reduction of experimental noise effect. The experimental
mode shapes will always be affected by noise, so they will always show some kind of irregularities. This undesirable
behavior will affect the wavelet analysis and it could eventually mask the effect of damage. In order to reduce this effect, a
smoothing technique may be introduced, so local peaks induced by experimental noise are eliminated without affecting any
local trend that could have been induced by damage, since damage is not expected to produce only a local peak as it is the
case of experimental noise. The softening technique proposed in this paper uses ‘mslowess’ built-in function of Matlab
software [35]. It is applied using a weighted quadratic least squares approach performed at every location of the original
mode shape considering a span including ten neighboring points centred at that location. The regression weights for each
data point in the span are given by the following cubic function:

Wi ¼ 1−
x−xi
dx

� �3� �3

i¼ 1;‥10 ð8Þ

where Wi is the weight for point i in the considered span, x is the location of the point to be smoothed, xi is the location of
point i and dx is the physical length of the span. Fig. 3(a)–(e) illustrate how the smoothing technique reduces experimental
noise in mode shapes obtained for one of the damaged scenarios considered in next sections.

As the wavelet transform needs a significant amount of points for the integration input signal so as to obtain meaningful
coefficients and clear results, the reduction of required measuring points is a major challenge when applying space based
wavelet transform to damage detection. If the number of experimental measurement points is not large enough, then an
interpolation may be performed between the experimental values. In this paper a cubic spline interpolation technique is
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Fig. 2. Extension of the first mode shape of the free-free tested beam: original signal (solid line), left extension (dashed line) and right extension (dashed-
dotted line).
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Fig. 3. Experimental mode shapes (dots) and smoothed mode shapes (solid line) for the free-free tested beam in scenario 3: (a) first mode shape,
(b) second mode shape, (c) third mode shape, (d) fourth mode shape and (e) fifth mode shape.
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Fig. 4. Interpolated mode shapes (dotted line) and measuring points (circles) for mode 3 of scenario 3 from: (a) 5 points and (b) 13 points.

Table 1
Damage scenarios.

Scenario Cutting location Cut depth Observation

0 Undamaged
1 0.5 L 30 mm The full flange and part of the web are damaged
2 0.5 L 20 mm
3 0.5 L 10 mm 10 mm cut at each side of the flanges and the web remains intact
4 0.4 L 30 mm The full flange and part of the web are damaged
5 0.25 L 30 mm
6 0.25 L 20 mm
7 0.25 L 10 mm 10 mm cut at each side of the flanges and the web remains intact

M. Solís et al. / Mechanical Systems and Signal Processing 40 (2013) 645–666650
applied [16,27]. Fig. 4 illustrates how the interpolation works if 5 or 13 measuring points were available and 128
interpolated points were obtained. The interpolation process smooths the resulting mode shape by itself, so the previously
described smoothing technique based on a least squares regression is not necessary when interpolation is applied.

The interpolation technique is also needed when the measuring points are not uniformly distributed. The usual required
uniform time sampling for Fourier or wavelet transform time domain applications is also required when geometric based
transform is applied. Thus, the wavelet transform is always applied to a vector which components must be geometrical
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equally spaced. Therefore, if the measuring points are not uniformly distributed along the structure, the interpolation can be
used to obtain smooth mode shape vectors with equally distributed components.

The interpolation technique can also be used as a tool for disregarding measuring points where undesirable peaks are
obtained for the mode shapes and they are clearly identified as noisy samples. When disregarding a measuring point, the
resulting samples assemble may not be uniformly distributed so the interpolation technique may be used to circumvent
that, as explained above.
Fig. 5. Saw cut for considered scenarios: (a) 1, 4, 5, (b) 2, 6, and (c) 3, 7.

Fig. 6. (a) Experimental configuration and (b) test set-up in the laboratory.

Table 2
Experimental natural frequencies [Hz] for each damage scenario.

