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  Preface 

 This sixth edition of  Simulation with Arena  has the same goal as the fi rst fi ve editions: 

to provide an introduction to simulation using Arena. It is intended as an entry-

level simulation text, most likely in a fi rst course on simulation at the undergraduate 

or beginning graduate level. However, material from the later chapters could be 

incorporated into a second graduate-level course. The book can also be used to learn 

simulation independent of a formal course (more specifi cally, by Arena users). The 

objective is to present the concepts and methods of simulation using Arena as a vehicle 

to help the reader reach the point of being able to carry out effective  simulation 

modeling, analysis, and projects using the Arena simulation system. While we’ll 

cover most of the capabilities of Arena, the book is not meant to be an exhaustive 

reference on the software, which is fully documented in its extensive online reference 

and help system. 

 Included in Appendix D are instructions on how to download the latest academic 

version of Arena and all the examples in the text. The website for this download and for 

the book in general is www.mhhe.com/kelton. There is no CD supplied with the book; 

everything (including the Arena academic software and example fi les discussed in the 

book) is available from this site. We encourage all readers to visit this site to learn of 

any updates or errata for the book or example fi les, possible additional exercises, and 

other items of interest. At the time of this book’s writing, the current version of Arena 

was 14.5, so the book is based on that. However, the book will continue to be useful for 

learning about later versions of Arena, the academic versions of which may be posted on 

the book’s website as well for downloading. The site also contains material to support 

instructors who have adopted the book for use in class, including downloadable lecture 

slides and solutions to exercises; instructors who have adopted the book should contact 

their local McGraw-Hill representative for authorization (see www.mhhe.com to locate 

local representatives). Software support is supplied only to the registered instructor via the 

instructions provided at the book’s website: www.mhhe.com/kelton. Instructors adopting 

this book for classroom use will receive a free lab license from Rockwell Automation; 

please visit the Arena website, www.arenasimulation.com, for more information on this 

program or contact Arena Support at arena-support@ra.rockwell.com. 

 We’ve adopted an informal, tutorial writing style centered around carefully crafted 

examples to aid the beginner in understanding the ideas and topics presented. Ideally, 

readers would build simulation models as they read through the chapters. We start by 

having the reader develop simple, well-animated, high-level models, and then progress 

to advanced modeling and analysis. Statistical analysis is not treated as a separate 

topic, but is integrated into many of the modeling chapters, refl ecting the joint nature of 

these activities in good simulation studies. We’ve also devoted the last two chapters to 

statistical issues and project planning to cover more advanced issues not treated in our 

modeling chapters. We believe that this approach greatly enhances the learning process 

by placing it in a more realistic and (frankly) less boring setting. 
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 We assume neither prior knowledge of simulation nor computer-programming 

experience. We do assume basic familiarity with computing in general (fi les, folders, 

basic editing operations, etc.), but nothing advanced. A fundamental understanding of 

probability and statistics is needed, though we provide a self-contained refresher of 

these subjects in Appendices B and C. 

 Here’s a quick overview of the topics and organization. We start in Chapter 1 with 

a general introduction, a brief history of simulation, and modeling concepts. Chapter 2 

addresses the simulation process using a simple simulation executed by hand and briefl y 

discusses using spreadsheets to simulate very simple models (primarily static rather than 

dynamic simulations). In Chapter 3, we acquaint readers with Arena by examining a 

completed simulation model of the problem simulated by hand in Chapter 2, rebuilding 

it from scratch, going over the Arena user interface, and providing an overview of 

Arena’s capabilities; we also provide a small case study illustrating how knowledge of 

just these basic building blocks of Arena allows one to address interesting and realistic 

issues. 

 Chapters 4 and 5 advance the reader’s modeling skills by considering one “core” 

example per chapter, in increasingly complex versions to illustrate a variety of modeling 

and animation features; the statistical issue of selecting input probability distributions 

is also covered in Chapter 4 using the Arena Input Analyzer, and a non-queueing 

(inventory) model is at the end of Chapter 5. 

 Chapter 6 uses one of the models in Chapter 5 to illustrate the basic Arena capabilities 

of statistical analysis of output, including single-system analysis, comparing multiple 

scenarios (confi gurations of a model), and searching for an optimal scenario; this 

material uses the Arena Output and Process Analyzers, as well as OptQuest for Arena. 

 In Chapter 7, we introduce another “core” model, again in increasingly complex 

versions, and then use it to illustrate statistical analysis of long-run (steady-state) 

simulations. Alternate ways in which simulated entities can move around is the subject of 

Chapter 8, including material-handling capabilities, building on the models in Chapter 7. 

Chapter 9 digs deeper into Arena’s extensive modeling constructs, using a sequence of 

small, focused models to present a wide variety of special-purpose capabilities; this is 

for more advanced simulation users and would probably not be covered in a beginning 

course. 

 In Chapter 10, we describe a number of topics in the area of customizing Arena 

and integrating it with other applications like spreadsheets and databases; this includes 

using Visual Basic for Applications (VBA) with Arena. Also included in this chapter 

is an introduction to Arena’s string functionality as well as a brief overview of Arena’s 

new Visual Designer Application. Chapter 11 shows how Arena can handle continuous 

and combined discrete/continuous models, such as fl uid fl ow. Chapter 12 covers more 

advanced statistical concepts underlying and applied to simulation analysis, including 

random-number generators, variate and process generation, variance-reduction 

techniques, sequential sampling, and designing simulation experiments. Chapter 13 

provides a broad overview of the simulation process and discusses more specifi cally the 

issues of managing and disseminating a simulation project. 
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 Appendix A describes a complete modeling specifi cation from a project for  The 
Washington Post  newspaper. Appendix B gives a complete but concise review of the 

basics of probability and statistics couched in the framework of their role in simulation 

modeling and analysis. The probability distributions supported by Arena are detailed in 

Appendix C. Installation instructions for the Arena academic software can be found in 

Appendix D. All references are collected in a single References section at the end of the 

book. The index is extensive, to aid readers in locating topics and seeing how they relate 

to each other; the index includes authors cited. 

 As mentioned, the presentation is in “tutorial style,” built around a sequence of 

carefully crafted examples illustrating concepts and applications, rather than in the 

conventional style of stating concepts fi rst and then citing examples as an afterthought. 

So it probably makes sense to read (or teach) the material essentially in the order 

presented. A one-semester or one-quarter fi rst course in simulation could cover all the 

material in Chapters 1–8, including the statistical material. Time permitting, selected 

modeling and computing topics from Chapters 9–11 could be included, or some of the 

more advanced statistical issues from Chapter 12, or the project-management material 

from Chapter 13, according to the instructor’s tastes. A second course in simulation 

could assume most of the material in Chapters 1–8, then cover the more advanced 

modeling ideas in Chapters 9–11, followed by topics from Chapters 12 and 13. For 

self-study, we’d suggest going through Chapters 1–6 to understand the basics, getting 

at least familiar with Chapters 7 and 8, then regarding the rest of the book as a source 

for more advanced topics and reference. Regardless of what’s covered, and whether the 

book is used in a course or independently, it will be helpful to follow along in Arena on 

a computer while reading this book. 

 The academic version of Arena (see Appendix D for instructions on downloading and 

installing the software), has all the modeling and analysis capabilities of the complete 

commercial version, but limits model size. All the examples in the book, as well as all 

the exercises at the ends of the chapters, will run with this academic version of Arena. 

The download also contains fi les for all the example models in the book, as well as 

other support materials. This software can be installed on any university computer as 

well as on students’ computers. It is intended for use in conjunction with this book for 

the purpose of learning simulation and Arena. It is not authorized for use in commercial 

environments. 

 In revising the book to this sixth edition, several important aspects changed. 

We’ve moved to Arena version 14.5 (from version 12.0 in the prior edition), which 

contains many new and useful features; all text and screenshots have been accordingly 

updated, as have all of the example fi les (in the Book Examples folder that’s available 

for download as a .zip-fi le archive from the book’s website, www.mhhe.com/kelton). 

There are now additional end-of-chapter Exercises, but we’ve retained all of the prior 

Exercises using the same numbering as before so the new Exercises just continue in 

the numbering scheme within each chapter; many prior Exercises have been updated 

and improved. As before, solutions to the Exercises are available to instructors who’ve 

adopted the book for use in a formal course, as are PowerPoint slides that have also 
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been updated to go along with this sixth edition. The most extensive changes in the 

book are in Chapter 10, which discusses the new Arena 14.5 capabilities for direct Read/

Write from external fi les, as well as the Visual Designer application, which includes the 

Dashboarding and 3D animation tools. Appendix D, on downloading and installing the 

academic version of Arena 14.5, has also been mostly rewritten to describe the new and 

simplifi ed procedures; Rockwell Automation will again provide the academic version 

free of charge, and there is no CD/DVD for the book. Of course, all known errata from 

the prior edition have been corrected and implemented. 

 As with any labor like this, there are a lot of people and institutions that supported 

us in a lot of different ways. First and foremost, Lynn Barrett, formerly of Rockwell 

Automation, really made all fi ve of the prior editions of this book happen by reading 

and then fi xing our semi-literate drafts, orchestrating the composing and production, 

reminding us of what month (and year) it was, and tolerating our tardiness and fussiness 

and quirky personal-hyphenation habits; her husband, Doug, also deserves our thanks 

for putting up with her putting up with us. Rockwell Automation provided resources in 

the form of time, software, hardware, technical assistance, and moral encouragement; 

we’d particularly like to thank the Arena development team—Mark Glavach, Cynthia 

Kasales, Ivo Peterka, Zdenek Kodejs, Jon Qualey, Martin Skalnik, Martin Paulicek, 

Hynek Frauenberg, and Karen Rempel—as well as Judy Jordan, Jonathan C. Phillips, 

Nathan Ivey, Darryl Starks, Rob Schwieters, Gail Kenny, Tom Hayson, Carley Jurishica, 

Susan Strickling, and Ted Matwijec. Thanks also to previous development members, 

including David Sturrock, Norene Collins, Cory Crooks, Glenn Drake, Tim Haston, 

Judy Kirby, Frank Palmieri, David Takus, Christine Watson, Vytas Urbonavicius, Steven 

Frank, Gavan Hood, Scott Miller, and Dennis Pegden. And a special note of thanks goes 

to David Sturrock for his writing and infl uence as a co-author of the third and fourth 

editions, and to Deborah Sadowski for her co-authoring of the fi rst two editions. 

 We are also grateful to Gary Lucke and Olivier Girod of  The Washington Post  
for allowing us to include a simulation specifi cation that was developed for them by 

Rockwell Automation as part of a larger project. Special thanks go to Peter Kauffman 

for his designs of the covers of the fi rst fi ve editions, and to Jim McClure for his cartoon 

and illustration design. And we appreciate the skillful motivation and gentle nudging 

by our editors at McGraw-Hill, Raghu Srinivasan and Lorraine Buczek. Reviewers 

of earlier editions, including Bill Harper, Mansooreh Mollaghasemi, Barry Nelson, 

Ed Watson, and King Preston White Jr., provided extremely valuable input and help, 

ranging from overall organization and content all the way to the downright subatomic. 

Thanks are also due to the many individuals who have used part or all of the early 

material in classes (as well as to their students who were subjected to early drafts), as 

well as a host of other folks who provided all kinds of input, feedback and help: Christos 

Alexopoulos, Ken Bauer, Diane Bischak, Sherri Blaszkiewicz, Eberhard Blümel, Mike 

Branson, Jeff Camm, Colin Campbell, John Charnes, Chun-Hung Chen, Hong Chen, 

Jack Chen, Russell Cheng, Christopher Chung, Frank Ciarallo, John J. Clifford, Mary 

Court, Tom Crowe, Halim Damerdji, Pat Delaney, Mike Dellinger, Darrell Donahue, 

Ken Ebeling, Neil Eisner, Gerald Evans, Steve Fisk, Michael Fu, Shannon Funk, Fred 

Glover, Dave Goldsman, Byron Gottfried, Frank Grange, Don Gross, John Gum, Nancy 

kel01315_fm_i-xx.indd   xviiikel01315_fm_i-xx.indd   xviii 19/12/13   11:59 AM19/12/13   11:59 AM



Preface     xix

Markovitch Gurgiolo,Tom Gurgiolo, Jorge Haddock, Bill Harper, Joe Heim, Michael 

Howard, Arthur Hsu, Alberto Isla, Eric Johnson, Elena Joshi, Keebom Kang, Parastu 

Kasaie, Elena Katok, Jim Kelly, Teri King, Gary Kochenberger, Patrick Koelling, David 

Kohler, Wendy Krah, Bradley Kramer, Michael Kwinn Jr., Averill Law, Larry Leemis, 

Marty Levy, Vladimir Leytus, Bob Lipset, Tom Lucas, Gerald Mackulak, Deb Mederios, 

Brian Melloy, Mansooreh Mollaghasemi, Ed Mooney, Jack Morris, Jim Morris, Charles 

Mosier, Marvin Nakayama, Dick Nance, Barry Nelson, James Patell, Cecil Peterson, 

Dave Pratt, Mike Proctor, Madhu Rao, James Reeve, Steve Roberts, Paul Rogers, Ralph 

Rogers, Tom Rohleder, Jerzy Rozenblit, Salim Salloum, G. Sathyanarayanan, Bruce 

Schmeiser, Carl Schultz, Thomas Schulze, Marv Seppanen, Michael Setzer, David 

Sieger, Robert Signorile, Wenjing Song, Julie Ann Stuart, Jim Swain, Mike Taaffe, 

Laurie Travis, Reha Tutuncu, Wayne Wakeland, Ed Watson, Michael Weng, King 

Preston White Jr., Jim Wilson, Irv Winters, Chih-Hang (John) Wu, James Wynne, and 

Stefanos Zenios. 

 

    W.     David     Kelton   

 University of Cincinnati 

  david.kelton@uc.edu  

 

    Randall     P.     Sadowski   

 Happily Retired, Inc. 

  randy.sadowski@gmail.com  

 

    Nancy     B.     Zupick   

 Rockwell Automation 

  nbzupick@ra.rockwell.com   

 

 

kel01315_fm_i-xx.indd   xixkel01315_fm_i-xx.indd   xix 19/12/13   11:59 AM19/12/13   11:59 AM



McGraw-Hill Education’s Valuable Digital Learning Tools

McGraw-Hill Connect® Engineering provides online presentation, assignment, 

and assessment solutions. A robust set of questions and activities are presented 

and aligned with the textbook’s learning outcomes. Integrate grade reports easily 

with Learning Management Systems (LMS), such as WebCT and Blackboard—and much more. 

ConnectPlus® Engineering provides students with all the advantages of Connect Engineering, plus 24/7 

online access to a media-rich eBook. www.mcgrawhillconnect.com

McGraw-Hill LearnSmart® is available as a 

standalone product or an integrated feature of 

McGraw-Hill Connect Engineering. It is an adaptive learning system designed to help students learn 

faster, study more effi ciently, and retain more knowledge for greater success. LearnSmart assesses a 

student’s knowledge of course content through a series of adaptive questions. It pinpoints concepts the 

student does not understand and maps out a personalized study plan for success. This innovative study 

tool also has features that allow instructors to see exactly what students have accomplished and a built-in 

assessment tool for graded assignments. www.learnsmartadvantage.com

Powered by the intelligent and adaptive LearnSmart 

engine, SmartBook™ is the fi rst and only continuously 

adaptive reading experience available today. Distinguishing what students know from what they don’t, 

and honing in on concepts they are most likely to forget, SmartBook personalizes content for each 

student. Reading is no longer a passive and linear experience but an engaging and dynamic one, where 

students are more likely to master and retain important concepts, coming to class better prepared. 

www.learnsmartadvantage.com

This text is available as an eBook at www.CourseSmart.com. At 

CourseSmart your students can take advantage of signifi cant savings off 

the cost of a print textbook, reduce their impact on the environment, and 

gain access to powerful web tools for learning. CourseSmart eBooks can be viewed online or downloaded 

to a computer.

kel01315_fm_i-xx.indd   xxkel01315_fm_i-xx.indd   xx 19/12/13   11:59 AM19/12/13   11:59 AM



1

     CHAPTER 1 

 What Is Simulation? 

   Simulation  refers to a broad collection of methods and applications to mimic the be-

havior of real systems, usually on a computer with appropriate software. In fact, “sim-

ulation” can be an extremely general term since the idea applies across many fi elds, 

industries, and applications. These days, simulation is more popular and powerful than 

ever since computers and software are better than ever. 

 This book gives you a comprehensive treatment of simulation in general and the 

Arena simulation software in particular. We cover the general idea of simulation and 

its logic in Chapters 1 and 2 (including a bit about using spreadsheets to simulate) and 

Arena in Chapters 3–9. We don’t, however, intend for this book to be a complete refer-

ence on everything in Arena (that’s what the help systems and Arena Product Manuals 

in the software are for), or on everything on the statistical design and analysis of sim-

ulations (there are whole books for that, though we do cover some of this throughout, 

especially in Chapter 6, Section 7.2, and Chapter 12). In Chapter 10, we show you how 

to integrate Arena with external fi les and other applications and give an overview of 

some advanced Arena capabilities. In Chapter 11, we introduce you to continuous and 

combined discrete/continuous modeling with Arena. Chapters 12 and 13 cover issues 

related to planning and interpreting the results of simulation experiments, as well as 

managing a simulation project. Appendix A is a detailed account of a simulation project 

carried out for  The Washington Post  newspaper. Appendix B provides a quick review 

of probability and statistics necessary for simulation. Appendix C describes Arena’s 

probability distributions, and Appendix D provides software installation instructions. 

After reading this book, you should be able to model systems with Arena and carry out 

effective and successful simulation studies. 

 This chapter touches on the general notion of simulation. In Section 1.1, we de-

scribe general ideas about how you might study models of systems and give examples of 

where simulation has been useful. Section 1.2 contains more specifi c information about 

simulation and its popularity, mentions some good things (and one bad thing) about 

simulation, and attempts to classify the many different kinds of simulations that people 

do. In Section 1.3, we talk a little bit about software options. Finally, Section 1.4 traces 

changes over time in how and when simulation is used. After reading this chapter, you 

should have an appreciation for where simulation fi ts in, the kinds of things it can do, 

and how Arena might be able to help you do them. 

    1.1 Modeling 

  Simulation, like most analysis methods, involves systems and models of them. So in 

this section, we give you examples of models and describe options for studying them to 

learn about the corresponding system. 
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2     Chapter 1

  1.1.1 What’s Being Modeled? 

 Computer simulation deals with models of systems. A  system  is a facility or process, 

either actual or planned, such as:

    ■  A manufacturing plant with machines, people, transport devices, conveyor belts, 

and storage space.  
   ■  A bank with different kinds of customers, servers, and facilities like teller win-

dows, automated teller machines (ATMs), loan desks, and safety deposit boxes.  
   ■  An airport with departing passengers checking in, going through security, going 

to the departure gate, and boarding; departing fl ights contending for push-back 

tugs and runway slots; arriving fl ights contending for runways, gates, and arrival 

crew; arriving passengers moving to baggage claim and waiting for their bags; 

and the baggage-handling system dealing with delays, security issues, and equip-

ment failure.  
   ■  A distribution network of plants, warehouses, and transportation links.  
   ■  An emergency facility in a hospital, including personnel, rooms, equipment, sup-

plies, and patient transport.  
   ■  A fi eld-service operation for appliances or offi ce equipment, with potential cus-

tomers scattered across a geographic area, service technicians with different 

qualifi cations, trucks with different parts and tools, and a central depot and dis-

patch center.  
   ■  A computer network with servers, clients, disk drives, tape drives, printers, net-

working capabilities, and operators.  
   ■  A freeway system of road segments, interchanges, controls, and traffi c.  
   ■  A central insurance claims offi ce where a lot of paperwork is received, reviewed, 

copied, fi led, and mailed by people and machines.  
   ■  A criminal-justice system of courts, judges, support staff, probation offi cers, pa-

role agents, defendants, plaintiffs, convicted offenders, and schedules.  
   ■  A chemical-products plant with storage tanks, pipelines, reactor vessels, and 

railway tanker cars in which to ship the fi nished product.  
   ■  A fast-food restaurant with different types of staff, customers, and equipment.  
   ■  A supermarket with inventory control, checkout, and customer service.  
   ■  A theme park with rides, stores, restaurants, workers, guests, and parking lots.  
   ■  The response of emergency personnel to a catastrophic event.  
   ■  A network of shipping ports including ships, containers, cranes, and landside 

transport.  
   ■  A military operation including supplies, logistics, and combat engagement.    

 People often study a system to measure its performance, improve its operation, or 

design it if it doesn’t exist. Managers or controllers of a system might also like to have 

a readily available aid for day-to-day operations, like help in deciding what to do in a 

factory if an important machine goes down. 

 We’re even aware of managers who requested that simulations be constructed but 

didn’t really care about the fi nal results. Their primary goal was to focus attention on un-

derstanding how their system worked. Often simulation analysts fi nd that the process of 
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defi ning how the system works, which must be done before you can start developing the 

simulation model, provides great insight into what changes need to be made. Part of this 

is due to the fact that rarely is there one individual responsible for understanding how an 

entire system works. There are experts in machine design, material handling, processes, 

and so on, but not in the day-to-day operation of the system. So as you read on, be aware 

that simulation is much more than just building a model and conducting a statistical 

experiment. There is much to be learned at each step of a simulation project, and the 

decisions you make along the way can greatly affect the signifi cance of your fi ndings. 

   1.1.2 How About Just Playing with the System? 

 It might be possible to experiment with the actual physical system. For instance:

    ■  Some cities have installed entrance-ramp traffi c lights on their freeway systems 

to experiment with different sequencing to fi nd settings that make rush hour as 

smooth and safe as possible.  
   ■  A supermarket manager might try different policies for inventory control and 

checkout-personnel assignment to see what combinations seem to be most prof-

itable and provide the best service.  
   ■  An airline could test the expanded use of automated check-in kiosks (with em-

ployees urging passengers to use them) to see if this speeds check-in.  
   ■  A computer facility can experiment with different network layouts and job prior-

ities to see how they affect machine utilization and turnaround.    

 This approach certainly has its advantages. If you can experiment directly with the 

system and know that nothing else about it will change signifi cantly, then you’re un-

questionably looking at the right thing and needn’t worry about whether a model or 

proxy for the system faithfully mimics it for your purposes. 

   1.1.3 Sometimes You Can’t (or Shouldn’t) Play with the System 

 In many cases, it’s just too diffi cult, costly, or downright impossible to do physical stud-

ies on the system itself. 

    ■  Obviously, you can’t experiment with alternative layouts of a factory if it’s not 

yet built.  
   ■  Even in an existing factory, it might be costly to change to an experimental lay-

out that might not work out in the end.  
   ■  It would be hard to run twice as many customers through a bank to see the effect 

of closing a nearby branch.  
   ■  Trying a new check-in procedure at an airport might initially cause a lot of peo-

ple to miss their fl ights if there are unforeseen problems with the new procedure.  
   ■  Fiddling around with emergency room staffi ng in a hospital clearly won’t do.  

  In these situations, you might build a  model  to serve as a stand-in for studying the sys-

tem and ask pertinent questions about what  would  happen in the system  if  you did this 

or that, or  if  some situation beyond your control were to develop.  Nobody gets hurt, and 
your freedom to try wide-ranging ideas with the model could uncover attractive alter-
natives that you might not have been able to try with the real system.  
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 However, you have to build models carefully and with enough detail so that what 

you learn about the model will never  1   be different from what you would have learned 

about the system by playing with it directly. This is called model  validity , and we’ll have 

more to say about it later, in Chapter 13. 

    1.1.4 Physical Models 

 There are lots of different kinds of models. Maybe the fi rst thing the word evokes is a 

physical replica or scale model of the system, sometimes called an  iconic  model. For 

instance:

    ■  People have built  tabletop  models of material handling systems that are minia-

ture versions of the facility, not unlike electric train sets, to consider the effect on 

performance of alternative layouts, vehicle routes, and transport equipment.  
   ■  A full-scale version of a fast-food restaurant placed inside a warehouse to ex-

periment with different service procedures was described by Swart and Donno 

(1981). In fact, most large fast-food chains now have full-scale restaurants in their 

corporate offi ce buildings for experimentation with new products and services.  
   ■  Simulated control rooms have been developed to train operators for nuclear 

power plants.  
   ■  Physical fl ight simulators are widely used to train pilots. There are also fl ight-

simulation computer programs, with which you may be familiar in game form, 

that represent purely logical models executing inside a computer. Further, physi-

cal fl ight simulators might have computer screens to simulate airport approaches, 

so they have elements of both physical and computer-simulation models.  

 Although iconic models have proven useful in many areas, we won’t consider them. 

   1.1.5 Logical (or Mathematical) Models 

 Instead, we’ll consider  logical  (or  mathematical ) models of systems. Such a model is 

just a set of approximations and assumptions, both structural and quantitative, about the 

way the system does or will work. 

 A logical model is usually represented in a computer program that’s exercised to 

address questions about the model’s behavior; if your model is a valid representation 

of your system, you hope to learn about the system’s behavior too. And since you’re 

dealing with a mere computer program rather than the actual system, it’s usually easy, 

cheap, and fast to get answers to a lot of questions about the model and system by sim-

ply manipulating the program’s inputs and form. Thus, you can make your mistakes on 

the computer where they don’t count, rather than for real where they do. As in many 

other fi elds, recent dramatic increases in computing power (and decreases in computing 

costs) have impressively advanced your ability to carry out computer analyses of logical 

models. 

   1.1.6 What Do You Do with a Logical Model? 

 After making the approximations and stating the assumptions for a valid logical model of 

the target system, you need to fi nd a way to deal with the model and analyze its behavior. 

  1  Well, hardly ever. 
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 If the model is simple enough, you might be able to use traditional mathematical 

tools like queueing theory, differential-equation methods, or something like linear pro-

gramming to get the answers you need. This is a nice situation since you might get fairly 

simple formulas to answer your questions, which can easily be evaluated numerically; 

working with the formula (for instance, taking partial derivatives of it with respect to 

controllable input parameters) might provide insight itself. Even if you don’t get a sim-

ple closed-form formula, but rather an algorithm to generate numerical answers, you’ll 

still have exact answers (up to round-off, anyway) rather than estimates that are subject 

to uncertainty. 

 However, most systems that people model and study are pretty complicated, so that 

 valid  models  2   of them are pretty complicated too. For such models, there may not be 

exact mathematical solutions worked out, which is where simulation comes in. 

      1.2 Computer Simulation 

   Computer simulation  refers to methods for studying a wide variety of models of 

real-world systems by numerical evaluation using software designed to imitate the sys-

tem’s operations or characteristics, often over time. From a practical viewpoint, simula-

tion is the process of designing and creating a computerized model of a real or proposed 

system for the purpose of conducting numerical experiments to give us a better under-

standing of the behavior of that system for a given set of conditions. Although it can be 

used to study simple systems, the real power of this technique is fully realized when we 

use it to study complex systems. 

 While simulation may not be the only tool you could use to study the model, it’s 

frequently the method of choice. The reason for this is that the simulation model can 

be allowed to become quite complex, if needed to represent the system faithfully, and 

you can still do a simulation analysis. Other methods may require stronger simplifying 

assumptions about the system to enable an analysis, which might bring the validity of 

the model into question. 

  1.2.1 Popularity and Advantages 

 Over the last two or three decades, simulation has been consistently reported as the most 

popular operations-research tool:

    ■  Rasmussen and George (1978) asked M.S. graduates from the Operations Re-

search Department at Case Western Reserve University (of which there are many 

since that department was founded a long time ago) about the value of methods 

after graduation. The fi rst four methods were  statistical analysis ,  forecasting , 

 systems analysis , and  information systems , all of which are very broad and gen-

eral categories. Simulation was next, and ranked higher than other more tradi-

tional operations-research tools like linear programming and queueing theory.  

  2  You can always build a simple (maybe simplistic) model of a complicated system, but there’s a good 

chance that it won’t be valid. If you go ahead and analyze such a model, you may be getting nice, clean, simple 

answers to the wrong questions. This is sometimes called a Type III Error—working on the wrong problem 

(statisticians have already claimed Type I and Type II Errors). 
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   ■  Thomas and DaCosta (1979) gave analysts in 137 large fi rms a list of tools and 

asked them to check off which ones they used. Statistical analysis came in fi rst, 

with 93% of the fi rms reporting that they use it (it’s hard to imagine a large fi rm 

that wouldn’t), followed by simulation (84%). Again, simulation came in higher 

than tools like linear programming, PERT/CPM, inventory theory, and nonlinear 

programming.  
   ■  Shannon, Long, and Buckles (1980) surveyed members of the Operations Re-

search Division of the American Institute of Industrial Engineers (now the Insti-

tute of Industrial Engineers) and found that among the tools listed, simulation 

ranked fi rst in utility and interest. Simulation was second in familiarity, behind 

linear programming, which might suggest that simulation should be given stron-

ger emphasis in academic curricula.  
   ■  Forgionne (1983); Harpell, Lane, and Mansour (1989); and Lane, Mansour, and 

Harpell (1993) all report that, in terms of utilization of methods by practitioners 

in large corporations, statistical analysis was fi rst and simulation was second. 

Again, though, academic curricula seem to be behind since linear programming 

was more frequently  taught , as opposed to being  used  by practitioners, than was 

simulation.  
   ■  Morgan (1989) reviewed many surveys of the preceding type and reported that 

“heavy” use of simulation was consistently found. Even in an industry with the 

lowest reported use of operations-research tools (motor carriers), simulation 

ranked fi rst in usage.  
   ■  Powers (2012) carried out a thorough survey of the research literature in opera-

tions research and found literally exponential growth over the past several decades 

in the number of papers applying simulation or developing simulation methods, 

whereas the growth in the number of papers on more traditional operations-

research tools has been far slower.  

   The main reason for simulation’s popularity is its ability to deal with complicated 

models of correspondingly complicated systems. This makes it a versatile and powerful 

tool. Another reason for simulation’s increasing popularity is the obvious improvement 

in performance/price ratios of computer hardware, making it ever more cost effective to 

do what was prohibitively expensive computing just a few years ago. Finally, advances 

in simulation software power, fl exibility, and ease of use have moved the approach from 

the realm of tedious and error-prone, low-level programming to the arena of quick and 

valid decision making. 

 Our guess is that simulation’s popularity and effectiveness are now even greater than 

reported in the older of the surveys described here, precisely due to these advances in 

computer hardware and software. 

   1.2.2 The Bad News 

 However, simulation isn’t  quite  paradise. 

 Because many real systems are affected by uncontrollable and random inputs, many 

simulation models involve random, or  stochastic , input components, causing their output 

to be random too. For example, a model of a distribution center would have arrivals, de-

partures, and lot sizes arising randomly according to particular probability distributions, 
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which will propagate through the model’s logic to cause output performance measures 

like throughput and cycle times to be random as well. So running a stochastic simulation 

once is like performing a random physical experiment once, or watching the distribution 

center for one day—you’ll probably see something different next time, even if you don’t 

change anything yourself. In many simulations, as the time frame becomes longer (like 

months instead of a day), most results averaged over the run will tend to settle down 

and become less variable, but it can be hard to determine how long is “long enough” for 

this to happen. Moreover, the model or study might dictate that the simulation stop at a 

particular point (for instance, a bank is open from 9 to 5), so running it longer to calm 

the output is inappropriate. 

