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Abstract

Predictions regarding the solar greenhouse temperature and humidity are im-
portant because they play a critical role in greenhouse cultivation. On account
of this, it is important to set up a predictive model of temperature and humidity
that would precisely predict the temperature and humidity, reducing potential
financial losses. This paper presents a novel temperature and humidity predic-
tion model based on convex bidirectional extreme learning machine (CB-ELM).
Simulation results show that the convergence rate of the bidirectional extreme
learning machine (B-ELM) can further be improved while retaining the same
simplicity, by simply recalculating the output weights of the existing nodes based
on a convex optimization method when a new hidden node is randomly added.
The performance of the CB-ELM model is compared with other modeling ap-
proaches by applying it to predict solar greenhouse temperature and humidity.
The experiment results show that the CB-ELM model predictions are more ac-
curate than those of the B-ELM, Back Propagation Neural Network (BPNN),
Support Vector Machine (SVM), and Radial Basis Function (RBF). Therefore,
it can be considered as a suitable and effective method for predicting the solar
greenhouse temperature and humidity.

Keywords: Solar greenhouse, support vector machine, radial basis Function,
convex bidirectional extreme learning machine

1. Introduction

The solar greenhouse covered with plastic and a thermal blanket is a very
complex dynamic system [1-3]. It extends the growing season in cold climatic
conditions, producing greenhouse crops year round. As such, solar greenhouses
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must provide good environmental conditions for greenhouse crop growth, espe-5

cially by maintaining adequate temperature and humidity. Greenhouse crops
exposed to low or high temperature and humidity may lead to mass death or
fungal diseases. Therefore, to reduce financial losses, it is crucial to set up a pre-
cise predictive model of both temperature and humidity in the solar greenhouse
[4]. Many modeling methods have been proposed for the solar greenhouse, in-10

cluding mechanism modeling and black-box modeling. The black-box model is
based upon input and output data, and is suitable for both linear and nonlinear
modeling. The mechanism model provides a clear physical explanation of the
solar greenhouse [5]. Generally, the dynamics of air temperature and humid-
ity in greenhouses are described in many ways, such as classical Albright’s [6]15

model:

dTin
dt

=
1

ρCpV
(qheater+Iin−λqfog)−

ϕvent
V

(Tin−Tout)−
Ke

ρCpV
(Tin−Tout) (1)

dHin

dt
=

1

V
qfog +

1

V
E(Iin,Hin)− ϕvent

V
(Hin −Hout) (2)

Where Tin is indoor temperature (◦C), Tout is outdoor temperature (◦C), V
is greenhouse volume (m3), Ke is heat transfer coefficient (W · K−1), ρ is air
density (kg·m−3), Cp is specific heat of air (J ·(kg·K)−1), qheater is heat provided
by the greenhouse heater (W ), Iin is intercepted solar radiant energy (W ), qfog20

is water capacity of fog system (kg(m2 ·K)−1), λ is latent heat of vaporization
(J · g−1), ϕvent is ventilation rate (m3 · s−1), Hin is indoor temperature (%),
Hout is outdoor temperature (%), E is evapotranspiration rate of the plants.

The main shortcomings of Albright’s model can be summarized as follows:
(1) It is too simple to accurately reflect the relationships between greenhouse25

environment and crop growing process;
(2) Carbon dioxide concentration, which is an important environmental fac-

tor to affect photosynthesis, is not included in Albright’s model.
Neural networks, which can model nonlinear systems, have been applied to

solar greenhouse environment modeling. Ferreira et al. [7] use the adequacy of30

radial basis function neural networks to model the inside air temperature of a
hydroponic greenhouse as a function of the outside air temperature and solar
radiation, as well as the inside relative humidity. For modeling the internal
greenhouse humidity in winter of North China, Fen He et al. [8] proposed a
BPNN based on principal component analysis (PCA). In order to create clusters,35

the ART2 classifier is used to decompose a database of a greenhouse. When
the clusters are formed, the Elman neural network can be trained to model
each cluster in order to achieve control over the considered greenhouse through
multiple neural networks [9]. Wang et al. [10] used online sparse least-squares
support vector machines regression with linear kernel function to model the40