Mode \ scenario 0 1 2 3 4 5 6 7

1 415.65 300.96 362.28 407.57 310.17 364.75 397.27 415.0
2 1032.70 1027.35 1030.15 1033.32 949.64 822.99 932.71 1020.23
3 1786.75 1473.96 1634.17 1781.58 1650.20 1557.21 1663.19 1772.57
4 2581.50 2563.38 2576.63 2566.85 2445.3 2528.65 2556.50 2580.6
5 3366.63 3195.89 3253.80 3354.80 3080.5 3292.95 3354.27 3371.16

Table 3
MAC values for each damaged and the corresponding undamaged mode shape.

Mode \ scenario 1 2 3 4 5 6 7

1 0.99258 0.99795 0.99986 0.97986 0.96861 0.99413 0.99980
2 0.99874 0.99829 0.99825 0.96232 0.89482 0.96742 0.99785
3 0.93651 0.98433 0.99320 0.96880 0.85313 0.95711 0.99702
4 0.99214 0.99024 0.98549 0.95868 0.97374 0.98439 0.97250
5 0.94910 0.96810 0.98536 0.78420 0.95796 0.98317 0.99006
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It is worth to mention that there should be always measuring points at both ends of the beam. If that is not the case, the
portion of the beam to be analyzed should only be the portion defined by the distribution of the measuring points, so
extrapolation is never done to infer the approached mode shape.
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3.4. Wavelet transform of difference of modes

Once the extended and smoothed mode shapes have been obtained, the wavelet analysis is applied. Firstly, the extended
difference mode shapes (Φdiff ;ext) are obtained by computing the difference between the smoothed extended damaged
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Fig. 8. Normalized weighted addition of CWT coefficients of mode shape difference for scenario 1 obtained from the smoothed and extended response at
65 points from: (a) three mode shapes and (b) five mode shapes.
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Fig. 9. Weighted addition of CWT coefficients of mode shape difference for scenario 1 obtained from the response at 65 points: (a) original signal and
(b) extended signal.
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Fig. 10. Normalized weighted addition of CWT coefficients of mode shape difference obtained from the smoothed and extended response at 65 points
using wavelet function Daubechies with 3 vanishing moments: (a) scenario 1 and (b) scenario 5.
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(Φs;ext;d) and undamaged (Φs;ext;u) mode shapes:

Φdiff ;extðxÞ ¼ ðΦs;ext;dðxÞ−Φs;ext;uðxÞÞ ð9Þ

Then, a CWT of each extended mode shape difference is done to give information about changes in mode shapes. The CWT
for the ith mode shape can be written as

CWTi
Φdiff ;ext

ðu; sÞ ¼ 1ffiffi
s

p
Z þ∞

−∞
Φi

diff ;extðxÞΨn x−u
s

� �
dx ð10Þ

It is proposed in this paper that the CWT is performed to a maximum scale ðNscaleÞ that matches the maximum
decomposition level that could be used if a multi-resolution DWT analysis [37] was applied according to the number of
components of the extended mode shapes ðNÞ:

Nscale ¼ log 2ðNÞ ð11Þ

From this point, only the CWT coefficients that corresponds to the original signal (CWTΦdiff ), and therefore to the real
structure, will be considered.
3.5. Normalized weighted addition of wavelet results based on frequency changes

In order to simplify the analysis of the CWT for each mode shape and to draw an overall result for damage detection, the
values of CWT coefficients of each mode shape are added up to obtain a global result for damage detection (Eq. (12)). The
combination of the results for all mode shapes may also reduce the effect of noise that is present in a specific mode shape,
whereas it will always accumulate the effect of damage for all mode shapes. For a more precise and clear detection of
singularities, this paper proposes to combine and analyze the absolute values of the wavelet coefficients. In addition, the
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Fig. 11. Normalized weighted addition of CWT coefficients of mode shape difference obtained from the smoothed and extended response at 65 points
using (a, b) wavelet function Gauss with 2 vanishing moments and (c, d) wavelet function Gauss with 3 vanishing moments: (a, c) scenario 1 and (b, d)
scenario 5.
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coefficients for each mode shape are weighted according to its corresponding change in natural frequencies:

CWTsumðu; sÞ ¼ ∑
N

i ¼ 1
jCWTi

Φdiff
ðu; sÞ

������ 1−
ωi
u

ωi
d

 !2

ð12Þ

where ωi
u and ωi

d stand for the natural frequencies of mode shape i for the undamaged and the damaged state, respectively.
The weighting of the difference of the damaged and undamaged mode shapes with their natural frequencies relations is

used to emphasize the most sensitive mode shapes to damage. It is assumed that those modes that exhibit a higher
frequency change are more sensitive to damage and therefore changes in those mode shapes are more significant. On the
other hand, the mode shapes that do not change their natural frequencies are almost disregarded. They are likely to
introduce mainly noise in the final result when all the mode shapes are combined.