 Thus, you have to think carefully about designing and analyzing simulation experi-

ments to take account of this uncertainty in the results, especially if the appropriate time 

frame for your model is relatively short. We’ll return to this idea repeatedly in the book 

and illustrate proper statistical design and analysis tools, some of which are built into 

Arena, but others you have to worry about yourself. 

 Even though simulation output may be uncertain, we can deal with, quantify, and 

reduce this uncertainty. You might be able to get rid of the uncertainty completely by 

making a lot of over-simplifying assumptions about the system; this would get you a 

nice, simple model that will produce nice, non-random results. Unfortunately, though, 

such an over-simplifi ed model will probably not be a  valid  representation of the system, 

and the error due to such model invalidity is impossible to measure or reliably reduce. 

For our money, we’d prefer an approximate answer to the right problem rather than an 

exact answer to the wrong problem (remember the Type III Error?). 

   1.2.3 Different Kinds of Simulations 

 There are a lot of ways to classify simulation models, but one useful way is along these 

three dimensions:

    1.   Static vs. Dynamic:  Time doesn’t play a natural role in static models but does 

in dynamic models. The Buffon needle problem, described at the beginning of 

Section 1.3.1, is a static simulation. The small manufacturing model described in 

Chapters 2 and 3 is a dynamic model. Most operational models are dynamic; Arena 

was designed with them in mind, so our primary focus will be on such models 

(except for Section 2.7.1, which develops a static model using only a spreadsheet).  

   2.   Continuous vs. Discrete:  In a continuous model, the state of the system can change 

continuously over time; an example would be the level of a reservoir as water fl ows 

in and is let out, and as precipitation and evaporation occur. In a discrete model, 

though, change can occur only at separated points in time, such as a manufacturing 

system with parts arriving and leaving at specifi c times, machines going down and 

coming back up at specifi c times, and breaks for workers. You can have elements of 

both continuous and discrete change in the same model, which are called  mixed con-
tinuous-discrete models ; an example might be a refi nery with continuously changing 

pressure inside vessels and discretely occurring shutdowns. Arena can handle con-

tinuous, discrete, and mixed models; our focus will be on discrete models for most 

of the book, though Chapter 11 discusses continuous and mixed models.  
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   3.   Deterministic vs. Stochastic:  Models that have no random input are determin-

istic; a strict appointment-book operation with fi xed service times is an example. 

Stochastic models, on the other hand, operate with at least some inputs’ being 

random—like a bank with randomly arriving customers requiring varying ser-

vice times. A model can have both deterministic and random inputs in different 

components; which elements are modeled as deterministic and which as random 

are issues of modeling realism. Arena easily handles deterministic and stochastic 

inputs to models and provides many different probability distributions and pro-

cesses that you can use to represent the random inputs. Since we feel that at least 

some element of uncertainty is usually present in reality, most of our illustra-

tions involve random inputs somewhere in the model. As noted earlier, though, 

stochastic models produce uncertain output, which is a fact you must consider 

carefully in designing and interpreting the runs in your project.    

     1.3 How Simulations Get Done 

  If you’ve determined that a simulation of some sort is appropriate, you then have to 

decide how to carry it out. In this section, we discuss options for running a simulation, 

including software. 

  1.3.1 By Hand 

 In the beginning, people really  did  do simulations by hand (we’ll show you just one, 

which is painful enough, in Section 2.4). 

Provided that p > 0,
estimate π by 2 l

      pd

Provided that p > 0,
estimate π by 2l

      pd

If it crosses one of the lines,
add 1 to the counter. (If it
doesn't cross a line, leave
the counter alone.)

If it crosses one of the lines,
add 1 to the counter. (If it
doesn't cross a line, leave
the counter alone.)

Get the needle and paint
the lines on the table.
Get the needle and paint
the lines on the table.

Decide how many times n
you're willing to toss the
needle.

Decide how many times n
you're willing to toss the
needle.

Set a counter to 0.Set a counter to 0.

Toss the needle "randomly"
onto the table.
Toss the needle "randomly"
onto the table.

Compute the proportion p of
times the needle crossed a line:
p = final value of the counter
                          n

Compute the proportion p of
times the needle crossed a line:
p = final value of the counter
                          n

D
o 

th
es

e 
st

ep
s 

n 
tim

es
.

  Figure 1-1.  The Buffon Needle Problem   
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 For instance, around 1733 a fellow by the name of Georges Louis Leclerc (who 

later was invited into the nobility, due no doubt to his simulation prowess, as Comte 

de Buffon) described an experiment to estimate the value of �. If you toss a needle of 

length  l  onto a table painted with parallel lines spaced  d  apart ( d  must be $  l ), it turns 

out that the needle will cross a line with probability  p  5 2 l y(� d ). So  Figure 1-1  shows 

a simulation experiment to estimate the value of �. (Don’t try this at home, or at least 

not with a big needle.)  

 Though this experiment may seem pretty simple (probably even silly) to you, there 

are some aspects of it that are common to most simulations:

    ■  The purpose is to estimate something (in this case, �) whose value would be hard 

to compute exactly (okay, maybe in 1733 that was true).  
   ■  The estimate we get at the end is not going to be exactly right; that is, it has some 

error associated with it, and it might be nice to get an idea of how large that error 

is likely to be.  
   ■  It seems intuitive that the more tosses we make (that is, the bigger  n  is), the 

smaller the error is likely to be and thus the better the estimate is likely to be.  
   ■  In fact, you could do a  sequential  experiment and just keep tossing until the 

probable error is small enough for you to live with, instead of deciding on the 

number  n  of tosses beforehand.  
   ■  You might be able to reduce the error without increasing the number of tosses if 

you invest a little up-front work. Weld a second needle to the fi rst so they cross 

at right angles at their midpoints; such a weapon is called a  Buffon cross . Leave 

the lines on the table alone. On each toss, record separately whether each needle 

crosses a line (it could be that they both cross, neither crosses, or just one but 

not the other crosses), and get two different estimates of �. It’s intuitive (and, 

happily, true) that whether one needle crosses a line is negatively correlated with 

whether the other one does, so the two estimates of � will be negatively cor-

related with each other. The average of the two estimates is also an unbiased 

estimate of �, but will have less variance than a single-needle estimate from 

the same number of tosses since it’s likely that if one estimate is high, the other 

one will be low. (This is a physical analog of what’s called a  variance-reduction 
technique , specifi cally  antithetic variates , and is discussed in Section 12.4.2. It 

seems like some kind of cheat or swindle, but it’s really a fair game.)  

   We’ll come back to these kinds of issues as we talk about more interesting and 

helpful simulations. (For more on the Buffon needle problem, as well as other such 

interesting historical curiosities, see Morgan, 1984.) 

 In the 1920s and 1930s, statisticians began using random-number machines and 

tables in numerical experiments to help them develop and understand statistical theory. 

For instance, Walter A. Shewhart (the quality control pioneer) did numerical experi-

ments by drawing numbered chips from a bowl to study the fi rst control charts. Guin-

ness Brewery employee W. S. Gossett did similar numerical sampling experiments to 

help him gain insight into what was going on in mathematical statistics. (To protect his 

job at Guinness, he published his research under the pseudonym “Student” and also 
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developed the  t  distribution used widely in statistical inference.) Engineers, physicists, 

and mathematicians have used various kinds of hand-simulation ideas for many years 

on a wide variety of problems. 

   1.3.2 Programming in General-Purpose Languages 

 As digital computers appeared in the 1950s and 1960s, people began writing computer 

programs in general-purpose procedural languages like FORTRAN to do simulations 

of more complicated systems. Support packages were written to help out with routine 

chores like list processing, keeping track of simulated events, and statistical bookkeeping. 

 This approach was highly customizable and fl exible (in terms of the kinds of models 

and manipulations possible), but also painfully tedious and error prone since models had 

to be coded pretty much from scratch every time. (Plus, if you dropped your deck of 

cards, it could take quite a while to reconstruct your “model.”) For a more detailed history 

of discrete-event simulation languages, see Nance (1996) and Nance and Sargent (2003). 

 As a kind of descendant of simulating with general-purpose programming lan-

guages, people sometimes use spreadsheet software for some kinds of simulation.  This 

has proven popular for static models, perhaps with add-ins to facilitate common oper-

ations and to provide higher-quality tools (like random-number generators) than what 

comes standard with spreadsheets. But for all but the very simplest dynamic models, 

the inherent limitations of spreadsheets make it at best awkward, and usually practically 

impossible, to use them for simulations of large, realistic, dynamic models. Section 2.7 

briefl y illustrates two examples of simulating with spreadsheets, one static and one 

dynamic. 

   1.3.3 Simulation Languages 

 Special-purpose  simulation languages  like GPSS, Simscript, SLAM, and SIMAN ap-

peared on the scene some time later and provided a much better framework for the kinds 

of simulations many people do. Simulation languages became very popular and are still 

in use. 

 Nonetheless, you still have to invest quite a bit of time to learn about their features 

and how to use them effectively. And, depending on the user interface provided, there 

can be picky, apparently arbitrary, and certainly frustrating syntactical idiosyncrasies 

that bedevil even old hands. 

   1.3.4 High-Level Simulators 

 Thus, several high-level “simulator” products emerged that are indeed very easy to use. 

They typically operate by intuitive graphical user interfaces, menus, and dialogs. You 

select from available simulation-modeling constructs, connect them, and run the model 

along with a dynamic graphical animation of system components as they move around 

and change. 

 However, the domains of many simulators are also rather restricted (like manufac-

turing or communications) and are generally not as fl exible as you might like to build 

valid models of your systems. Some people feel that these packages may have gone too 

far up the software-hierarchy food chain and have traded away too much fl exibility to 

achieve the ease-of-use goal. 
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   1.3.5 Where Arena Fits In 

 Arena combines the ease of use found in high-level simulators with the fl exibility of 

simulation languages and even all the way down to general-purpose procedural lan-

guages like the Microsoft® Visual Basic® programming system or C if you really want. 

It does this by providing alternative and interchangeable  templates  of graphical simu-

lation-modeling and analysis  modules  that you can combine to build a fairly wide va-

riety of simulation models. For ease of display and organization, modules are typically 

grouped into  panels  to compose a template. By switching panels, you gain access to a 

whole different set of simulation-modeling constructs and capabilities. In most cases, 

modules from different panels can be mixed together in the same model. 

 Arena maintains its modeling fl exibility by being fully  hierarchical , as depicted 

in  Figure 1-2 . At any time, you can pull in low-level modules from the Blocks and 

Elements panel and gain access to simulation-language fl exibility if you need to and 

mix in SIMAN constructs together with the higher-level modules from other templates 

(Arena is based on, and actually includes, the SIMAN simulation language; see Pedgen, 

  Figure 1-2.  Arena’s Hierarchical Structure   

A single
graphical user
interface
consistent at
any level of
modeling

Advanced Process, Advanced Transfer
Panels
 Access to more detailed modeling for greater

      flexibility

User-Created Templates
Commonly used constructs
Company-specific processes
Company-specific templates
etc.

Basic Process Panel
Many common modeling constructs
Very accessible, easy to use
Reasonable flexibility

Blocks, Elements Panels
 All the flexibility of the SIMAN simulation

      language

Higher

Level of
Modeling

Lower

User-Written Visual Basic, C/C++ Code
The ultimate in flexibility
VBA is built in
C/C++ requires compiler

Application Solution Templates
Contact centers
Packaging lines
Health care
Airports

   etc.
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Shannon, and Sadowski 1995 for a complete discussion of SIMAN). For specialized 

needs, like complex decision algorithms or accessing data from an external application, 

you can write pieces of your model in a procedural language like Visual Basic or C/

C11. All of this, regardless of how high or low you want to go in the hierarchy, takes 

place in the same consistent graphical user interface.  

 In fact, the modules in Arena are composed of SIMAN components; you can cre-

ate your own modules and collect them into your own templates for various classes of 

systems. For instance, Rockwell Automation (formerly Systems Modeling) has built 

templates for general modeling (the Arena template, which is the primary focus of this 

book), high-speed packaging, contact centers, and other industries. Other people have 

built templates for their company in industries as diverse as mining, auto manufacturing, 

fast-food, and forest-resource management. In this way, you don’t have to compromise 

between modeling fl exibility and ease of use. 

 Further, Arena includes dynamic animation in the same work environment. It also pro-

vides integrated support, including 3D graphics and business dashboards for some of the 

statistical design and analysis issues that are part and parcel of a good simulation study. 

     1.4 When Simulations Are Used 

  Just as the capabilities and sophistication of simulation languages and packages have 

increased dramatically over the last 40 or 50 years, the concept of how and when to use 

simulation has changed. For a thorough account of the development of computer simu-

lation in general since the earliest days, see Nance and Sargent (2003). 

  1.4.1 The Early Years 

 In the late 1950s and 1960s, simulation was an expensive and specialized tool that was 

generally used only by large corporations that required substantial capital investments. 

Typical simulation users were found in steel and aerospace corporations. These organi-

zations would form groups of people, mostly Ph.D.s, who would develop large, complex 

simulation models using available languages, such as FORTRAN. These models would 

then be run on large mainframes charging from $600 to $1,000 per hour. Interestingly, 

the personal computers that reside on most engineers’ desks today are much more pow-

erful and faster than the mainframes of the 1960s. 

   1.4.2 The Formative Years 

 The use of simulation as we know it today began during the 1970s and early 1980s. 

Computers were becoming faster and cheaper, and the value of simulation was being 

discovered by other industries, although most of the companies were still quite large. 

However, simulation was seldom considered until there was a disaster. It became the tool 

of choice for many companies, notably in the automotive and heavy industries, for de-

termining why the disaster occurred and, sometimes, where to point the fi nger of blame. 

 We recall the startup of an automotive assembly line, an investment of over $100 

million, that was not achieving much of its potential. The line was producing a newly 

released vehicle that was in great demand—far greater than could be satisfi ed by the 

existing output of the line. Management appointed a S.W.A.T. team to analyze the prob-

lem, and that team quickly estimated the lost potential profi t to be in excess of $500,000 
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per day. The team was told, “Find the problem and fi x it.” In about 3 weeks, a simulation 

was developed and used to identify the problem, which turned out not to have been on 

the initial suspect list. The line was ultimately modifi ed and did produce according to 

specifi cations; unfortunately, by that time the competition was producing similar vehi-

cles, and the additional output was no longer needed. Ironically, a simulation model had 

been used during the design of the assembly line to determine its feasibility. Unfortu-

nately, many of the processes were new, and engineering had relied on equipment ven-

dors to provide estimates of failures and throughputs. As is often the case, the vendors 

were extremely optimistic in their estimates. If the original design team had used the 

simulation to perform a good sensitivity analysis on these questionable data, the prob-

lem might have been uncovered and resolved well before implementation. 

 During this time, simulation also found a home in academia as a standard part of 

industrial-engineering and operations-research curricula. Its growing use in industry 

compelled universities to teach it more widely. At the same time, simulation began to 

reach into quantitative/analytics business programs, broadening the number and type of 

students and researchers exposed to its potential. 

   1.4.3 The Recent Past 

 During the late 1980s, simulation began to establish its real roots in business. A large 

part of this was due to the introduction of the personal computer and animation. Al-

though simulation was still being used to analyze failed systems, many people were 

requesting simulations before production was to begin. (However, in most cases, it 

was really too late to affect the system design, but it did offer the plant manager and 

system designer the opportunity to spruce up their resumes.) By the end of the 1980s, 

the value of simulation was being recognized by many larger fi rms, several of which 

actually made simulation a requirement before approval of any major capital invest-

ment. However, simulation was still not in widespread use and was rarely used by 

smaller fi rms. 

   1.4.4 The Present 

 Simulation really began to mature during the 1990s. Many smaller fi rms embraced the 

tool, and it began to see use at the very early stages of projects—where it could have the 

greatest impact. Better animation, greater ease of use, faster computers, easy integra-

tion with other packages, and the emergence of simulators have all helped simulation 

become a standard tool in many companies. Although most managers will readily admit 

that simulation can add value to their enterprise, it has yet to become a standard tool 

that resides on everyone’s computers. The manner in which simulation is used is also 

changing; it is being employed earlier in the design phase and is often being updated 

as changes are made to operating systems. This provides a living simulation model that 

can be used for systems analysis on very short notice. Simulation has also invaded the 

service industry, where it is being applied in many non-traditional areas. 

 The major impediments preventing simulation from becoming a universally 

accepted and well-utilized tool are model-development time and the modeling skills 

required for the development of a successful simulation. Those are probably the reasons 

why you’re reading this book! 
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   1.4.5 The Future 

 The rate of change in simulation has accelerated in recent years, and there is every 

reason to believe that it will continue its rapid growth and cross the bridges to main-

stream acceptance. Simulation software has taken advantage of advancements in tech-

nology, enabling quicker model runs, higher-fi delity animations, and comprehensive 

data analysis. This trend must continue if simulation is to become a state-of-the-art and 

yet easy-to-use tool, required for effective decision making. This evolution of simula-

tion software has allowed for greater integration of simulation with other packages (like 

spreadsheets, databases, and word processors). It is now becoming possible to foresee 

the complete integration of simulation with other software packages that collect, store, 

and analyze system data at the front end along with software that helps control the sys-

tem at the back end. 

 The Internet and intranets have had a tremendous impact on the way organizations 

conduct their business. Information sharing in real time is not only possible, but is be-

coming mandatory. Simulation tools are being developed to support distributed model 

building, distributed processing, and remote analysis of results. Soon, a set of enterprise-

wide tools will be available to provide the ability for employees throughout an organi-

zation to obtain answers to critical and even routine questions. 

 To make simulation easier to use by more people, we will see more vertical software 

products aimed at specifi c markets. This will allow analysts to construct simulations 

easily, using modeling constructs designed for their industry or company with terminol-

ogy that directly relates to their environment. These may be specialized tools designed 

for specifi c environments, but they should still have the capability to model any system 

activities that are unique to each simulation project. Some of these types of products are 

on the market today in application areas such as high-speed packaging, contact centers, 

communications, and business-process re-engineering. 

 Today’s simulation projects concentrate on strategic decision making, typically 

around the design or redesign of complex systems. The next logical step is to use and 

evolve the same simulation to assist in operational decision making. This approach re-

quires that the simulation model be kept current, but it also allows for examining and 

testing systems as market conditions, demands, and system processes change. As we 

progress to this next logical step, simulations will no longer be disposable or used only 

once, but will become a critical part of the operation of the ongoing system. 

 With the rapid advances being made in computers and software, it is diffi cult to 

predict much about the simulations of the distant future, but even now we are seeing 

the development and implementation of features such as automatic statistical analysis, 

software that recommends system changes, simulations totally integrated with system 

operating software, and yes, even virtual reality.      
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     CHAPTER 2 

 Fundamental Simulation Concepts 

  In this chapter, we introduce some of the underlying ideas, methods, and issues in sim-

ulation before getting into the Arena software itself in Chapter 3 and beyond. These 

concepts are the same across any kind of simulation software, and some familiarity with 

them is essential to understanding how Arena simulates a model you’ve built. 

 We do this mostly by carrying through a simple example, which is described in 

Section 2.1. In Section 2.2, we explore some options for dealing with the example model. 

Section 2.3 describes the various pieces of a simulation model, and Section 2.4 carries 

out the simulation (by hand), describing the fundamental organization and action. After 

that, two different simulation-modeling approaches are contrasted in Section 2.5, and 

the issue of randomness in both input and output is introduced in Section 2.6. Section 2.7 

considers using spreadsheets to simulate, with both a static and a (very) simple dynamic 

model. Finally, Section 2.8 steps back and looks at what’s involved in a simulation proj-

ect, although this is taken up more thoroughly as part of Chapter 13. 

 By the end of this chapter, you’ll understand the fundamental logic, structure, com-

ponents, and management of a simulation-modeling project. All of this underlies Arena 

and the richer models you’ll build with it after reading subsequent chapters. 

    2.1 An Example 

  In this section, we describe the example system and decide what we’d like to know 

about its behavior and performance. 

  2.1.1 The System 

 Since a lot of simulation models involve waiting lines or  queues  as building blocks, 

we’ll start with a very simple case of such a model representing a portion of a manufac-

turing facility. “Blank” parts arrive to a drilling center, are processed by a single drill 

press, and then leave; see  Figure 2-1 . If a part arrives and fi nds the drill press idle, its 

processing at the drill press starts right away; otherwise, it waits in a First-In First-Out 

(FIFO), that is, fi rst-come fi rst-served queue. This is the  logical  structure of the model.   

  Figure 2-1.  A Simple Processing System   
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Queue
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Blank
Parts
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Parts
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 You have to specify the  numerical  aspects as well, including how the simulation 

starts and stops. First, decide on the underlying “base” units with which time will be 

measured; we’ll use minutes for all time measurements here. It doesn’t logically mat-

ter what the time units are, so pick whatever is most appropriate, familiar, and conve-

nient for your application.  1   You can express input time quantities in different units if 

it’s customary or convenient, like minutes for mean service times but hours for mean 

machine-up times. However, for arithmetic and calculations, all times must be converted 

to the base time units if they’re not already in it. Arena allows you to express input times 

in different units, but you must also declare the base time units into which all times are 

converted during the simulation run, and in which all time-based outputs are reported. 

  The system starts at time 0 minutes with no parts present and the drill press idle. This 

 empty-and-idle  assumption would be realistic if the system starts afresh each morning, but 

might not be so great as a model of the initial situation to simulate an ongoing operation. 

 The time durations that will make the simulation move are in  Table 2-1 . The (se-

quential) part number is in the fi rst column, the second column has the time of arrival 

of each part, the third column gives the time  between  a part’s arrival and that of the next 

part (called an  interarrival time ), and the service time (required to process on the drill 

press, not counting any time spent waiting in the queue) is in the last column. All times 

are in minutes. You’re probably wondering where all these numbers came from; don’t 

worry about that right now, and just pretend we observed them in the drilling center or 

that we brashly made them up. 

  Table 2-1. Arrival, Interarrival, and Service Times of Parts (in Minutes)  

 Part Number  Arrival Time  Interarrival Time  Service Time 

 1  0.00  1.73  2.90 

 2  1.73  1.35  1.76 

 3  3.08  0.71  3.39 

 4  3.79  0.62  4.52 

 5  4.41  14.28  4.46 

 6  18.69  0.70  4.36 

 7  19.39  15.52  2.07 

 8  34.91  3.15  3.36 

 9  38.06  1.76  2.37 

 10  39.82  1.00  5.38 

11  40.82  ?  ? 

 ?  ?  ?  ? 

 ?  ?  ?  ? 

  1 Not only should you be sensible about choosing the base time units (for example, for a simulation of 

20 years, don’t choose seconds as your base units, and for a simulation of two minutes, don’t measure time 

in days), but you should also choose units that avoid both extremely big and extremely tiny time values in 

the same model since, even with Arena’s double-precision arithmetic, the computer might have trouble with 

round-off error. 
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 We’ve decided that the simulation will stop at exactly time 20 minutes. If there are 

any parts present at that time (in service at the drill press or waiting in the queue), they 

are never fi nished. 

   2.1.2 Goals of the Study 

 Given a logical/numerical model like this, you next have to decide what output perfor-

mance measures you want to collect. Here’s what we decided to compute:

    ■  The  total production  (number of parts that complete their service at the drill 

press and leave) during the 20 minutes of operation. Presumably, more is better.  
   ■  The  average waiting time in queue  of parts that enter service at the drill press 

during the simulation. This time in queue records only the time a part is waiting 

in the queue and not the time it spends being served at the drill press. If  WQ 
i
   is 

the waiting time in queue of the  i th   part and it turns out that  N  parts leave the 

queue during the 20-minute run, this average is 

       

 ∑ 
i51

  

N

    WQ
i

 ______ 
N

  .   

    (Note that since Part 1 arrives at time 0 to fi nd the drill press idle,  WQ  
1
  5 0 and 

 N  $ 1 for sure so we don’t have to worry about dividing by zero.) This is gener-

ally called a  discrete-time  (or  discrete-parameter ) statistic since it refers to data, 

in this case the waiting times  WQ  
1
 ,  WQ  

2
 , . . ., for which there is a natural fi rst, 

second,  .  .  . observation; in Arena, these are called  tally  statistics since values 

of them are “tallied” when they are observed (using a feature of the underly-

ing SIMAN simulation language called  Tally ). From a performance standpoint, 

small is good.  
   ■  The  maximum waiting time in queue  of parts that enter service at the drill press 

during the simulation. This is a worst-case measure, which might be of interest 

in giving service-level guarantees to customers. Small is good.  
   ■  The  time-average number of parts waiting in the queue  (again, not counting any 

part in service at the drill press). By “time average,” we mean a weighted average 

of the possible queue lengths (0, 1, 2, . . .) weighted by the proportion of time 

during the run that the queue was at that length. Letting  Q ( t ) be the number of 

parts in the queue at any time instant  t , this time-average queue length is the total 

area under the  Q ( t ) curve, divided by the length of the run, 20. In integralcalculus 

terms, this is 

        
 e 
0

   

20

 Q(t)dt 
 _______
 

20
  .   

    Such  time-persistent  statistics are common in simulation. This one indicates how 

long the queue is (on average), which might be of interest for allocating fl oor 

space.  
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   ■  The  maximum number of parts that were ever waiting in the queue . Actually, 

this might be a better indication of how much fl oor space is needed than is the 

time average if you want to be reasonably sure to have room at all times. This is 

another worst-case measure, and smaller is presumably better.  
   ■  The  average  and  maximum total time in system  of parts that fi nish being pro-

cessed on the drill press and leave. Also called  cycle time , this is the time that 

elapses between a part’s arrival and its departure, so it’s the sum of the part’s 

waiting time in queue and its service time at the drill press. This is a kind of 

turnaround time, so smaller is better.  
   ■  The  utilization  of the drill press, defi ned as the proportion of time it is busy 

during the simulation. Think of this as another time-persistent statistic, but of the 

“busy” function 

     B(t) 5  H  1 if the drill press is busy at time t
                 

0 if the drill press is idle at time t
   

 
 .   

    The utilization is the area under  B ( t ), divided by the length of the run: 

       

 e 
0

   

20

    B(t)dt
 _______ 

20
  .   

    Resource utilizations are of obvious interest in many simulations, but it’s hard to 

say whether you “want” them to be high (close to 1) or low (close to 0). High is 

good since it indicates little excess capacity, but can also be bad since it might 

mean a lot of congestion in the form of long queues and slow throughput.  

   There are usually a lot of possible output performance measures, and it’s probably a 

good idea to observe a lot of things in a simulation since you can always ignore things 

you have but can never look at things you don’t have, plus sometimes you might fi nd a 

surprise. The only downside is that collecting extraneous data can slow down execution 

of the simulation. 

     2.2 Analysis Options 

  With the model, its inputs, and its outputs defi ned, you next have to fi gure out how to 

get the outputs by transforming the inputs according to the model’s logic. In this section, 

we’ll briefl y explore a few options for doing this. 

  2.2.1 Educated Guessing 

 While we’re not big fans of guessing, a crude “back-of-the-envelope” calculation can 

sometimes lend at least qualitative insight (and sometimes not). How this goes, of 

course, completely depends on the situation (and on how good you are at guessing). 

 A possible fi rst cut in our example is to look at the average infl ow and process-

ing rates. From  Table 2-1 , it turns out that the average of the ten interarrival times is 

4.08 minutes, and the average of the ten service requirements is 3.46 minutes. This 

looks pretty hopeful, since parts are being served faster than they’re arriving, at least 
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on average, meaning that the system has a chance of operating in a stable way over the 

long term and not “exploding.” If these averages were  exactly  what happened for each 

part—no variation either way—then there would never be a queue and all waiting times 

in queue would be zero, a happy thought indeed. No matter how happy this thought 

might be, though, it’s probably wrong since the data clearly show that there  is  variation 

in the interarrival and service times, which could create a queue sometimes; for exam-

ple, if there happened to be some small interarrival times during a period when there 

also happened to be some large service times. 

 Suppose, on the other hand, that the averages in the input data in  Table 2-1  had come 

out the other way, with the average interarrival time’s being smaller than the average 

service time. If this situation persisted, parts would, on average, be arriving faster than 

they could be served, implying heavy congestion (at least after a while, probably longer 

than the 20-minute run we have planned). Indeed, the system will explode over the long 

run— not  a happy thought. 

 The truth, as usual, will probably be between the extremes. Clearly, guessing has its 

limits. 

   2.2.2 Queueing Theory 

 Since this is a queue, why not use queueing theory? It’s been around for a century, and a 

lot of very bright people have worked hard to develop it. In some situations, it can result 

in simple formulas from which you can get a lot of insight. 

 Probably the simplest and most popular object of queueing theory is the  M/M/1 
queue . The fi rst “M” states that the arrival process is  Markovian ; that is, the interarrival 

times are independent and identically distributed “draws” from an exponential prob-

ability distribution (see Appendices B and C for a brief refresher on probability and 

distributions). The second “M” stands for the service-time distribution, and here it’s also 

exponential. The “1” indicates that there’s just a single server. So at least on the surface 

this looks pretty good for our model. 

 Better yet, most of our output performance measures can be expressed as simple 

formulas. For instance, the average waiting time in queue (expected from a long run) is 

  
� 

2
 
  S  
 

_______
 �

A
 2 �

S
  

 where  � 
A
   is the expected value of the interarrival-time distribution and  � 

S
   is the expected 

value of the service-time distribution (assuming that  � 
A
   .  � 

S
   so the queue doesn’t ex-

plode). So one immediate idea is to use the data to estimate  � 
A
   and  � 

S
  , then plug these 

estimates into the formula; for our data, we get 3.46 2 /(4.08 2 3.46) 5 19.31 minutes. 

 Such an approach can sometimes give a reasonable order-of-magnitude approximation 

that might facilitate crude comparisons. But there are problems too (see Exercise 2-6):

    ■  The estimates of  � 
A
   and  � 

S
   aren’t exact, so there will be error in the result as 

well.  
   ■  The assumptions of exponential interarrival-time and service-time distributions 

are essential to deriving the preceding formula, and we probably don’t satisfy 
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these assumptions. This calls into question the validity of the formula. While 

there are more sophisticated versions for more general queueing models, there 

will always be assumptions to worry about.  
   ■  The formula is for long-run performance, not the 20-minute period we want. 

This is typical of most (but not all) queueing theory.  
   ■  The formula doesn’t provide any information on the natural variability in the sys-

tem. This is not only a diffi culty in analysis but might also be of inherent interest 

itself, as in the variability of production. (It’s sometimes possible, though, to fi nd 

other formulas that measure variability.)    

 Many people feel that queueing theory can prove valuable as a fi rst-cut approxima-

tion to get an idea of where things stand and to provide guidance about what kinds of 

simulations might be appropriate at the next step in the project. We agree, but urge you 

to keep in mind the problems listed here and temper your interpretations accordingly. 

   2.2.3 Mechanistic Simulation 

 So all of this brings us back to simulation. By “mechanistic” we mean that the individual 

operations (arrivals, service by the drill press, etc.) will occur as they would in reality. 

The movements and changes of things in the simulation model occur at the right “time,” 

in the right order, and have the right effects on each other and the statistical-accumulator 

variables. 

 In this way, simulation provides a completely concrete, “brute-force” way of dealing 

directly with the model. There’s nothing mysterious about how it works—just a few 

basic ideas and then a whole lot of details and bookkeeping that software like Arena 

handles for you. 

     2.3 Pieces of a Simulation Model 

  We’ll talk about the various parts of a simulation model in this section, all in reference 

to our example. 

