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Abstract— In this paper we examine issues of deploying a camera 
network in a complex environment with obstacles. A camera 
network is composed of a distributed collection of cameras, each 
of which has sensing and communicating capabilities. To deploy 
such camera network, we present a kinetics based particle swarm 
optimization (PSO) approach. By introducing a kinetics-
constraint factor to standard PSO, the fields are covered such 
that each camera is repelled by both other cameras and obstacles, 
thereby forcing the network to spread throughout the monitored 
area. The coverage enhancement is fulfilled by finding an optimal 
orientation for each camera, guided by PSO optimizer. 
Experimental results show our method is able to achieve higher 
coverage rate than conventional methods. 

Keywords- PSO, Potential Fields, Camera Network, 
Deployment. 

I.  INTRODUCTION  
In recent years, there is increasing demand of large 

environments applications such as distributed video 
surveillance which multiple cameras’ tracking correspondence 
and collaborative activity/events recognition are required ]3,2,1[ .  
These multiple cameras are usually connected together to form 
a visual sensor network to support the wide area of monitor.  

An important quantifiable property of camera networks is 
the coverage: what visual data the camera network is 
physically capable of collecting. In other words, the physical 
area or volume of the scene has been covered by a camera 
network. To cover larger area, it usually requires adding more 
cameras. However, using an increasing number of cameras is 
impractical due to concerns over increased requirements in 
terms of computation and monetary cost, bandwidth and 
storage.  

Coverage problems in WSN(Wireless Sensor Network) can 
be modeled through the well-known art gallery problem [4]. 
Once the FOV of the camera sensors are known, art gallery 
problem can be used to determine the least number of nodes 
and their locations in order to provide full coverage of a 
monitored region. It has been shown in [4] that the problem can 
be solved in polynomial time in two dimensional environments. 
However, the solution for art gallery problem cannot be used in 
our context as we assume a randomly deployed camera 
network. Optimal node placement is a very challenging 
problem that has been proven to be NP-hard for most of the 
formulations of sensor deployment. To solve these NP hard 
issues, it usually requests some approximate solutions.  

Furthermore, in contrast to traditional sensor networks 
which assume omnidirectional sensors, cameras networks have 
its unique properties which introduce additional complexity to 
the sensor placement problem. In networks comprised of pan-
tilt-zoom(PTZ) cameras, the covered area can be actively 
controlled by changing the cameras’ parameters. This allows 
the overage area vary with this dynamic property. What is 
more, these cameras are usually required to install in complex 
scene with obstacles like walls or trees. And after installation, 
these cameras are usually position fix. With these properties, 
the cameras network cannot directly employ the most WSN 
deployment approaches.  

Recently, some works [5-6] address the issue of PTZ 
configurations for coverage optimization based on expectation-
maximization, or game theoretic approaches. 

Bernhard et al[7] proposed a resource aware camera 
network coverage enhancement method which employs generic 
based evolutionary algorithm. In their work, the frame rate and 
resolution are considered as a constriction for interesting 
points’ coverage. Jiang[8] etc proposed a potential field based 
algorithm to optimize the layout of camera network.  

Recently, evolution algorithms gain popularity especially 
when apply to sensors’ planning because they outperform 
many conventional sensors planning’s approaches. Work[9] 
studies evolution algorithms such as the gene, ant colony and 
particle swarm optimization (PSO) and applies them in the 
camera network coverage problem. Their study indicates that 
PSO gains the best performance among all evolution 
algorithms when applying to the camera network coverage. Xu 
et al[10] also develop a camera coverage maximization 
approach which directly employs standard PSO. In their 
performance evaluations, PSO outperforms the conventional 
sensor planning methods. From this, we can see PSO is a 
prominent algorithm when applies to coverage optimization. 

PSO uses maximized coverage to guide each camera to 
adjust to individuals best FOV. However, PSO based methods 
have some disadvantages. For example, as lack of inter-
cameras communication, the convergence procedure is long 
and requires each camera to try many times to find the 
individual and global optimized FOV. It will lead to a pretty 
long time for the PSO based approaches to convergence. To 
overcome this issue, we propose a kinetics-constraint factor to 
the standard PSO algorithm, and the fields are covered such 
that each camera is repelled by both other cameras and 
obstacles, thereby forcing the network to spread throughout the 
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monitored area. In this way, the PSO is guided and therefore 
speeds up to convergence. 

