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A B S T R A C T   

In this research article, an attempt has been made to solve the linear/nonlinear and steady/unsteady heat 
transfer equations using the Homotopy and Perturbation method (HPM). Moreover, the implementation of HPM 
has been done by using SymPy, a library in python, to solve problems symbolically. Total three problems were 
dealt viz. steady-state conduction with heat generation, lumped capacitance analysis with a variable specific heat 
of the material, and heat transfer in uniform rectangular fin with radiation from the surface. In all the cases, the 
HPM has given excellent results compared to the analytical and numerical. Finally, the execution of SymPy has 
been explained, and a detailed procedure to implement HPM through python has been presented for all three 
cases.   

1. Introduction 

Everything is self-explanatory by some mathematical relationship in 
the core of all the different engineering specialists. Most of these problems 
and situations are characterized by linear and nonlinear equations. As in 
case of heat transfer most of the problems are of nonlinear nature. So, 
except for a small number of these problems, it isn’t easy to find specific 
analytical solutions. Consequently, appropriate analytical and delivery 
solutions are sought, most effective and easy to use, namely the Adomian 
Decomposition Method (ADM) [1–3], Variational Therapy Method (VIM) 
[4–6], and the Homotopy Perturbation Method (HPM) [7] in both weak 
and robust nonlinear equations. The perturbation method is one of the 
most flexible tools available in analysing the problem of indirect engi-
neering, but its limitations limit its use [8]. The perturbation method is 
based on the assumption of a small parameter [9,10] because stability and 
integration should be considered numerically to avoid different or nega-
tive results. Weighted Residual Methods (WRMs) and Least Square 
Methods (LSM) [11] are some simple and accurate measurement tech-
niques for solving various nonlinear calculations. 

Dr Ji Huan He initially developed a method of HPM [12–17], which 
has been used to solve many types of linear and nonlinear functional 
operations. This approach combines topology, homotopy [18], and gen-
eral perturbation techniques[19], allowing us to find analytical or 

speculative solutions to many different problems from different domains. 
The technique produces solutions for a dynamic series of non-linear 
separation systems using the concept of homotopy [20]. These methods 
include a complete selection of the control parameter, initial measure-
ment, an auxiliary line operator, and an auxiliary function in the use of 
HPM for non-linear separation problems [21]. As a result, all the most 
suitable HPM strategies significantly accelerated the integration of series 
solutions into different non-linear measurements [22]. Ganji et al. [27] 
have reported the use of HPM to solve the Burgers equation observed in 
fluid mechanics. For nonlinear oscillators, Yu et al. [23] have reported a 
review in which they have focused on a linear term embedded auxiliary 
parameter. To study the nonlinear oscillator containing damping, He and 
El-Dib [24] have reported modifications in the HPM. For solving frac-
tional differential equations, Nadeem et al. [25] have reported the use of 
HPM. Ashrafi et al. [26] have reported the use of HPM to solve for the 
fluid flow (Newtonian Fluid) past as flat porous plate. 

When it comes to implementation of any numerical model or 
analytical/semi-analytical model a lot of pen and paper work which has 
to be done to setup the differential equations and then they are dis-
cretized and solved either numerically or analytically [28]. This process 
requires a lot of mechanical work. Here comes the importance of python 
language to reduce the solution and implementation task [29,30]. 
SymPy is a module which is used in python (as well written in python) to 
solve mathematics symbolically [31–33]. This is so powerful tool that 
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one has to just plug in the differential model in symbolic form (as we 
write on paper) and it will return the output. With the help of SymPy one 
can write a comprehensible code which can be easily extended while 
keeping the code as simple as possible. With the help of sympy multiple 
tasks like expression simplification, derivative & integral computations, 
limit evaluation, equation solutions, matrix operation, ordinary differ-
ential equation (ODE) solution and much more can be done symbolically 
with only few lines of code [34]. Several authors have reported the use 
of Python for solving different types of problems efficiently. To facilitate 
cross-institutional collaboration and democratise research progress, 
Sulzer et al. [35] have developed and reported the Python package 
PyBaMM. Marowka [36] has reported the use of Python and its impor-
tance for parallel programming. A Python-based comparison analysis of 
different feature importance measures has been written by Saarela and 
Jauhiainen [37]. Pawar et al. [38] have reported the use of Python to 
handle a complex problems like viscous fluid flow. They have developed 
modules that can solve the parallel fluid flow problems quickly and with 
no error. 