greenhouse environment. Amine Trabelsi et al. [11] proposed a study on the
application of the Takagi-Sugeno (TS) fuzzy models to the identification problem
of greenhouse modeling. Based on the BP neural network model, He et al. [12]
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analyze the influencing factors importance of inside air humidity which the
inside temperature, outside temperature and humidity, open ration of sunshade45

curtain, wind speed, solar radiation and open angle of top and side vent. In
order research the change trends of relative humidity in northern greenhouse,
Xu et al. [13] propose a simulation and prediction model of humidity factors
based on RBF neural network with Gaussian radial basis function.

However, all of the parameters of conventional neural networks (such as50

BPNN [14], RBF [15], and Elman neural network [16]) are tuned iteratively
by using slow gradient-based learning algorithms, making the learning speed
of neural network far slower than required. Huang et al. [17] proposed simple
and efficient learning steps, both with increased network architecture and incre-
mental extreme learning machine (I-ELM). The method generates parameters55

of a hidden node randomly; it is easy to get the output weight by training the
single hidden layer feedforward neural networks (SLFNs). This makes the selec-
tion of the weights of the hidden neurons relatively fast in the case of SLFNs.
Hence, the overall computational time for the model structure selection and
actual training is often reduced by several hundred times than found in some60

conventional methods such as BP, RBF, and Elman neural network. Based on
I-ELM, several methods with the mechanism of growth hidden nodes are pro-
posed, such as convex I-ELM [18], enhanced I-ELM [19], optimal pruned ELM
[20], error-minimized ELM [21], two-stage ELM [22], and bidirectional ELM
[23].65

For incremental ELM methods such as I-ELM, CI-ELM, EM-ELM, and OP-
ELM, Huang et al. proved in [17] that with increasing hidden nodes, the residual
error of SLFNs decreased and bounded below by zero. This result makes it easy
for the user to determine the network structure by adding hidden nodes one
by one until achieving the expected training accuracy. However, experimental70

results show that the learning time of incremental ELM methods increase many
times compared with ELM. It is because I-ELM calculates n output weights one
by one when n hidden nodes are used. But ELM only calculates these n output
weights once when n hidden nodes are used.

To further improved the generalization performance of I-ELM, CB-ELM is75

proposed. Compared with the existing work already reported in literature, the
contributions and novelty of this paper reside in the following two aspects: (1)
a relationship was found between the network output error and the network
output weights in the proposed convex bidirectional extreme learning machine
(CB-ELM); and (2) CB-ELM was used to forecast temperature and humidity80

in solar greenhouse.

2. Proposed Convex Bidirectional ELM method

In this section, we first prove that CB-ELM with sine or sigmoid activation
function can universally approximate any continuous target functions in Sec-
tion 2.1. Then we discuss the learning effectiveness of CB-ELM in Section 2.2.85

Finally, the algorithm of CB-ELM is given in Section 2.3.
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2.1. Convex bidirectional ELM Methods

Lemma 2.1 ([18]) Given a SLFN with nonconstant piecewise continuous hidden
nodes H(x,a, b) , then for any continuous target function f and any function
sequence Hr

n(x) = H(x,an, bn) randomly generated based on any continuous90

sampling distribution, lim
n→∞

‖f−(1−βn)fn−1+βngn‖ = 0 holds with probability

1 if

βn =
< en−1,H

r
n − fn−1 >

‖Hr
n − fn−1‖2

(3)

Where en = f−fn denotes the residual error function for the current network
fn with n hidden nodes.
Theorem 2.2 Given a SLFN with any bounded nonconstant piecewise contin-
uous function H : R→ R for additive hidden nodes, for any continuous target
function f , randomly generated function sequence Hr

2n+1, and obtained error
feedback function sequence He

2n, n ∈ Z , lim
n→∞

‖f − (1−β2n−1)(1−β2n)f2n−2−
(1− β2n)β2n−1H2n−1 − β2nH

e
2n‖ = 0 holds with probability 1 if

He
2n = e2n−1(β2n−1)−1 + f2n−1 (4)