Finally, the resulting weighted addition of CWT coefficients is normalized to unity for each scale,

CWTsum−normðu; sÞ ¼
CWTsumðu; sÞ

max½CWTsumðu; sÞ�s
ð13Þ

Normalized coefficients give a more clear final result since the information for all scales can be analyzed together.

3.6. Analysis of the results for damage detection and location

The normalized weighted addition of absolute values of CWT coefficients of mode shapes differences (CWTsum−normðu; sÞ)
can be finally plotted so information for all scales is available along the beam in just one final figure. This figure, together
with the representation of the results for each mode is analyzed in order to detect and locate damage.

The CWT of each mode shape difference can be used to detect damage. The instabilities in the CWT coefficients can
indicate the location of damage. A ridge or increasing values with scale in the CWT coefficients can be interpreted as a
structural damage effect [11,16,24]. In addition, the values of coefficients and singularities will be larger as the damage is
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Fig. 12. Normalized weighted addition of CWT coefficients of mode shape difference obtained from the smoothed and extended response at 65 points
using (a, b) wavelet function Symlet with 2 vanishing moments and (c, d) wavelet function Symlet with 3 vanishing moments: (a, c) scenario 1 and (b, d)
scenario 5.
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more severe. Therefore, comparing the results for different modes and for different damage scenarios can provide
information about damage severity as well as information about sensitivity to damage of each mode.

Although the effect of damage produces larger values of coefficients for higher scales, the effect of damage is also present
for lower scales. Therefore, when the coefficients from all modes are combined and normalized for each scale (Eq. (13)), the
effect of damage can be noticed for all scales and is clearly detected when maximum values (unity) are obtained for every
scale at a certain location. Without normalization, the information for lower scales is hidden.

It must be noted that, after normalizing, weighting and adding the absolute values of the CWT coefficients, the final
coefficients are analyzed in order to detect singularities induced by damage, and not to interpret their exact mathematical or
physical meaning. This analysis requires a deep mathematical analysis, which is out of the scope of the present paper.
However, some remarks and ideas are discussed in the following paragraphs.

According to the definition of the CWT, the wavelet coefficients of the difference in mode shapes indicate how similar are
the mode shapes differences to the wavelet function at each scale and for a certain location. They can also be interpreted in
terms of wavelet energy [7], which is defined as the squared sum of all coefficients. The squared sum of the coefficients for a
certain scale or for a certain location gives the wavelet energy for that scale or location, respectively.

However, the relation between wavelet coefficients and the derivatives of the original function is a more interesting
feature for the application of wavelet analysis to mode shapes for damage detection. It can be mathematically demonstrated
[37,44,45] that, when using certain wavelets (such as Gauss or Daubechies), the wavelet coefficients for lower scales are
directly related to the derivatives of the original function of the same order as the number of vanishing moments of the
wavelet function. Therefore, if a wavelet family with 2 vanishing moments is used, the CWT coefficients of mode shapes
differences give information about the change in the second derivatives of mode shapes (modal curvatures). It is well known
that change in modal curvatures is a sensitive damage detection parameter and it has been widely used in the literature
since the pioneering proposal of Pandey [46]. Thus, the relation between the obtained wavelet coefficients using a
Daubechies wavelet with 2 vanishing moments and the changes in modal curvatures justifies the sensitivity of the proposed
methodology to damage.
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Fig. 13. CWT coefficients of mode shape difference for scenario 2 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d)normalized weighted addition.
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4. Experimental testing

Eight standard steel I-beams have been tested to apply the proposed methodology. The beams of length L¼1280 mm,
height h¼100 mm, width b¼50 mm, web thickness hw ¼ 4:5 mm, flange thickness hf ¼ 6:8 mm and mass per unit length
m¼ 8:1 kg=m have been damaged by a saw cut in the scenarios described in Table 1 and Fig. 5(a–c). The cuts are 1 mm
width approximately.