After studying the HPM, we realize that the concept is simple, but 
everyone has dealt with each of their problems heuristically by using 
various strategies. While this shows the flexibility of the method, the 
reader experiences difficulties when using it. Therefore, in this manu-
script attempts have been done to make the concept more general and 
provide some guidance to implement the HPM computationally. The 
indirect equation of continuous heat transfer with apparent flexible 
parameters is solved using the HPM. The results thus obtained are 
compared with the analytical/numerical solution. The implementation 
of HPM is done with the help of SymPy and the codes written to solve the 
equations are presented so that reader be benefitted. 

2. Homotopy perturbation method 

In this manuscript, Homotopy Perturbation Method (HPM), which 
was originally proposed by He [12,39] has been applied to solve dif-
ferential equations which are seen in heat transfer. To understand HPM 
methodology, consider the following differential equation [39]: 

A(u) − f(r) = 0, r ∈ Ω (1)  

with boundary conditions, 

B(u, δu / δn) = 0, r ∈ Γ (2)  

where A is any general differential operator, f(r) is some known func-
tion, B is any boundary operator, and Ω is the domain which is bounded 
by Γ. 

In HPM the operator A can be generally divided into two parts L the 
linear and N the nonlinear. 

So, Eq. (1) can now be rewritten as: 

L(u) + N(u) − (r) = 0 (3) 

The good aspect of homotopy method is that it is independent of 
‘small parameter’. Now a homotopy can be constructed with the help of 
a homotopy parameter p, auxiliary function L& N, and initial guess Y0as 
follows: 

H(y, p) = L(y) − L(Y0) + p[L(y0)+N(y) − f (r)] = 0 (4) 

According to the HPM, an approximation solution of the above 
equation i.e., Eq. (4) can be written a power series of p as follows: 

u = p0y0 + p1y1 + p2y2 + … (5) 

Which convents to the following approximate solution of Eq. (1) 
when p → 1: 

u = lim
p→1

y = y0 + y1 + y2 + … (6) 

The point to note here is that the Eq. (6) is convergent in most of the 
cases resulting in the exact solution of original governing equation viz. 
Eq. (1). For obtaining the approximate solution, one can truncate the 
series if closed form solution is not arrived at. 

While developing homotopy equation the most important part to 
care of is the selection of initial guess Y0and the L i.e., the auxiliary 
operator. The choice of L should be done in such a way that it does not 
pose any problem while solving resulting system of equations. Hence, it 
is also said that the choice of L is not necessarily be linear [40]. More-
over, the better option is to select some portion of the governing equa-
tion as L. The choice of Y0 is done in such a way it is the solution of some 
part of the original governing equation. Also, the choice of Y0should also 
reduce the complication of the resulting equations. 

3. SymPy and differential equations 

When it comes to symbolic computations in python, the SymPy 
module comes into picture. Ondrej Certik [31] was the first to introduce 
SymPy to the scientific community. This module is open source and can 
be used freely for symbolic computations. Sympy is very powerful when 
it comes to algebra, discrete mathematics, calculus etc. One of the 
attractive features of SymPy is its capability to format and present the 
results in LaTeX format. 

For solving differential equations with the help of SymPy the 
following steps are adopted:  

i. Import SymPy into the code (from sympy import *)  
ii. Importing all the Greek and Latin letters as symbols (from sympy. 

abc import *)  
iii. Create dependent variable as function of independent variable 

(eg. y = Function(‘y’)(x)) 

Nomenclature 

A General differential operator 
B Boundary operator 
u Dependent variable 
f(r) Any known function 
L Linear operator 
N Nonlinear operator 
H(y,p) Homotopy 
p Homotopy parameter 
Y0 Initial guess 
T Temperature 
t Time 

q Heat generation 
k Thermal conductivity 
V volume 
c Specific heat 
h Convective heat transfer coefficient 
A′ Surface area 

Greek 
Ω Domain 
Γ Domain boundary 
ρ Density 
θ Nondimensional temperature  
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iv. Setting up the boundary/initial conditions using‘.subs’ method 
(eq. ics={y.subs(x,0)=1})  

v. Create a differential equation (eg. eqn=Eq(y.diff(x)+y,0))  
vi. Using ‘dsolve’ for solving the differential equation (dsolve(eqn, 

y)) 

Let us understand the above procedure with the help of an example. 
Consider a differential equation dy

dx+ y = 2, with the boundary condition 
y(0)=1. Now the following few lines of code will solve this equation:  

Code Output 
# Step 1  

from sympy import *  
# Step 2  

from sympy.abc import *  
# Step 3  

y=Function(’y’)(x)  
# Step 4  

eqn=Eq(y.diff(x)+y,2)  
# Step 5  

bc={y.subs(x,0):1}  
# Step 6  

dsolve(eqn,ics=bc) Out[52]: y(x) = 2 − e− x  

In this manuscript SymPy has been used to implement Homotopy 
and Perturbation. This will not only ease the application procedure but 
will also help in systematic computation without any errors. All the 
functions and codes are written in the web-based interactive environ-
ment viz. Jupyter notebook. 