β2n =
〈e2n−1,H

e
2n − f2n−1〉

‖He
2n − f2n−1‖2

(5)

β2n+1 =

〈
e2n,H

r
2n+1 − f2n

〉
∥∥Hr

2n+1 − f2n

∥∥2 . (6)

Proof. We first prove that the sequence ‖e2n‖ is decreasing and bounded below95

by zero and it converges. Then we further prove lim
n→∞

‖e2n‖ = 0.

(a) Let HL = H1(a1, ...,aL, b1, ..., bL,x1, ...,xN ) denotes the hidden layer

output matrix. We have e2n−1 = f −
[
Hr

1,H
e
2, ...,H

r
2n−1

]
· [β1, β2, ..., β2n−1]

T
.

Let ∆ = ‖e2n−1‖2 − ‖e2n‖2, since ‖e2n‖ = ‖e2n−1 − β2n(He
2n − f2n−1)‖, we

have
∆ = ‖e2n−1‖2 − ‖e2n−1 − β2n(He

2n − f2n−1)‖2
= 2β2n 〈e2n−1,H

e
2n − f2n−1〉 − β2

2n‖He
2n − f2n−1‖2

= β2
2n‖He

2n − f2n−1‖2 ≥ 0.

(7)

In [17], Huang et al. have proved that ‖e2n‖2−
∥∥e2n −Hr

2n+1β2n+1

∥∥2 ≥ 0, thus
‖e2n‖ ≥ ‖e2n+1‖. We have ‖e2n−1‖ ≥ ‖e2n‖ ≥ ‖e2n+1‖, so the sequence {‖en‖}
is decreasing and bounded below by zero and {‖en‖} is convergent.

(b) Seen from the proof of the original I-ELM [17], the sequence {‖en‖}100

converges to zero as long as the three sufficient conditions below are satisfied:

(1)span
{

H (x,a, b) : (a, b) ∈ Rd ×R
}

is dense in L2;

(2)e2n⊥(e2n−1 − e2n);
(3)H is a nonconstant piecewise continuous function.

4
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Since conditions (1) and (3) have been given as the preconditions of the
theorem, in order to prove lim

n→∞
‖e2n‖ = 0, we need to prove e2n⊥(e2n−1− e2n).

Since ‖e2n‖ = ‖e2n−1 − β2n(He
2n − f2n−1)‖, we have

〈e2n,H
e
2n − f2n−1〉

= 〈e2n−1 − β2n(He
2n − f2n−1),He

2n − f2n−1〉
= 〈e2n−1,H

e
2n − f2n−1〉 − β2n‖He

2n − f2n−1‖2 = 0.
(8)

According to formula (8), we further have

〈e2n, e2n−1 − e2n〉
= 〈e2n, e2n + β2n(He

2n − f2n−1)〉 − ‖e2n‖2
= ‖e2n‖2 − β2n 〈e2n,H

e
2n − f2n−1〉 − ‖e2n‖2 = 0,

(9)

which means e2n⊥(e2n−1 − e2n). This completes the proof of theorem 2.2.105

Remark 1: Theorem 2.2 is established on the basis of reference 23 with a
convex optimization method.
Lemma 2.3 ([23]) Given a sigmoid or sine activation function h : R → R.
Given an error feedback function sequence Ge

2n(x,a, b), and Ge
2n = e2n−1(β2n−1)−1.