II. MODELLING THE VIDEO NETWORK COVERAGE PROBLEM 
Usually, a PTZ camera’s parameters can be defined as pan, 

tilt angle and zoom distance. In our application, the 3D visual 
is casted to 2D plane and the maximum zoom is limited to a 
given distance by considering the minimal resolution required. 
Thus, the camera’s FOV is modeled as a simple 2D disc.  Fig 1 
illustrates a simple camera network consisted by two cameras.  
The physical volume covered by a camera is FOV and the FOV 
is a planar 2D sector shape structure. The viewpoint of each 
camera is γ and maximized imaging distance is R. The 

orientation of camera i is defined as iη . 
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Figure 1 two cameras and one obstacle’s camera network 

Comparing with traditional sensor network, the camera 
sensor network has below two unique characteristics: 

1) There are a large number of cameras in the camera 
network and they are mounted at random locations. The 
original positions are fixed but each camera is PTZ type and 
able to adjust the orientation freely )20[ π− . 

2) The camera’s FOV is a sector shape and camera can 
only sense the targets within the FOV. Thus camera is not a 
conventional omnidirectional sensor. 

Therefore, for each camera i can be modeled as position 
and orientation on the plane ],,[ iii yx η  with the 
perpendicular orientation. 

To align with PSO, assume there are N particles, and their 
current positions are ),...,,( 21 nxxxX  and the velocities are 

defined as ),...,,( 21 nvvvV . The best previous position 
encountered by particle (i) is denoted as: 
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where ))(( tXf  is the optimized goal for the whole smarm 
best positions are denoted as )(tPg  defined as below: 
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From time t to time t+1, the particles’ positions and 
velocities are defined as: 
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where )(tδ  is the constriction coefficient, used to 

determine the convergence speed; 1C  and 2C  are the 
cognitive and social parameter, respectively, to decide local 
and global optimization weights; and )(1 tr , )(2 tr , are random 
variables uniformly distributed in [0, 1], using for the evolution 
purpose. 

If each camera is treated as a particle, then the coverage 
rate of monitor area is used as PSO smarm best positions and 
the maximized coverage area of each camera’s orientation to 
achieve maximized non-overlapped FOV is used as PSO 
individual best position. The PSO can apply on the camera 
coverage development problem.  

However, the cameras are not ‘free particle’. They must 
follow kinematic constraints in the context of application 
which will be addressed in below section. 

III. KINETICS AND THE CONTROL LAW 
 According to the properties of fixed position and semi-

directional sensing, cameras have both kinematic and dynamic 
constraints. They are only able to adjust the orientations to 
enlarge the view point.  In this section, we examine the control 
law for individual camera and how cameras interact with each 
other. 

Potential fields are a commonly used and well understood 
method in mobile robotics, where they are typically applied to 
tasks such as local navigation and obstacle avoidance. 

For camera development, we need redefine the motion and 
control law which fit for this semi-directional sensor. We 
divide the potential field into two components: force due to 
obstacle and force due to other cameras. To illustrate control 
law for example we show in Fig 2.  
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    Figure 2 control law demonstration for two cameras’ 

case 

Taking fig 2 for example, obstacle repels camera 1 by 
force 1F , while 1F decomposes into two vectors named 

"1F and '1F , representing the parallel and orthogonal force to 
camera1’s orientation. Overlapped area "θ  with camera2 also 
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gives a repulsive force 2F to camera1, decomposing into two 
forces as '2F and "2F , similar with 1F . 

If a camera has received multiple K  forces, the total forces 

are summary of each force, denoted as: ∑
=

=
K

i
iFF

1

. 

The parallel and orthogonal forces are donated as 
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According to control law, all cameras are fixed. The all 
forces parallel to camera’s orientation have been eliminated by 
the kinematic constraints. Thus, we can ignore "F . In contrast, 
the orthogonal force 'F  is key force to make camera adjust 
angle to enlarge coverage. In Fig 2, '1F is stronger than '2F . 
As a result, camera1 tends to rotate to clockwise to avoid the 
repulsive force. 

The strength of each virtual force is determined by size of 
overlapping area. The larger of the overlapping area, the 
stronger repulsive force a camera will receive from this area 
and vice versa. Thus, we define the strength of virtual force 

stren
iF  as equation: 
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where λ  is const parameter used to adjust with the size of 
FOV. If a camera receives virtual force strength is smaller than 
a const parameter ζ , then we treat this camera as standstill. 