4. Applications of HPM on heat transfer problems 

In this manuscript in total three problems are solved to demonstrate 
the solution of 1-D heat conduction equations by HPM. These problems 
are:  

• Steady state heat transfer in a slab with constant heat generation and 
thermal conductivity. 

• Cooling of a system (assuming its specific heat is a function of tem-
perature) considering it as a lumped system. This will make the 
governing equation of non-linear nature.  

• Rectangular fin with radiation into ambient. 

4.1. Heat transfer in a slab with constant heat generation and thermal 
conductivity 

Fig. 1 shows a slab (in steady state) of two-meter length (L = 2), 
constant thermal conductivity (k), and constant heat source per unit 
volume (q). 

The generalized heat conduction equation in cartesian coordinates 
can be written as: 

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

q
k
=

(
1
α

)
∂T
∂t (7) 

As the problem is 1D and steady state so the second derivative terms 
in y and z along with time derivative will vanish which will result in: 

∂2T
∂x2 +

q
k
= 0 (8) 

With a boundary condition that T(x = 0) = Ts and T(x = 1) = Ts. 
Where, Ts is some fixed temperature at both the ends. 

To develop homotopy of the above equation let us assume the linear 
operator (L) to be ∂2

∂x2 . So, the homotopy equation becomes: 

L(θ) − L(θ0) + p× L(θ0) + p×
(q
k

)
= 0 (9)  

where, θ0 is taken as Ts. 
Let say the final approximate solution be θ = y0 + py1 + p2y2 +

p3y3…. 

Fig. 1. Schematic of 1D slab.  

Fig. 2. Temperature variation along the length of slab.  
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Now SymPy will be used in its full capacity to develop and the 
homotopy equation and its solution to arrive at the final answer.  

from sympy import * 
from sympy.abc import * 
# Approximate solution Functions 

y0,y1,y2=symbols(’y0,y1,y2′) 

y0=Function(’y0′)(x) 

y1=Function(’y1′)(x) 

y2=Function(’y2′)(x) 

theta=Function(’theta’)(x) 
Ts=symbols(’Ts’) 
theta0=Ts 

# Linear differential function 

L=lambda f: diff(f,x,x) 
# Homotopy equation 

eqn1=Eq(L(theta)-L(theta0)+p*L(theta0)+p*(q/k),0) 
# Creating approximate solution 

theta_prime=y0+p*y1+p**2*y2 
eqn2=eqn1.subs(theta,theta_prime) 

# Expanding the above equation for p and derivatives 

eqn3=expand(eqn2.doit()) 

pprint(eqn3) 

# Segregating coefficients of p 

de0=Eq(y0.diff(x,x),0);ics0={y0.subs(x,0):Ts,y0.subs(x,2): 
Ts}; 

de1=Eq(eqn3.lhs.coeff(p**1),0); ics1={y1.subs(x,0):0,y1.subs 
(x,2):0}; 

de2=Eq(eqn3.lhs.coeff(p**2),0); ics2={y2.subs(x,0):0,y2.subs 
(x,2):0};  

Solution of coefficients:  
#for p^0  

dsolve(de0,ics=ics0) Out [18]: y0(x) = Ts 

# for p^1  

de1=de1.subs(y0,Ts)  

dsolve(de1,ics=ics1) Out [19]: y1(x) =

x
(
−

qx
2

+ q
)

k 
# for p^2  

de2=de2.subs({y0:Ts,y1:(x/k)*(-q*x/ 

2+q)})  
dsolve(de2,ics=ics2) Out [20]:y2(x) = 0  

Therefore for p = 1the approximate solution of the Eq. (7) from HPM 
is: 

T(x) = Ts +
(x
k

)
×
(
−
qx
2
+ q

)
= Ts +

(qx
k

)
×
(

1 −
x
2

)
(10) 

Which is exactly equal to the analytical solution of the problem [41]. 
Fig. 2 show the variation of temperature obtained by exact analytical 
solution and approximate solution obtained by HPM. 