  2.3.1 Entities 

 Most simulations involve “players” called  entities  that move around, change status, 

affect and are affected by other entities and the state of the system, and affect the output 

performance measures. Entities are the  dynamic  objects in the simulation—they usually 

are created, move around for a while, and then are disposed of as they leave. It’s pos-

sible, though, to have entities that never leave but just keep circulating in the system. 

However, all entities have to be created, either by you or automatically by the software. 

 The entities for our example are the parts to be processed. They’re created when they 

arrive, move through the queue (if necessary), are served by the drill press, and are then 

disposed of as they leave. Even though there’s only one kind of entity in our example, 

there can be many independent “copies,” or  realizations  of it in existence at a time, just 

as there can be many different individual parts of this type in the real system at a time. 

 Most entities represent “real” things in a simulation. You can have lots of different 

kinds of entities and many realizations of each kind of entity existing in the model at 

a time. For instance, you could have several different  kinds  of parts, perhaps requiring 
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different processing and routing and having different priority; moreover, there could be 

several realizations of each kind of part fl oating around in the model at a time. 

 There are situations, though, where “fake” (or “logic”) entities not corresponding 

to anything tangible can be conjured up to take care of certain modeling operations. 

For instance, one way to model machine failures is to create a “breakdown demon” 

(see  Figure 2-2 ) that lurks in the shadows during the machine’s up time, runs out and 

kicks the machine when it’s supposed to break down, stands triumphantly over it until it 

gets repaired, then scurries back to the shadows and begins another lurking period rep-

resenting the machine’s next up time. A similar example is a “break angel” that arrives 

periodically and takes a server off duty. (For both of these examples, however, Arena 

has easier built-in modeling constructs that don’t require creation of such fake entities.)   

 Figuring out what the entities are is probably the fi rst thing you need to do in mod-

eling a system. 

   2.3.2 Attributes 

 To individualize entities, you attach  attributes  to them. An attribute is a common charac-

teristic of all entities, but with a specifi c value that can differ from one entity to another. 

For instance, our part entities could have attributes called  Due Date ,  Priority , and 

 Color  to indicate these characteristics for each individual entity. It’s up to you to fi gure 

out what attributes your entities need, name them, assign values to them, change them as 

appropriate, and then use them when it’s time (that’s all part of modeling). 

 The most important thing to remember about attributes is that their values are tied to 

specifi c entities. The same attribute will generally have different values for different en-

tities, just as different parts have different due dates, priorities, and color codes. Think of 

an attribute as a tag attached to each entity, but what’s written on this tag can differ across 

entities to characterize them individually. An analogy to traditional computer program-

ming is that attributes are  local  variables—in this case, local to each individual entity. 

 Arena keeps track of some attributes automatically, but you may need to defi ne, 

assign values to, change, and use attributes of your own. 

   2.3.3 (Global) Variables 

 A  variable  (or a  global  variable) is a piece of information that refl ects some character-

istic of your system, regardless of how many or what kinds of entities might be around. 

  Figure 2-2.  A Victorious Breakdown Demon   
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You can have many different variables in a model, but each one is unique. There are two 

types of variables: Arena built-in variables (number in queue, number of busy servers, 

current simulation clock time, and so on) and user-defi ned variables (mean service time, 

travel time, current shift, and so on). In contrast to attributes, variables are not tied to any 

specifi c entity, but rather pertain to the system at large. They’re accessible by all entities, 

and many can be changed by any entity. If you think of attributes as tags attached to the 

entities currently fl oating around in the room, then think of variables as (rewriteable) 

writing on the wall. 

 Variables are used for lots of different purposes. For instance, the time to move 

between any two stations in a model might be the same throughout the model, and a 

variable called  Transfer Time  could be defi ned and set to the appropriate value and 

then used wherever this constant is needed; in a modifi ed model where this time is set 

to a different constant, you’d only need to change the defi nition of  Transfer Time  

to change its value throughout the model. Variables can also represent something that 

changes  during  the simulation, like the number of parts in a certain subassembly area 

of the larger model, which is incremented by a part entity when it enters the area and 

decremented by a part when it leaves the area. Arena variables can be vectors or matri-

ces if it is convenient to organize the information as lists or two-dimensional tables of 

individual values. 

 Some built-in Arena variables for our model include the status of the drill press 

(busy or idle), the time (simulation clock), and the current length of the queue. 

   2.3.4 Resources 

 Entities often compete with each other for service from  resources  that represent things 

like personnel, equipment, or space in a storage area of limited size. An entity  seizes  

(units of) a resource when available and  releases  it (or them) when fi nished. It’s better to 

think of the resource as being given to the entity rather than the entity being assigned to 

the resource since an entity (like a part) could need simultaneous service from multiple 

resources (such as a machine and a person). 

 A resource can represent a group of several individual servers, each of which is 

called a  unit  of that resource. This is useful to model, for instance, several identical “par-

allel” agents at an airline ticketing counter. The number of available units of a resource 

can be changed during the simulation run to represent agents going on break or opening 

up their stations if things get busy. If a resource has multiple units, or a variable number 

of units, we have to generalize our defi nition in Section 2.1.2 of resource utilization 

to be the time-average number of units of the resource that are busy, divided by the 

time-average number of units of the resource that are available. In our example, there is 

just a single drill press, so this resource has a single unit available at all times. 

   2.3.5 Queues 

 When an entity can’t move on, perhaps because it needs to seize a unit of a resource 

that’s tied up by another entity, it needs a place to wait, which is the purpose of a  queue . 

In Arena, queues have names and can also have capacities to represent, for instance, 

limited fl oor space for a buffer. You’d have to decide as part of your modeling how to 

handle an entity arriving at a queue that’s already full. 
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   2.3.6 Statistical Accumulators 

 To get your output performance measures, you have to keep track of various interme-

diate  statistical-accumulator variables  as the simulation progresses. In our example, 

we’ll watch:

    ■  The number of parts produced so far  
   ■  The total of the waiting times in queue so far  
   ■  The number of parts that have passed through the queue so far (since we’ll need 

this as the denominator in the average waiting-time output measure)  
   ■  The longest time spent in queue we’ve seen so far  
   ■  The total of the time spent in the system by all parts that have departed so far  
   ■  The longest time in system we’ve seen so far  
   ■  The area so far under the queue-length curve  Q ( t )  
   ■  The highest level that  Q ( t ) has so far attained  
   ■  The area so far under the server-busy function  B ( t )    

 All of these accumulators should be initialized to 0. When something happens in the 

simulation, you have to update the affected accumulators in the appropriate way. 

 Arena takes care of most (but sometimes not all) of the statistical accumulation 

you’re likely to want, so most of this will be invisible to you except for asking for it in 

some situations. But in our hand simulation, we’ll do it all manually so you can see how 

it goes and will understand how to do it yourself in Arena if you need to. 

   2.3.7 Events 

 Now let’s turn to how things work when we run our model. Basically, everything’s 

centered around events. An  event  is something that happens at an instant of (simulated) 

time that might change attributes, variables, or statistical accumulators. In our example, 

there are three kinds of events:

    1.   Arrival:  A new part enters the system.  

   2.   Departure:  A part fi nishes its service at the drill press and leaves the system.  

   3.   The End:  The simulation is stopped at time 20 minutes. (It might seem rather 

artifi cial to anoint this as an event, but it certainly changes things, and this is one 

way to stop a simulation.)    

 In addition to these events, there of course must be an initialization to set things up. 

We’ll explain the logic of each event in more detail later. 

 Other things happen in our example model, but needn’t be separate events. For in-

stance, parts leave the queue and begin service at the drill press, which changes the 

system. However, this only happens because of some other entity’s departure, which is 

already an event. 

 To execute, a simulation has to keep track of the events that are supposed to happen 

in the (simulated) future. In Arena, this information is stored in an  event calendar . We 

won’t get into the details of the event calendar’s data structure, but here’s the idea: When 

the logic of the simulation calls for it, a  record  of information for a future event is placed 

on the event calendar. This event record contains identifi cation of the entity involved, 
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the event time, and the kind of event it will be. Arena places each newly scheduled event 

on the calendar so that the next (soonest) event is always at the top of the calendar (that 

is, the new event record is  sorted  onto the calendar in increasing order of event times). 

When it’s time to execute the next event, the top record is removed from the calendar and 

the information in this record is used to execute the appropriate logic; part of this logic 

might be to place one or more new event records onto the calendar. It’s possible that, at a 

certain time, it doesn’t make sense to have a certain event type scheduled (in our model, 

if the drill press is idle, you don’t want a departure event to be scheduled), in which case 

there’s just no record for that kind of event on the calendar, so it obviously can’t happen 

next. Though this model doesn’t require it, it’s also possible to have several events of the 

same kind scheduled on the calendar at once, for different times and for different entities. 

 In a discrete-event model, the variables that describe the system don’t change be-

tween successive events. Most of the work in event-driven simulation involves getting 

the logic right for what happens with each kind of event. As you’ll see later, though, 

modeling with Arena usually gets you out of having to defi ne this detailed event logic 

explicitly, although you can do so if you want to represent something peculiar to your 

model that Arena isn’t set up to handle directly. 

   2.3.8 Simulation Clock 

 The current value of time in the simulation is simply held in a variable called the  simu-
lation clock . Unlike real time, the simulation clock does not take on all values and fl ow 

continuously; rather, it lurches from the time of one event to the time of the next event 

scheduled to happen. Since nothing changes between events, there is no need to waste 

(real) time looking at (simulated) times that don’t matter. 

 The simulation clock interacts closely with the event calendar. At initialization of 

the simulation, and then after executing each event, the event calendar’s top record 

(always the one for the next event) is taken off the calendar. The simulation clock lurches 

forward to the time of that event (one of the data fi elds in the event record), and the in-

formation in the removed event record (entity identifi cation, event time, and event type) 

is used to execute the event at that instant of simulated time. How the event is executed 

clearly depends on what kind of event it is as well as on the model state at that time, but 

in general could include updating variables and statistical accumulators, altering entity 

attributes, and placing new event records onto the calendar. 

 While we’ll keep track of the simulation clock and event calendar ourselves in the 

hand simulation, these are clearly important pieces of any dynamic simulation, so Arena 

keeps track of them (the clock is a variable called  TNOW  in Arena). 

   2.3.9 Starting and Stopping 

 Important, but sometimes-overlooked, issues in a simulation are how it will start and 

stop. For our example, we’ve made specifi c assumptions about this, so it’ll be easy to 

fi gure out how to translate them into values for attributes, variables, accumulators, the 

event calendar, and the clock. 

 Arena does a lot of things for you automatically, but it can’t decide modeling issues 

like starting and stopping rules. You have to determine the appropriate starting condi-

tions, how long a run should last, and whether it should stop at a particular time (as 

kel01315_ch02_015-052.indd   24kel01315_ch02_015-052.indd   24 05/12/13   3:30 PM05/12/13   3:30 PM



Fundamental Simulation Concepts     25

we’ll do at time 20 minutes) or whether it should stop when something specifi c happens 

(like as soon as 100 fi nished parts are produced). It’s important to think about this and 

make assumptions consistent with what you’re modeling; these decisions can have just 

as great an effect on your results as can more obvious things like values of input pa-

rameters (such as interarrival-time means, service-time variances, and the number of 

machines). 

 You should do  something  specifi c (and conscious) to stop the simulation with Arena, 

since it turns out that, in many situations, taking all the defaults will cause your simu-

lation to run forever (or until you get sick of waiting and kill it, whichever comes fi rst). 

     2.4 Event-Driven Hand Simulation 

  We’ll let you have the gory details of the hand simulation in this section, after outlining 

the action and defi ning how to keep track of things. 

  2.4.1 Outline of the Action 

 Here’s roughly how things go for each event:

    ■   Arrival:  A new part shows up.    

 1.  Schedule the next new part to arrive later, at the next arrival time, by placing 

a new event record for it onto the event calendar.  

   2.   Update the time-persistent statistics (between the last event and now).  

   3.   Store the arriving part’s time of arrival (the current value of the clock) in an 

attribute, which will be needed later to compute its total time in system and 

possibly the time it spends waiting in the queue.  

   4.   If the drill press is idle, the arriving part goes right into service (experiencing 

a time in queue of zero), so the drill press is made busy and the end of this 

part’s service is scheduled. Tally this part’s time in queue (zero).  

   5.   On the other hand, if the drill press is already busy with another part, the 

arriving part is put at the end of the queue and the queue-length variable is 

incremented.    
   ■   Departure:  The part being served by the drill press is done and ready to leave. 

    1.   Increment the number-produced statistical accumulator.  

   2.   Compute and tally the total time in system of the departing part by taking the 

current value of the clock minus the part’s arrival time (stored in an attribute 

during the Arrival event).  

   3.   Update the time-persistent statistics.  

   4.   If there are any parts in queue, take the fi rst one out, compute and tally its 

time in queue (which is now ending), and begin its service at the drill press 

by scheduling its departure event (that is, place it on the event calendar).  

   5.   On the other hand, if the queue is empty, then make the drill press idle. Note 

that in this case, there’s no departure event scheduled on the event calendar.    
   ■   The End:  The simulation is over. 

    1.   Update the time-persistent statistics to the end of the simulation.  

   2.   Compute and report the fi nal summary output performance measures.    
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   After each event (except the end event), the event calendar’s top record is removed, 

indicating what event will happen next and at what time. The simulation clock is ad-

vanced to that time, and the appropriate logic is carried out. 

   2.4.2 Keeping Track of Things 

 All the calculations for the hand simulation are detailed in  Table 2-2 . Traces of  Q ( t ) and 

 B ( t ) over the whole simulation are in  Figure 2-3 . Each row in  Table 2-2  represents an 

event concerning a particular part (in the fi rst column) at time  t  (second column), and the 

situation  after  completion of the logic for that event (in the other columns). The other 

column groups are:

    ■   Event:  This describes what just happened; Arr and Dep refer respectively to an 

arrival and a departure.  
   ■   Variables:  These are the values of the number  Q ( t ) of parts in queue and the 

server-busy function  B ( t ).  
   ■   Attributes:  Each arriving entity’s arrival time is assigned when it arrives and is 

carried along with it throughout. If a part is in service at the drill press, its arrival 

time is at the right edge of the column and is not enclosed in parentheses. The 

arrival times of any parts in the queue, in right-to-left order (to agree with  Fig-

ure 2-1 ), extend back toward the left and are in parentheses. For instance, at the 

end of the run, the part in service arrived at time 18.69, and the part that’s fi rst 

(and only) in the queue arrived at time 19.39. We have to keep track of these to 

compute the time in queue of a part when it enters service at the drill press after 

having waited in the queue as well as the total time in system of a part when it 

leaves.  
   ■   Statistical Accumulators:  We have to initialize and then update these as we go 

along to watch what happens. They are: 

     P  5 the total number of parts produced so far 
     N  5 the number of entities that have passed through the queue so far 
     �WQ  5 the sum of the queue times that have been observed so far 
     WQ * 5 the maximum time in queue observed so far 
     �TS  5 the sum of the total times in system that have been observed so far 
     TS * 5 the maximum total time in system observed so far 
    e Q  5 the area under the  Q ( t ) curve so far 
     Q * 5 the maximum value of  Q ( t ) so far 
    e B  5 the area under the  B ( t ) curve so far  

   ■   Event Calendar:  These are the event records as described earlier. Note that, 

at each event time, the top record on the event calendar becomes the fi rst three 

entries under “Just-Finished Event” at the left edge of the entire table in the next 

row, at the next event time.    
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Table 2-2. Record of the Hand Simulation

J u s t - F in i s h e d  E v e n t V a r ia b le s A t t r i b u te s S ta t i s t ic a l  A c c u m u la to r s E v e n t  C a le n d a r
E n t i ty

N o .
T im e

t
E v e n t
T y p e Q ( t ) B ( t )

A r r iv a l  T im e s :
( I n  Q u e u e ) I n  S e r v ic e  P N Σ W Q W Q * Σ T S T S * ∫Q Q * ∫B    [ E n t i t y  N o . ,  T im e ,  T y p e ]

– 0 .0 0 I n i t 0 0 (  ) – 0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 0 .0 0
[ 1 ,
[ – ,

0 .0 0 ,
2 0 .0 0 ,

A r r ]
E n d ]

1 0 .0 0 A r r 0 1 (  ) 0 .0 0 0 1 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 0 .0 0
[ 2 ,
[ 1 ,
[ – ,

1 .7 3 ,
2 .9 0 ,

2 0 .0 0 ,

A r r ]
D e p ]
E n d ]

2 1 .7 3 A r r 1 1 ( 1 .7 3 ) 0 .0 0 0 1 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 1 .7 3
[ 1 ,
[ 3 ,
[ – ,

2 .9 0 ,
3 .0 8 ,

2 0 .0 0

D e p ]
A r r ]

E n d ]

1 2 .9 0 D e p 0 1 (  ) 1 .7 3 1 2 1 .1 7 1 .1 7 2 .9 0 2 .9 0 1 .1 7 1 2 .9 0
[ 3 ,
[ 2 ,
[ – ,

3 .0 8 ,
4 .6 6 ,

2 0 .0 0 ,

A r r ]
D e p ]
E n d ]

3 3 .0 8 A r r 1 1 ( 3 .0 8 ) 1 .7 3 1 2 1 .1 7 1 .1 7 2 .9 0 2 .9 0 1 .1 7 1 3 .0 8
[ 4 ,
[ 2 ,
[ – ,

3 .7 9 ,
4 .6 6 ,

2 0 .0 0 ,

A r r ]
D e p ]
E n d ]

4 3 .7 9 A r r 2 1 ( 3 .7 9 ,  3 .0 8 ) 1 .7 3 1 2 1 .1 7 1 .1 7 2 .9 0 2 .9 0 1 .8 8 2 3 .7 9
[ 5 ,
[ 2 ,
[ – ,

4 .4 1 ,
4 .6 6 ,

2 0 .0 0 ,

A r r ]
D e p ]
E n d ]

5 4 .4 1 A r r 3 1 ( 4 .4 1 ,  3 .7 9 ,  3 .0 8 ) 1 .7 3 1 2 1 .1 7 1 .1 7 2 .9 0 2 .9 0 3 .1 2 3 4 .4 1
[ 2 ,
[ 6 ,
[ – ,

4 .6 6 ,
1 8 .6 9 ,
2 0 .0 0 ,

D e p ]
A r r ]

E n d ]

2 4 .6 6 D e p 2 1 ( 4 .4 1 ,  3 .7 9 ) 3 .0 8 2 3 2 .7 5 1 .5 8 5 .8 3 2 .9 3 3 .8 7 3 4 .6 6
[ 3 ,
[ 6 ,
[ – ,

8 .0 5 ,
1 8 .6 9 ,
2 0 .0 0 ,

D e p ]
A r r ]

E n d ]

3 8 .0 5 D e p 1 1 ( 4 .4 1 ) 3 .7 9 3 4 7 .0 1 4 .2 6 1 0 .8 0 4 .9 7 1 0 .6 5 3 8 .0 5
[ 4 ,
[ 6 ,
[ – ,

1 2 .5 7 ,
1 8 .6 9 ,
2 0 .0 0 ,

D e p ]
A r r ]

E n d ]

4 1 2 .5 7 D e p 0 1 (  ) 4 .4 1 4 5 1 5 .1 7 8 .1 6 1 9 .5 8 8 .7 8 1 5 .1 7 3 1 2 .5 7
[ 5 ,
[ 6 ,
[ – ,

1 7 .0 3 ,
1 8 .6 9 ,
2 0 .0 0 ,

D e p ]
A r r ]

E n d ]
5 1 7 .0 3 D e p 0 0 (  ) – 5 5 1 5 .1 7 8 .1 6 3 2 .2 0 1 2 .6 2 1 5 .1 7 3 1 7 .0 3 [ 6 ,

[ – ,
1 8 .6 9 ,
2 0 .0 0

A r r ]
E n d ]

6 1 8 .6 9 A r r 0 1 (  ) 1 8 .6 9 5 6 1 5 .1 7 8 .1 6 3 2 .2 0 1 2 .6 2 1 5 .1 7 3 1 7 .0 3
[ 7 ,
[ – ,
[ 6 ,

1 9 .3 9 ,
2 0 .0 0 ,
2 3 .0 5 ,

A r r ]
E n d ]
D e p ]

7 1 9 .3 9 A r r 1 1 ( 1 9 .3 9 ) 1 8 .6 9 5 6 1 5 .1 7 8 .1 6 3 2 .2 0 1 2 .6 2 1 5 .1 7 3 1 7 .7 3
[ – ,
[ 6 ,
[ 8 ,

2 0 .0 0 ,
2 3 .0 5 ,
3 4 .9 1 ,

E n d ]
D e p ]
A r r ]

– 2 0 .0 0 E n d 1 1 ( 1 9 .3 9 ) 1 8 .6 9 5 6 1 5 .1 7 8 .1 6 3 2 .2 0 1 2 .6 2 1 5 .7 8 3 1 8 .3 4 [ 6 ,
[ 8 ,

2 3 .0 5 ,
3 4 .9 1 ,

D e p ]
A r r ]
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         2.4.3 Carrying It Out 

 Here’s a brief narrative of the action:

    ■   t   5 0.00, Init:  The model is initialized, with all variables and accumulators set 

to 0, the queue empty, the drill press idle, and the event calendar primed with the 

fi rst arrival happening at time 0.00 and the end of the simulation scheduled for 

time 20.00. To see what happens next, just take the fi rst event record off the event 

calendar—the arrival of Entity 1 at time 0.00.  
   ■   Entity 1,   t   5 0.00, Arr:  The next (second) part arrival is scheduled by creating 

a Part 2 entity, setting its Arrival Time to the current time (0) plus its interarrival 

time (1.73, from  Table 2-1 ), and placing it on the event calendar. Meanwhile, the 

part arriving now (Part 1) makes the drill press busy, and the arrival time, 0.00, 

of this part is stored in its attribute (not in parentheses). The queue is still empty 

because this part fi nds the drill press idle and begins service immediately (so 

the parentheses to contain the times of arrival of parts in queue have nothing be-

tween them). Since the entity passed through the queue (with time in queue of 0), 

 N  is incremented,  �WQ  is augmented by the waiting time in queue (0), and we 

check to see if a new maximum waiting time in queue has occurred (no). There 

has been no production yet, so  P  stays at 0. No total times in the system have yet 

been observed, so  �TS  and  TS * are unchanged. The time-persistent statistics e Q , 

 Q *, and e B  remain at 0 since no time has yet passed. Referring to  Table 2-1 , the 

service time for Part 1 is set to 2.90 minutes, and the Part 1 entity is returned to 

the event calendar. Taking the top record off the event calendar, the next event 

will be the arrival of Entity 2 at time 1.73.  

  Figure 2-3.  Time-Persistent Curves for the Hand Simulation   
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   ■   Entity 2,   t   5 1.73, Arr:  The next (third) part arrival is scheduled by creating 

a Part 3 entity, setting its Arrival Time to the current time (1.73) plus its inter-

arrival time (1.35, from  Table 2-1 ), and placing it on the event calendar, which 

schedules the arrival of this part at time 1.73 1 1.35 5 3.08. Meanwhile, the part 

arriving now (Part 2) fi nds the drill press already busy (with Part 1), so it must 

queue up. The drill press is still busy, so  B ( t ) stays at 1, but the queue length 

 Q ( t ) is incremented from 0 to 1. Now there is a queue, and the arrival time (the 

time now, which is 1.73) of the part in the queue (the currently arriving Part 2) is 

stored as an attribute of that part in the queue (in parentheses); Part 1, which ar-

rived at time 0.00, is still in service. This event has resulted in no new production 

and no new time-in-queue observations, so  P ,  N , � WQ ,  WQ *,  �TS , and  TS * are 

unchanged. e Q  is augmented by 0 3 (1.73 2 0.00) 5 0 and e B  is augmented by 

1 3 (1.73 2 0.00) 5 1.73. Since the new value of  Q ( t ) is 1, which is greater than 

the former  Q * 5 0, we set  Q * 5 1 as the new maximum queue length observed 

so far. We don’t update the time of the next departure, since it’s still (correctly) 

scheduled as the departure time of Part 1, which arrived earlier and is now par-

tially processed. The next event will be the departure of Part 1 at time 2.90.  
   ■   Entity 1,   t   5 2.90, Dep:  Since this is a departure event, we don’t need to sched-

ule the next arrival—it’s already on its way, with the (correct) arrival event 

[3, 3.08, Arr] already on the event calendar. Part 1 is now done being processed 

by the drill press and ready to depart. Since there is a queue, the drill press will 

stay busy, so  B ( t ) remains at 1, but  Q ( t ) is decremented (from 1 to 0) and the 

queue becomes empty (as Part 2, which arrived at time 1.73, leaves it to enter 

service). Part 2’s waiting time in queue of duration 2.90 2 1.73 5 1.17 has now 

been completed, which is added into  �WQ , and  N  is incremented; this is a new 

maximum waiting time in queue, so  WQ * is redefi ned to 1.17. A fi nished part 

(Part 1) has been produced so  P  is incremented and the total time in system for 

Part 1 is computed as 2.90 2 0.00 5 2.90, which is added into � TS ; this is a new 

maximum total time in system, so  TS * is updated to 2.90. We augment e Q  by 1 3 

(2.90 2 1.73) 5 1.17, and e B  is augmented by the same amount. No new max-

imum for  Q ( t ) has been realized, so  Q * is unchanged at 1. From  Table 2-1 , the 

next service time is 1.76, so the next departure (of Part 2, which is now entering 

service) will be at time 2.90 1 1.76 5 4.66. The next event is the arrival of Part 3 

at time 3.08.  
   ■   Entity 3,   t   5 3.08, Arr:  The next (fourth) part arrival is scheduled by creating a 

Part 4 entity, setting its Arrival Time to 3.08 1 0.71 5 3.79 (0.71 is the next in-

terarrival time in  Table 2-1 ), and placing it on the event calendar. Meanwhile, the 

part arriving now (Part 3) fi nds the drill press already busy (with Part 2), so Part 3 

queues up. The drill press is still busy, so  B ( t ) stays at 1, but the queue length  Q ( t ) 
is incremented from 0 to 1. The arrival time (3.08) of the part in queue (the cur-

rently arriving Part 3) is stored as an attribute of that part; Part 2, which arrived 

at time 1.73, is still in service. With this event, we’re not experiencing any new 

production or time-in-queue observations, so  P ,  N ,  �WQ ,  WQ *,  �TS , and  TS * 

are unchanged. e Q  is augmented by 0 3 (3.08 2 2.90) 5 0 and e B  is augmented 
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by 1 3 (3.08 2 2.90) 5 0.18. The new value of  Q ( t ) is 1, which is no more than 

the former  Q * 5 1, so we leave  Q * 5 1 unchanged. We don’t update the time of 

the next departure, since it’s still (correctly) scheduled as the departure time of 

Part 2, which arrived earlier and is now partially processed. The next event will 

be the arrival of Part 4 at time 3.79.  
   ■   Entity 4,   t   5 3.79, Arr:  The next (fi fth) part arrival is scheduled for time 3.79 1 

0.62 5 4.41. The part arriving now (Part 4) queues up since the drill press is 

now busy;  B ( t ) stays at 1, and the queue length  Q ( t ) is incremented to 2. The 

arrival time (3.79) of Part 4, now arriving, is stored as an attribute of that part, 

and placed at the end of the queue (the queue is FIFO); Part 2, which arrived at 

time 1.73, is still in service. We’re not experiencing any new production or time-

in-queue observations, so  P ,  N , � WQ ,  WQ *,  �TS , and  TS * are unchanged. e Q  is 

augmented by 1 3 (3.79 2 3.08) 5 0.71 and e B  is augmented by 1 3 (3.79 2 

3.08) 5 0.71. The new value of  Q ( t ) is 2, which exceeds the former  Q * 5 1, so 

we now set  Q * 5 2. We don’t update the time of the next departure, since it’s still 

(correctly) scheduled as the departure time of Part 2. The next event will be the 

arrival of Part 5 at time 4.41.  
   ■   Entity 5,   t   5 4.41, Arr:  The next (sixth) part arrival is scheduled for time 

4.41 1 14.28 5 18.69. The part arriving now (Part 5) joins the end of the queue, 

 B ( t ) stays at 1, the queue length  Q ( t ) is incremented to 3, and Part 2 continues 

in service. As in the preceding event,  P ,  N ,  �WQ ,  WQ *,  �TS , and  TS * are un-

changed. e Q  is augmented by 2 3 (4.41 2 3.79) 5 1.24 and e B  is augmented by 

1 3 (4.41 2 3.79) 5 0.62.  Q ( t ) has now risen to 3, a new maximum, so we set 

 Q * 5 3. The time of the next departure is still (correctly) scheduled as the depar-

ture time of Part 2 at time 4.66, which now fl oats to the top of the event calendar 

and will be the next event to occur.  
   ■   Entity 2,   t   5 4.66, Dep:  Part 2 now is done and is ready to depart. Since there 

is a queue, the drill press will stay busy so  B ( t ) remains at 1, but  Q ( t ) is decre-

mented to 2. The queue advances, and the fi rst part in it (Part 3, which arrived at 

time 3.08) will enter service. A waiting time in queue of duration 4.66 2 3.08 5 

1.58 for Part 3 has now been completed, which is added into  �WQ , and  N  is 

incremented; this is a new maximum waiting time in queue, so  WQ * is changed 

to 1.58. A new part has been produced so  P  is incremented to 2 and the total time 

in system of Part 2 is computed as 4.66 2 1.73 5 2.93, which is added into  �TS ; 

this is a new maximum total time in system, so  TS * is changed to 2.93. e Q  is 

augmented by 3 3 (4.66 2 4.41) 5 0.75 and e B  is augmented by 1 3 (4.66 2 

4.41) 5 0.25. No new maximum for  Q ( t ) has been realized, so  Q * is unchanged. 