The strength of virtual force of individual camera can be 
treated as criterion of whether a camera has reached an 
optimized orientation with their neighbors. The individual 
strength could not be virtual zero while the orthogonal forces 
should reach a virtual zero which means it gains balances 
among its neighbors. 

IV. VIRTUAL FORCE GUIDED PSO FOR VIDEO NETWORK 
DEPLOYMENT 

With this new criterion, PSO needs to be modified and a 
new guide factor has been added to standard PSO. The 
equation 4 is modified as below: 
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where stren
iFt ')( ⋅ψ  is the new added guide factor to PSO 

which depends on the orthogonal force and a time varying 
factor )(tψ  which defined as below: 

MAXSTEP
tt −= 1)(ψ                         (6) 

The factor )(tψ  is defined as descending with time which 
controls the weight of guide factor. With the time descending 
guide factor, in the begging of PSO iteration, the guide factor 
acts as main contributor to spread out the camera network and 
in the end phase of optimization, the PSO takes advantage to 
global optimization goal to adjust cameras’ orientations until 
meeting convergence criteria.  

In standard PSO, the camera will rotate the orientation 
randomly to seek the best position. The seeking optimization 
progress depends on the randomly behaviors which is not 
straightforward and cost lots of time. 

After applying the new criterion, a camera has capability to 
know the neighbors and obstacles’ position information and 
tends to avoid the overcalling when each time to adjust the 
orientation. The adjustment of orientation of camera is 
purposive and can avoid the problem that time costly 
optimization seeking. The algorithm is described as below. 

  Pseudo-code of the proposed PSO based approach 

Input: N (number of cameras),  W(monitor area) 

Step 1.  Randomly generated cameras in various positions and 
orientations, obstacles in various positions and shapes. 

Step 2. While the predefined criteria does not match 

Step 3. For each camera 1=i to N  

        Step 3.1.    ],,[ iii yx η probe its neighbors and obstacles and 

get the neighbors  and obstacles collections iS . 

       Step 3.2.  For each overlapping area belong to iS  

              Step 3.2.1 Measure the overlapping area and get the centroid 

of each overlapping area 
"θ or 

'θ . 

              Step 3.2.2. if 
"θ or 

'θ is not empty 

              Step 3.2.3.  Measure the repel force F1 and F2 and virtual 
force F 

              Step 3.2.4. Determine the rotate direction  

       Step 3.3. calculate 
stren

iF as equation 6 

       Step 3.4. update the orientation with equation (8) 

       Step 3.5. Measure camera i coverage iP , if 1−> ii PP  then 

update iη  as pη  

       Step 3.6. Measure monitor area coverage rate iC  If 

1−> ii CC  then update ],,[ 21 iηηη  as the gi ],,[ 21 ηηη  

Step 4. End for 

Step 5. End while 

Step 6. Using the global best orientations to set each camera’ 
orientation and output the coverage. 
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V. EXPERIMENTS RESULT 
We have conducted a series of simulation experiments 

aimed at both validating and investigating the use of our 
algorithm for the camera network deployment problem.  Two 
metrics are of particular interest: coverage(what the monitor 
area covered by the cameras network) and time( how long 
does the network take to deploy). 

Our experiments were conducted in simulation software 
which derives from OpenCV lib on a PC with 1.7G CPU clock 
and 2G ram. In this scene, the simulated monitoring area is a 
800X600m rectangle area and there are 100 cameras deployed 
randomly in this area. All cameras are same type of PTZ and 
have semi-directional FOV with view angle γ of π3.0 . The 
cameras’ initialized orientations are randomly set and the 
maximized distance sensed is 80m. The PSO parameters are 
set with same setting of work[10] as c1=0.729,C2=1.49445. 

We calculate the idea maximum coverage by assuming that 
there is no overlap among any cameras or obstacles in a 
camera network. The idea maximum coverage maxC  in this 

scenario is: 2
max 2

RNC ⋅⋅= π
π
γ

. 

In our setting, 69.8% is the maximum coverage that 100 
cameras can cover this monitored area without any 
overlapping. 

According to this setting, we implement the potential field 
based camera development (PFOFSA) in work[8] and latest 
PSO based camera development (STDPSO) in work [10] and 
we conduct the experimental comparison with these closed 
works. As STDPSO will take quite long iterations to reach, we 
set the all iteration step as 100 for all tests.  

Firstly, we have randomly deployed 5 various shape 
obstacles in the scene, including 2 circles and 3 rectangles. 
The cameras will be installed to avoid the obstacle, but the 
FOV can overlap with these obstacles. We verify our method 
and compare with STDPSO and PFOFSA in this complex 
scene.  