While plotting the results the values of k, q, and Ts are assumed to be 
100.0 W/m-K, 1000 W/m3, and 100◦C respectively. The temperature 
variation is parabolic and symmetric about the centre line, this is due to 
the fact that the uniform heat source is there, and both ends of the slab 
are at the same temperature. One can see that the temperature obtained 
from the HPM is in very good agreement with the analytical result. 

4.2. Analysis of lumped system 

Let us consider a solid of surface area A, volume V, density ρ, and 
specific heat c is initially at some high temperature (T0) and suddenly 
kept in a fluid (of convective heat transfer h) of lower temperature (T∞). 
If the solid is having very small thermal resistance (infinite thermal 
conductivity), then it can be treated as a lumped system. The schematic 
of the problem is shown in Fig. 3. Then the governing equation of the 
whole lumped system can be written as: 

ρVc dT
dτ = hA′

(T − T∞) (11)  

with the boundary condition that T(τ = 0) = T0 
To make the equation nonlinear let us assume that the c is a linear 

function temperature which can be written as: 

c = c0[1 − γ(T − T∞)] (12)  

where,C0is the specific heat, at temperature T∞ and γ is a constant. By 
introducing below mentioned parameters the Eq. (11) takes the shape of 
Eq. (13). 

θ =
T − T∞

T0 − T∞
, t =

τhA′

ρVc0
∈= γ(T − T∞)

dθ
dt
+ ∈ θ

dθ
dt

+ θ = 0
(13) 

With the boundary condition that θ(0) = 1. 
To develop homotopy of the above equation, let us assume the linear 

operator (L) to be ∂∂t + 1 . So, the Homotopy equation becomes: 

L(θ) − L(θ0) + p× L(θ0) + p× θ× ∈ ×
dθ
dt

= 0 (14)  

where θ0 is taken as e− t and the final approximate solution can be given 
by θ = y0 + py1 + p2y2 + p3y3…. 

Now using sympy to solve the above Homotopy.  
from sympy import * 
from sympy.abc import * 
# Approximate solution coefficients 

y0,y1,y2=symbols(’y0,y1,y2′) 

y0=Function(’y0′)(t) 

y1=Function(’y1′)(t) 

y2=Function(’y2′)(t) 

theta=Function(’theta’)(t) 
theta0=exp(-t) 

# Linear differential function 

L=lambda f: f.diff(t)+f 
# Homotopy equation 

eqn1=Eq(L(theta)-L(theta0)+p*L(theta0)+\ 

p*epsilon*theta*theta.diff(t),0) 
# Creating approximate solution and its substitution 

eqn2=eqn1.subs(theta,y0+p*y1+p**2*y2) 
# Expanding the above equation for p and derivatives 

eqn3=expand(eqn2.doit()) 

# Segregating coefficients of p 

de0=Eq(y0.diff(t)+y0,0); ics0={y0.subs(t,0):1}; 
de1=Eq(eqn3.lhs.coeff(p**1),0); ics1={y1.subs(t,0):0}; 
de2=Eq(eqn3.lhs.coeff(p**2),0); ics2={y2.subs(t,0):0};  

Fig. 3. Cooling of lumped system.  

P. Dumka et al.                                                                                                                                                                                                                                  



Advances in Engineering Software 170 (2022) 103160

5

Solution of coefficients:  
#for p^0  

dsolve(de0,ics=ics0) Out [171]:y0(t) = e− t 

# for p^1  

de1=de1.subs(y0,exp(-t))  

dsolve(de1,ics=ics1) Out [177]: y1(t) = ( ∈ − ∈ e− t) 
e− t 

# for p^2  

de2=de2.subs({y0:exp(-t),y1: 

epsilon*(1-exp(-t))*exp(-t)})  
dsolve(de2,ics=ics2) 

Out [185]: y2(t) =
(∈2

2
−

2∈2e− t +
3∈2e− 2t

2

)

e− t  

So, for p = 1 the approximate solution of Eq. (11) is: 

θ(t) = e− t + ( ∈ − ∈ e− t)e− t +

(
∈2

2
− 2×∈2e− t +

(
3
2

)

×∈2e− 2t
)

× e− t

(15) 

The exact analytical solution of the problem is [42]: 

ln(θ)− ∈ (1 − θ) = − t (16) 

At ∈ =0both the analytical and exact solution arrive at the same 
result i.e., e− t.To solve the Eq. (16) again SymPy has been used. 
Considering ∈ =0.1the code and its result are as follows:   

Fig. 4. Temperature variation for ∈ =0.1.  
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Fig. 4 shows the variation of analytical solution and the solution 
obtained by HPM. As the time marches, the temperature of the lump 
reduces exponentially due to the assumption of infinite thermal con-
ductivity of the lump. The physics of the problem has been captured well 
by the HPM as the results are very close to the analytical results. 