The experimental program involved dynamic characterization of the specimens by modal analysis. An impact force was
applied at one end of the beams by an instrumented impact hammer and the response was measured at 65 points
distributed along the beam every d¼20 mm. Piezoelectric accelerometers with nominal sensitivity of 100 mV/g and a low
frequency limit of 2 Hz were used. The beams were hung in two soft springs at both ends with ks ¼ 145:8 N=m stiffness,
approaching a free-free boundary condition (Fig. 6).

Since a maximum of eleven accelerometers were available for the testing, seven set-ups were required to cover the 65
measurement points. For each set-up, several impacts were performed in order to eventually obtain average values and
reduce the experimental noise effect. Impact response was acquired in 30 s per channel per set-up. The data were sampled
to 16,384 Hz. After the experimental testing of the beams, the first five natural frequencies and mass normalized mode
shapes were identified from impact vibration responses. Identified natural frequencies are in the range between 300 Hz and
3400 Hz. Fig. 3(a–e) show the mass normalized mode shapes for scenario 3. Table 2 presents the five natural frequencies
that have been identified for each damage scenario. Table 3 shows the Modal Assurance Criteria values (MAC) [47] obtained
between each damaged mode and the corresponding undamaged one, respectively.

Natural frequencies and MAC values decrease as the damage is more severe. Nevertheless, MAC values are always close to
one, indicating that mode shapes are similar to those obtained for the undamaged state. Therefore, damage detection
methodologies based on natural frequency change or MAC values could only detect damage in the most severe scenarios. In
the next section, the proposed methodology is used to detect as well as to locate damage.
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Fig. 14. CWT coefficients of mode shape difference for scenario 3 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d) normalized weighted addition.
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Mode shapes 2 and 4 have a node at the middle length of the beam so they are not sensitive to damage at that location.
Therefore, only changes of the odd mode shapes will determine damage detection at 0.5 L. It can be observed in Tables 2 and
3 that natural frequencies and MAC values remain almost constant for mode shapes 2 and 4 in scenarios 1, 2 and 3.
5. Results

This section presents the results obtained when the proposed combined modal wavelet methodology is applied to the
experimentally tested beams. Moreover, several aspects that may influence the final results are discussed, such as the effect
of the numerical manipulations of the original experimental mode shapes (extension and curve fitting), the choice of the
wavelet family, the number of modes considered and the number of measuring points.

Fig. 7 shows the absolute values of CWT coefficients of the extended difference of modes 1–5 (Eq. (10)) for scenario 1. The
absolute values of the coefficients are presented for different scales along the beam in each figure. It can be noticed from
Fig. 7(b,d) that modes 2 and 4 are not sensitive to damage at 0.5 L, since there is a node at that position. Their CWT
coefficients are larger at those parts of the beam which show higher modal amplitudes for the second and fourth bending
mode, respectively. Therefore, those high values are induced by the intrinsic mode shape nature and not by damage. On the
other hand, modes 1, 3 and 5 (Fig. 7(a,c,e)) are sensitive to damage at 0.5 L. They show a narrow band of increasing values
with scale at damage location.