If the activation function h is sin or cosine, given a normalized function u : R→110

[0, 1]. If the activation function h is sigmoid, given a normalized function u :
R→ (0, 1]. Then for any continuous target function f , the randomly generated

function sequence Gr
2n+1, lim

n→∞

∥∥∥f −
(
Gr

1β1 + Ĝ
e

2(â2, b̂2)β2 + ...+ Gr
2n−1β2n−1 + Ĝ

e

2n(â2n, b̂2n)β2n

)∥∥∥ =

0 holds with probability 1 if

â2n = h−1(u(Ge
2n)) · x−1 (10)

b̂2n =
√
mse(h−1(u(Ge

2n)) · x−1 − â2n · x) (11)

Ĝ
e

2n = u−1(h(â2n · x + b̂2n)). (12)

Where h−1 and u−1 represent its reverse function respectively. If h is a sine115

activation function, h−1(·) = arcsin(·). If h is a sigmoid activation function,
h−1(·) = − ln( 1

(·) − 1).

According to formula (4) and Lemma 2.3, if

â2n = h−1(u(He
2n)) · x−1 (13)

b̂2n =
√
mse(h−1(u(He

2n)) · x−1 − â2n · x) (14)

Ĥ
e

2n = u−1(h(â2n · x + b̂2n)) (15)

Where h−1 and u−1 represent its reverse function respectively. If h is a sine
activation function, h−1(·) = arcsin(·). If h is a sigmoid activation function,
h−1(·) = − ln( 1

(·) − 1).120
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We have lim
n→∞

∥∥∥f −
(
Hr

1β1 + Ĥ
e

2(â2, b̂2)β2 + ...+ Hr
2n−1β2n−1 + Ĥ

e

2n(â2n, b̂2n)β2n

)∥∥∥ =

0.
Remark 2: According to formula (4), formula (7) can be rewritten as

‖e2n−1‖2 − ‖e2n‖2 = β2
2n‖He

2n − f2n−1‖2 = ‖e2n−1‖2
β2

2n

β2
2n−1

. (16)

Thus, we have
‖e2n‖2

‖e2n−1‖2
+

β2
2n

β2
2n−1

= 1. (17)

Formula(17) shows a relationship between the network output error and the
network output weights. This result is the same as that of [21].

2.2. Learning effectiveness of CB-ELM125

In this section, we analyze the learning effectiveness of CB-ELM.
According to formula (4), we have

1

|β2n−1|
=
‖He

2n − f2n−1‖
‖e2n−1‖

. (18)

If set τ2n−1 = |β2n−1| − |β2n|, we have

|β2n|
|β2n−1|

= 1− τ2n−1

|β2n−1|
. (19)

Considering formula (17) and formula (19), we have

‖e2n‖2

‖e2n−1‖2
+

(
1− τ2n−1

|β2n−1|

)2

= 1 (20)

and
‖e2n‖2

‖e2n−1‖2
+
τ2
2n−1

β2
2n−1

= 2
τ2n−1

|β2n−1|
. (21)

According to formula (18) and formula (21), we get

‖e2n‖2

‖e2n−1‖2
+
τ2
2n−1‖He

2n − f2n−1‖2

‖e2n−1‖2
= 2

τ2n−1 ‖He
2n − f2n−1‖

‖e2n−1‖
. (22)

We further have

τ2
2n−1‖He

2n − f2n−1‖2 − 2τ2n−1 ‖e2n−1‖ ‖He
2n − f2n−1‖+ ‖e2n−1‖2

= ‖e2n−1‖2 − ‖e2n‖2.
(23)

According to formula(9), we have

〈e2n, e2n−1〉 = ‖e2n‖2. (24)

6
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According to theorem 2.2, we have130

‖e2n−1 − e2n‖2
= ‖e2n−1‖2 + ‖e2n‖2 − 2 〈e2n−1, e2n〉
= ‖e2n−1‖2 − ‖e2n‖2.

(25)

Considering formula (23) and formula (25), we have

‖e2n−1‖ − τ2n−1 ‖He
2n − f2n−1‖ = ‖e2n−1 − e2n‖ . (26)

In [17], Huang et al. have proved that

‖e2n−1‖ − ‖e2n‖ = ‖e2n−1 − e2n‖ (27)

thus, from formula (26) and formula (27), we have

‖e2n−1‖ − τ2n−1 ‖He
2n − f2n−1‖ = ‖e2n−1‖ − ‖e2n‖ . (28)

Considering formula (18) and formula (28), we have

‖e2n‖
‖e2n−1‖

=
τ2n−1

|β2n−1|
(29)

and135

τ2
2n−1

|β2n−1|2
+

(
1− τ2n−1

|β2n−1|

)2

= 1. (30)

We get the solution τ2n−1

|β2n−1| = 1 and τ2n−1

|β2n−1| = 0.