4.3. Rectangular fin with radiation into ambient 

Let us consider a fin which radiates into free space. The governing 
equation comments out to be highly nonlinear in nature [43] which is 
show in Eq. (17) 

d2θ
dx2 − ∈ θ4 = 0 (17) 

Subject to the boundary condition that θ(1) = 1 and dθ(0)dx = 0. 
To develop homotopy of the above equation let us assume the linear 

operator (L) to be ∂
2

∂x2 . So, the Homotopy equation becomes: 

L(θ) − L(θ0) + p× L(θ0) − p× θ4× ∈= 0 (18)  

where θ0 is taken as 1 and the final approximate solution can be given by 
θ = y0 + py1 + p2y2 + p3y3…. 

SymPy procedure to solve above homotopy equation is as follows:  
from sympy import * 
from sympy.abc import * 
# Approximate solution coefficients 

y0,y1,y2=symbols(’y0,y1,y2′) 

y0=Function(’y0′)(x) 

y1=Function(’y1′)(x) 

y2=Function(’y2′)(x) 

theta=Function(’theta’)(x) 
theta0=1.0 
# Linear differential function 

L=lambda f: diff(f,x,x) 
# Homotopy equation 

eqn1=Eq(L(theta)-L(theta0)+p*L(theta0)-p*epsilon*theta**4,0) 
# Creating approximate solution 

theta_prime=y0+p*y1+p**2*y2 
eqn2=eqn1.subs(theta,theta_prime) 

# Expanding the above equation for p and derivatives 

eqn3=expand(eqn2.doit()) 

(continued on next column)  

(continued ) 

# Segregating coefficients of p 

de0=Eq(y0.diff(x,x),0); ics0={y0.subs(x,1):1,y0.diff(x).subs 
(x,0):0}; 

de1=Eq(eqn3.lhs.coeff(p**1),0); ics1={y1.subs(x,1):0,y1.diff 
(x).subs(x,0):0}; 

de2=Eq(eqn3.lhs.coeff(p**2),0); ics2={y2.subs(x,1):0,y2.diff 
(x).subs(x,0):0};  

Solution of coefficients:  
#for p^0  

dsolve(de0,ics=ics0) Out [210]: y0(x) = 1 
# for p^1  

de1=de1.subs(y0,1)  
dsolve(de1,ics=ics1)   

Out [211]:y1(x) =
∈ x2

2
−

∈

2 
# for p^2  

de2=de2.subs({y0:1,y1:epsilon*(1- 
x**2)/2})  

dsolve(de2,ics=ics2) 
Out [212]: y2(x) =

∈2x2(6 − x2)

6
−

5∈2

6  

Therefore, the final output of approximate solution for p=1 is: 

θ = 1 +
∈

2
(
x2 − 1

)
+
∈2

6
(
x2( 6 − x2) − 5

)
(19) 

As Eq. (17) is very difficult to solve analytically so it has been done 
with the help of scipy.integrate package in python which uses 4th order 
Runge Kutta. The results of HPM and numerical results are plotted in 
Fig. 5 for ∈ =0.09. It can be observed that as the time marches the 
temperature gradually increases this is due to the transfer of heat due to 
the radiation. The results are very encouraging as the HPM and nu-
merical results are very close. 

5. Conclusions 

Based on the application of numerical analysis done in this research 
article the following conclusions can be drawn: 

Fig. 5. Temperature variation from HPM and 4th order Runge Kutta.  
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• HPM can be efficiently used to solve linear as well as non linear 
differential equations.  

• HPM almost eliminates the use of complex numerical techiniques to 
solve the governing equations.  

• HPM can solve approximate solutions to the problems whose 
analytical solution is very difficult.  

• SymPy reduces the effort of manual derivations and with very less 
effort one can apply any scheme on it.  

• A methodology has been shown to apply HPM in python via SymPy. 
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