The normalized weighted addition of the coefficients of Fig. 7 (Eq. (13)) is presented in Fig. 8(a,b) considering 3 and 5
modes respectively. Fig. 8 shows that the normalized weighted addition of the wavelet coefficients gives a much more clear
result for damage detection than the CWT coefficients of each mode (Fig. 7). The weighted addition make emphasis on those
modes that are more sensitive to damage (modes 1, 3 and 5 according to the change in natural frequencies). The
normalization of the coefficients provides complete information about the effect of damage for every scale. Fig. 8 shows that
the effect of damage consists of high values (unity) around the damage position for every scale. Both Fig. 8(a,b) are almost
identical, so no improvement in the final result is achieved by including the fourth and fifth modes. Analogous results are
obtained for all scenarios. Therefore, the results for the rest of the paper are analyzed for only 3 modes, since from a practical
point of view, requiring a small number of mode shapes for damage detection is advantageous.
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Fig. 15. CWT coefficients of mode shape difference for scenario 4 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d) normalized weighted addition.
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In order to illustrate the effect of the extension and the curve fitting of mode shapes to reduce the edge effect and
experimental noise, Fig. 9 shows how both techniques affect the final results. Fig. 9(a) shows the normalized weighted
addition of the CWT coefficients of the experimental mode shapes, without neither applying extension nor curve fitting. It
can be observed that because of the edge effect the highest values are located at the beginning and at the end of the beam
and they mask the effect of damage. After applying the extension (Fig. 9(b)), the edge effect disappears and the effect of
damage is clear at 0.5 L. When the curve fitting approach is also applied, the final result depicted in Fig. 8(a) is obtained,
which is very similar to that of Fig. 9(b). However, the curve fitting smooths the mode shapes without eliminating the effect
of damage so there is less noise effect in Fig. 8(a) and the effect of damage is even more clear.

As it was mentioned above, the choice of the wavelet function and its number of vanishing moments affects the
sensitivity of the wavelet transform to damage. Fig. 10 shows the normalized weighted addition of CWT coefficients of
difference in mode shapes using a Daubechies wavelet function with 3 vanishing moments for scenarios 1 and 5. By
comparing Fig. 10(a,b) with Figs. 8(a) and 16(d) it can be observed that the effect of damage is identified using both
Daubechies wavelets with 2 and 3 vanishing moments but it is more clearly detected and the resolution of damage location
is much better when using 2 vanishing moments. According to Section 3.6, the Daubechies wavelet with 2 vanishing
moments is sensitive to changes in modal curvatures whereas the wavelet with 3 vanishing moments is sensitive to the
third derivatives of mode shapes differences. As a result, due to its more oscillatory nature, the wavelet Daubechies wavelet
with 3 vanishing moments gives maximum values at two different areas at each side of the location of damage, so the
resolution for the location of damage is worst than the resolution when using 2 vanishing moments. Similar conclusions can
be drawn for the Gauss and Symlet wavelets when using 2 and 3 vanishing moments (Figs. 11 and 12). Comparison of the
results obtained with Daubechies, Gauss and Symlet wavelets shows that Daubechies wavelet is more sensitive to damage
and provides better results, so Daubechies wavelet with 2 vanishing moments is chosen as the best candidate for being
sensitive to the existence of a crack in the tested beams.

Figs. 13–18 show the CWT coefficients for the differences of the first three mode shapes and the cumulative normalized
weighted addition for scenarios 2–7, respectively, using the experimental mode shape measured at 65 points. As previously
mentioned, large values (unity) of the CWT coefficients at a certain location and for every scale can be interpreted as damage
effect.
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Fig. 16. CWT coefficients of mode shape difference for scenario 5 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d) normalized weighted addition.
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Fig. 13 shows that damage scenario 2 can be successfully identified from the CWT values of the first and third mode and
even more clearly identified from the normalized weighted addition of coefficients. The less severe damage at 0.5 L
(scenario 3) cannot be detected from Fig. 14(a)–(d). Irregular distribution of high values in the figures are produced mainly
by noise. It is worth to mention that mode 3 seems to be detecting damage but the CWT high values at 0.5 L are actually
induced by noise. It can be observed in Fig. 3(c) that an inaccurate modal amplitude sample is obtained at that location from
the experimental tests. However, the weighted addition of results for all mode shapes eliminates the influence of that noisy
sample, although the effect of damage is definitely masked by the effect of noise, which contaminates the result all along the
beam.

When damage is located at 0.4 L (Fig. 15) the effect of damage is clear at that position for mode shapes 1 and 2, and even
more clear from the normalized weighted addition of CWT coefficients.