Fig 3 shows deployment results for all four methods when 
there are 5 obstacles existed in same scene. The initial 
deployment coverage is 51.1% due to the obstacles. The 
STDPSO has achieved 49.4% and 57.2% coverage. After 60 
iterations of PSO, our proposed method achieves 59.2% 
coverage, outperforming the STDPSO and PFOFSA 2% and 
1.8% on coverage perspective in 100 times iterations. We also 
notice that with the more obstacles adding into the scene, the 
coverage improvement is slow down. That is because the 
coverage cannot be liner increasing due to capability of the 
given scene.   
 

  
             Initial layout                          STDPSO 

  
            PFOFSA                         Our approach 

Figure 3  Experiment Result Comparison (with 5 obstacles)  
 

To measure the result quantitatively, we test each method 
100 times and get the average coverage rate and list the result 
in table 1. From table 1, we can see when 100 cameras are 
randomly deployed in the monitoring area, the coverage are 
averagely 42.5% and 51.1% with without obstacles and with 5 
obstacles respectively.  Our approach outperforms STDPSO 
and PFOFSA regardless obstacles existed in scene or not. 

 
                                              TABLE I 
100 TIMES AVERAGE QUANTITATIVE RESULTS COMPARISON (100 
ITERATIONS) 

method Without obstacle 
With 5 

obstacles  

     Random  42.5% 51.1% 
     STDPSO 49.4% 57.2% 
     PFOFSA 52.9% 57.4% 

Our approach  54.6% 59.2% 
 

In the following experiment, we aim to valid the 
deployment time with coverage rate. 

 

 
   Figure 4, coverage plot with iterations 
 
Fig 4 shows a plot of coverage versus deployment iteration. 

From this plot, it is apparent that the rate of coverage increases 
with iteration, and that the total coverage remained stable 
when the experiment was terminated, after 100 seconds. The 
potential field based PFOFSA has fastest deployment speed, 
not surprisingly. It is because this method is a local 
optimization method which considers a node and its neighbors 
only. However, this non-global optimized approach is easy to 
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trap local optimization and prevent it achieving higher 
coverage. Thus, PFOFSA remains about 52% and stops. In 
contrast, PSO based methods such as STDPSO and our 
approach have a steady optimization trend. However, 
STDPSO coverage fluctuates between 0.48 and 0.49 and 
increasing very slowly. That is PSO usually requires quite 
longer time to achieve the same optimization goal because 
each time the camera adjusts orientation is tentative and 
random.  As the guide factor added in PSO, our method has 
determined directions of adjusting orientation and with the 
time the guide factor will fade the impacts, thus it adjusts the 
initial layout and continue global optimize with PSO. 

The rest experiments target to exam the relationship of 
coverage and the critical parameters used in our approach. 
Number of camera, the maximized sense length R, and initial 
layout are investigated for the impact to coverage. 

Firstly, we address the impacts of number of camera to the 
coverage. Obviously, the more cameras will lead to higher 
coverage while we examine the coverage improvement by 
adding more cameras in the monitoring area. 

Fig 5 illustrates the coverage with the number of cameras. 
From 60 to 200 cameras, we add 20 cameras each time and 
measure the coverage of random deployment and after 
applying our approach. Fig 5 indicates both random 
deployment and our approach have almost liner coverage 
increase with the cameras’ number. It also implies that our 
approach works well both in sparse and dense camera scene. 
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Figure 5, coverage results on different number of cameras 
 
Furthermore, the depth of shooting is a key parameter. A 

constraint on the minimum required resolution translates 
directly into an upper limit on depth. In our simulation, we 
adjust the radius of sector to simulate the impacts of upper 
limit of depth. From 40 to 140, the radius has been updated by 
20 steps. From fig 6, we can see with very short depth, the 
camera network almost has no overlapping. As a result, no 
improvement is made from the randomly deployment. 
However, with the increase of depth, the overlapping area 
increases also, and our approach is able to repel camera each 
other and lead to a steady increase of coverage improvement.  
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Figure 6, coverage results on different depth of shooting 
 

VI. CONCLUSION 
In this paper we present a formulation and an approximation 

method for the camera network coverage optimization. We 
consider the property of PTZ cameras and the neighboring 
relationship among cameras. With a modified PSO based 
evolution algorithm, we demonstrate that the feasible and 
near-optimal solutions can be found for a large number of 
cameras in a complex scene scenario in short time. 
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