According to theorem 2.2, we have ‖e2n−1‖ > ‖e2n‖, thus, we have ‖e2n‖
‖e2n−1‖ =

τ2n−1

|β2n−1| 6= 1. ‖e2n‖
‖e2n−1‖ = τ2n−1

|β2n−1| is only equal to 0.

Remark 3: When an SLFN with two hidden nodes is trained by CB-ELM, it
shows that ‖e1‖ − ‖e2‖ > 0, ‖e1‖ 6= 0. According to formula (29) and formula140

(30), we get ‖e2‖‖e1‖ = 0 and ‖e2‖ = 0. Thus, in theory, CB-ELM with two hidden

nodes can reduce network output error e to 0. This result is the same as that
of [23].

2.3. Pseudo-Code for CB-ELM Method

The proposed CB-ELM for SLFN can be summarized as follows: Algorithm145

CB-ELM. Given a training set {(xi, ti)}Ni=1 ⊂ Rn × R, activation function
H (a,x, b), the continuous target function f and maximum number of hidden
nodes Lmax, the expected learning accuracy ε,

Step Initialization: Let the number of hidden nodes L = 0 and the residual
error E = t, where t = [t1, ..., tN ].150

Learning step: While L < Lmax and ‖E‖ > ε , increase the number of hidden
nodes L by 1:L = L+ 1. If L ∈ {2n+ 1, n ∈ z} then

(a) Randomly assign hidden node of parameters (aL, bL) for new hidden
node L.

7
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(b) Calculate the output weight βL for the new hidden node :155

βL =
E · [E − (F −HL)]

T

[E − (F −HL)] [E − (F −HL)]
T

(31)

(c) Calculate the residual error after adding the new hidden node L : E =
(1− βL)E − βL (F −HL)

End if.
If L ∈ {2n, n ∈ z} then
(a) Calculate the error feedback function sequence HL:

HL =
E

βL
+ F (32)

(b) Calculate the input weight aL, bias bL and update HL for the new hidden160

node L based on (13), (14) and (15);
(c) Calculate the output weight βL for the new hidden node according to

(3);
(d) Calculate the residual error after adding the new hidden node L : E =

(1− βL)E − βL (F −HL).165

End if
End while

3. Experimental verification

For testing the generalization performance of CB-ELM, in this section, we
test it on 8 regression problems which are collected from the University of Cal-170

ifornia at Irvine (UCI) Machine Learning Repository and data of solar green-
house temperature and humidity. The simulations are conducted in Matlab
2010a running on Windows 7 with at 4 GB of memory and two Dual-Core E5300
(2.60 GHZ) processors. Learning algorithms are tested with I-ELM, CI-ELM,
B-ELM, SVM, BP, RBF and CB-ELM.175

3.1. Experiments of regression problems

Eight regression datasets are selected for the experiments and described in
Table 1. We preprocess all datasets in the same way.

CB-ELM, B-ELM, I-ELM and CI-ELM are compared in eight regression
problems. The number of hidden nodes is selected from 1 to 30 by step 1.180

Fig.1-4 show the RMSE averaged 60 experiments obtained by these methods
with sine type and sigmoidal type hidden nodes. It can be seen that CB-ELM
can obtain much better generalization performance than other methods when
a sigmoidal/sine hidden node is used. In practical applications, the residual
error of neural network reduces very slowly and that will lead to neural network185

growing procedure stop, but CB-ELM can reach expected learning accuracy at
early learning stage.