The analysis of the results for damage at 0.25 L (Figs. 16–18, corresponding to scenarios 5, 6 and 7, respectively) shows
that all the three mode shapes are sensitive to damage at that location. Mode shape 2 shows the highest decrease in natural
frequency and the highest CWT values are obtained for that mode, so it is the most sensitive mode shape to damage.
Damage is clearly located and indicated for all mode shapes and their corresponding addition for scenarios 5 and 6 (Figs. 16
and 17, respectively). The results for scenario 7 (Fig. 18) can not reveal the presence of damage. High CWT values are spread
along the beam at different scales, so the effect of noise is affecting the results more than the damage do, as it occurs for
scenario 3 (Fig. 14).

In order to illustrate the spatial resolution of the proposed methodology for damage location, Fig. 19 shows the obtained
CWT coefficients for different scales for scenarios 1 and 5. It shows that the location of the maximum value of the
normalized weighted addition of CWT coefficients varies with the scale. In addition, the width of the area where the
coefficients are higher increases with the scale and, therefore, the resolution for damage location is lower for higher scales.
This phenomenon explains why the stripes of maxima values of the figures presenting the normalized weighted addition of
CWT coefficients are not strictly perpendicular to the horizontal axis. It also explains why these stripes are wider for higher
scales and show some conical appearance. Nevertheless, it can be seen that the methodology provides good resolution for
damage. According to the distribution of the maximum values, the resolution of the proposed methodology can be
estimated as 40 mm (twice the separation between sensors) for the damage location for the tested beams.
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Fig. 17. CWT coefficients of mode shape difference for scenario 6 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d) normalized weighted addition.
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As mentioned in Section 3.6, it can be observed from Figs. 7, 13–17 and 18(a–c) that CWT values of mode shape difference
increase with the severity of damage (size of the crack), since the difference of mode shapes also increase with damage
severity. However, information about damage severity from those figures can be only obtained in a qualitative and relative
sense. A quantitative interpretation could only be feasible from a previous parametric analysis from numerical or analytical
simulations along with experimental validations [18,28,48,49]. However, this kind of analysis is only valid for a specific
application and can not be extrapolated to more general situations.
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Fig. 18. CWT coefficients of mode shape difference for scenario 7 obtained from the response at 65 points: (a) mode shape 1, (b) mode shape 2, (c) mode
shape 3 and (d) normalized weighted addition.
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In order to analyze the number of measuring points required for damage detection and the effect of the proposed
interpolation technique, only some of the original 65 measuring points were considered for all scenarios. The cumulative
CWT results obtained from the response at 5 and 13 measuring points for damage located at 0.5 L, 0.4 L and 0.25 L are
shown in Figs. 20–22, respectively. The interpolation technique is used to obtain approached mode shapes vectors of 128
components.

Fig. 20(b,d) show that damage could be located with 13 points as precisely as with the original 65 points when damage is
located at 0.5 L. If the number of measuring points is reduced to 5 (Fig. 20(a,c)), then damage is not clearly located and its
effect is masked by the high CWT values at high modal amplitudes areas of mode shapes. For the less severe damage
scenario at 0.5 L (Fig. 20(e,f)), neither 5 nor 13 measuring points can detect damage. However, results are better than those
obtained with 65 points, probably due to the fact that noisy samples are eliminated and noise effect is more effectively
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Fig. 20. Weighted addition of CWT coefficients of modes shapes differences obtained for (a, b) scenario 1, (c, d) scenario 2 and (e, f) scenario 3: (a, c, e) 5
measuring point and (b, d, f) 13 measuring points.
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Fig. 21. Weighted addition of CWT coefficients of modes shapes differences obtained for scenario 4: (a) 5 measuring points, (b) 13 measuring points.
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reduced. Thus, identifying and disregarding experimental mode shape amplitude samples that are clearly inaccurate may
enhance the damage detection sensitivity and may be important to detect little damage. Nevertheless, the proposed
methodology is not robust at this damage level yet.

When damage is located at 0.4 L (Fig. 22), the crack can also be located with 13 measuring points but not with 5.
However, it can be noticed that the location of damage with 13 measuring points is not so accurate as with 65 points.