The next departure (of Part 3, which is now entering service) is scheduled for 

time 4.66 1 3.39 5 8.05; no update to the time of the next arrival is needed. The 

next event is the departure of Entity 3 at time 8.05.  
   ■   Entity 3,   t   5 8.05, Dep:  Part 3 departs. Part 4, fi rst in queue, enters service, adds 

its waiting time in queue 8.05 2 3.79 5 4.26 (a new maximum) into  �WQ , and 

 N  is incremented;  B ( t ) stays at 1 and  Q ( t ) is decremented to 1. Part 3’s total time 

in system is 8.05 2 3.08 5 4.97 (a new maximum), which is added into  �TS , 
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and  P  is incremented. e Q  is augmented by 2 3 (8.05 2 4.66) 5 6.78 and e B  is 

augmented by 1 3 (8.05 2 4.66) 5 3.39;  Q * is unchanged. The next departure 

(of Part 4, which is now entering service) is scheduled for time 8.05 1 4.52 5 

12.57; no update to the time of the next arrival is needed. The next event is the 

departure of Entity 4 at time 12.57.  
   ■   Entity 4,   t   5 12.57, Dep:  Part 4 departs. Part 5 enters service, adds its waiting 

time in queue 12.57 2 4.41 5 8.16 (a new maximum) into  �WQ , and  N  is in-

cremented;  B ( t ) stays at 1 and  Q ( t ) is decremented to 0 (so the queue becomes 

empty, though a part is in service). Part 4’s total time in system is 12.57 2 3.79 5 

8.78 (a new maximum), which is added into  �TS , and  P  is incremented. e Q  is 

augmented by 1 3 (12.57 2 8.05) 5 4.52 and e B  is augmented by the same 

amount;  Q * is unchanged. The next departure (of Part 5, which is now entering 

service) is scheduled for time 12.57 1 4.46 5 17.03; no update to the time of the 

next arrival is needed. The next event is the departure of Entity 5 at time 17.03.  
   ■   Entity 5,   t   5 17.03, Dep:  Part 5 departs. But since the queue is empty, the drill 

press becomes idle ( B ( t ) is set to 0) and there is no new waiting time in queue 

observed, so  �WQ ,  WQ *, and  N  remain unchanged. Part 5’s total time in system 

is 17.03 2 4.41 5 12.62 (a new maximum), which is added into  �TS , and  P  is 

incremented. e Q  is augmented by 0 3 (17.03 2 12.57) 5 0 and e B  is augmented 

by 1 3 (17.03 2 12.57) 5 4.46;  Q * is unchanged. Since there is not now a part 

in service at the drill press, the event calendar is left without a departure event 

scheduled; no update to the time of the next arrival is needed. The next event is 

the arrival of Entity 6 at time 18.69.  
   ■   Entity 6,   t   5 18.69, Arr:  This event processes the arrival of Part 6 to the system, 

which is now empty of parts and the drill press is idle, so this is really the same 

scenario as in the arrival of Part 1 at time 0; indeed, the “experience” of Part 6 

is (probabilistically) identical to that of Part 1. The next (seventh) part arrival is 

scheduled for time 18.69 1 0.70 5 19.39. Meanwhile, the arriving Part 6 makes 

the drill press busy, but the queue is still empty because this part fi nds the drill 

press idle and begins service immediately. The waiting time in queue of Part 6 

is 0, so  N  is incremented to 6, and  �WQ  is “augmented” by 0, which is certainly 

not a new maximum waiting time in queue. No part is departing, so there is no 

change in  P ,  �TS , or  TS *. Since  Q ( t ) and  B (t) have both been at 0 since the previ-

ous event, there is no numerical change in e Q , e B , or  Q *. The departure of Part 6 

is scheduled for time 18.69 1 4.36 5 23.05 (so will not occur since this is after 

the simulation end time, as refl ected in the order of the updated event calendar). 

The next event is the arrival of Part 7 at time 19.39.  
   ■   Entity 7,   t   5 19.39, Arr:  The next (Eighth) part arrival is scheduled for time 

19.39 1 15.52 5 34.91, which is beyond the termination time (20), so will not 

happen. Part 7 queues up,  B ( t ) stays at 1, and  Q ( t ) is incremented to 1 (not a 

new maximum). Since there is no new waiting time in queue being observed,  N , 

 �WQ , and  WQ * are unchanged; since no part is departing,  P ,  �TS , and  TS * are 

unchanged. e Q  is augmented by 0 3 (19.39 2 18.69) 5 0 and e B  is augmented 

by 1 3 (19.39 2 18.69) 5 0.70. The next departure is already properly sched-

uled. The next event will be the end of the simulation at time 20.  
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  Table 2-3. Final Output Performance Measures from the Hand Simulation  

 Performance Measure  Value 

 Total production  5 parts 

 Average waiting time in queue  2.53 minutes per part (6 parts) 

 Maximum waiting time in queue  8.16 minutes 

 Average total time in system  6.44 minutes per part (5 parts) 

 Maximum total time in system  12.62 minutes 

 Time-average number of parts in queue  0.79 part 

 Maximum number of parts in queue  3 parts 

 Drill-press utilization  0.92 (dimensionless proportion) 

   ■   t   5 20.00, The End:  The only task here is to update the areas e Q  and e B  to the 

end of the simulation, which in this state adds 1 3 (20.00 2 19.39) 5 0.61 to 

both of them.    

 The bottom row of  Table 2-2  shows the ending situation, including the fi nal values 

of the statistical accumulators. 

   2.4.4 Finishing Up 

 The only cleanup required is to compute the fi nal values of the output performance 

measures:

    ■  The average waiting time in queue is  �WQ / N  5 15.17/6 5 2.53 minutes per part.  
   ■  The average total time in system is  �TS / P  5 32.20y5 5 6.44 minutes per part.  
   ■  The time-average length of the queue is e Q / t  5 15.78y20 5 0.79 part ( t  here is 

the fi nal value, 20.00, of the simulation clock).  
   ■  The utilization of the drill press is e B / t  5 18.34y20 5 0.92.    

  Table 2-3  summarizes all the fi nal output measures together with their units of 

measurement.    

 During the 20 minutes, we produced fi ve fi nished parts; the waiting time in queue, 

total times in system, and queue length do not seem too bad; and the drill press was 

busy 92% of the time. These values are considerably different from what we might have 

guessed or obtained via an oversimplifi ed queueing model (see Exercise 2-6). 

     2.5 Event- and Process-Oriented Simulation 

  The hand simulation we struggled through in Section 2.4 uses the  event orientation  

since the modeling and computational work is centered around the events, when they 

occur, and what happens when they do. This allows you to control everything; have 

complete fl exibility with regard to attributes, variables, and logic fl ow; and know the 

state of everything at any time. You easily see how this could be coded up in any pro-

gramming language or maybe with macros in a spreadsheet (for very simple models 

only), and people have done this a lot. For one thing, computation is pretty quick with a 
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custom-written, event-oriented code. While the event orientation seems simple enough 

in principle (although not much fun by hand) and has some advantages, you can imag-

ine that it becomes complicated for large models with lots of different kinds of events, 

entities, and resources. 

 A more natural way to think about many dynamic simulations is to take the view-

point of a “typical” entity as it works its way through the model, rather than the omni-

scient orientation of the main controller keeping track of all events, entities, attributes, 

variables, and statistical accumulators as we did in the event-oriented hand simulation. 

This alternative view centers on the  processes  that entities undergo, so is called the  pro-
cess orientation . As you’ll see, this is strongly analogous to another common modeling 

tool—namely, fl owcharting. In this view, we might model the hand-simulated example 

in steps like this (put yourself in the position of a typical part entity):

    ■  Create yourself (a new entity arrives).  
   ■  Write down what time it is now on one of your attributes so you’ll know 

your arrival time later for the waiting-time-in-queue and total-time-in-system 

computations.  
   ■  Put yourself at the end of the queue.  
   ■  Wait in the queue until the drill press becomes free (this wait could be of 0 dura-

tion, if you’re lucky enough to fi nd the drill press idle when you arrive).  
   ■  Seize the drill press (and take yourself out of the queue).  
   ■  Compute and tally your waiting time in queue.  
   ■  Stay put, or  delay  yourself, for an amount of time equal to your service 

requirement.  
   ■  Release the drill press (so other entities can seize it).  
   ■  Increment the production-counter accumulator on the wall and tally your total 

time in system.  
   ■  Dispose of yourself and go away.    

 This is the sort of “program” you write with a process-oriented simulation language 

like SIMAN and is also the view of things normally taken by Arena (which actually 

translates your fl owchart-like description into a SIMAN model to be run, though you 

don’t need to get into that unless you want to; see Section 7.1.6). It’s a much more 

natural way to think about modeling, and (importantly) big models can be built without 

the extreme complexity they’d require in an event-oriented program. It does, though, 

require more behind-the-scenes support for chores like time advance, keeping track 

of time-persistent statistics (which didn’t show up in the process-oriented logic), and 

output-report generation. Simulation software like Arena provides this support as well 

as a rich variety of powerful modeling constructs that enable you to build complicated 

models relatively quickly and reliably. 

 Most discrete-event simulations are actually  executed  in the event orientation, even 

though you may never see it if you do your modeling in the process orientation. Arena’s 

hierarchical nature allows you to get down into the event orientation if you need to in 

order to regain the control to model something peculiar, and in that case you have to 

think (and code) with event-oriented logic as we did in the hand simulation. 
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 Because of its ease and power, process-oriented logic has become popular and is the 

approach we’ll take from now on. However, it’s good to have some understanding of 

what’s going on under the hood, so we fi rst made you suffer through the laborious event 

simulation. 

    2.6 Randomness in Simulation 

  In this section, we’ll discuss how (and why) you model randomness in a simulation 

model’s input and the effect this can have on your output. We’ll need some probability 

and statistics here, so this might be a good time to take a quick glance at (or a painstak-

ing review of) Appendix B to review some basic ideas, terminology, and notation. 

  2.6.1 Random Input, Random Output 

 The simulation in Section 2.4 used the input data in  Table 2-1  to drive the simulation 

recorded in  Table 2-2 , resulting in the numerical output performance measures reported 

in  Table 2-3 . This might be what happened from 8:00 to 8:20 on some particular 

Monday morning, and if that’s all you’re interested in, you’re done. 

 But you’re probably interested in more, like what you’d expect to see on a “typical” 

morning and how the results might differ from day to day. And since the arrival and ser-

vice times of parts on other days would probably differ from those in  Table 2-1 , the trace 

of the action in  Table 2-2  will likely be changed, so the numerical output performance 

measures will probably be different from what we got in  Table 2-3 . Therefore, a single 

run of the example just won’t do since we really have no idea how “typical” our results 

are or how much variability might be associated with them. In statistical terms, what you 

get from a single run of a simulation is a  sample of size one , which just isn’t worth much. 

It would be pretty unwise to put much faith in it, much less make important decisions 

based on it alone. If you rolled a die once and it came up a four, would you be willing to 

conclude that all the other faces were four as well? 

 So random input looks like a curse. But you must often allow for it to make your 

model a valid representation of reality, where there may also be considerable uncer-

tainty. The way people usually model this, instead of using a table of numerical input 

values, is to specify  probability distributions  from which observations are  generated  

(or  drawn  or  sampled ) and drive the simulation with them. We’ll talk in Section 4.6 

about how you can determine these input probability distributions using the Arena 

Input Analyzer. Arena internally handles generation of observations from distributions 

you specify. Not only does this make your model more realistic, but it also sets you free 

to do more simulation than you might have observed data for and to explore situations 

that you didn’t actually observe. As for the tedium of generating the input observations 

and doing the simulation logic, that’s exactly what Arena (and computers) like to do 

for you. 

 But random input induces randomness in the output too. We’ll explore this a little bit 

in the remainder of this section, but will take it up more fully in Chapter 6, Section 7.2, 

and Chapter 12 and show you how to use the Arena Output Analyzer, Process Analyzer, 

and OptQuest®, from OptTek Systems, Inc., to help interpret and appropriately cope 

with randomness in the output. 
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   2.6.2 Replicating the Example 

 It’s time to confess: We generated the input values in  Table 2-1  from probability dis-

tributions in Arena. The interarrival times came from an exponential distribution with 

a mean of 5 minutes, and the service times came from a triangular distribution with a 

minimum of 1 minute, mode of 3 minutes, and maximum of 6 minutes. (You’ll see in 

Chapter 3 how all this works in Arena.) See Appendix C for a description of Arena’s 

probability distributions. 

 So instead of just the single 20-minute run, we could make several (we’ll do fi ve) in-

dependent, statistically identical 20-minute runs and investigate how the results change 

from run to run, indicating how things in reality might change from morning to morning. 

Each run starts and stops according to the same rules and uses the same input-parameter 

settings (that’s the “statistically identical” part), but uses separate input random num-

bers (that’s the “independent” part) to generate the actual interarrival and service times 

used to drive the simulation. Another thing we must do is  not  carry over any in-queue 

or in-process parts from the end of one run to the beginning of the next as they would 

introduce a link, or correlation, between one run and the next; any such luckless parts 

just go away. Such independent and statistically identical runs are called  replications  of 

the simulation, and Arena makes it very easy for you to carry them out—just enter the 

number of replications you want into a dialog box on your screen. You can think of this 

as having fi ve replications of  Table 2-1  for the input values, each one generating a rep-

lication of the simulation record in  Table 2-2 , resulting in fi ve replications of  Table 2-3  

for all the results. 

 We wish you’d admire (or pity) us for slugging all this out by hand, but we really just 

asked Arena to do it for us; the results are in  Table 2-4 . The column for Replication 1 is 

the same as what’s in  Table 2-3 , but you can see that there can be substantial variation 

across replications, just as things vary across days in the factory.    

  Table 2-4. Final Output Performance Measures from Five Replications of the Hand Simulation  

   Replication  Sample  95% 
 Performance Measure  1  2  3  4  5  Avg.  Std. Dev.  Half Width 

 Total production  5  3  6  2  3  3.80  1.64  2.04 

 Average waiting time in queue  2.53  1.19  1.03  1.62  0.00  1.27  0.92  1.14 

 Maximum waiting time in queue  8.16  3.56  2.97  3.24  0.00  3.59 *   2.93 *   3.63 *  

 Average total time in system  6.44  5.10  4.16  6.71  4.26  5.33  1.19  1.48 

 Maximum total time in system  12.62  6.63  6.27  7.71  4.96  7.64 *   2.95 *   3.67 *  

 Time-average number of parts in queue  0.79  0.18  0.36  0.16  0.05  0.31  0.29  0.36 

 Maximum number of parts in queue  3  1  2  1  1  1.60 *   0.89 *   1.11 *  

 Drill-press utilization  0.92  0.59  0.90  0.51  0.70  0.72  0.18  0.23 

   *Taking means and standard deviations of the “maximum” measures might be of debatable validity—what is the “mean 

maximum” supposed to, well, mean? It might be better in these cases to take the  maximum  of the individual-replication maxima 

if you really want to know about the extremes.   
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 The columns in  Table 2-4  give the sample mean and sample standard deviation (see 

Appendix B) across the individual-replication results for the output performance mea-

sure in each row. The sample mean provides a more stable indication of what to expect 

from each performance measure than what happens on an individual replication, and the 

sample standard deviation measures cross-replication variation. 

 Since the individual replication results are independent and identically distributed, 

you could form a confi dence interval for the true expected performance measure  �  

(think of  �  as the sample mean across an infi nite number of replications) as 

    
_
 X   6t

n21,12�/2
   s ___ 
 √ 

__
 n       

 where    
_
 X     is the sample mean,  s  is the sample standard deviation,  n  is the number of rep-

lications ( n  5 5 here), and  t
   n 21,12 � y2

  is the upper 1 2  � y2 critical point from Student’s 

 t  distribution with  n  2 1 degrees of freedom. Using the total-production measure, for 

example, this works out for a 95% confi dence interval ( �  5 0.05) to 

   3.80 6 2.776   1.64 ____ 
 √ 

__

 5  
     

 or 3.80 6 2.04; the half widths for 95% confi dence intervals on the expectations of all 

performance measures are in the last column of  Table 2-4 . The correct interpretation 

here is that in about 95% of the cases of making fi ve simulation replications as we did, 

the interval formed like this will contain or “cover” the true (but unknown) expected 

value of total production. This confi dence interval assumes that the total-production re-

sults from the replications are normally distributed, which is not really justifi ed here, but 

we use this form anyway; see Section 6.3 for more on this issue of statistical  robustness . 

You might notice that the half width of this interval (2.04) is pretty big compared to the 

value at its center (3.80); that is, the  precision  is not too good. This could be remedied 

by simply making more than the fi ve replications we made, which looks like it was not 

enough to learn anything precise about the expected value of this output performance 

measure. The great thing about collecting your data by simulation is that you can always  2   

go get more by simply calling for more replications. 

    2.6.3 Comparing Alternatives 

 Most simulation studies involve more than just a single setup or confi guration of the sys-

tem. People often want to see how changes in design, parameters (controllable in reality 

or not), or operation might affect performance. To see how randomness in simulation 

plays a role in these comparisons, we made a simple change to the example model and 

re-simulated (fi ve replications). 

 The change we made was just to double the arrival rate—in other words, the mean 

interarrival time is now 2.5 minutes instead of 5 minutes. The exponential distribution 

is still used to generate interarrival times, and everything else in the simulation stays 

the same. This could represent, for instance, acquiring another customer for the facility, 

whose part-processing demands would be intermingled with the existing customer base. 

  2  Well, almost always. 

kel01315_ch02_015-052.indd   36kel01315_ch02_015-052.indd   36 05/12/13   3:30 PM05/12/13   3:30 PM



Fundamental Simulation Concepts     37

  Figure 2-4  indicates what happened to the fi ve “non-extreme” performance mea-

sures; the upper row (circles) of each plot indicates the original confi guration (and is 

taken right out of  Table 2-4 ), and the lower row (triangles) is for the new confi gura-

tion. For each performance measure, the results of the fi ve replications of each model 

are indicated, and the result from the fi rst replication in each case is fi lled in (replica-

tions 2–5 are hollow).   

 It’s not clear that total production really increases much with the double-time arriv-

als, due to limited processing capacity. It does appear, though, that the time in queue 

and in system, as well as the utilization, tend to increase, although not in every case 

(due to variability). And despite some overlap, the average queue lengths seem to grow 

somewhat when the arrival rate is doubled. While formal statistical analyses would be 

possible here to help sort things out (see Section 6.4), simple plots like these can some-

times be pretty illuminating (though you’d probably want substantially more than just 

fi ve replications of each scenario). 

 Moreover, note that relying on just one replication (the fi rst, indicated by the fi lled-in 

symbols) could be misleading. For instance, the average waiting time in queue in the 

fi rst replications of each model variant would have suggested that it is far greater for 

the double-time arrivals, but looking at the spread across replications indicates that the 

difference isn’t so clear-cut or dramatic. This is exactly the danger in relying on only a 

single run to make important decisions. 

     2.7 Simulating with Spreadsheets 

  You’ll agree that simulating by hand doesn’t have much of a future. People use spread-

sheets for a lot of things, so how about simulation? Well, maybe, depending on the type 

and complexity of the model, and on what add-in software you might have. In this sec-

tion, we’ll discuss two examples, fi rst a static model and then a dynamic model (recall 

Section 1.2.3); both, however, are very simple. 

  2.7.1 A News Vendor Problem 

 Rupert sells daily newspapers on a street corner. Each morning he must buy the same, 

fi xed number  q  of copies from the printer at  c  5 55 cents each, and he sells them for  r  5 

$1.00 each through the day. He’s noticed that demand  D  during a day is close to being a 

random variable  X  that’s normally distributed with mean  �  5 135.7 and standard devia-

tion � 5 27.1, except that  D  must be a nonnegative integer to make sense, so  D  5 max 

(⎣ X ⎤, 0) where ⎣·⎤ rounds to the nearest integer (Rupert’s not your average news vendor). 

Further, demands from day to day are independent of each other. Now if demand  D  in a 

day is no more than  q , he can satisfy all customers and will have  q  2  D  $ 0 papers left 

over, which he sells as scrap to the recycler on the next corner at the end of the day for  s  5 

3 cents each (after all, it’s old news at that point). But if  D  .  q,  he sells out all of his supply 

of  q  and just misses those other  D  2  q  . 0 sales. Each day starts afresh, independent of 

any other day, so this is a single-period (single-day) problem, and for a given day is a static 

model since it doesn’t matter when individual customers show up throughout the day. 

 How many papers  q  should Rupert buy each morning to maximize his expected 

profi t? If he buys too few, he’ll sell out and miss out on the 45 cents profi t on each lost 
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  Figure 2-4.  Comparing the Original (Circles) and Double-Time Arrival (Triangles) 

Systems (Replication 1 Is Filled In, and Replications 2–5 Are Hollow)   
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sale, but if he buys too many he will have some left over to scrap at a loss of 52 cents 

each. If he had a crystal ball and knew in the morning what demand was going to be that 

day, he’d of course buy just that many; Rupert’s good, but he’s not that good, so he needs 

to decide on a fi xed value of  q  that will apply to every day. 

 This is a genuine classic in operations research, a single-period, perishable- inventory 

problem, with more serious applications like food stocks and blood banks. It has many 

versions, variants, and extensions, and a lot of attention has been paid to getting exact 

analytical solutions. But it’s simple to simulate it; so simple, in fact, that it can be done 

in a spreadsheet. 

 First, let’s fi gure out an expression for Rupert’s profi t on a typical day. Clearly, his 

daily cost is  cq  (we won’t impose some enigmatic negative-good-will cost for lost sales if 

 D  .  q  and he sells out). If it turns out that  D  #  q , then he sells  D  and meets all customer 

demand, gets revenue  rD  from customers, and has  q  2  D  left over as scrap so gets  s ( q  2  D ) 

more revenue, such as it is, from the recycler. On the other hand, if  D  .  q  he sells  q , gets 

revenue  rq  from customers, but gets no scrap revenue. Thus, Rupert’s total daily revenue 

is  r  min ( D ,  q ) 1  s  max ( q  2  D , 0); to see this, just play out the two cases  D  #  q  and  D  .  q . 

So his daily profi t, in dollars, is 

  W ( q ) 5  r  min ( D ,  q ) 1  s  max ( q  2  D , 0) 2  cq . 

 We’ve written this as a function of  q  since it clearly depends on Rupert’s choice of  q . 

In mathematical-programming or optimization parlance,  q  is Rupert’s  decision variable  

to try to maximize his  objective function  of expected daily profi t, E( W ( q )). Since  D  is a 

random variable, so too is  W ( q ), and we need to take its expectation (see Appendix B for 

a refresher on probability and statistics) to get a deterministic objective function to try 

to maximize. Since expected values are long-run averages, in this case, over many days, 

Rupert is maximizing his long-run average daily profi t by fi nding the best set-it-and-

forget-it constant value of  q . He’s not trying to adjust  q  each day depending on demand, 

which is impossible since he has to commit to buying a fi xed number  q  papers in the 

morning, before that day’s demand is realized. Depending on the form of the probability 

distribution of  D , it might be possible in some cases to derive an exact expression for 

E( W ( q )) that we could try to maximize with respect to  q . But we can always build a 

simple simulation model and heed the lessons from Section 2.6 about statistical analysis 

of simulation output to get a valid and precise  estimate  of the optimal  q , without making 

strong and maybe unrealistic assumptions about the distribution of  D  just to enable an 

analytical result. 

 To simulate this, we need to generate numerical values on the demand random vari-

able  D  5 max (⎣ X ⎤, 0); such are called  random variates  on  D . Thus, we fi rst need to 

generate random variates on  X , which has a normal distribution with mean  �  5 135.7 

and standard deviation  �  5 27.1. Section 12.2 discusses random-variate generation in 

general, so we’ll trust you to look ahead if you’re interested at this point. In this case we 

can generate a normally distributed random variate as   X 5 F 
21

 
  �,�  (U)   where  U  is a  random 

number  (continuous random variate distributed uniformly between 0 and 1, discussed in 
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Section 12.1), F 
 �,� 

  is the cumulative distribution of the normal distribution with mean 

 �  and standard deviation �, and   F 
21

 
  �,�    is the functional inverse of F 

 �,� 
 , that is,   F 

21
 
  �,�    

“undoes” whatever F 
 �,� 

  does. Another way of looking at the functional inverse is that 

we need to solve  U  5 F 
 �,� 

 ( X ) for  X , where  U  would be a specifi c number between 0 and 

1 from the random-number generator. As you may know, neither F 
 �,� 

  nor   F 
21

 
  �,�    for the 

normal distribution can be written as an explicit closed-form formula, so evaluation of 

  F 
21

 
  �,�   (U) must be by numerical approximation, but this is built into spreadsheet software, 

and certainly into simulation software as well. 

 We used the Microsoft® Excel spreadsheet to create the fi le  Newsvendor.xls  in 

 Figure 2-5 . You’ll fi nd this fi le in the Book Examples folder, which is available as a  .zip -

fi le archive from the book’s website, www.mhhe.com/kelton. In cells B4:B8 (shaded 

blue in the fi le) are the input parameters, and in row 2 (pink) are some trial values for 

the decision variable  q  (cells H2, K2, N2, Q2, and T2). Column D just gives the day 

number for reference. We simulated 30 days, though as mentioned earlier, each day is 

independent, with no carry-over information from one day to the next, so is really an 

independent, static simulation. 

   Column E has the demand on each day, via the Excel formula 

  MAX(ROUND(NORMINV(RAND(), $B$7, $B$8), 0),0)  

 that is the same all the way down the column. Let’s dissect this formula from the inside 

out:

    ■   RAND()  is Excel’s built-in random-number generator, which returns a number 

between 0 and 1 that’s supposed to be uniformly distributed and independent 

across draws. See Section 12.1 for a discussion of random-number generators, 

which are more subtle than you might think, but are clearly essential to good 

stochastic simulation. Unfortunately, not all random-number generators supplied 

with various software packages are of high quality (however, the one built into 

Arena is excellent). Excel’s  RAND()  function is “volatile” by default, meaning 

that every instance of it re-draws a “fresh” random number upon any recalcula-

tion of the spreadsheet, which you can force by hitting the F9 key, by saving the 

fi le, or by editing just about anything anywhere in the sheet.  
   ■   NORMINV ( u ,  � ,  � ) is Excel’s built-in numerical approximation to   F 

21
 
  �,�   , so when 

used with  u  5  RAND()  returns a random variate distributed normally with mean 

 �  and standard deviation  � . We have  �  in cell B7 and  �  in cell B8; the  $  in 

Excel-formula cell references forces what immediately follows it (column letter 

or row number) not to change when the formula is copied into other cells, and 

here we want both the column and row to stay the same when this formula is 

copied into other cells since  �  and  �  are in these fi xed cells.  
   ■   ROUND ( x , 0) in Excel returns  x  rounded to the nearest integer. The second argu-

ment’s being 0 ensures that the rounding is to the nearest integer as opposed to 

other kinds of rounding (see Excel’s Help).  
   ■   MAX ( a ,  b ,...), as you might guess, returns the maximum of its arguments.  
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   We entered this formula originally in cell E4, then just copied it to the 29 cells below 

to get independent demands on 30 days, as  RAND()  draws a fresh random number each 

time it appears. Note that if you hit the F9 key or otherwise force the sheet to recalcu-

late, you get a new column of demand numbers, and most other things in the sheet also 

change accordingly. 

 For the case of  q  5 100, columns F, G, and H in rows 4–33 contain the number of 

papers sold, scrapped, and the daily profi t, for each of days 1–30:

    ■  Cell F4 is the number sold on day 1 if  q  5 100. The Excel formula is 5  MIN($E4, 
H$2) .  $E4  is the demand for day 1. We apply the  $  to column E since we’ll later 

want to copy this formula for other values of  q  in columns I, L, O, and R. How-

ever, we’ll keep the column reference to E, but no  $  for row 4 since we want it to 

change to rows 5–33 to pick up demands for subsequent days.  H$2  is  q  5 100. 

We have no  $  for column H since we’ll later want it to change for other  q  values 

  Figure 2-5.  Spreadsheet Simulation of the News Vendor Problem   
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in columns I, L, O, and R, but we apply a  $  to row 2 to keep the reference to it 

for rows below. Thus, this is min( D ,  q ), as desired.  
   ■  Cell G4 is the number of papers scrapped at the end of day 1 if  q  5 100. The 

Excel formula is 5  MAX(H$2 2 $E4, 0) , with  $  usage the same as for Cell 

F4 and for the same reasons. This is max( q  2  D , 0).  
   ■  Cell H4 is the profi t, in dollars, on day 1 if  q  5 100. The Excel formula is 

5  $B$5*F4 1 $B$6*G4 2 $B$4*H$2 , which is  r  min( D ,  q ) 1  s  max( q  2  D , 0) 2  

cq . We’ll let you fi gure out why the  $  signs are present and absent where they are.  

 We then simply copied cells F4, G4, and H4 into the 29 rows below, allowing the column 

letters and row numbers to run as appropriate and controlled by the  $  placement in the 

formulas, to get the  simulation table , as this is sometimes called, for the case  q  5 100. 

 At the bottom of these columns, shaded green in the fi le, we added the average profi t 

(cell H34) and the half width of a 95% confi dence interval on the expected average profi t 

(cell H35) over the 30 days, with formulae just like those toward the end of Section 

2.6.2; the value 2.045 is the upper 0.975 critical point from the  t  table with 29 degrees 

of freedom.  3   Note that, as in Section 2.6.2, the form of this confi dence interval assumes 

that the individual profi ts in a column are normally distributed, which is not quite true, 

especially for small values of  q  where there’s little variability in profi t, but we do so 

anyway; again, see the end of Section 6.3 for more on statistical robustness. 

  We also added in row 36 the proportion of days in which a loss was incurred, which 

is an estimate of the probability of incurring a loss in a day, using the Excel  COUNTIF  

function. With this low value of  q  a loss is quite unlikely since demand will be at least 

 q  on nearly all days, but that will change for higher values of  q . And in rows 38–46 we 

collect frequency-distribution data (again using  COUNTIF ) to construct a histogram of 

profi ts directly below; the vertical line in the histograms, which is red in the fi le, is at 

zero, so we have an indication to its left of the probability of incurring a loss, as well as 

the general distribution of the profi t data. 

 To complete the simulation study, we took columns F, G, and H and replicated them 

into four more blocks of three columns each out to the right, but with  q  taking the val-

ues 120, 140, 160, and 180, and added histograms at the bottom for each value of  q . To 

visualize the mean results, we added the plot on the left edge to show the average profi t 

as a dot, with vertical I-beams showing the confi dence intervals, for different values of 

 q  on the horizontal axis. 

 Notice that, for a given day, we chose to use the same realized numerical demand 

variate (column E) for all trial values of  q , rather than generate fresh independent de-

mands for each value of  q , which would have been valid as well. We’re not lazy (at least 

about this) and fi lling more Excel columns with fresh demands wouldn’t cost much, but 

we did it this way deliberately. Our interest is really in  comparing  profi t for different 

values of  q , and by using the same realized numerical demands on a given day for all 

 q , the differences we see in profi t will be attributable to differences in  q  (which is the 

effect we’re trying to measure) rather than to chance differences in demand. This is an 

example of a  variance-reduction technique , in particular of  common random numbers , 

  3  More generally, we could use TINV(0.05, COUNT(H4:H33) - 1) instead of hard-wiring in 2.045. 
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discussed more fully in Section 12.4. Such strategies in stochastic simulation can help 

you get more precise answers, often with little or no more work (in this case, with  less  

work), and are worth thinking about. 

 If you open the spreadsheet fi le yourself, you won’t see the same numbers as in  Figure 2-5  

due to the volatility of Excel’s  RAND() . And as you recalculate (tap the F9 key a few 

times) you’ll see all the numbers change, the objects in the mean plot on the left will jump 

up and down, and the histograms at the bottom will undulate left and right, all refl ecting 

this volatility and the underlying truth that such a stochastic simulation is an experiment 

with random outcomes. Indeed, the jumping up and down of the I-beams in the mean 

plot at the left is a reminder that confi dence intervals themselves are random intervals 

and depend on the particular sample you happened to get. Notice that all fi ve of the dots 

and I-beams tend to jump up or down together, refl ecting the common-random-numbers 

variance reduction mentioned in the preceding paragraph; see Exercise 2-10. 

 Despite this randomness, it looks like Rupert should probably set  q  to be around 140, 

maybe a bit less, to maximize his expected daily profi t. From the confi dence-interval 

I-beams, it also looks like we might want to increase the sample size to considerably 

more than 30 days to pin this down better (Exercise 2-11). And clearly it would help to 

consider more values of  q  in a fi ner mesh (Exercise 2-12). This study at least tells us that 

Rupert should probably buy at least 120 papers each morning, but no more than 160, 

since otherwise he loses too much profi t due to lost sales or scrapping too much at a loss. 

 But looking beyond averages via the histograms at the bottom, the higher the  q , the 

more variability (risk) there is in the profi t, seen by the histograms’ broadening out. 