8
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Table 1: Specification of 8 benchmark data sets

Datasets Type Attribution Training datasets Testing datasets

Air Quality Regression 15 5358 4000

Bike Sharing Dataset Regression 16 9389 8000

Communities and Crime Regression 128 1000 994

Cuff-Less Blood Pressure Estimation Regression 3 7000 5000

Geographical Original of Music Regression 68 559 500

NoisyOffice Regression 216 110 106

Online News Popularity Regression 61 20000 19797

Parkinsons Telemonitoring Regression 26 3800 2075
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Figure 1: Testing RMES of different algorithms with sine hidden nodes in Air Quality, Bike
Sharing Dataset, Communities and Crime and Cuff-Less Blood Pressure Estimation

3.2. Acquiring greenhouse data

Experimental data are derived from the solar greenhouse of The Institu-
tion Vegetable and Fruit of Chinese Academy of Agricultural Sciences, which is190

located in 40◦ 07’, 116◦ 09’. Area of the solar greenhouse with geometric dimen-
sions (length = 50m; width = 6.4m; height of ridge = 3.24m) is 300 m2. The
north wall is a layered structure 0.6m thick constructed of brick, foam insulation
and an air layer. The roof is covered by a 0.12 mm thick plastic and a 22 mm
thick thermal insulting blanket laid over the roof each night in winter. Tomato195

is planted in the solar greenhouse. The cross-section of the solar greenhouse
structure and sensor positions inside the solar greenhouse are shown in Fig.5.

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 10 20 30
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Number of Hidden Nodes
(a)

Av
era

ge
 Te

stin
g R

MS
E f

or 
Air

 Q
ua

lity

 

 
CB−ELM
B−ELM
I−ELM
CI−ELM

0 10 20 30
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of Hidden Nodes
(b)

Av
era

ge
 Te

stin
g R

MS
E f

or 
Bik

e S
ha

rin
g D

ata
se

t

 

 
CB−ELM
B−ELM
I−ELM
CI−ELM

0 10 20 30

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of Hidden Nodes
(c)

Av
era

ge
 Te

stin
g R

MS
E f

or 
Co

mm
un

itie
s a

nd
 Cr

ime

 

 
CB−ELM
B−ELM
I−ELM
CI−ELM

0 10 20 30

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of Hidden Nodes
(d)

Av
era

ge
 Te

stin
g R

MS
E f

or 
Cu

ff−
Le

ss 
Blo

od
 Pr

es
su

re 
Es

tim
ati

on

 

 
CB−ELM
B−ELM
I−ELM
CI−ELM

Figure 2: Testing RMES of different algorithms with sigmoidal hidden nodes in Air Quality,
Bike Sharing Dataset, Communities and Crime and Cuff-Less Blood Pressure Estimation

During the experiment, the data acquisition system recorded the solar radi-
ation(HA2003, valid solar radiation range of 200 to 200000 lux, with precision
of ±7%), wind speed(NZ-FS, valid wind speed range of 0m/s to 32.4m/s, with200

precision of ±1 m/s), inside and outside the solar greenhouse temperature and
humidity(SHT10, valid temperature range of -40◦C to 123.8◦C, with precision
of ±0.5◦C; valid humidity range of 0% to 100%, with precision of ±5%). The
database was taken from 00:00 January 10th to 00:00 January 23th in 2015. It
consists of 1872 sets of data(the sampling time is ten minutes). Fig.6 represents205

the collected data in the solar greenhouse. The thermal insulting blanket is
rolled up at 9:00 and rolled down at 15:00.

Outside temperature, outside humidity, solar radiation and wind speed are
the main influencing factors of the solar greenhouse humidity and temperature.
The four main influencing factors and previous inside humidity and inside tem-210

perature form the input vector of the prediction model, as shown in Fig.7.