When damage is located at 0.25 L, similar conclusions to the 0.5 L damage location can be drawn. However, results are
better since damage can be clearly detected for scenarios 5 and 6 even with only 5 measuring points (Fig. 22(a,c)), although
the location of damage is more accurate when using more measuring points. For the less severe damage scenario (Fig. 22(e,
f)), results are also better to those obtained with 65 measuring points, but also ‘false damages’ could be identified around
0.5 L and 0.75 L.

The number of measuring points as well as their location affects the damage detection sensitivity. In order to illustrate
this, Fig. 23(a,b) show the weighted addition of CWT coefficients of mode shape differences along the beam for scale 7 and
different numbers of measuring points (from 13–17), for scenarios 1 and 5 respectively. Scale 7 is selected since the largest
values are obtained for the highest scales. Nevertheless, results for any other scale are similar. The singular behavior of the
coefficients at damage location is clearly observed at Fig. 23(a,b). The proposed damage detection methodology is more
sensitive to damage as the peak in CWT coefficients at damage location is more significant. It can be noticed from Fig. 23 that
the peak is more significant when damage is at 0.25 L, so damage is more clearly detected at that position, as it has been
shown from the results previously discussed.

In theory, in absence of noisy samples that could distort the results, the CWT values decrease with the number of
measuring points. This is due to the fact that as the number of measuring points is reduced, less information is available and
the effect of damage on the interpolated mode shapes is also reduced. However, this theoretical trend is perturbed by the
fact that sensitivity increases when a sensor is located at damage location. When damage is located at 0.5 L, a sensor is
located at that position when the number of sensors is odd, since the sensors are uniformly distributed along the beam. As a
result, Fig. 23(a) shows that the CWT values with 13 measuring points is less than when using 15 but larger thanwhen using
14. When damage is located at 0.25 L, a sensor is located at that position when the number of sensors is 5;9;13;17;21…, etc.
Thus, maximum values of CWT coefficients decreases from using 13 to 15 measuring points, whereas they increase from 15
to 17 (Fig. 23(b)).

Previously presented results are successful for 13 sensors and even with 5 measuring points for certain scenarios, but it
must be noted that a sensor is located at damage position when the crack is at 0.25 L and 0.5 L. However, results are also
successful when damage is at 0.4 L when using 65 as well as 13 measuring points, despite no sensor is located at damage
location. It can be concluded that results with less than 13 sensors may be successful or not depending on the damage
scenario. Damage will be detected with 13 or more measuring points.
6. Conclusions

A new combined modal-wavelet analysis for crack location in beams has been successfully applied. The methodology is
simple and easy to use. Behavior of coefficients of the wavelet transform at different scales are used to identify changes in
mode shapes induced by damage. The wavelet space based transform is applied to the difference between obtained mode
shapes of a potentially damaged beam and those corresponding to a reference state. The results for each mode are added up
to give a final single result from which damage can be detected and located at a glance. However, wavelet results from each
mode shape should also be considered for a more precise analysis.
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When adding up mode results, each one is weighted according to the natural frequency change from the reference value
so modes that are likely to be sensitive to damage are emphasized. Finally, the coefficients are normalized for each scale so
information for all the scales is analyzed in the same way and the effect of damage is more clear.

The proposed methodology includes a curve fitting approach to reduce the effect of experimental noise in mode shapes,
so noise effect is not considered as actual damage and ‘false damages’ are avoided. The smoothing technique is based on a
quadratic weighted regression for a moving span of ten points. Moreover, when a small number of sensors are used, new
mode shape points are obtained from a cubic spline interpolation so enough points can be used to define the input signal for
the wavelet transform. This interpolation also serves as a smoothing process when it is applied.

The new methodology has proven to be sensitive to little damage. According to the different locations and severity of
damage in the beams experimentally tested, an estimated threshold value for damage detection could be defined by a
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change in natural frequencies of 8%. More severe damages will certainly be detected. It has also been shown that damage
can be located using a rather small number of sensors and using a small number of mode shapes. Damage above the
previously defined threshold value can be detected with only 13 sensors distributed along the beam and using only 3
bending modes.
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