This is good and bad news. With high  q , Rupert has the large inventory to reap a lot of 

profi t on high-demand days, but you also see more negative profi ts when demand is low, 

on boring slow-news days when he gets stuck with a lot to scrap at a loss. If Rupert is 

a risk-taker, he might go for a high value of  q  (sometimes you eat the bear, sometimes 

the bear eats you). At the other end, very low  q  values entail little risk since demand 

seldom falls short of such small  q ’s, but the downside is that average profi t is also low 

as Rupert cannot cash in on high-demand days since he sells out. Such risk/return trade-

offs in business decisions are commonly quantifi ed via spreadsheet simulations of static 

models like this. 

 It’s quite easy to simulate the news vendor problem in Arena; see Exercises 6.22 

and 6.23. 

   2.7.2 A Single-Server Queue 

 Spreadsheets might also be used to simulate some dynamic models, but only very sim-

ple ones. Consider a single-server queue that’s logically the same as what we plodded 

through by hand in Section 2.4, but different on some specifi cs. As before, customers 

arrive one at a time (the fi rst customer arrives at time 0 to fi nd the system empty and 

idle), may have to wait in a FIFO queue, are served one at a time by a single server, and 

then depart. But we’ll make the following changes from the hand-simulated model:

    ■  Interarrival times have an exponential probability distribution with mean 1y �  5 

1.6 minutes and are independent of each other (see Appendices B and C). The 

parameter  �  5 1y1.6 5 0.625 is the  arrival rate  (per minute here).  
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   ■  Service times have a continuous uniform distribution between  a  5 0.27 minute 

and  b  5 2.29 minutes, are independent of each other, and are independent of the 

arrival times.  

 This is called the  M/U/1 queue , where the U refers to the uniformly distributed service 

times. 

 Instead of observing all the outputs in the hand simulation, we’ll just watch the 

waiting times in queue,  WQ  
1
 ,  WQ  

2
 , ...,  WQ  

50
  of the fi rst 50 customers to complete their 

queue waits (not including their service times). In the hand simulation, we set up a 

clock, state variables, an event calendar, and statistical accumulators to simulate this, 

but  for a single-server FIFO queue  there is a simple recursion for the  WQ 
i
   values (if 

that’s all we’re interested in by way of output), Lindley’s (1952) formula. Let  S 
i
   be the 

time in service for customer  i , and let  A 
i
   be the interarrival time between customers 

 i  2 1 and  i . Then 

  WQ 
i
   5 max ( WQ

 i   21
  1  S

 i   21
  2  A

 i
  , 0) for  i  5 2, 3, ... 

 and we initialize by setting  WQ  
1
  5 0 since the fi rst customer arrives to an empty and 

idle system. 

 To simulate this, we need to generate random variates from the exponential and 

continuous uniform distributions. Again referring ahead to Section 12.2, there are sim-

ple formulas for both (as before,  U  denotes a random number distributed continuously 

uniformly between 0 and 1):

    ■  Exponential interarrival times with mean 1y � :  A 
i
   5 2 (1y � ) ln (1 2  U ) where ln 

is the natural (base  e ) logarithm.  
   ■  Continuously uniformly distributed service times between  a  and  b :  S 

i
   5  a  1 

( b  2  a )  U .  

    Figure 2-6  shows the Excel fi le  MU1.xls  in the Book Examples folder, which is 

available as a  .zip -fi le archive from the book’s website, www.mhhe.com/kelton. Cells 

B4, B5, and B6 are the parameters, and column D just gives the customer number 

 i  5 1, 2, ..., 50 for a run of the model. Interarrival times are in column E, using the Excel 

formula  2$B$4*LN(1 2 RAND()) , and service times are in column F, generated 

by the formula  $B$5 1 ($B$6 2 $B$5)*RAND() . 

   Lindley’s recursion is in column G, initialized by the 0 in cell G4. A typical entry 

is in cell G9,  MAX(G8 1 F8 2 E9, 0) , which generates  WQ  
6
  from  WQ  

5
  (in cell 

G8),  S  
5
  (cell F8), and  A  

6
  (cell E9). In this way, each queue wait in column G is linked 

to the one above it, establishing a correlation between them. Since this is correlation of 

entries in a sequence with each other, it’s called  autocorrelation . In this case, it’s  pos-
itive  autocorrelation since a large wait probably means that the next wait will be large 

too, and vice-versa, which you can understand from looking at Lindley’s recursion or 

just from your own painful experiences standing in line. So, unlike the news vendor’s 

profi t rows in Section 2.7.1, the waiting times in queue here are  not  independent from 

row to row in column G, which is typical of the output sequence within a run of a 

dynamic simulation. 
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 At the bottom of columns E, F, and G, we give the averages. For columns E and F, 

this is just to confi rm that they’re close to the expected values of the interarrival times 

and service times, respectively 1y �  5 1.6 and ( a  1  b )y2 5 1.28 (see Appendix C). For 

column G, this is the average wait in queue for the fi rst 50 customers; that is, the output 

result of the simulation. 

 We could also easily compute the sample standard deviation of the queue waits in 

column G, and then confi dence intervals as in the news vendor simulation, but we refrain 

from doing so for two very important reasons:

    1.  Due to the autocorrelation among the  WQ 
i
   values in column G, the sample vari-

ance would be  biased  as an estimator of the variance of a “typical”  WQ 
i
  , since 

they are to some extent “pegged” to each other so are not free to vary as much 

as they would if they were independent. With our positive autocorrelation, the 

sample variance estimator would be biased low; that is, would be too small and 

understate the variance of a “typical”  WQ 
i
  . Just because you’re able to compute 

some number, or for that matter plot some graph, you shouldn’t if it could be 

misleading.  

  Figure 2-6.  Spreadsheet Simulation of the M/U/1 Queue   
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   2.  It’s not clear what a “typical”  WQ 
i
   even means here, since the initialization 

 WQ  
1
  5 0 makes the early part of the output sequence smaller than later on, so 

the distribution (and thus variance) of the  WQ 
i
   values is changing as  i  grows. 

Thus, it’s not even clear what it is we’d be estimating by a sample-variance 

estimate.  

   We copied columns E, F, and G into fi ve more blocks of three columns each out to the 

right, creating fi ve independent replications of this run of 50 queue waits each. All ran-

dom numbers, and thus results, are independent across these fi ve sets of three columns 

each. This is the same model all the way across, just replicated fi ve independent times. 

 The plot on the left traces the  WQ 
i
   sequence in each of the fi ve replications using 

different dash patterns, and also plots the average of the fi ve values of  WQ 
i
  , for a fi xed 

 i , across the replications (in column T) as the thicker solid curve. Note the variation 

within a run, and the average thick curve calms things down a bit. All curves start off 

at 0 on the left, refl ecting the deterministic initialization  WQ  
1
  5 0, and rise from there, 

subject to a lot of wiggling that refl ects output variability. The positive autocorrelation 

is in evidence since the curves, while wiggly, do not break off from themselves abruptly 

as they progress to the right, and points on them tend to be close to their neighboring 

points for a little while left and right. 

 The thick gray horizontal line plots the value in cell B10, which is the steady-state 

expected wait in queue, E( WQ 
∞
). This can be computed exactly, from queueing theory 

(see, for example Gross and Harris, 1998), for single-server FIFO queues with exponen-

tial interarrival times and service times  S 
i
   with any distribution, as 

E(WQ
`
) 5 �  

Var(S
i
) 1 (E(S

i
))2

  
_______________

  
2(1 2 �E(S

i
))

  .

 In our case,  �  5 0.625 (the reciprocal of cell B4), E( S 
i
  ) 5 ( a  1  b )y2 5 1.28 in cell B8, 

and Var( S 
i
  ) 5 ( b  2  a ) 2 y12 5 0.34 in cell B9 (see Appendix C). Though the variation in 

the plot obscures it, a little imagination might suggest that the thick solid average curve 

is converging to the gray horizontal line; see Exercise 2-13. 

 Why no histograms like those at the bottom in news vendor problem spreadsheet? 

They could have been constructed in the same way and could provide useful informa-

tion about the distribution of the queue waits beyond just their means. The potential 

problem with this is the autocorrelation in the queue-wait sequence, so a histogram, like 

a variance estimate, could be biased if our run were not long enough to ensure that the 

waiting times in queue eventually visit all possible regions and in the right proportions; 

the autocorrelation links together nearby observations, which would impede such visi-

tation if the run were too short. However, a very long run could indeed produce a nearly 

unbiased histogram, which could be useful; in practice, it might be hard to determine 

how long is long enough. The question is whether to present something that’s accurate 

and useful most of the time, at the risk of its being occasionally biased and misleading. 

 Simulating a single-server queue in Arena is quite simple and is basically the central 

example we use in Chapter 3 to introduce Arena. 
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   2.7.3 Extensions and Limitations 

 Spreadsheet simulation is popular for static models, many involving fi nancial or risk 

analysis. Commercial add-in packages to Excel, like @RISK (Palisade Corporation, 

2013) and Crystal Ball® (Oracle Corporation, 2013), facilitate common operations, pro-

vide better random-number generators, make it easy to generate variates from many 

distributions, and include tools for analysis of the results. 

 However, spreadsheets are not well suited for simulation of dynamic models. 

Absent something like Lindley’s recursion for very special and simple cases like the 

single-server FIFO queue in Section 2.7.2, spreadsheets are not very good tools for dy-

namic models. Our focus in the rest of the book is on dynamic models, for which Arena 

is specifi cally designed. 

     2.8 Overview of a Simulation Study 

  In deciding how to model a system, you’ll fi nd that issues related to design and analysis 

and representing the model in the software certainly are essential to a successful simu-

lation study, but they’re not the only ingredients. We’ll take all this up in Chapter 13 in 

some detail, but we want to mention briefl y at this early point what’s involved. 

 No simulation study will follow a cut-and-dried “formula,” but there are several 

aspects that do tend to come up frequently:

    ■   Understand the system . Whether or not the system exists, you must have an in-

tuitive, down-to-earth feel for what’s going on. This will entail site visits and 

involvement of people who work in the system on a day-to-day basis.  
   ■   Be clear about your goals . Realism is the watchword here; don’t promise the 

sun, moon, and stars. Understand what can be learned from the study, and expect 

no more. Specifi city about what is to be observed, manipulated, changed, and 

delivered is essential. And return to these goals throughout the simulation study 

to keep your attention focused on what’s important, namely, making decisions 

about how best (or at least better) to operate the system.  
   ■   Formulate the model representation . What level of detail is appropriate? What 

needs to be modeled carefully and what can be dealt with in a fairly crude, high-

level manner? Get buy-ins to the modeling assumptions from management and 

those in decision-making positions.  
   ■   Translate into modeling software . Once the modeling assumptions are agreed 

upon, represent them faithfully in the simulation software. If there are diffi cul-

ties, be sure to iron them out in an open and honest way rather than burying them. 

Involve those who really know what’s going on (animation can be a big help 

here).  
   ■   Verify that your computer representation represents the conceptual model faith-

fully . Probe the extreme regions of the input parameters, verify that the right things 

happen with “obvious” input, and walk through the logic with those familiar 

with the system.  
   ■   Validate the model . Do the input distributions match what you’ve observed in 

the fi eld? Do the output performance measures from the model match up with 
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those from reality? While statistical tests can be carried out here, a good dose of 

common sense is also valuable.  
   ■   Design the experiments . Plan out what it is you want to know and how your sim-

ulation experiments will get you to the answers in a precise and effi cient way. 

Often, principles of classical statistical experimental design can be of great help 

here.  
   ■   Run the experiments . This is where you go to lunch while the computer is grinding 

merrily away, or maybe go home for the night or the weekend, or go on vacation. 

The need for careful experimental design here is clear. But don’t panic—your 

computer probably spends most of its time doing nothing, so carrying out your 

erroneous instructions doesn’t constitute the end of the world (remember, you’re 

going to make your mistakes on the computer where they don’t count rather than 

for real where they do).  
   ■   Analyze your results . Carry out the right kinds of statistical analyses to be able to 

make accurate and precise statements. This is clearly tied up intimately with the 

design of the simulation experiments.  
   ■   Get insight . This is far more easily said than done. What do the results mean at 

the gut level? Does it all make sense? What are the implications? What further 

questions (and maybe simulations) are suggested by the results? Are you looking 

at the right set of performance measures?  
   ■   Document what you’ve done . You’re not going to be around forever, so make it 

easier on the next person to understand what you’ve done and to carry things 

further. Documentation is also critical for getting management buy-in and im-

plementation of the recommendations you’ve worked so hard to be able to make 

with precision and confi dence.  

   By paying attention to these and similar issues, your shot at a successful simulation 

project will be greatly improved. 

      2.9 Exercises 

    2-1  For the hand simulation of the simple processing system, defi ne another time-

persistent statistic as the total number of parts in the system, including any parts in queue 

and in service. Augment  Table 2-2  to track this as a new global variable, add new statistical 

accumulators to get its time average and maximum, and compute these values at the end.  

   2-2  In the preceding exercise, did you really need to add state variables and keep track 

of new accumulators to get the  time-average  number of parts in the system? If not, why 

not? How about the  maximum  number of parts in the system?  

   2-3  In the hand simulation of the simple processing system, suppose that the  queue 
discipline  were changed so that when the drill press becomes idle and fi nds parts wait-

ing in queue, instead of taking the fi rst one, it instead takes the one that will require the 

 shortest processing time  (this is sometimes called an  SPT  queue discipline). To make 

this work, you’ll need to assign a second attribute to parts in the system when they 

arrive, representing what their service time at the drill press will be. Redo the hand sim-

ulation. Is this a better rule? From what perspective?  
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   2-4  In the hand simulation of the simple processing system, suppose that a constant 

setup time of 3 minutes was required once a part entered the drill press but before its ser-

vice could actually begin. When a setup is going on, regard the drill press as being busy. 

Plot the total number of parts in system as a function of simulated time. As numerical 

output performance measures, report the total production (number of parts produced), 

the average and maximum waiting time in queue, the average and maximum total time 

in system, the time-average and maximum number of parts in queue, and the drill-press 

utilization. Redo the hand simulation and discuss the results.  

   2-5  In the hand simulation of the simple processing system, suppose the drill press 

can work on two parts simultaneously (and they enter, are processed, and leave the drill 

press independently). There’s no difference in processing speed if there are two parts in 

the drill press instead of one. Redefi ne  B ( t ) to be the number of parts in service at the 

drill press at time (so 0 #  B ( t ) # 2), and the drill press utilization is redefi ned as 

  
 e

0
  T   B(t)dt

 _______ 
2T

  

   where  T  5 20. Rerun the original simulation to measure the effect of this change.  

   2-6  In Section 2.2.2, we used the M/M/1 queueing formula with the mean interarrival 

time  � 
A
   and the mean service time  � 

S
   estimated from the data in  Table 2-1  as 4.08 and 

3.46, respectively. This produced a “predicted” value of 19.31 minutes for the average 

waiting time in queue. However, the hand-simulation results in Section 2.4.4 produced 

a value of 2.53 minutes for this measure. 

    (a)  If these two (very different) numbers are supposed to estimate or approximate 

the same thing (average waiting time in queue), why are they so apparently dif-

ferent? Give at least three reasons.  

   (b)  We carried out the simulation for a million minutes (rather than 20 minutes), 

using the same sources of interarrival and service times as in  Table 2-1 , and got 

a value of 3.60 for the average waiting time in queue (as you can imagine, it 

really took us a long time to do this by hand, but we enjoyed it). Why is this yet 

different from the values 19.31 and 2.53 being compared in part (a)?  

   (c)  We consulted an oracle, who sold us the information that the interarrival times 

are actually “draws” from an exponential distribution with mean 5 minutes, and 

the service times are actually draws from a triangular distribution with mini-

mum 1 minute, mode 3 minutes, and maximum 6 minutes (see Appendix C for 

more information on these distributions and Appendix B to brush up on your 

probability). With this (exact) information, the mean interarrival time is actually 

 � 
A
   5 5 minutes, and the mean service time is actually  � 

S
   5 (1 1 3 1 6)y3 5 

3.33 minutes. Using these values, use the M/M/1 formula in Section 2.2.2 to 

predict a value for the average waiting time in queue. Why is it yet different 

from the previous three values (19.31, 2.53, and 3.60) for this same quantity 

discussed previously in this exercise?  
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   (d)  Using the information from the oracle in part (c), we treated ourselves to an-

other million-minute hand simulation (just as enjoyable), but this time drew the 

service times from an exponential (not triangular) distribution with mean 3.33 

minutes, and got a result of 6.61 for the mean waiting time in queue. Compare 

and contrast this with the previous four values for this quantity discussed previ-

ously in this exercise.    

   2-7  Here are the actual numbers used to plot the triangles for the double-time-arrival 

model in  Figure 2-4 :

   Replication 
 Performance Measure  1  2  3  4  5 

 Total production  6  4  6  4  5 

 Average waiting time in queue  7.38  2.10  3.52  2.81  2.93 

 Average total time in system  10.19  5.61  5.90  6.93  5.57 

 Time-average no. parts in queue  2.88  0.52  1.71  0.77  2.25 

 Drill-press utilization  1.00  0.92  1.00  0.95  1.00 

   For each of these fi ve performance measures, compute the sample mean, sample 

standard deviation, and half widths of 95% confi dence intervals on the expected perfor-

mance measures, as done in  Table 2-4 . Comparing these confi dence intervals to those in 

 Table 2-4 , can you clarify any differences beyond the discussion in Section 2.6.3 (which 

was based on looking at  Figure 2-4 )?  

   2-8  In the hand simulation of the simple processing system, suppose the drill press 

is taken down for burn-in maintenance at time 4 minutes, and it takes 4 minutes to do 

this work and bring it back up; it then stays up for the rest of the 20-minute simulation 

length. If there’s a part in service when the drill press goes down, it just sits there, 

its processing suspended until the drill press comes back up, when it’s resumed and 

needs just its remaining processing time (its processing does not have to start over from 

scratch). During the down time, the arrival process of new parts continues without re-

gard to down time. Regard the drill press as being busy when it’s down, and defi ne the 

time in system of a part to include the time it sits in the drill press but not being worked 

on if it’s unlucky enough to be in service when the drill press is taken down. Using the 

same input data as in  Table 2-1 , carry out this simulation by hand and note any differ-

ences in the output performance measures from the original model. (See Exercise 6-18 

for the question of whether this model change induces statistically signifi cant changes 

in the output performance measures.)  

   2-9  In Exercise 2-8, refi ne the output performance measure on the status of the drill 

press from just the two states (busy vs. idle, where in Exercise 2-8 the drill press was to 

be regarded as “busy” during its down time) to three states:
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    1.  busy working on a part and not down,  

   2.  idle and not down, and  

   3.  down, with or without a part being stuck in the machine for the down time.  

 Give the output performance measures from this simulation under this refi ned defi nition 

of the drill-press state.  

   2-10  Modify the news vendor problem in Section 2.7.1 to use independent demands for 

each trial value of  q , and note the difference in the behavior of the output, particularly in 

the mean plot on the left.  

   2-11  Increase the sample size on the news vendor problem in Section 2.7.1 from 

30 days to 150. As in the original problem, use the same realized demands in column E 

for all values of  q . Don’t forget to change the statistical-summary and histogram cells 

appropriately at the bottom of the columns, as well as the cells referred to in the various 

graphics. What is the effect on the results? Based on your results, about what sample 

size (in days) would be needed to bring the maximum half-width of all fi ve confi dence 

intervals down to under 6 $1.50? Don’t actually carry this out, but just get an estimate; 

see Section 6.3.  

   2-12  Based on your results from Exercise 2-11, try a different set of trial values of  q  to 

try to hone in more precisely on the optimal  q . Keep the sample size at 150 days. De-

pending on what you choose to try, you may need to rescale the axes on the mean plot 

on the left.  

   2-13  Modify the M/U/1 queue spreadsheet simulation from Section 2.7.2 to have expo-

nential service times with mean 1.28 minutes, rather than the original uniform service 

times, resulting in the M/M/1 queue. Change the steady-state expected wait in queue 

appropriately; see the exponential-distribution entry in Appendix C.  

   2-14  Modify the M/U/1 queue spreadsheet simulation from Section 2.7.2 to make ten 

replications rather than fi ve, and to run for 100 customers rather than 50. To avoid clut-

ter, plot only the cross-replication average queue-wait curve. Compare with the original 

in Section 2.7.2.  

   2-15  Supermarket customers load their carts with goods totaling between $5 and $200, 

uniformly (and continuously) distributed; call this the  raw order amount . Assume that 

customers purchase independently of each other. At checkout, 63% of customers have 

a loyalty card that gives them 4% off their raw order amount. Also at checkout, 18% 

of customers have coupons that give them 7% off their raw order amount. These two 

discounts occur independently of each other, and a given customer could have one or the 

other of them, both of them, or neither of them, to get to their net order amount (what 

they actually pay). Construct a spreadsheet simulation to simulate 100 customers and 

collect statistics on the net order amount; these statistics should include the average, 

standard deviation, minimum, maximum, and a histogram to describe the distribution 

of the net order amounts between $0 and $200. To make the requested histogram, you 

kel01315_ch02_015-052.indd   51kel01315_ch02_015-052.indd   51 05/12/13   3:31 PM05/12/13   3:31 PM



52     Chapter 2

can either mimic what was done in the newsvendor spreadsheet simulation, or use a 

different approach via whatever built-in Excel facilities you’d like. (HINT: To decide 

whether a customer gets a loyalty discount, explore the Excel IF function with the fi rst 

argument’s being a random number RAND() distributed uniformly between 0 and 1; do 

similarly to decide on a coupon discount.)  

   2-16  In Exercise 2-4, what would happen in the long run (that is, a simulation of run 

length 20 billion or so minutes rather than 20 minutes) if the interarrival and service 

times kept these same averages? Why?  
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    CHAPTER 3 

 A Guided Tour Through Arena 

  As we were honest enough to admit in Chapter 2, we really used Arena to carry out the 

“hand” simulation in Section 2.4, as well as the multiple replications and the modifi ed 

model with the double-time arrivals in Section 2.6. In this chapter, we’ll lead you on a 

tour through Arena by having you start up Arena, browse through the existing model we 

built for the hand simulation, run it, and then build it from scratch. Then we’ll use just 

these basic building blocks in a case study exploring a question of real interest, whether 

it’s better to have specialized serial processing or generalized parallel processing, and 

the effect of variability on such a decision. We’ll also explore the Arena user interface, 

get you into the help and documentation systems, discuss different ways to run your 

simulation, and illustrate some of the drawing and graphics tools. 

 Section 3.1 gets you to start Arena on your computer, and in Section 3.2, you’ll open 

an existing model and look around. In Section 3.3, you’ll go through the model in some 

detail, browsing the dialog boxes and animation, running the model, and taking a look at 

the results; in Section 3.4, you’ll construct this model from scratch. Section 3.5 contains 

the case study mentioned. In Section 3.6, we’ll briefl y go over many of Arena’s pieces 

and capabilities, including what’s available in the menus and toolbars and the drawing 

and printing capabilities. There’s a broad and deep help system in Arena, with all of the 

detailed technical documentation, which is the subject of Section 3.7. There are a lot 

of options for running and controlling simulations, which are discussed in Section 3.8. 

 By the end of this chapter, you’ll have a good feel for how Arena works and have an 

idea of the things you can do with it. You’ll be able to work effectively with Arena to 

build simple models and maybe take a stab at doing some not-so-simple things as well 

by cruising the menus and dialogs on your own, with the aid of the help and documen-

tation systems. While you can probably make some sense out of things by just reading 

this chapter, you’ll be a lot better off if you follow along in Arena on your computer. 

More information on building your own models with Arena is discussed in Chapter 4 

and beyond. 

      3.1 Starting Up 

  Arena is a true Microsoft® Windows® operating system application, so its look and feel 

will already be familiar to you, and all the usual features and operations are there. In 

addition, Arena is fully compatible with other Windows software, like word processors, 

spreadsheets, and CAD packages, so you can easily move things back and forth (Chapter 

10 goes into detail about Arena’s interaction and communication with other software). 

 By the way, we’re assuming you’re already comfortable with the basics of working 

with Windows, such as:
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    ■  Disks, fi les, folders, and paths.  
   ■  Using the mouse and keyboard, including clicking, double-clicking, and 

right-clicking.  
   ■  Operating on windows, like moving, resizing, maximizing, minimizing, and 

closing.  
   ■  Accessing things from menus. We’ll use notations like “ M . C . S . T ” to 

mean open the  M  menu, choose  C  from it, then choose  S  from the submenu menu 

(if any), then choose the tabbed page labeled  T  (if any), etc.  
   ■  Using the  Control ,  Alt , and  Shift  keys. By “ Ctrl 1 whatever ,” we’ll mean to hold 

down the  Ctrl  key and press “ whatever ” (this will also apply for  Alt 1 whatever  

and  Shift 1 whatever ). If “whatever” is a keyboard key, it’s not case-sensitive. 

“Whatever” could also be a mouse click, like  Ctrl 1 Click  to extend a selection to 

include additional items.  
   ■   Cut  (or the menu command  Edit . Cut  or the shortcut key combination  Ctrl 1 X ), 

 Copy  (or  Edit . Copy  or  Ctrl 1 C ), and  Paste  (or  Edit . Paste  or  Ctrl 1 V ) of text 

and other items.  
   ■  Filling out dialog boxes by entering and editing text entries, pressing buttons, 

selecting and clearing (that is, unchecking) check boxes, clicking exactly one 

from a list of option buttons (also called radio buttons), and selecting items from 

drop-down list boxes.     

 If any of these tasks are unfamiliar to you, it would probably be a good idea for you 

to go through a tutorial on Windows before moving on. 

 Go to your computer, on which Arena is already installed per the instructions that 

came with it (see Appendix D for instructions on installing the Student version of Arena, 

which is what’s available for download from the website accompanying this book, as 

described in the Preface and Appendix D). Approach the computer cautiously but with 

confi dence—if it senses you’re afraid, it could attack. Locate the Arena icon, or a short-

cut to it, and double-click on it (or launch Arena by starting Windows and clicking the 

 Start  button, then  Programs  .  Rockwell Software  .  Arena , and fi nally the  Arena   icon). 

In a moment, the Arena copyright window will come up; if you’re running a Training/

Evaluation or Student version, you’ll get a message box to this effect, which you should 

read and then click  OK  (or just press the  Enter  key on your keyboard since the  OK  but-

ton is already selected by default). 

 At the top left of the Arena window are the  File ,  View ,  Tools , and  Help  menus (in 

addition to several other menus if a blank model fi le was automatically opened when 

Arena started up). You’ll also see toolbars with various buttons, only a few of which are 

available unless you have a model fi le open:

        Create a  New  blank model fi le. This is equivalent to the menu command  File . 
New  and to the keyboard operation  Ctrl 1 N .  

       Display a dialog box to open a previously saved model; equivalently  File . 
Open  or  Ctrl 1 O . You may need to navigate around to other folders or disks to 

fi nd what you want.  
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         Template Attach  ( Templates , of which there are several, contain the modeling el-

ements); equivalently  File . Template Panel . Attach . The template fi les (with 

fi le name extension.  tpo ) are in the Template folder, which in turn is in the Arena  

folder. You can also right-click in the Project Bar on the left (see   Figure 3-1  ), 

then  Template Panel . Attach  from the pop-up that appears.  
        Template Detach  (when you don’t need the modeling elements in the active 

panel any more); equivalently  File . Template Panel . Detach  or right-click in 

the active panel (which you want to detach) in the Project Bar on the left, then 

 Template Panel . Detach  in the pop-up.  
        Context Help  to provide help on a menu or toolbar command. Click on it to add 

the question mark to your mouse arrow and then click on a toolbar button or 

menu command to get help on it; closing that help window returns the mouse 

pointer to arrow-only.        

  Tooltips  provide another source of quick and brief help (even quicker and briefer) 

on toolbar buttons. If your mouse remains motionless over a button for a second or two, 

a little box shows up with the name of the button. If you want to know more about that 

button, you could use    as just described, or maybe look it up (now that you at least 

know its name) in Arena’s help system; more on that in Section 3.7. If you get tired of 

being pestered by tooltips at every turn, you can turn them off via  View . Toolbars . 
Toolbars  and clear (uncheck) the  Show Tooltips  option. 

 When you’re done with your Arena session and want to get out, click    at the 

 upper-right corner of the Arena window, or  File . Exit , or  Alt 1 F4,  or right-click in the 

Arena window bar at the very top and select Close from the pop-up. 

      3.2 Exploring the Arena Window 

  In this section, we’ll open an existing model, use it to look around the Arena window so 

you can get familiar with where things are, and introduce some basic Arena terminology. 

    3.2.1 Opening a Model 

 The ready-made model for the hand simulation can be found via  File . Open  (or just 

click    to bring up the Open dialog box). File names appear in a scrolling box, and 

you can also navigate to other folders or drives. Find the fi le named  Model 03-01
.doe ; the fi le name extension  .doe   1     is the default for Arena fi les. This fi le will be in the 

Book Examples folder, which is available as a .zip-fi le archive from the book’s website, 

www.mhhe.com/kelton. Click on this fi le name (highlighting it), and then click the 

 Open  button (or just double-click the fi le name). 

  You should get an Arena window that looks something like   Figure 3-1   (you might 

see different toolbars and buttons on your computer or see some things in different 

places). We’ll call this Model 3-1. 

  1  In its early development, Arena was code-named “Bambi.” We’re not making this up. 
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     3.2.2 Basic Interaction and Pieces of the Arena Window 

 As shown in   Figure 3-1  , the Arena window with this model open is divided into several 

pieces. 

 On the right, taking up most of the screen, is the  model window , which is actu-

ally inside the Arena window. If you had several Arena models open at once, you’d 

have a separate model window for each of them, all inside the Arena window, just as 

in word-processing or spreadsheet software. Switch between model windows by just 

clicking in them (if the one you want is visible), or use the Arena Window menu to 

select from the entire list. If you have a lot of models open, you can cycle among them 

via  Ctrl 1 Tab , or you might want to minimize some of them to icons with the    button 

in each one. The Window menu also has commands ( Cascade ,  Tile , etc.) for how you’d 

like to arrange the open models or their minimized icons. Create a new (blank) model 

window via    (or  File . New  or  Ctrl 1 N ), save the active model window via    (or 

 File . Save  or  Ctrl 1 S ) or  File . Save As,  and open a previously saved model window 

via    (or  File . Open  or  Ctrl 1 O ). Resizing and repositioning a model window works 

just like any Microsoft® Windows® operating system application. 

 The familiar cut, copy, and paste operations work within Arena as well as between 

Arena and other applications. For instance, you might have several Arena model windows 

open, and you might want to copy some objects from one to another. Just select the objects 

with the mouse ( Ctrl 1 Click  to extend the selection, or drag a box across them if they’re 

positioned that way), copy them to the Clipboard ( Ctrl 1 C  or    or  Edit . Copy ), switch 

to the other window, and paste them in ( Ctrl 1 V  or    or  Edit . Paste ). After choosing the 

paste operation, the mouse pointer changes to crosshairs that you click where you want 

  Figure 3-1.  Arena Window for the Simple Processing System, Model 3-1    
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kel01315_ch03_053-120.indd   56kel01315_ch03_053-120.indd   56 17/12/13   10:11 AM17/12/13   10:11 AM



A Guided Tour Through Arena     57

the northwest corner of the selection to land. Or, you might have Arena open simultane-

ously with a spreadsheet in which there’s a long number you want to put into an Arena 

dialog text box. Copy the number from the spreadsheet cell, switch to Arena (either via the 

 Windows® Taskbar or by using  Alt 1 Tab  to cycle through the open applications), position 

the insertion pointer in the Arena dialog box where you want the number, and paste it in. If 

you’re writing a report in a word processor and want to paste in a “snapshot” of an Arena 

screen, go to Arena and get it into the state you want to photograph, press the  Prnt Scrn  

(Print Screen) key, switch over to your word-processing document, and paste the shot 

where you want it; if you want just the active window (like a dialog box you want to docu-

ment), press  Alt 1 Prnt Scrn  instead, and then paste it into the word-processing document. 