3.3. Prediction results of solar greenhouse environment model

To analyse the prediction performance of model based on CB-ELM, SVM,
BP, RBF and B-ELM are selected for comparison. According to the conclusion
in 2.2, the paper adopts sigmoidal activation function for B-ELM and CB-215

ELM, the number of hidden nodes for B-ELM and CB-ELM is 2. RBF neural
network uses Gaussian function as the radial basis function. The paper adopts
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Figure 3: Testing RMES of different algorithms with sine hidden nodes in Geographical
Original of Music, NoisyOffice, Online News Popularity and Parkinsons Telemonitoring

sigmoidal activation function for BP, the number of hidden nodes for BP is 20,
and BP neural network includes one hidden layer. In this paper, we choose the
RBF kernel (the width of the kernel is 9) as the kernel function of SVM. The220

performance indexes are calculated from the following equations:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(33)

MV = 1−
∑N
i=1(yi − ŷi)2

∑N
i=1(yi − ȳi)2

(34)

Where yi is the output of a predicting model, ŷi is world value, ȳi is average
of world value, N is number of sample.

The indexes root mean square error (RMSE) and model validity (MV)
shown in Tab 2 are used to evaluate the predicting capacity of models based225

on CB-ELM, SVM, BP, RBF and B-ELM. The test data fitting curve and
predicted error curve based on CB-ELM, SVM, BP, RBF and B-ELM are
shown in Fig.8-14. In BP, the temperature measurement error range was [-
9.3884◦C, 7.3089◦C], humidity testing error range was [-11.1974%, 25.022%]. In
RBF, the temperature measurement error range was [-12.3965◦C, 15.4553◦C],230

humidity testing error range was [-29.0195%, 21.8348%]. In SVM, the tem-
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Figure 4: Testing RMES of different algorithms with sigmoidal hidden nodes in Geographical
Original of Music, NoisyOffice, Online News Popularity and Parkinsons Telemonitoring

perature measurement error range was [-7.7105◦C, 6.1242◦C], humidity test-
ing error range was [-12.5948%, 16.4016%]. In B-ELM, the temperature mea-
surement error range was [-8.4898◦C, 6.6051◦C], humidity testing error range
was [-13.4115%, 18.7169%]. In CB-ELM, the temperature measurement error235

range was [-6.2279◦C, 5.9264◦C], humidity testing error range was [-13.2306%,
14.7741%].

Compared with BP, RBF, SVM and B-ELM, the prediction results of CB-
ELM show that root mean square error of temperature is reduced by 1.2757◦C,
2.5626◦C, 1.3389◦C, 1.2579◦C, root mean square error of of humidity is 2.2616%,240

3.9578% 2.0522%, 2.329%, and model validity of temperature and humidity are
improved by 0.0622, 0.1464, 0.0787, 0.0515 and 0.1206, 0.2443, 0.0995, 0.0653
respectively, so the CB-ELM is more effective, and it has certain reference value
for intelligent control of the solar greenhouse microclimate.

4. Conclusion245

In this paper, an improved learning algorithm called convex bidirectional
extreme learning machine (CB-ELM) is presented. Different from B-ELM, based
on a convex optimization method, CB-ELM recalculates the output weights of
the existing hidden nodes after a new hidden node is added. CB-ELM can
obtain a faster convergence rate and more compact network architecture while250
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Figure 5: Schematic diagram of the solar greenhouses and sensor positions

Table 2: Comparison result of different prediction methods

Temperature Humidity
Model

Root mean square error /◦C Model validity Root mean square error/% Model validity

BP 2.7166 0.9104 4.7604 0.8478

RBF 4.0035 0.8262 6.4566 0.7241

SVM 2.7798 0.8939 4.5510 0.8689

B-ELM 2.6988 0.9211 4.8278 0.9031

CB-ELM 1.4409 0.9726 2.4988 0.9684

retaining the simplicity and efficiency of IELM. CB-ELM is verified through
the experiment of predicting solar greenhouse temperature and humidity using
real-world data.
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Figure 10: Predicted curve for temperature and humidity in solar greenhouse based on SVM
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Figure 11: Predicted curve for temperature and humidity in solar greenhouse based on B-ELM
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Figure 12: Predicted curve for temperature and humidity in solar greenhouse based on CB-
ELM
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Figure 13: Predicted error curve for temperature in solar greenhouse based on five methods
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Figure 14: Predicted error curve for humidity in solar greenhouse based on five methods
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