You might also use the Snipping Tool, available in more recent versions of Windows, to 

copy small or even non-rectangular parts of the Arena window. 

 The model window can be split into two regions, or  views : the  fl owchart view  and the 

 spreadsheet view . Often it’s helpful to see both the fl owchart and spreadsheet views of 

the model window at the same time. But you can choose to see only one of the views and 

thus devote all of the real estate in the model window to it by clearing the menu command 

 View . Split Screen  or clicking    so that it does not appear to be pushed in; in this case, 

to see one or the other view, just single-click on either a fl owchart (  ) or spreadsheet 

(  ) module in the Project Bar on the left of your screen. The fl owchart view contains 

the model’s graphics, including the process fl owchart, animation, and other drawing ele-

ments. The spreadsheet view can display model data such as times and other parameters, 

and allows you to enter or edit them (right now it happens to be showing details about 

something called “Create – Basic Process”). Many model parameters can be viewed and 

edited in either the fl owchart view or the spreadsheet view, but the spreadsheet view gives 

you access to lots of parameters at once, arranged in compact groups of similar param-

eters convenient for editing, especially in large models. The horizontal line splitting the 

fl owchart and spreadsheet views (if both views are visible) can be dragged up or down to 

change the proportion of the model window allocated to the two views. 

 Down the left edge of the Arena window in   Figure 3-1   is the  Project Bar , which 

hosts  panels  containing the objects with which you’ll be working, displaying one panel 

at a time. Right now the Project Bar is displaying the Basic Process panel, which con-

tains fundamental building blocks, called  modules , that are useful in a wide variety of 

simulation models. 

 Below the Basic Process panel on the Project Bar is a horizontal button labeled 

“Reports,” which will display another panel containing a road map to the results of a 

simulation after it’s run; click on this button to make this panel visible, and then click on 

the Basic Process button to make that panel visible again. 

 The Navigate panel allows you to display different views of a model, including 

different submodels in a hierarchical model (Model 3-1 doesn’t have submodels so the 

only view in the Navigate panel is Top-Level, though if you click on the 1 to its left, you 

open a tree that has three entries for our model, which we’ll discuss in Section 3.2.3). 

If the small button (  ) on the right of the horizontal Navigate button is pressed, you’ll 

also get a “thumbnail” of the model window in the top of the Navigate panel, with a 

translucent blue box showing the location and zoom size of the active window’s current 

kel01315_ch03_053-120.indd   57kel01315_ch03_053-120.indd   57 17/12/13   10:11 AM17/12/13   10:11 AM



58     Chapter 3

view. Clicking anywhere in the thumbnail changes the current view to that spot. Drag 

the blue box around to pan to other regions of the window, or resize the blue box (hover 

the pointer over an edge and then click-drag) to change the “altitude” of the zoom. 

The 1/ −  toggle in the circle in the thumbnail’s upper right determines whether the blue 

box is shown relative to the entire window’s capacity (the “1” choice), or takes into 

account what region in the window actually has content (the “ – ” choice). 

 The Project Bar is usually docked to the left edge of the Arena window, but it can be 

torn off and “fl oated” anywhere on your screen, or it can be docked to the right edge of 

the model window if you prefer. You’ll usually need the Project Bar to be visible while 

working on a model, but if you’d like more room just to look through things, you can 

push the small    button at the upper right of the Project Bar, or clear  View . Project Bar  

to hide it (re-check  View . Project Bar  to display it again). 

 There are several other panels that come with Arena, perhaps depending on what you 

licensed. These include Advanced Process (with different and “smaller” building blocks 

for more detailed modeling), Advanced Transfer (containing many options for moving 

entities around), Flow Process, and Blocks and Elements (which together give you full 

access to the SIMAN simulation language that underlies Arena; see Pegden, Shannon, 

and Sadowski, 1995). Yet more panels contain constructs for specialized applications, 

like modeling contact centers and high-speed packaging lines. As mentioned earlier, to 

make the elements in a panel available for use in your model, you need to  Attach  the 

panel to your model via  File . Template Panel . Attach  or the  Template Attach  but-

ton (  ), or by right-clicking in a panel and selecting  Template Panel . Attach  in the 

pop-up. Panel fi les have the fi le name extension  .tpo  and are typically in the Template 

folder inside the Arena folder. If you want Arena to attach certain panels to each new 

model you start, do  Tools . Options . Settings  and type the fi le names of those  .tpo  

panel fi les into the  Auto Attach Panels  box there. 

 At the very bottom of the Arena window is the  Status Bar , which displays various 

kinds of information on the status of the simulation, depending on what’s going on at the 

moment. Right now the only thing it shows are the ( x ,  y ) coordinates in the world space 

(see Section 3.2.3) of the location of the mouse pointer. While the simulation runs, the 

Status Bar will display, for instance, the simulation clock value, the replication number 

being executed, and the number of replications to be run. You can hide the Status Bar by 

clearing (unchecking)  View . Status Bar . 

     3.2.3 Panning, Zooming, Viewing, and Aligning in the Flowchart View 

 The particular fl owchart view of the model window you see in   Figure 3-1   is just one 

of many possible  views  of the model and the big  world space  in which the fl owchart 

depiction of a model lives. The world space’s center has ( x ,  y ) coordinates (0, 0), and it 

extends for thousands of units in all four directions from there; these units are just posi-

tional and don’t have any particular physical meaning (call them furlongs or youdels  2     if 

you like). To maximize the size of the model window within the Arena window, click    

if it’s visible in the upper right corner of the model window. Likewise, to maximize the 

Arena window itself to consume your entire screen, click its    button. 

  2  Apologies to Gene Woolsey. 

kel01315_ch03_053-120.indd   58kel01315_ch03_053-120.indd   58 17/12/13   10:11 AM17/12/13   10:11 AM



A Guided Tour Through Arena     59

  To see different parts of the fl owchart view, you can pan around using the scroll bars 

on the lower and right edges, or the arrow keys (try it; to navigate via the keyboard, 

you must fi rst make the model window active by clicking in it). You can also zoom in 

(with the    button or the  1  key or  View . Zoom In ), or zoom out (with the    button 

or the – key or  View . Zoom Out ) to see parts of the model from different “altitudes.” 

To pan/zoom automatically to see all the model at the closest possible zoom, click    (or 

 View . Views . All , or the * key). If you want to go back to the preceding view (maybe 

you messed up), click    (or  View . Views . Previous ). If you’re at a relatively high 

altitude but spy a region that you’d like to view up close, select  View . Views . Region  

(or hit the “[” key) to change the mouse pointer to crosshairs, click on one corner of the 

rectangular region you want to see, then again on the opposite corner—Arena will pan 

and zoom to see all of that region at the closest possible zoom (that is, lowest possible 

altitude). Another way to pan and zoom is via the thumbnail option in the Navigate 

toolbar, described in Section 3.2.2. 

 If you get to a view you like (and to which you’d like to be able to return instantly), 

you can save it as a  Named View  and assign a hot key to it. Pan and zoom to the view 

you want to save, select  View . Named Views  (or hit the the  ?  key or the    button), and 

then click  Add . You must give the view a descriptive Name, and you can optionally 

assign a hot key to it as well. To jump back to this view at any time, select  View  . 

 Named Views  (or hit the  ?  key or the    button), click on the view you want, and press 

the  Show  button. You can also access your Named Views in the Navigate panel of the 

Project Bar by clicking the 1 to the left (in this case of Top-Level) to open up a tree of 

the Named Views; just click on an entry to go to that view. Yet another way (probably 

the fastest way) to get to a Named View is to hit the hot key assigned to it; you’ll have 

to remember what the hot keys are, or maybe document them in the model with some 

text, as described in Section 3.6.3. Hot keys for Named Views are one of the few places 

in Arena where characters are case-sensitive (for example, “a” and “A” are different). 

Named Views can be accessed at any time, even while the simulation is running. We’ve 

set up three Named Views for Model 3-1: all (hot key  a ), logic (hot key  l ), and plots (hot 

key  p ). Try them out. 

 New Arena models start out in a specifi c “Home” pan/zoom confi guration, just to the 

southeast of the (0, 0) position in the world space, to which you can return by pressing 

the Home key on your keyboard (or  View . Views . Home ). To see the largest possible 

area of the world space (from the maximum altitude), select  View . Views . Max . 

 To get your visual bearings, you can display a background grid of little dots by check-

ing  View . Grid  (or by clicking   ). If you further want to cause newly placed items to 

snap to this grid, check  View . Snap to Grid  (or click   ). Both of these actions are toggle 

keys; that is, you just repeat the action to undo it. To snap existing items to the grid, fi rst 

select them (maybe using  Ctrl 1 Click  to keep extending your selection, or dragging a rect-

angle across them if they’re arranged that way) and then  Arrange . Snap Object to Grid  

to adjust their positions to align with the grid points. To customize the spacing of the grid 

points, select  View . Grid & Snap Settings ; the units are ( x ,  y ) values in the measurement 

units of the world space. You can also display Rulers on the top and left edges, with units’ 

being Arena world units, by pushing the    button or checking  View . Rulers . 
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 You might want to align objects in the fl owchart view precisely, either horizontally 

or vertically, with respect to their edges or centers, and there are several options for 

doing this. One option is to establish horizontal and vertical  Guides  in the fl owchart 

view; make sure Rulers are displayed, then click the  Guides  button (  ) or select  View 
. Guides , and then drag down from the horizontal ruler on the top or drag to the right 

from the vertical ruler on the left to place a dashed blue Guide line (you can have several 

of each). Then, click the  Glue to Guides  button (  ) or select  View . Glue to Guides , 

and then drag objects toward the guides until a red positional square lights up for edge 

or center positioning. Once objects are glued to a guide, you can drag the guide, and 

all objects glued to it will move together and stick with their alignment to the guide. To 

delete a guide, select it by clicking on it (it will be highlighted green) and hit the Delete 

key. Another option is to select the objects you want to align and then use the Arrange 

menu; select Align to line the selected objects up on their Top, Bottom, Left, or Right 

edges; select Distribute to space them evenly horizontally or vertically with spacing 

specifi ed in Settings.  Arrange . Flowchart Alignment  lines up fl owchart modules (see 

Section 3.2.4 next) in the current set of selected objects. 

     3.2.4 Modules 

 The basic building blocks for Arena models are called  modules . These are the fl owchart 

and data objects that defi ne the process to be simulated and are chosen from panels in 

the Project Bar. Modules come in two basic fl avors:  fl owchart  and  data . 

  Flowchart modules  describe the dynamic processes in the model. You can think of 

fl owchart modules as being nodes or places through which entities fl ow, or where enti-

ties originate or leave the model. To put an instance of a fl owchart module of a particular 

type into your model, drag it from the Project Bar into the fl owchart view of the model 

window (you can drag it around later to reposition it). Flowchart modules are typically 

connected to each other in some way. In the Basic Process panel, the kinds of fl owchart 

modules available are Create, Dispose, Process, Decide, Batch, Separate, Assign, and 

Record; other panels have many additional kinds of fl owchart modules. Each type of 

fl owchart module in the Basic Process panel has a distinctive shape, similar to classical 

fl owcharting (see Schriber, 1969) and suggestive of what it does. But in other panels 

(such as the Advanced Process panel), there are many more fl owchart-module types than 

there are reasonable shapes, so they’re all represented by simple rectangles. Some pan-

els (like Advanced Transfer) use colors in the rectangles to distinguish different types 

of fl owchart modules, and some panels (like Flow Process and the specialized ones for 

contact centers and packaging) use more elaborate graphics for them. One way to edit a 

fl owchart module is to double-click on it once it’s been placed in the fl owchart view of 

the model window, to bring up a dialog box pertaining to it. Another way to edit fl ow-

chart modules is to select a module type (for example, click on a Create or a Process 

module), either in the Project Bar or in the fl owchart view of the model window, and 

a row for each fl owchart module of that type in the model shows up in the spreadsheet 

view of the model window (if it’s visible), where you can edit the entries. This gives 

you a compact view of all the instances of fl owchart modules of that type in your model, 

which is useful in large models where you might have many such instances. 
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  Data modules  defi ne the characteristics of various process elements, like entities, re-

sources, and queues. They can also set up variables and other types of numerical values 

and expressions that pertain to the whole model. Icons for data modules in the Project Bar 

look like little spreadsheets. The Basic Process panel’s data modules are Attribute, Entity, 

Queue, Resource, Variable, Schedule, and Set (other panels contain additional kinds of 

data modules). Entities don’t fl ow through data modules, and data modules aren’t dragged 

into the model window; rather, data modules exist “behind the scenes” in a model to 

defi ne different kinds of values, expressions, and conditions. You don’t double-click on a 

data module to edit it, but just single-click it in the Project Bar and a spreadsheet for that 

type of module will appear in the spreadsheet view of the model window (which must 

be visible), which you can then edit or extend by double-clicking where indicated to add 

additional rows. While the default is to edit data modules from the spreadsheet view, if 

you double-click on the number in the left-hand column (or right-click and select Edit via 

Dialog), you can also edit in the dialog mode. Unlike fl owchart modules, you don’t have 

more than one instance of a data module in a model; however, there could be many rows 

in the spreadsheet for a data module, each typically representing a separate object of that 

type (for instance, if your model has three different queues, the Queue data module will 

display three rows, one for each queue, in its spreadsheet). 

 Flowchart and data modules in a model are related to each other by the names for 

objects (like queues, resources, entity types, and variables) that they have in common. 

Arena keeps internal lists of the names you give to these kinds of objects as you defi ne 

them, and then presents these names to you in drop-down lists in the appropriate places 

in both fl owchart and data modules, which helps you remember what you’ve named 

things (and protects you from your own inevitable typos, or, at least, keeps you consis-

tent in your lousy typing so your model will still run). 

     3.2.5 Internal Model Documentation 

 If you rest your mouse pointer on a module symbol or other object, you’ll see a Data 

Tip. Data Tips have two parts, a  default description  and a  user-specifi ed description . The 

default tip will describe some generic information about the object, such as its name and 

type. The user-specifi ed part will display exactly what is entered in the Object Proper-

ties Description fi eld. You can enter text in this fi eld by right-clicking on an object and 

selecting Properties. Display of these Data Tips can be toggled via  View . Data Tips . 

By default, both are enabled, but either the default or the user-specifi ed Data Tips may 

be disabled. 

 In addition to the  module  descriptions, you can also enter a  Project Description  that 

provides some context to the entire model. This is a good place to document what the 

model does, why it was created, assumptions you have made, and similar information. 

This is entered in  Run . Setup . Project Parameters  (see   Figure 3-15   later in this 

chapter). 

 While Data Tips are a useful feature, particularly when your models get large, you might 

wonder if there is another way to make use of this information. There is.  Tools . Model 
Documentation Report  creates a custom report summarizing all your model data. It provides 

some options about what information to include, and then it generates an HTML report. 
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       3.3 Browsing Through an Existing Model: Model 3-1 

  To see how Model 3-1 is set up, we’ll now walk you through the fl owchart and data 

modules in the model window and indicate how they’re related. Then we’ll run this 

model and look at the results. After that, in Section 3.4, we’ll show you how to build this 

model from scratch. 

    3.3.1 The Create Flowchart Module 

 We’ll start with the Create module, which we named  Part Arrives to System , at 

the left of the fl owchart view of the model window. Note that this module is an instance 

of the general Create module, which we’ve specialized for our needs in this particular 

model. 

 The Create module is the “birth” node for arrival of entities to our model’s boundary, 

representing parts in this case, into the model from outside. Double-click it to open a 

dialog box like the one in   Figure 3-2  .   

 In the Name box, we’ve typed  Part Arrives to System  as the name of this 

particular Create module (rather than accepting the bland default Name), which is what 

appears inside its shape in the fl owchart view and in its data tip. We entered  Part  as 

the Entity Type; there’s only one entity type in this model but in general there could be 

many, and naming them separately keeps them straight and allows you to customize 

them in useful ways (like separating times or numbers in system by entity type). 

 Across the center of the dialog box is a bordered area called Time Between Arrivals, 

where we specify the nature of the time separating consecutive arrivals of  Part  entities 

originating in this module. In the Type box, we selected  Random (Expo)  (using the 

list box arrow   ) so that the interarrival times will be generated as draws on a random 

variable; in particular, from the exponential distribution (see Appendix B if you need to 

brush up on your probability and Appendix C for defi nition of the exponential and other 

probability distributions). In the Value box, we typed  5 , and in the Units box, selected 

 Minutes  to tell Arena that we mean 5 minutes rather than 5 seconds or 5 hours or 

5 days. While the number we typed in was “ 5 ,” we could have typed “ 5. ” or “ 5.0 ” 

since Arena is generally quite robust and forgiving about mixing up integers and real 

numbers. 

  Figure 3-2.  The Create Property Dialog Box for Model 3-1    
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 In the bottom row of boxes, we said that the number of Entities per Arrival is  1  (the 

default, so that Parts arrive one at a time rather than in a batch of several), that we don’t 

want to put a cap on the maximum number of arrivals (if we did, this Create module 

would be “turned off” after that), and that the fi rst Part should arrive right away, at time 

0 (rather than after an initial time period that might or might not have the same defi nition 

as times between successive arrivals). 

 To close this Create dialog box, click  Cancel  or    at the upper right; if you’d made 

any changes that you wanted to retain, you’d click  OK  instead. 

 An alternative way to edit the Create fl owchart module is via the spreadsheet view 

in the model window. If you click the Create module in the fl owchart view of the model 

window (or on any instance of the Create module there if there were several of them in 

your model), or on the general Create module shape in the Project Bar, a spreadsheet 

for your Create module(s) shows up in the spreadsheet view of the model window, as in 

  Figure 3-3  . By clicking or double-clicking in each of the fi elds in this spreadsheet, you 

can edit the entry or select from options;   Figure 3-3   shows the list of options for Type 

accessed via the drop-down list there (drop-down lists for fi elds will be offered wherever 

they make sense). If you had multiple Create modules in your model, each represent-

ing a separate source of incoming entities, there would be a separate row in the Create 

spreadsheet for each. This is convenient in large models to edit many things quickly, or 

just to get an overview of all the Create modules at once. Selecting a particular Create 

module in either the fl owchart or spreadsheet view selects that module in the other view. 

By right-clicking in a row of the spreadsheet, you’re given the option of editing that 

module via the dialog box as in   Figure 3-2  . If you right-click in a numerical fi eld (here 

or pretty much anywhere in Arena), you can also choose Build Expression to get very 

useful assistance in putting together a perhaps-complicated algebraic expression that 

could use many different Arena variables, probability distributions, mathematical func-

tions, and arithmetic operations (we’ll discuss the Expression Builder in Sections 3.4.10 

and 4.2.4). You can change the fi eld widths in a spreadsheet by dragging left and right 

the solid vertical bars separating them.   

     3.3.2 The Entity Data Module 

 One of the things we did in our Create module was to defi ne an Entity Type that we 

called  Part . By selecting the Entity data module in the Project Bar, the Entity spread-

sheet for your model shows up in the spreadsheet view of the model window, as in 

  Figure 3-4  . Here you can see and edit aspects of the types of entities in your model. In 

  Figure 3-4  , the drop-down list for the Initial Picture fi eld is shown, indicating that we 

decided that our  Part  entities will be animated as blue balls when the simulation runs. 

  Figure 3-3 . The Create Spreadsheet for Model 3-1    
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There are several fi elds for defi ning the costing data for entity types. A check box at 

the end lets you ask for Report Statistics on this entity type, including the average and 

maximum time in system observed for these types of entities during the run. We have 

only one entity type in our model, but if you had several, each would have its own row 

in the Entity spreadsheet.   

     3.3.3 The Process Flowchart Module 

 Our Process module, which we named  Drilling Center , represents the machine, 

including the resource, its queue, and the entity delay time there (part processing, in 

our case). Open it by double-clicking on its name, and you should see the dialog box in 

  Figure 3-5  .   

 After entering the Name  Drilling Center , we selected  Standard  as the type, 

meaning that the logic for this operation will be defi ned here in this Process module 

rather than in a hierarchical submodel. Skipping to the bottom of the dialog box, the 

Report Statistics check box allows you a choice of whether you want output statistics 

like utilizations, queue lengths, and waiting times in queue. 

 The Logic area boxes take up most of the dialog and determine what happens to 

entities in this module. 

  Figure 3-4.  The Entity Spreadsheet for Model 3-1    

  Figure 3-5.  The Process Property Dialog Box for Model 3-1   
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 The Action we chose,  Seize Delay Release , indicates that we want this mod-

ule to take care of the entity’s seizing some number of units of a Resource (after a possi-

ble wait in queue), then Delay for a time representing the service time, and then Release 

unit(s) of the Resource so that other entities can seize it. Other possible Actions are sim-

ply to Delay the entity here for some time (think of it like a red traffi c light, after which 

the entity proceeds), Seize the Resource and then Delay (but not Release the Resource), 

or Delay and then Release the Resource that previously had been Seized; several Process 

modules could be strung together to represent a wide range of processing activities. 

 You can specify different Priorities for entities to Seize the Resource. Here and else-

where in Arena, lower numbers mean higher priority. 

 Defi ne the Resource(s) to be Seized or Released in the Resources box; click  Add  to add 

a Resource to this list. You can defi ne or edit a particular Resource line by double-clicking 

its line, or selecting it and then clicking  Edit , to bring up the Resources dialog box, as in 

  Figure 3-6  . Here you defi ne the Resource Name and the Quantity of units (e.g., individual 

servers) that Seizing entities will Seize and that Releasing entities will Release (this is 

 not  where you specify the number of units of the Resource that exist—that’s done in the 

Resource data module’s Capacity fi eld and will be discussed later). Listing more than one 

Resource means that Seizing entities must Seize the specifi ed Quantity of each Resource 

before starting to be processed, like a machine and two operators, and Releasing entities 

will Release the specifi ed Quantity of the corresponding Resources.   

 Returning to the Process dialog box in   Figure 3-5  , the Delay Type drop-down list box 

offers three probability distributions (Normal, Triangular, and Uniform), a Constant, or 

a general Expression. The Units fi eld determines the time units for the numerical Delay 

duration, and the Allocation fi eld relates to how this delay is to be charged. The prompts 

on the next line change to match your choice of Delay Type. Note that the Expression 

option for the Delay Type allows you great fl exibility in defi ning the Delay duration, 

including any other Arena probability distribution; right-clicking in the Expression fi eld 

lets you bring up the Expression Builder (see Sections 3.4.10 and 4.2.4) to help you. 

  Figure 3-6.  The Resources Dialog Box for Model 3-1    
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 Close the Process dialog box with the  Cancel  button; again, if you had made changes 

that you wanted to retain, you’d click  OK . 

   Figure 3-7   illustrates the Process spreadsheet, seen if you select any Process module 

instance in the fl owchart view of the model window, or the general Process module in 

the Project Bar, with the drop-down box for Delay Type shown (where we’ve selected 

 Triangular ). If you had multiple Process modules in your model, there would be a 

row for each one in the Process spreadsheet. As with Create modules, this provides an 

alternative way to view simultaneously and edit the fi elds for your Process module(s). 

If you click on the “1 Rows” button in the Resources fi eld, a secondary spreadsheet 

appears (  Figure 3-8  ) that allows you to edit, add, and delete resources equivalent to the 

Resources dialog box of   Figure 3-6   (you need to click the    button at the upper right of 

the Resources secondary spreadsheet to close it before you can go on).     

 3.3.4     The Resource Data Module 

 Once you’ve defi ned a Resource as we’ve done in this Process module (in our case, we 

named the resource  Drill Press ), an entry for it is automatically made in the Re-

source data module; click on it in the Project Bar to view the Resource spreadsheet in 

  Figure 3-9  . This spreadsheet allows you to determine characteristics of each Resource in 

your model, such as whether its Capacity is fi xed or varies according to a Schedule (that 

drop-down list is shown in   Figure 3-9  , where  Fixed Capacity  has been selected). 

You can also cause the Resource to fail according to some pattern; try clicking on the “0 

rows” button under the Failures column heading to bring up a secondary spreadsheet for 

  Figure 3-7.  The Process Spreadsheet for Model 3-1    

  Figure 3-8.  The Resources Secondary Spreadsheet in the Process Spreadsheet for Model 3-1    

  Figure 3-9.  The Resource Data Module Spreadsheet for Model 3-1    
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this (the failure pattern is defi ned in the Failure data module in the Advanced Process 

panel, which you might have to attach to the Project Bar for your model).   

     3.3.5 The Queue Data Module 

 If the  Drill Press  resource is busy when an entity gets to the Process module, the 

entity will have to queue up. The Queue spreadsheet, seen in   Figure 3-10  , appears in 

the spreadsheet view if you select the Queue data module in the Project Bar. Here you 

can control aspects of the queues in your model (we have only one, named  Drilling 
Center.Queue ), such as the discipline used to operate it, as shown in the Type list 

in   Figure 3-10   ( First In First Out  is the default and is selected). You could, for 

instance, rank the queue according to some attribute of entities that reside in it; if you 

chose Lowest Attribute Value, the queue would be ranked in increasing order of some 

attribute, and an additional fi eld would show up in the line for this Queue in which you 

would have to specify the Attribute to be used for ranking.   

     3.3.6 Animating Resources and Queues 

 Speaking of queues, you might have noticed the    just above the Process mod-

ule in the fl owchart view. This is where the queue will be animated, and the Process 

module acquired this graphic when we specifi ed that we wanted entities to Seize a 

 Resource there. 

 And while we’re on the subject of animation, you’ve no doubt noticed the    above 

and to the right of the Process module and positioned at what will be the head of the 

queue animation. This is a Resource animation and will change appearance during the 

simulation depending on whether the  Drill Press  Resource is Idle or Busy. This did 

not come “free” with the Resource specifi ed in the Process module; rather, we added it 

to our model via the  Resource  button (  ) in the  Animate  toolbar. Double-click on the    

icon to get the Resource Picture Placement dialog, as in   Figure 3-11  . This allows us to 

pick pictures from libraries (fi les with extension  .plb  to their name, usually found in the 

Arena folder) to cause the Resource to be animated differently depending on the state 

it’s in. While you can get an idea of how this works at this point, we’ll discuss Resource 

animation in Sections 3.4.8 and 4.3.3.   

     3.3.7 The Dispose Flowchart Module 

 The Dispose module represents entities leaving the model boundaries; double-click its name 

to bring up the dialog box in   Figure 3-12  ; the Dispose spreadsheet is in   Figure 3-13  . There’s 

not much to do here—just give the module a descriptive Name and decide if you want out-

put on the Entity Statistics, which include things like average and maximum time in system 

of entities that go out through this module and costing information on these entities.     

  Figure 3-10.  The Queue Data Module Spreadsheet for Model 3-1    
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     3.3.8 Connecting Flowchart Modules 

 The Create, Process, and Dispose modules are connected (in that order, going left to 

right) by lines called  Connections . These establish the sequence that all parts will fol-

low as they progress from one fl owchart module to another. To make the Connections, 

click  Connect  (  ) or equivalently select  Object . Connect , which changes the mouse 

pointer to crosshairs. Click on the  exit point  (  ) from the source module and fi nally on 

the  entry point  (  ) on the destination module (you can make intermediate clicks if you 

want this connection to be a sequence of line segments). To help you hit these exit and 

entry points, which might appear quite small if you’re zoomed out to a high altitude, 

  Figure 3-13.  The Dispose Spreadsheet for Model 3-1    

  Figure 3-11.  The Resource Picture Placement Dialog Box for Model 3-1    

  Figure 3-12.  The Dispose Property Dialog Box for Model 3-1    
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Arena lights up a green box to indicate that you can click now and hit an exit point, and 

a red box for an entry point. 

 If you have many connections to make (maybe you placed a lot of fl owchart mod-

ules to rough out your model), after each one you can right-click in a blank spot of the 

fl owchart view and select Repeat Last Action from the pop-up menu to keep connecting.  

And if you have  really  a lot of connections to make, you can double-click on the Con-

nect button (or do  Object . Connect  twice in a row) and not even have to bother with 

the right-click pop-up; when you’re done and you want to get out of this, right-click or 

hit the Escape key ( Esc ). 

 If  Object . Auto-Connect  is checked, Arena will automatically connect the entry 

point on a newly placed module to whichever other connect-out module is selected 

when you place the new module. 

 If  Object . Smart Connect  is checked, then new Connections are automatically laid 

out to follow horizontal and vertical directions only, rather than following free-form di-

agonal directions according to where the connected modules are (unless you make inter-

mediate clicks while drawing a connection, in which case you get the intermediate points 

and diagonals). This is pretty much a matter of taste and has no bearing on the model’s 

operation or results, though Smart Connect might have the disadvantage that it can cause 

connection lines to be directly on top of each other, making it impossible to tell them apart. 

 If  Object . Animate Connectors  is checked (or, equivalently,  Animate Connectors  

(  ) is pushed in), then Arena will show entity icons (in our case, the blue balls) running 

down the connections as the transfers happen when the simulation runs. This is just to 

let you know during the animation that these transfers are occurring—as far as the simu-

lation and statistics collection are concerned, they are happening in zero simulated time 

(or, equivalently, at infi nite speed). We’ll show you how to model non-zero travel times 

between model locations in Section 4.4, including how they’re animated. 

 If for some reason you want to move a connection point (entry or exit) to somewhere 

else relative to its module, you can do so but you must fi rst right-click on it and select 

Allow Move from the pop-up. 

     3.3.9 Dynamic Plots 

 The two plots were created via the  Plot  button (  ) from the  Animate  toolbar. They’ll 

dynamically draw themselves as the simulation runs, but then disappear when it’s over 

(we’ll show you how to make other kinds of plots, which stick around after the run ends, 

in Section 7.2.1). 

 Double-click on the top plot (the one for the Queue Length) to get the Plot dialog in 

  Figure 3-14  . Notice the tabs across the top (Data Series, Axes, Titles, etc.), which spec-

ify separate aspects of the plot; in   Figure 3-14  , the Data Series tab is showing.  

 In the Data Series tab, we’ve specifi ed (clicked the Add button) in the Data Series area 

on the left just one curve to plot, which we called  Queue Length , to be the number of 

parts in the queue, which will go up and down by one as the simulation runs. In the result-

ing Queue Length Properties area on the right, and in the Source Data section there (click 

its 1 sign if necessary to open it up), we fi lled in the Name as  Queue Length , and spec-

ifi ed the Expression to be plotted as  NQ(Drilling Center.Queue) , the number of 
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entities in this queue, which Arena will automatically update as the simulation proceeds. 

The easy way to discover that this is the correct expression is to use the pull-down on the 

right side of this Expression fi eld and select Build Expression, then hit the 1 to open up 

Basic Process Variables (since the Queue data module is part of the Basic Process panel), 

then the 1 to open up Queue, then click on Current Number in Queue to create a fi eld 

in the upper right called Queue Name, and select  Drilling Center.Queue  from 

the pull-down there (there’s only one queue in this model). This automatically writes out 

 NQ(Drilling Center.Queue)  in the Current Expression fi eld at the bottom, and 

hitting OK copies this back into the Expression fi eld in the Plot dialog. NQ is a built-in 

Arena function that automatically tracks the length of the queue named in its argument, 

and it’s easier to use the Expression Builder to fi nd that out than wading through the Help 

system. (To indicate navigating within the Plot dialog, we’ll use notation like Data Series 

. Add . Source Data . Expression . Build Expression . Basic Process Variables . 

Queue . Current Number in Queue .  Drilling Center.Queue  as a shorthand 

road map for all this, similar to what we do for selecting things from menus in Arena it-

self.) The only other change from the defaults we made under the Data Series tab was Line 

. DrawMode, which we changed from PointToPoint to Stairs via the pull-down on the 

right, since a queue-length plot should be piecewise-constant rather than connect points by 

sloping line segments (the queue length stays constant between events). 

 Now click on the Axes tab at the top (entries for which are not showing in   Fig-

ure 3-14  ), then click on Time (X) Axis.  In all dynamic plots in Arena, the horizontal 

(X) axis is simulated time, and here we can specify how we’d like this time axis to look 

  Figure 3-14.  The Plot Dialog for the Queue-Length Plot for Model 3-1 

with Data Series Tab Showing   
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and behave. On the right under Scale (you may need to scroll down to it), we specifi ed 

Maximum to be 20, to show the whole plot for our 20-minute run (the time units here are 

in the Base Time Units for the model).  We also set MajorIncrement to 5 for tic marks 

on the time axis every 5 minutes. Under Title, we typed in the Text we wanted for the 

horizontal axis, and changed Visible to True via the pull-down to make it show up. Next, 

click on Left Value (Y) Axis and note our entry under Scale (MajorIncrement 5 1); we 

left Maximum at its default value of 100, and left AutoScaleMaximum at its default 

value of True, which will automatically adjust the Y-axis scale as needed since we don’t 

know up front how long the queue will get. Under Title, we typed the Text we wanted, 

and set Visible to True. 

 Finally, in the Legend tab we merely cleared (unchecked) the Show Legend box. We 

have only one curve in this plot, and our Y-axis Title adequately describes it. 

 There are many, many other options in Plot, which you can easily explore on your 

own (or hit the Help button on the bottom right of the Plot dialog), and we left those at 

their defaults. Note that in the Sample area at the bottom of the Plot dialog is a “dummy” 

schematic showing how all these specifi cations will look once the actual plot is drawn 

during the simulation (depending on your Axes settings there could be a smashed- 

together jumble of axis numbers in this Sample, but these should straighten themselves 

out in the actual plot if you’ve specifi ed things right). 

 The size of the plot is determined by dragging the handles on its borders. Click 

(once) on the plot and try this (don’t worry, there’s an Undo). Actually, you have to 

specify an initial size of the plot after you fi ll out the dialogs, but you can change this 

later, as well as drag it around to relocate it. 

 The Plot dialog for the Number Busy plot is similar, so we won’t go through it in 

detail (but go ahead and open it to look at it). The only really different thing is that the 

Expression whose value we want to plot on the  y -axis is  NR(Drill Press) , which 

we know will always be either 0 or 1, so we specifi ed Axes . Left Value (Y) Axis . 

Scale . Maximum to be  2 , and AutoScaleMaximum there to be False to make for an 

attractive and tasteful graph. As before, we used the Expression Builder in Data Series 

. Source Data . Expression to fi gure out that this is the right name and syntax. 

     3.3.10 Dressing Things Up 

 Text labels in the model window, like the title at the upper left, can be done via the  Text  
button (  ) on the  Draw  toolbar. You can control the usual things like font, size, and style 

from there. To go to a new line in the text, use  Ctrl 1 Enter . To change the text color, 

select the text (single-click on it), and use the  Text Color  button (  ) to select either the 

color on the underline there (click on the    in this case) or to choose a different color 

(click on the    in this case) that will become the new underline color for future text. You 

can also resize or rotate text by selecting it and dragging the underline bar. 

 The  Draw  toolbar also has things like boxes, ellipses, polygons, and lines, as well as 

the means to control their colors and styles, which you can use to decorate your model 

window, depending on your artistic creativity and talent (as you can see, ours is severely 

limited). This is how we made the simple shadow box behind the model title in the upper 

left of the model window. The  Arrange  toolbar and menu have buttons and commands 

that allow you to manipulate objects, such as grouping, fl ipping, sending a draw object 
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to the back or front of a stack of objects, and so on. We’ll talk more about artwork in 

Sections 3.6.2 and 3.6.3. 

     3.3.11 Setting the Run Conditions 

 Things like run length and number of replications are set via  Run . Setup , which brings 

up a dialog box with seven tabbed pages.   Figure 3-15   shows the tab for Project Parame-

ters, where we specify a Project Title, Analyst Name, and Project Description, as well as 

select what kind of output performance measures we want to be told about afterwards.  

   Figure 3-16   shows the  Replication Parameters  tab of Run Setup, which controls a 

number of aspects about the run(s). We default the Number of Replications fi eld to  1  

(which we’ll accept for now since we’re concerned only with modeling at the moment, al-

though you know better, from Section 2.6.2). We’ll default (that is, not use) the Start Date 

and Time fi eld, which is for associating a specifi c calendar date and time with a simulation 

time of zero. You can also specify a Warm-up Period at the beginning of each replication, 

after which the statistical accumulators are all cleared to allow the effect of possibly atypi-

cal initial conditions to wear off. We specify the Length of Replication to be  20  and select 

the time unit for that number to be  Minutes . The Hours Per Day box defaults to  24  (to 

answer the obvious question you have about this, it could be convenient to defi ne a day to 

have, say, 16 hours in the case of a two-shift manufacturing operation, if it’s customary to 

think of time in days). The Base Time Units box specifi es the “default” time units in which 

time-based outputs will be reported, as well as how Arena will interpret some time-based 

numerical inputs that don’t have an accompanying Time Units box (such as Maximum in 

the Plot dialog under Axes . Time (X) Axis . Scale). The Terminating Condition box 

allows you to establish complex or state-dependent termination rules; see Section 5.4.6 for 

  Figure 3-15.  The Run . Setup . Project Parameters Dialog Box for Model 3-1    
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use of this fi eld to terminate a run when the model is empty of entities at or after a fi xed 

time, and Section 12.5.2 for an example where we want the simulation to keep running 

until the results achieve the statistical precision we’d like. Model 3-1, however, will simply 

terminate at time 20 minutes and any entities present then will be summarily abandoned. 

Close the Run Setup dialog box by pressing  Cancel .   
 Speaking of termination, you must specify in every Arena model how you want it to 

terminate. This is really part of modeling. Arena can’t know what you want, so it does 

not include any kind of “default” termination. In fact, in most cases, your simulation 

will just continue running forever or until you intervene to stop it, whichever comes 

fi rst. In Section 3.8, we’ll show you how to pause and then kill your run if you need to. 

       3.3.12 Running It 

 To run the model, click the  Go  button (  ) in the  Standard  toolbar (or  Run  .  Go  or press 

the  F5  key); note that the buttons in this group are similar to those on a media player. 

The fi rst time you run a model (and after you make changes to it) Arena checks your 

model for errors (you can do this step by itself with the    button on the  Run Interac-
tion  toolbar, or  Run  .  Check Model  or the  F4  key); if you have errors, you’ll be gently 

scolded about them now, together with receiving some help on fi nding and correcting 

them. Then you can watch the model animation run, but you’ll have to look fast for a 

run this short unless your computer is awfully laid back. During the animated run, you 

see the Part entities (the blue balls) arriving and departing, the Resource Picture chang-

ing its appearance as the Resource state changes between Idle and Busy, the Queue 

changing as Part entities enter and leave it, the digital simulation clock in the Status 

Bar advancing, and the plots being drawn. The counters next to the fl owchart modules 

  Figure 3-16.  The Run . Setup . Replication Parameters Dialog Box for Model 3-1   
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display different quantities depending on the module type. For the Create module, it’s 

the number of entities that have been created. For the Process module, it’s the number of 

entities that are currently in process there (in service plus in queue), and for the Dispose 

module, it’s the number of entities that have left the system. There are other ways to run 

your model, and we’ll discuss some of them in Section 3.8. 

 The fi nal state of things should look something like   Figure 3-17  , except that we’ve 

moved the Arena dialog box (asking about seeing the results) out of the way. The plots 

display the same information as in Figure 2-3 from the hand simulation. The clock in 

the Status Bar is frozen at its fi nal value, and at that point we see that the Resource is 

Busy operating on one part, with one part waiting in queue (in agreement with the fi nal 

state in the hand simulation in Section 2.4.3 and the bottom row of Table 2-2). The fi nal 

values of the counters next to the fl owchart modules are also as they were at the end of 

the hand simulation in Section 2.4.3.   

 The Arena box that appears at the end of the run asks if you’d like to see the sum-

mary results, which we’ll do next in Section 3.3.13. After you look at those reports 

(or if you choose not to), your model window will appear to be “hung” and you can’t 

edit anything. That’s because you’re still in  run mode  for the model, which gives you a 

chance to look at the plots and the fi nal status of the animation. To get out of run mode 

and back to being able to edit, you have to click  End  (  ), just like on a media player. 

     3.3.13 Viewing the Reports 

 If you’d like to see the numerical results now, click  Yes  in the Arena box that appears at 

the end of your simulation, as shown near the top right of   Figure 3-17  . This opens a new 

reports window in the Arena window (separate from your model window). The Project 

Bar now displays the Reports panel, which lists several different Reports you can view, 

such as Category Overview, Category by Replication, and Resources. Clicking on each 

  Figure 3-17.  Ending Animation State of Model 3-1    
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of these reports in the Project Bar opens a separate report window in the Arena window 

(use the Arena Windows menu to see what you have open). Don’t forget to close these 

report windows when you’re done viewing them since they don’t go away on their own 

if you simply go back to your model window; if you change your model and then rerun 

it, you might wind up with several different report windows open, and it could get con-

fusing to fi gure out which one goes with which variant of your model. Actually, when 

making changes in your model to investigate the effects of different parameter settings 

or assumptions, you probably should change the name of your  .doe  fi le slightly, since 

Arena will simply overwrite previous results to the same report fi le name if you don’t, 

and you’ll lose your previous results. (The Arena Process Analyzer, discussed in Sec-

tions 3.6.1 and 6.5, provides a far better way to manage the activity of running multiple 

variants or scenarios of your model and keeping track of the results for you.) 

 The default Arena installation automatically brings up the Category Overview Re-

port, which gives you access to most of the results; the other reports listed in the Project 

Bar repeat a lot of this, but provide more detail. Down the left edge of the report win-

dow itself is a tree, which you can expand by clicking the  1  signs in it (and re-contract 

with the  −  signs), giving you a kind of hyperlinked outline to this entire report. The 

report itself is organized into pages, through which you can browse using the   ,   ,   , 

and    buttons at the top left of the report window. If you want to print some or all of the 

pages in the report being displayed, click the    button in the report window (not the 

similar-looking button above it in the Arena window, which will be dimmed and thus 

inactive anyway if the report window is active). If you’d like to export the report to a 

different fi le, including several common spreadsheet and word-processor formats, click 

   in the report window and follow the directions there. 

 But if you’re looking for just a few specifi c results, it’s better to click around on the 

 1 ’s and  − ’s in the tree outline in the report window. For instance, to see what happened 

with the queue during our simulation, we clicked down a sequence of  1  signs into the 

Queue section of the report (specifi cally, Simple Processing → Queue → Time → Wait-

ing Time → Drilling Center.Queue), eventually getting to the Waiting Time information, 

as shown in   Figure 3-18  . What’s selected in the tree is displayed and outlined in the 

report to the right, and we see from that line that the average waiting time in queue was 

2.5283 (the report reminds us that the Base Time Units are minutes), and the maximum 

waiting time was 8.1598 minutes (both of which agree with the hand-simulation results 

in Section 2.4.4). A little further down in this view of the report window, under “Other” 

(to which we could jump directly by clicking on its entry in the tree), we see that the 

average number waiting (that is, length) of the queue was 0.7889 part, and the maximum 

was 3, both of which agree with our hand simulation in Section 2.4.4.   

 Browse through this report and note that the output performance measures in 

Table 2-3 are all here, as well as a lot of other stuff that Arena collected automatically 

(we’ll talk more about these things later). By following the branches of the tree as indi-

cated below, you’ll fi nd, for example:

    ■  Simple Processing → Entity → Time → Total Time → Part: The average total 

time in system was 6.4397 minutes, and the maximum was 12.6185 minutes.  
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   ■  Simple Processing → Resource → Usage → Scheduled Utilization → Drill 

Press: The utilization of the drill press was 0.9171 (that is, it was busy 91.71% 

of the time during the simulation). The different measures of utilization are dis-

cussed in Section 4.2.5.  
   ■  Simple Processing → Process → Other → Number In → Drilling Center: During 

the simulation, seven entities entered the drilling center Process module.  
   ■  Simple Processing → Process → Other → Number Out → Drilling Center: 

During the simulation, fi ve entities left the drilling center Process module (two 

fewer than entered, which is how many parts were in the drilling center at termi-

nation). This value of 5 also represents the total production in this model, since 

parts exit the system immediately after leaving the drilling center.  
   ■  Simple Processing → Entity → Time → Wait Time → Part: Of the fi ve parts that 

exited the system, their average wait time in all queues (of which there’s only one 

in this model) was 3.0340 minutes, and the maximum was 8.1598 minutes. The 

reason the average here differs from the average waiting time in queue 5 2.5283 

is that the 3.0340 here counts the waiting times of only those fi ve parts that exited 

the system, while the 2.5283 counted the waiting times of all six parts that left 

the queue. The two maxima, however, are the same in this run since that maxi-

mum was achieved earlier in the simulation (the maxima would not necessarily 

always be equal).  
   ■  Simple Processing → Entity → Other → WIP → Part: The work in process 

(WIP) averaged 1.7060 parts and hit a maximum of four parts at some point(s) 

in time.     

  Figure 3-18.  Part of the Category Overview Report for Model 3-1    
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 Many of the numbers in the reports (as in our hand simulation in Chapter 2) can be 

classifi ed as  tally, time-persistent,  or  counter  statistics:

    ■   Tally statistics  are those that result from taking the average, minimum, or max-

imum of a list of numbers. For example, the average and maximum total time 

in system (6.4397 and 12.6185 minutes, respectively) are tally statistics since 

they’re respectively the average and maximum of the total times in system of the 

fi ve parts that left the system during the simulation. Tally statistics are sometimes 

called  discrete-time statistics  since their “time” index (1, 2, 3, …) is a discrete 

indexing of the time order in which the observations were made.  
   ■   Time-persistent statistics  are those that result from taking the (time) average, 

minimum, or maximum of a plot of something during the simulation, where the 

 x -axis is  continuous  time. Time-persistent averages involve the accumulated area 

under the plotted curve (that is, an integral). The average and maximum of the 

number of parts in queue (0.7889 and 3 parts, respectively) are time-persistent 

statistics, as is the instantaneous utilization of the drill press (0.9171). Time- 

persistent statistics are also known as  continuous-time statistics .  
   ■   Counter statistics , as the name suggests, are accumulated sums of something. 

Often, they are simply nose counts of how many times something happened, like 

the number of parts that left the drilling center (fi ve in our simulation) or that 

entered the drilling center (seven). But they could be accumulations of numbers 

that are not all equal to 1; for instance, the accumulated waiting time at the drill-

ing center was 15.1700 minutes, representing the sum (not average) of the wait-

ing times observed in queue there. In the Category Overview report, this number 

can be found via Simple Processing → Process → Accumulated Time → Accum 

Wait Time → Drilling Center. Another counter statistic is at Simple Processing 

→ Resource → Usage → Total Number Seized → Drill Press, where we see that 

the drill press resource was used (either to completion for the part or just started) 

six times.     

 If you close a report window, you can view it later as long as you don’t delete (or 

overwrite) the Microsoft® Access database fi le that Arena creates as it runs. This Ac-

cess fi le is named  model_filename.mdb , where  model_filename  is what you 

named your  .doe  model fi le (so in our case, the Access fi le is named  Model 03-01
.mdb ). On the Project Bar, select Reports and then click on the report you want (such as 

Category Overview) to view it again. The way this works is that Arena uses third-party 

software called SAP Crystal Reports® (http://www54.sap.com/solution/sme/software/

analytics/crystal-reports/index.html) to read the Access database fi le, extract the useful 

stuff from it, and then display it to you in the report-window format we’ve described. 

 Right now you might be thinking that this report structure is pretty serious overkill 

just to get a handful of numbers out of this small model, and it probably is. However, in 

large, complicated models it’s quite helpful to have this structure to organize the myriad 

of different output numbers and to help you fi nd things and make some quick compari-

sons and conclusions. 
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 In addition to the reports described, Arena produces a compact (to the point of 

being cryptic) report of many of the simulation results, as a plain ASCII text fi le named 

 model_filename.out  (so  Model 03-01.out  for us), as shown in   Figure 3-19  . 

Some of the labels are a little different; for example, “DISCRETE-CHANGE VARI-

ABLES” are the same as time-persistent statistics. You’ll fi nd in this fi le many of the 

numbers in the reports we talked about previously (minor round-off-error discrepancies 

are possible), and even a few that are not in the reports (like the number of observations 

  Figure 3-19.  SIMAN Summary Report File  (Model 03-01.out)  for Model 3-1    
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used for tally statistics). For some purposes, it might be easier and faster to take a quick 

look at this rather than the report structure we described. However, the order and ar-

rangement and labeling of things here is decidedly user-hostile; this format is actually a 

leftover from earlier versions of Arena and in fact goes back to the early 1980s and the 

underlying SIMAN simulation language. However, if, out of nostalgia or a mania for 

compactness, you want this to be the default report that Arena gives you if you ask for 

one after the run ends, select  Run  .  Setup  .  Reports  and in the Default Report list scroll 

down and pick SIMAN Summary Report ( .out  fi le).   

 The exact meaning of report labels like Average, Minimum, Maximum, and Time-Av-

erage should be clear to you by now. But the reports also refer here and there to Half 

Widths (though we never get numbers for them in this model and are just scolded that 

we’re somehow “Insuffi cient”). As you might guess, these will be half widths of con-

fi dence intervals (they’ll be at level 95%) on the expected value of the corresponding 

performance measure, provided that our simulation produces adequate data to form them. 

 If we were doing more than one replication (which we’re not in this case), Arena 

would take the summary results for an output performance measure from each replication, 

average them over the replications, compute the sample standard deviation from them, and 

fi nally compute the half width of a 95% confi dence interval on the expected value of this 

performance measure. This is exactly what we did by hand in Section 2.6.2 for several of 

the output performance measures there, as given in Table 2-4. Exercise 3-1 asks you to do 

this with Arena to reproduce (except maybe for round-off) the results in Table 2-4. 

 If we’re interested in the  long-run  (or  steady-state ) behavior of the system after 

any initialization effects have worn off, we might choose to make just one (really) long 

replication or run; this issue is taken up in Section 7.2.3. If we do so, we might see half-

width numbers in the reports if our run is long enough, even though we’re doing only 

one replication. Arena tries to compute these half widths by breaking the single long run 

into batches whose means serve as stand-ins for truly independent summary results over 

replications for making confi dence intervals. We’ll talk about this more in Section 7.2.3, 

including a discussion of exactly how these half widths are computed from the simula-

tion output data. The reason you might get “Insuffi cient” (or, sometimes, “Correlated”) 

instead of a numerical value for the half width is that the run must be long enough to 

provide data in suffi cient quantity and of adequate quality to justify the validity of the 

half widths; if your run is not long enough for this, Arena simply declines to deliver a 

value on the theory that a wrong answer is worse than no answer at all. 

       3.4 Building Model 3-1 Yourself 

  In this section, we’ll lead you through the construction of Model 3-1 from scratch. What 

you end up with might not look exactly like our Model 3-1 cosmetically, but it should be 

functionally equivalent and give you the same results. 

 Before embarking on this, we might mention a couple of little user-interface func-

tions that often come in handy:

    ■  Right-clicking in an empty spot in the fl owchart view of the model window 

brings up a small pop-up box of options, one of which is to repeat the last ac-

tion (like placing a module in your model, of which you may need multiple 
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instances). This can obviously save you time when you have repetitive actions 

(though it won’t make them any more interesting). Other options here include 

some views, as well as running or checking the model.  
   ■   Ctrl 1 D  or pressing the  Ins  key duplicates whatever is selected in the fl owchart 

view of a model window, offsetting the copy a little bit. You’ll then probably 

want to drag it somewhere else and do something to it.     

    3.4.1 New Model Window and Basic Process Panel 

 Open a new model window with    (or  File  .  New  or  Ctrl1N ) ,  which will automatically 

be given the default name  Model1 , with the default extension  .doe  when you save it. 

You can change this name when you decide to save the contents of the model window. 

Subsequent new model windows during this Arena session will get the default names 

 Model2 ,  Model3 , and so on. You might want to maximize your new model window 

within the Arena window by clicking    near the model window’s upper-right corner (if 

it’s not already maximized). 

 Next, attach the panels you’ll need if they’re not already there in the Project 

Bar. For this model, we need only the Basic Process panel, which is a fi le called  

BasicProcess.tpo , typically in the Template folder under the Arena folder. Click 

   (or  File  .  Template Panel  .  Attach  or right-click on the Project Bar and select 

 Template Panel  .  Attach ) to open the Attach Template Panel dialog in   Figure 3-20  , 

where you open the Basic Process panel  BasicProcess.tpo  (click on it, then 

click the  Open  button, or just double-click it). You can tell Arena to attach certain 

panels automatically to the Project Bar of new model windows via  Tools . Options . 
Settings  by typing the panels’ fi le names (including the  .tpo  extension) into the Auto 

Attach Panels box.   

 The attached panel will appear in the Project Bar, with icons representing each of 

the modules in this panel. Right-click in the panel to change the icon size or to display 

text only for the modules. Right-clicking in a panel also allows you to detach it if you 

  Figure 3-20.  The Attach Template Panel Dialog     
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accidentally attached the wrong one (you can also detach the visible panel via    or  File  

.  Template Panel  .  Detach ). You can detach a panel even if you’ve placed modules 

from that panel in your model. If your display isn’t tall enough to show the panel’s full 

height, use the scroll bar at its right to get to it all. 

     3.4.2 Place and Connect the Flowchart Modules 

 This model requires one instance of each of three fl owchart modules: Create, Process, 

and Dispose. To add an instance of a fl owchart module to your model, drag its icon 

from the Project Bar into the fl owchart view of the model window and drop it about 

where you want it (you can always drag things around later). To help you line things up, 

remember Grid (  ), Snap (  ), Snap to Grid (  ), Rulers (  ), Guides (  ), Glue (  ), 

 Arrange . Align , and  Arrange . Distribute  from Section 3.2.3. 

 If you have  Object  .  Auto-Connect  checked and you’ve dragged the modules 

into your model in the order mentioned (without de-selecting a module after drop-

ping it in), Arena will connect your modules in the correct order; if you have  Ob-
ject  .  Smart Connect  checked, those connections will be oriented horizontally and 

vertically. 

   Figure 3-21   shows how these modules look in the fl owchart view of the model 

window just after we placed them (both Connect toggles were checked), with the 

Dispose model selected since it was the last one we dragged in. If you did not have 

 Object  .  Auto-Connect  checked, you’ll need to connect the modules yourself; to do 

so, use  Connect  (  ) on the modules’ exit (  ) and entry ( ) points, as described in Sec-

tion 3.3.8. Recall as well from Section 3.3.8 that, during the animation, you’ll see en-

tities running along the connections if the  Animate Connectors  button (  ) is pressed 

(or equivalently,  Object  .  Animate Connectors  is checked) just to let you know that 

they’re moving from one fl owchart module to the next. However, this movement is 

happening in zero simulated time; Section 4.4 describes how to represent positive 

travel times in your model.   

     3.4.3 The Create Flowchart Module 

 Open the “raw” Create module by double-clicking it to get the dialog box in   Fig-

ure 3-22  , where we need to edit several things. We fi rst changed the Name of this 

instance of the Create module from the default, Create 1, to  Part Arrives to 
System , and we changed the Entity Type from the default to  Part . In the Time 

Between Arrivals area of the dialog box, we accepted the default Random (Expo) for 

  Figure 3-21.  Initial Placement of the Flowchart Modules    
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the Type, changed the default Value of 1 to  5 , and selected  Minutes  as the Units 

from the drop-down list there (note that the default is Hours). We accepted the defaults 

for the three boxes in the bottom row of the dialog box and clicked  OK  to save our 

changes; at this point, the Create dialog box should look like   Figure 3-2  . Recall that 

we can also view and edit fl owchart modules via their spreadsheet view, as detailed in 

Section 3.3; the completed spreadsheet for this Create module was shown earlier in 

  Figure 3-3  . Note that the new name of this Create module now appears in its shape in 

the fl owchart view of the model window.  

       3.4.4 Displays 

 As we introduce new modules and new concepts, we’ll try to lead you through 

each dialog box (or, equivalently, spreadsheet). Even though the Create module 

is fairly simple, the preceding description was fairly lengthy. To convey this more 

compactly, we’ll use visuals, called  Displays , as shown in   Display 3-1  . Note that 

there are three parts to this display. The upper-right portion has the filled-in dialog 

box (which in   Display 3-1   is the same as   Figure 3-22  ). In some cases, it may show 

several related dialogs. The upper left shows the module with which the dialog box 

is associated. Later, this portion may also show buttons we clicked to get the dia-

log box(es) shown on the upper right. The bottom portion of the display is a table 

showing the actions required to complete the dialog box(es). The left column of 

the table defines the dialog boxes or prompts, and the right column contains the en-

tered data or action (italics) like checking boxes or pressing command buttons. In 

general, we’ll try to provide the complete display when we introduce a new module 

or a new secondary dialog box of a module we’ve already covered. For modules 

that aren’t new, we’ll normally give you only the table at the bottom of the display, 

which should allow you to re-create all the models we develop easily. There may 

be more items or prompts in a dialog box than we show in a display; for those we 

accept the defaults.   

  Figure 3-22.  The Create Dialog Box    
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 This might be a good time to save your model; choose a name different from ours 

(which was  Model 03-01.doe ), or put it in a different folder. 

     3.4.5 The Entity Data Module 

 Now that you’ve defi ned the  Part  Entity Type in your Create module, you might want 

to say some things about it. The only thing we did was change its initial animation pic-

ture from the default “Report” (  ) to “Blue Ball” (  ). To do this, click the Entity data 

module in the Project Bar to display it in the spreadsheet view of the model window (see 

  Figure 3-4   in Section 3.3.2). In the Initial Picture list, click  Picture.Blue Ball  

(clicking the arrow opens the list for scrolling). 

     3.4.6 The Process Flowchart Module 

   Display 3-2   indicates what’s needed to edit the Process fl owchart module. Since the 

Action you specify includes Seizing a Resource, you  must  hit the  Add  button to defi ne 

which resource is to be Seized; this brings up the Resources secondary dialog box, 

which is shown in the display as well. You also might want to make the area for the 

queue animation longer; click the queue animation (the    ), then drag its left 

end back to the left (hold down the  Shift  key to constrain its angle to horizontal, vertical, 

or 45° diagonal).   

 Name   Part Arrives to System  

 Entity Type   Part  

 Time Between Arrivals area   

 Type   Random (Expo)  

 Value   5  

 Units   Minutes  

   Display 3-1.  The Completed Create Dialog Box          
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     3.4.7 The Resource and Queue Data Modules 

 Once you’ve defi ned this Process module, your model has both a Resource and a 

Queue, with names you specifi ed (the name for a Queue is  whatever.Queue , where  

whatever  is the Name you gave to the Process module for this Queue). If you need to 

specify non-default items for a Resource or a Queue (which we don’t in this model), you’d 

use the Resource and Queue data modules, as described in Sections 3.3.4 and 3.3.5. 

     3.4.8 Resource Animation 

 While not necessary for the simulation to work, it’s usually nice to animate your 

 Resources. This lets you show their state (just Idle vs. Busy for this model), as well as 

show entities’ “residing” in them during processing. 

 Click on the  Resource  button (  ) in the  Animate  toolbar to bring up the Resource 

Picture Placement dialog box. To associate this picture to the Resource, click the Identi-

fi er arrow to choose the Resource Name,  Drill Press . In the list of pictures on the 

left side of the dialog box, select  Inactive  and then press the  Delete  button to its left; 

do the same for  Failed . 

 Name 

 Action 

  Drilling Center  
  Seize Delay Release  

 Resources (secondary dialog via  Add  button)    
 Type 

 Resource Name 

 Quantity 

  Resource  
  Drill Press  
  1  

 Delay Type 

 Units 

 Minimum 

 Value 

 Maximum 

  Triangular  
  Minutes  
  1  
  3  
  6  

  Display 3-2.  The Completed Process Module    
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 Now, if your Drill Press really looks like a white square when it’s Idle and a green 

square when it’s Busy, you’re all set; but probably it doesn’t. If you double-click on one 

square, you get into the Picture Editor where you can try your hand at drawing your 

drill press in both its corresponding states. Or, if you have a graphics fi le somewhere 

depicting your drill press (maybe from a digital camera), you could copy and paste it 

into the Picture Editor. 

 Instead, let’s pick some attractive artwork out of one of Arena’s picture libraries, on 

the theory that if you were any good at art or photography you probably wouldn’t be 

reading  this  book. So go ahead and close the Picture Editor to get back to the Resource 

Picture Placement dialog box. To open an Arena picture library, click  Open  along the 

right column and navigate to the Arena folder where you’ll see a list of fi les with  .plb  fi le 

name extensions. Open  Machines.plb  to view a gallery on the right of stunning cre-

ations from the rustbelt collection. Scroll down a bit and click   , then click the white-

square Idle button on the left (depressing it), and then click    to copy this picture to the 

left where it becomes the Idle picture instead of the white square. Similarly, copy    on 

the right to become the Busy picture on the left. Finally, check the Seize Area box at the 

bottom so that the Part being processed will show up in the animation. Your Resource 

Picture Placement dialog box should look like   Figure 3-11   in Section 3.3.6 at this point. 

We’ll have more to say about Resource pictures in Section 4.3.3. 

     3.4.9 The Dispose Flowchart Module 

 The fi nal fl owchart module is the Dispose;   Display 3-3   shows how to edit it for this 

model (the only thing to do is improve on the default Name).   

     3.4.10 Dynamic Plots 

 We described most of the entries and properties of the two animated plots earlier in Sec-

tion 3.3.9. To make such a plot from scratch, press the  Plot  button (  ) on the  Animate  

toolbar to get a blank Plot dialog box, and then proceed as indicated in   Display 3-4  , 

where we use “.” to signify moving down and to the left within a tab. As you proceed, 

watch the Sample area at the bottom to preview the plot setup, though the curve is just a 

schematic and will not match the data (which are generated during the simulation, so of 

 Name   Part Leaves System  

  Display 3-3.  The Completed Dispose Module    
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 Data Series tab        

 Add button 

   Series1 Properties . Source Data . Name 

  

 Queue Length Properties: 

   Source Data . Expression 

  

 Line . DrawMode 

  

  click  
  Queue Length  

(changes Series1 Properties above to 

 Queue Length Properties ) 

  

  NQ(Drilling Center.Queue)  

(or use Expression Builder) 

  Stairs  (select from pull-down) 

 Axes tab    

 Axes . Time (X) Axis 

  

 Time (X) Axis Properties:   

 Scale . Maximum   

 Scale . MajorIncrement   

 Title . Text   

 Title . Visible   

 Axes . Left Value (Y) Axis 

  

 Left Value (Y) Axis Properties:   

 Scale . MajorIncrement   

 Title . Text   

 Title . Visible 

  

  click  (on text to highlight, leave 

the box checked) 

  

  20  
  5  
  Time (Minutes)  
  True  (select from pull-down) 

  click  (on text to highlight, leave the box 

checked) 

  

  1  
  Queue Length  

  True  (select from pull-down) 

 Legend tab     

 Show Legend check box 

  

  clear  (uncheck) 

  Display 3-4.  The Completed Plot Dialog Box for the Queue-Length Plot (Axes Tab Showing; 

See   Figure 3-14   for Data Series Tab)    
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course cannot be plotted at this point). The screen shot we show in   Display 3-4   is with 

the Axes tab showing; look back at   Figure 3-14   to see the completed Data Series tab. 

The only other tab where we did anything is Legend, and all we did there was clear the 

check box to Show Legend, since we have only one curve (the  Queue Length  Data 

Series) and we’ve put a title on the Y axis. When you’re done fi lling in the dialog and 

click  OK , your mouse pointer becomes crosshairs; click to determine the location of one 

corner of the plot, then again to determine the opposite corner (of course, you can resize 

and reposition the plot later).   

 While it’s perfectly legal just to type in  NQ(Drilling Center.Queue)  man-

ually for the Expression in the Data Series tab, you’d fi rst have to know that this is 

the right thing to type in, which you very well might  not  know. This is one of many 

places in Arena where you can enter a general algebraic expression, and to do so cor-

rectly, you often need to know the exact names of various objects in your model (like 

 Drilling Center.Queue ) and built-in Arena functions (like  NQ , which returns 

the current number of entities in the queue named in its argument). To help you out with 

this memory-intensive task (that’s your memory, not your computer’s), Arena provides 

something called the Expression Builder, which you can access here via the pull-down 

in the Expression fi eld, but in other places in Arena by right-clicking in any box that 

calls for some kind of Expression or by clicking the Expression Builder button ( ) 

on the Standard Toolbar, and then selecting Build Expression.   Figure 3-23   shows the 

Expression Builder window after we expanded the Expression Type tree on the left to 

get at what we want for the queue-length plot. The label on the box in the upper right 

(now Queue Name) will change depending on what we select in the Expression Type 

tree; here it provides a drop-down list where we can specify the queue for which we 

want to know the Current Number in Queue (we have only one Queue in this model so 

it’s a short list). The Current Expression box at the bottom is the Expression Builder’s 

  Figure 3-23.  The Expression Builder for a Queue-Length Expression    

kel01315_ch03_053-120.indd   87kel01315_ch03_053-120.indd   87 17/12/13   10:11 AM17/12/13   10:11 AM

ma_be
Typewriter
Here



88     Chapter 3

answer, and clicking  OK  at this point pastes this text back into the Expression box from 

where we started with our right-click. You can still edit and modify the expression there, 

as you can in the Current Expression box of the Expression Builder, perhaps using its 

calculator-type buttons for arithmetic operations, and using the tree at the left to look up 

the names of other quantities.  

 The plot for the number busy at the drill press is quite similar, with only a few dif-

ferences from   Display 3-4  . In fact, it’s best to duplicate your Queue Length plot (select 

it by single-clicking on it, then CTRL-D, then drag the duplicate to a place below the 

original plot) and then go in and edit it. First, in the Data Series tab under Source data, 

change the Name to Number Busy and make the Expression  NR(Drill Press) , 

an expression you can discover with the Expression Builder via the Expression Type 

path Basic Process Variables → Resource → Usage → Current Number Busy, and select 

 Drill Press  (the only entry) under Resource Name. Then in the Axes tab, select 

Left Value (Y) Axis on the left, and under Scale on the right set Maximum to  2 , and set 

AutoScaleMaximum to  False  (pull-down). Also in the Axes tab for Left Value (Y) 

Axis, under Title, set Text to  Number Busy . The reason for setting the Maximum to 2 

and turning off AutoScaleMaximum in the Number Busy plot is that we know this curve 

will always be at height zero or one in this model. 

 To make the two plots visually harmonious, we made them the same size and aligned 

them vertically. After your model runs, you might notice that Arena does not actually 

draw the fi nal horizontal line segment to the right edge, but it would be at the same 

height as the end of the last segment (whether that last segment is vertical or horizontal). 

There are many, many more possibilities to customize a Plot, such as colors, fi lls, fonts, 

and the best way to learn about them is just to explore or consult the Help button in the 

bottom right of the Plot dialog. 

     3.4.11 Window Dressing 

 It’s often helpful to add text labels in the fl owchart view of the model window to help 

document things as well as indicate what’s what during the animation. These are pro-

duced via the  Text  button (  ) on the  Draw  toolbar, which opens a Text String dialog 

box like the one in   Figure 3-24  . Type in your text (use  Ctrl 1 Enter  to go to a new line), 

  Figure 3-24.  The Text String Dialog Box   
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perhaps change its font (Times Roman, Arial, etc.), font style (Italics, Bold, etc.), and 

size via the  Font  button, and then click  OK . Your mouse pointer becomes crosshairs, 

which you click to place the northwest corner of the text entry in the fl owchart view of 

your model window. You can drag it around later, as well as resize and reorient it using 

the underline below it that appears when you select it (hold down the shift key while 

reorienting it to constrain it to be horizontal or vertical or on a 45° line). To change the 

text color, select the text and use the  Text Color  button (  ) to select either the color of 

the underline there (click on the    in this case) or to choose a different color (click on 

the    in this case and select a color from the palette), which will also become the new 

underline color.   

 The yellow backdrop box behind the model label in Model 3-1 and its shadow were 

made with the  Box  button (  ) on the  Draw  toolbar; clicking this button turns your 

mouse pointer to crosshairs, after which you click once to determine one corner of the 

box and again to determine the opposite corner. You can change the fi ll color by fi rst 

selecting the box and then clicking the Fill Color button (  ); change the border color 

with the Line Color button (  ). To create faux three-dimensional effects like shad-

ows, you can cleverly “stack” and offset objects (like a yellow box on top of a slightly 

shifted black box) using options like Send to Back from the  Arrange  toolbar and menu. 

 If you’d like to drop a graphics fi le ( .gif, .jpg , etc.) into the fl owchart view of your 

model window, use  Edit  .  Insert New Object , select  Create from File , next  Browse  to 

choose the fi le you want, press  Open , then  OK , and fi nally drop it in with the crosshairs. 

 Clearly, you could spend a ruinous amount of time on this kind of stuff. Without 

implying anything about anybody, we offer it as a simple empirical observation that 

the higher up in an organization you go to present your simulation, the more effort is 

probably justifi ed on graphics. 

     3.4.12 The Run . Setup Dialog Boxes 

 To establish the run conditions, use the  Run  .  Setup  menu command, where you’ll fi nd 

tabbed pages that control various aspects of how your simulation will execute. You’ll 

need to edit just two of these pages. 

 The fi rst one is the Project Parameters tab, where you should enter a Project Title, 

Analyst Name (that’s you), and Project Description. You might also need to modify 

the selection of which statistics will be collected and reported, depending on how you 

have your defaults set in  Tools  .  Options  .  Project Parameters  (we want Entities, 

Resources, Queues, and Processes). The completed dialog was shown in   Figure 3-15   in 

Section 3.3.11. 

 The other tab that you need to edit is Replication Parameters. These edits were also 

discussed in Section 3.3.11 and were shown in   Figure 3-16   there. 

     3.4.13 Establishing Named Views 

 To set up a Named View for your model, fi rst pan and zoom to the scene you want to 

remember, then  View  .  Named Views  (the    button or or type  ? ), press  Add , then pick a 

name and maybe a hot key (case-sensitive). If you want to change this view’s defi nition 

later, press  Edit  instead once you’ve panned and zoomed to the new view you want to 
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associate with this name and possible hot key; to delete it from the list, select it there and 

press  Delete . We discussed using Named Views in Section 3.2.3. 

 At fi rst blush, setting up Named Views might seem like a frill, but trust us—you’ll 

want some of these when your models grow. 

       3.5 Case Study: Specialized Serial Processing vs. Generalized Parallel Processing 

  A classic operational question is whether to have specialized or generalized workers when 

processing involves multiple different tasks; a related question is how processing-time 

variability affects the decision. Based on a paper by Harrison and Loch (1995)  3    , we can 

investigate this using only the Arena modules introduced in Model 3-1. Arguments can 

be made for both specialized and generalized work, depending on the setting, and experi-

ments have been conducted on real systems, sometimes with disappointing results. 

  A careful simulation study might help avoid such disappointments. Consider a 

loan-application offi ce (as did Harrison and Loch), where applications arrive with ex-

ponentially distributed interarrival times with mean 1.25 hours; the fi rst application ar-

rives at time zero. Processing each application requires four steps: fi rst a credit check 

(this takes time but everyone passes), then preparing the loan covenant, then pricing 

the loan, and fi nally disbursement of funds. For each application, the steps have to be 

done in that order. The time for each step is exponentially distributed with mean 1 hour, 

independent of the other steps and of the arrival process. Initially, the system is empty 

and idle, and we’ll run it for 160 hours (about a work month); see Chapter 5 for other 

kinds of stopping rules based on entity counts and other conditions. Output performance 

measures include the average and maximum total number of applications in process, 

and the average and maximum total time, from entry to exit, that applications spend in 

the system, as well as their time waiting for the next processing step to begin. There are 

four employees available (Alfi e, Betty, Chuck, and Doris), all equally qualifi ed for any 

of the four steps, and the question is how best to deploy them. 

    3.5.1 Model 3-2: Serial Processing – Specialized Separated Work 

 A fi rst thought might be to specialize the employees and assign, say, Alfi e to check 

credit for all applications, Betty to prepare all covenants, Chuck to price all loans, and 

Doris to disburse all funds. So each application would fi rst have to go through Alfi e, 

then Betty, then Chuck, and fi nally Doris. A layout might look like   Figure 3-25  , where 

there are currently 12 applications (the fi lled circles) in process, Alfi e is busy but with 

no more applications in queue, Betty is idle (so of course with no queue), Chuck is busy 

with fi ve more in queue, and Doris is busy with four more in queue. All queues are 

FIFO. Though Betty might disagree, it’s too bad that, under these operational rules, she 

can’t lend a hand to Chuck or Doris right now.  

 An Arena simulation of this, Model 3-2, is fairly straightforward, and essentially just 

involves adding three Process modules to Model 3-1, along with three more Resources. 

The completed model is in   Figure 3-26  , with the fi rst Process module and its Resources 

dialog open. 

  3  Thanks to Professor Jim Morris of the University of Wisconsin-Madison for recommending this paper 

to us.  
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  Since the modules are so similar to those in Model 3-1, we’ll just highlight the dif-

ferences and will trust you to browse through the model:

    ■  The Create module is the same as in Model 3-1, except for the module Name, the 

name for the Entity Type, the Value of the mean of the exponential interarrival 

times, and the time Units (now Hours).  
   ■  The four Process modules have, as before, the Action of  Seize Delay 

 Release , but of course have different names for the modules and Resources. 

Since exponential process times are not among the Delay Type choices, in-

stead choose  Expression  there, and then use the Expression Builder (go to 

 “ Random Distributions ”) to fi ll in the Expression fi eld, as seen in   Fig-

ure 3-26  . The time Units here are also Hours.  
   ■  Other than its Name, the Dispose module is the same as in Model 3-1.  

  Figure 3-25.  Specialized Serial Processing    

 
Check 
Credit 
(Alfie) 

Disburse 
Funds 
(Doris) 

Price 
Loan 
(Chuck) 

Prepare 
Covenant 
(Betty) 

Completed 
Applications 

Arriving 
Applications 

  Figure 3-26.  Completed Model 3-2 with the First Process Module and Its Resources Dialog   
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    ■  The default Entity Picture (Entity data module,  Picture.Report ) is okay 

here since the entities are, well, reports of the loan applications.  
    ■  The default Resource animations are almost okay, but we made the Idle pic-

ture also have a white fi ll rather than the default green (double-click on the Re-

source animation icon to get to the Resource Picture Placement window, then 

double-click on the Idle and Busy icons in turn and use the Fill Color tool). 

Remember to select in the Identifi er fi eld the correct Resource name for each of 

the four cases. Also, check the Seize Area box.  
    ■  The Queue and Resource data modules are automatically fi lled in correctly if the 

Process modules were set up fi rst. The defaults for everything (for example, the 

Type and Capacity of each of the four Resources) work in this model.  
    ■  The dynamic Plot traces the total number of applications in process, which is the 

Arena Expression  EntitiesWIP(Application) , and can be found in the 

Expression Builder under  Basic Process Variables , then  Entity , and 

fi nally  Number in Process . “WIP” is an acronym for work in process. The 

other entries in the Plot dialog are similar those in Model 3-1, adjusted of course 

for the different time frame and maximum y-axis value (we decided on a fi xed 

maximum for comparison across this and the next three models).  
    ■  In  Run . Setup  in the Project Parameters tab, check the Processes box in Sta-

tistics Collection, and enter some documentation in the three text fi elds; in the 

Replication Parameters tab, enter 160 for the Replication Length and make sure 

the Time Units and Base Time Units are both Hours.  
    ■  After some initial runs, we extended the queue animations a bit out to the left to 

accommodate the maximum queue lengths.     

 Run this model and look at the Category Overview report to fi nd, among other things:

     ■  The average and maximum total number of applications in process were, respec-

tively, 12.3931 and 21 (via Loan Application → Entity → Other → WIP).  
    ■  The average and maximum total time, from entry to exit, that applications 

spent in the system were, respectively, 16.0831 hours and 27.2089 hours (Loan 

 Application → Entity → Time → Total Time). Note that this counts only those 

applications that had left the system when the simulation stopped, not those that 

were still in process at that time (since, of course, their total time in system had 

not yet been completed).  
    ■  The average and maximum total time that applications spend waiting for the next 

processing step to begin were, respectively, 11.9841 hours and 22.2732 hours

(Loan Application → Entity → Time → Wait Time). This includes only time 

“wasted” waiting in queue, and not “value-added” time spent undergoing pro-

cessing at the four steps, so is a good measure of system ineffi ciency. Arena 

counts in this statistic the total waiting time in the four queues only for those 

applications that completed all four steps and exited the system; waiting times 

in the individual queues are under Loan Application → Queue → Time and, as 

noted for Model 3-1, may include more entities than those included for the over-

all system-wide average and maximum.  
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   ■  During the 160 hours, 117 applications were completed (Loan Application → 

Entity → Other → Number Out), a measure of productivity.  
   ■  Alfi e, Betty, Chuck, and Doris were busy, respectively, 82.33%, 70.34%, 80.44%, 

and 80.80% of the time.  
   ■  Alfi e, Betty, Chuck, and Doris processed, respectively, 128, 128, 122, and 117 

applications (Loan Application → Process → Other → Number Out). In this 

model, all applications visit these people in this order, so these numbers in this 

order must decrease or stay the same. (Under what conditions would they all be 

the same? Is that possible in this model?)     

 The main ineffi ciency in this system is the waiting in queue that the applications 

must endure, and there are four different places where that could happen. Also, there 

is the possibility, as in   Figure 3-25  , that applications could be queued at some stations 

while other employees are idle, which seems like a waste of resources. 

     3.5.2 Model 3-3: Parallel Processing – Generalized Integrated Work 

 Would it be better to “generalize” or “integrate” the work so that each employee 

completely processes all four steps of one application at a time, and with a single 

queue of applications “feeding” the group? From the applications’ viewpoint, this 

would present just one opportunity for wasting time waiting in queue, but then again 

the processing would be longer.   Figure 3-27   shows how this would work, where each 

employee processes all four steps before moving on to the next application in queue.  

Like the specialized serial processing snapshot in   Figure 3-25  , there are currently 

12 applications in process, but note that the total number in queue is now eight rather 

than nine, since Betty is now busy (we don’t know how she feels about that, but this 

looks like better service).  

 The Arena model for this, Model 3-3, is actually simpler than Model 3-2, and is 

shown in its completed form in   Figure 3-28   with the (sole) Process module and its Re-

sources dialog showing. The Create and Dispose modules are identical to Model 3-2, as 

is the dynamic Plot and the  Run . Setup  dialog (except for labeling).   

  Figure 3-27.  Generalized Parallel Processing    
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 The main change is that the four Process modules in Model 3-2, each of which 

represented a single employee, are replaced by a single Process module representing all 

four employees. We replaced the four single-unit resources in Model 3-2 with a single 

four-unit resource here, which we named  Loan Officer  (look at the Resource data 

module in Model 3-3). Note that, in the Resources dialog of the Process module shown 

in   Figure 3-28  , the Quantity fi eld is still 1, representing the number of units of the  Loan 
Officer  resource that are seized and released by each  Application  entity; this is 

 not  where we specify that there are four units of this resource in existence, but rather in 

the Capacity column of the Resource data module. 

 And since each employee must now complete all four tasks in tandem before taking 

the next application out of the queue, we must make the Delay time longer in the Process 

module. Each of the four steps requires  EXPO(1)  hours to complete, so we simply add 

four of these up in the Expression fi eld in the Delay Type area of the Process module, as 

seen in   Figure 3-28  , each representing one of the four processing steps (it’s okay to do 

arithmetic inside an Expression fi eld anywhere in Arena). Now we’re guessing that, if 

you’re reading a book like this, you probably did well in seventh-grade algebra, so you 

know that adding up four of the same thing is the same as multiplying that thing by 4, so 

you may be wondering why we didn’t save ourselves some typing and enter something 

like  4*EXPO(1)  instead. Well, the problem with that is that it would make just a single 

“draw” from the exponential distribution and multiply that single resulting number by 4, 

meaning in our case that each of the four steps took exactly the same amount of time, not 

what we want. So, ugly as it is,  EXPO(1) + EXPO(1) + EXPO(1) + EXPO(1)  

is what we need since this makes four separate, independent draws from the exponential 

distribution to represent four separate, independent times for the four steps. 

  Figure 3-28.  Completed Model 3-3 with the Process Module and Its Resources Dialog 
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 Finally, a change in the Resource animation would make things a little more re-

alistic (but still not completely right), though would not be necessary for the model 

or its results to be correct. First, change the icon by double-clicking on the Resource 

animation and then the Idle icon to get to the Resource Picture Placement window, and 

duplicate the white square three times and line them all up vertically. Then select and 

copy this whole thing, go back (just close the window), open the Busy icon, and paste 

it in to replace what’s already there. Back out in the model window, double-click on the 

two concentric circles representing the Seize Area to get to the Seize Area dialog, select 

Points, and then Add three times to get three more related seize areas for this multi-unit 

resource; close the Seize Area dialog and drag these around to where they belong inside 

the boxes (you may need to turn off Snap to Grid to get them just right). In the anima-

tion, then, you’ll see as many entity icons in the Resource animation as there are enti-

ties in service at any time. What makes even this not completely right is that the icons 

for the entities in service will always shove themselves toward the original Seize Area 

(the double concentric circles) rather than staying where they “belong,” if you view the 

boxes from top to bottom as being for Alfi e, Betty, Chuck, and Doris (you can really get 

this right by using Resource Sets on single-unit resources, rather than a single multi-unit 

resource, as discussed in Model 5-2 in Chapter 5). 

 This parallel, integrated-work confi guration appears to provide better service 

than does the serial, specialized-work setup. The average and maximum total number 

of applications in process here are, respectively, 4.6118 and 10, compared to 12.3931 

and 21 for the serial confi guration. The average and maximum total time in system 

of applications here are, respectively, 5.3842 and 13.7262 hours, down from 16.0831 

and 27.2089 hours for the serial model. The average and maximum time wasted 

waiting in queue here are, respectively, 1.3282 and 6.8231 hours, down markedly 

from 11.9841 and 22.2732 hours for the serial setup. Productivity went up, from 117 

to 135 applications completed, though such improvement is of course limited by the 

arrival rate. All these improvements are due to less idle time among the employees; 

the utilization of the  Loan Officer  resource, defi ned as the time-average number 

of units busy (which came out to be 3.48) divided by 4, was 87%, compared to the 

average of 78.48% over the four individual employees in the serial confi guration. 

We just never have a situation like that of   Figure 3-25   where jobs are queued yet 

resources are idle. Of course, these comparisons are from just one replication of each 

of Models 3-2 and 3-3, so we’re on thin statistical ice, as discussed in Section 2.6 

(see Exercise 6-19). 

     3.5.3 Models 3-4 and 3-5: The Effect of Task-Time Variability 

 Harrison and Loch (1995) pose a further question about the comparison between the 

previous two layouts—will the second one always be a lot better than the fi rst one, as 

seemed to happen? While many other aspects of the situation could speak to this ques-

tion, they looked at variability of the task times. 

 Each of the four tasks for an application has an average duration of 1 hour, but 

these durations have an exponential probability distribution around that mean, so there 

is variability in the task time; let’s get an idea of how much variability. For example, the 
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probability that a task can be done in under 10 minutes (1/6 hour) is  F (1/6) 5 1 2  e  −1/6  ù
0.15, where  F  denotes the cumulative distribution function of an exponential random 

variable with mean 1 hour (see Appendix B for a refresher on probability and statistics, 

and Appendix C for defi nition of the exponential and other probability distributions). 

But some tasks will take a long time; the probability that a task will take more than 2 

hours is 1 2  F (2) 5  e  22  ù 0.14, about the same as the 0.15 probability of doing a task 

in less than 10 minutes. Put another way, about 15% of the tasks are very quick (under 

10 minutes), but about the same number (14%) take a very long time (over 2 hours). 

So there’s quite a lot of variation in task times with their exponential distribution, and 

in particular the long task times contribute signifi cantly to congestion and queueing 

delays, and thus to ineffi ciency. In the serial confi guration of Model 3-2, when just one 

of these long task times pops up, it creates a big backup at that station (maybe that’s 

what’s happening to Chuck in   Figure 3-25  ). In the parallel confi guration of Model 3-2, a 

long task time will also increase congestion, but probably not by as much as in the serial 

confi guration since it’s unlikely to be accompanied by similarly long times for the other 

three tasks for that application, which somewhat dampens its effect. 

 But what if there were less variability among task times, even while holding the 

mean task time to the same 1 hour? Let’s take that to the extreme and look at what hap-

pens if there’s  no  variability, that is, each task time takes  exactly  1 hour (and thus each 

application will require  exactly  4 hours of processing time in total). Maybe we could 

move toward this with better support for the tasks, either computer-based, clerical, or 

via better pre-screening. Since it’s not under our control in reality, we’ll keep the arrival 

process the same; that is, with interarrival times that have an exponential distribution 

with mean 1.25 hours, so this model still has some stochastic (random) input. 

 Now how do the serial and parallel confi gurations compare? We modifi ed Model 3-2 

to get Model 3-4, where each of the four Process modules was modifi ed to make the 

corresponding task time exactly 1 hour. This was very easy to do; in each of the Process 

  Figure 3-29.  Completed Process Module for Alfi e in Model 3-4 with Constant Task Times   
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module dialogs just change Delay Type to Constant in the pull-down menu, set Value 

to 1, and make sure the Units are still Hours.   Figure 3-29   shows this for Alfi e, and the 

other three work the same way.  

 Similarly, we created Model 3-5 from Model 3-3 by just getting rid of the ugly 

 EXPO(1) + EXPO(1) + EXPO(1) + EXPO(1)  in the Process module for the 

Expression Delay type, changing the Delay Type to Constant, and entering a Value of  

4  Hours;   Figure 3-30   shows the completed Process module dialogue.  

   Table 3-1   summarizes the results from the constant-service-time Models 3-4 and 

3-5 (bottom half) and repeats those from the exponential-service-times Models 3-1 and 

3-2 (top half), rounding to two decimals. For the constant-service models (3-4 and 3-5), 

there might still be some improvement in going from the serial to parallel operation, but 

only a very slight one (and might not even be statistically signifi cant, per Exercise 6-19). 

Evidently, when service times have little or no variability, there’s not much difference 

between the specialized serial and generalized parallel work designs.   

  Figure 3-30.  Completed Process Module for Model 3-5 with Constant Task Times   

  Table 3-1.   Summary Results from All Four Scenarios of the Loan-Processing Model  

Model
Total
WIP

Total Time
in System

Total
Waiting Time

Number
Processed

Avg.
Utilization

     Avg.  Max.  Avg.  Max.  Avg.  Max.     

  Expo service  
  

 3-2 (serial) 

 3-3 (parallel) 

 12.39 

 4.61 

 21 

 10 

 16.08 

 5.38 

 27.21 

 13.73 

 11.98 

 1.33 

 22.27 

 6.82 

 117 

 135 

 0.78 

 0.87 

  Constant service  
  

 3-4 (serial) 

 3-5 (parallel) 

 3.49 

 3.17 

 12 

 11 

 5.32 

 4.81 

 11.38 

 10.05 

 1.32 

 0.81 

 7.38 

 6.05 

 102 

 102 

 0.65 

 0.66 
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 Of course, you could raise some questions, like:

    ■  In the parallel integrated-work model, wouldn’t you expect these generalized 

people to be at least a little less effi cient than if they specialized in doing just one 

thing? Our Model 3-3 doesn’t allow for this possibility, but Exercises 3-13 and 

6-20 do.  
   ■  When dealing with human resources, don’t they need a little idle time, maybe 

via scheduled breaks, to catch their breath and stay fresh? Resource Schedules, 

which can be used to model such breaks, will be discussed in Chapters 4 and 5.  
   ■  Are the improvements from going from the serial to parallel designs statistically 

signifi cant, or could they be just spurious, the result of mere sampling fl uctuation 

(after all, we made just a single replication of each confi guration)? This is taken 

up in Chapter 6, and in Exercises 6-19 and 6-20.    

       3.6 More on Menus, Toolbars, Drawing, and Printing 

  In this section, we’ll briefl y mention some miscellaneous information that we haven’t 

covered on the Arena menus and toolbars, and mention a few more things about its 

drawing and printing capabilities. As we go through the examples in later chapters, we’ll 

give more detail on these things as needed. 

    3.6.1 Menus 

 Here we give a quick overview of what’s in the Arena menus. Some options in some 

menus will be dimmed (meaning that you can’t select them) if they don’t apply in your 

particular situation or status at the moment. For more information about menu entries, 

remember that you can click    and then use that to click on any menu item (dimmed or 

not) to get complete documentation on it, including hyperlinks to related topics. 

  File menu.  This is where you create new Arena model fi les, open existing ones, close 

windows, and save your models. This is also where you attach and detach Project 

Bar panels. You can also import CAD drawings from 

AutoCAD® (and from other CAD programs in  standard 

DXF format) for use as Arena “backdrops” and, in 

some cases, active elements (like paths for wire-guided 

 vehicles) to allow you to use existing detailed drawings 

of facilities. Another type of graphics fi le you can import 

is a  Microsoft® Visio® drawing fi le in . vsd  format. If you 

change the colors Arena uses, you can save them as a 

color palette (you can do some of this with Windows® as 

well); you can also open previously saved color  palettes. 

The Arena printing functions are accessible from this 

menu. The Send command allows you to send mail from 

within Arena and attaches any active model to your 

 message. Arena remembers the most recent documents, 

and you can open them quickly. The Exit command is 

one of the ways to quit Arena.      
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  Edit menu.  Here you’ll fi nd the usual options as applied to objects in Arena models. 

You can Undo previous actions or Redo your Undos. You can Cut or Copy a selected 

object (or group of objects) to the Clipboard for placement else-

where in the current model, to other models, or in some cases, 

to other applications. Paste allows you to insert the Clipboard 

contents into a model, and Paste Link creates an OLE link to 

the source document that’s currently in the Clipboard. Duplicate 

makes a copy of what’s selected and places it nearby in the cur-

rent model, and Delete permanently removes whatever you have 

selected. You can Select All objects in a model as well as Dese-

lect All. With Entity Pictures you can change what’s in the list 

presented in the Entity data module, as well as the appearance of 

those pictures; you can copy pictures into this list from Arena’s 

picture libraries ( .plb  fi les). Arena’s Find function searches all 

modules and animation objects in the active model for a text 

string with the usual control over whole-word searches and case 

sensitivity (this can come in handy for fi nding entries that you 

didn’t think you had but about which you’re getting some error message); Replace 

looks throughout the active model for a text string and replaces it with another. You 

can display additional object Properties, such as its unique object tag. If you have 

links in your model to other fi les, such as a spreadsheet or sound fi le, Links tells you 

about them and allows you to modify them. Insert New Object lets you make place-

ments from other applications, like graphics and multimedia, and Insert New Control 

allows insertion of a VBA®/ActiveX® control. Object lets you edit something you’ve 

brought into the model from another application.      

  View menu.  From this menu, you can control how your model appears on the screen, 

as well as which toolbars you want to display. Zooming lets you view the model from 

different “altitudes” so you can see the big picture or 

smaller sections in more detail. The Zoom Factor allows 

you to set how much you zoom in or out each time. Views 

(whose submenu is shown) offers certain “canned” views 

of your model; and Named Views lets you defi ne, change, 

and use your own views. Rulers, Grid, Guides, Glue to 

Guides, and Snap to Grid are useful if you want to line 

things up geographically; Grid & Snap Settings gives you 

control over the spacing for Grid and Snap. Page Breaks 

displays your model indicating how it will be broken into 

pages for printing. Data Tips allows you options for dis-

playing object properties in tool tips if you let the mouse 

hover over that object. Connector Arrows lets you put 

arrowheads on connectors to visualize the direction of 

entity fl ow. Layers lets you control what kinds of objects 

show up during the edit or run mode. If Split Screen is 
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checked (toggled on), your model window will show both the fl owchart and spreadsheet 

views simultaneously. Runtime Elements Bar, if checked, displays a window to allow 

you to choose what is displayed during execution. Toolbars is one way you can desig-

nate which sets of buttons are displayed on your screen (see Section 3.6.2), Project Bar 

toggles for whether the Project Bar (which hosts the panel) is visible, and the Status 

Bar entry lets you decide whether you want to see the horizontal bar at the very bottom 

of the screen, which tells you what’s going on and indicates the world coordinates of 

the mouse pointer in the Arena workspace. Debug Bar, if checked, shows a window of 

debugging tools during a run.      

  Tools menu.  Arena NewsFlash is an Internet-based news feed for updates, etc. Arena 

comes not only with the modeling capability with which we’ve spent our time so 

far, but also contains a suite of related 

tools, possibly depending on what you’ve 

licensed. The Arena Symbol Factory pro-

vides a large collection of graphics ob-

jects in many categories from which you 

can create graphical symbols for anima-

tion of things like entities and resources. 

The Input Analyzer fi ts probability distri-

butions to your observed real-world data 

for specifying model inputs (see Section 

4.6.4). The Process Analyzer organizes 

effi cient ways for you to make multiple 

simulation runs, which might represent 

different model confi gurations or scenar-

ios, and keep track of the results; it also 

helps you carry out proper statistical anal-

yses of your simulation’s results, such as a reliable way to select the best from among 

several different model confi gurations. Another application with additional statistical 

capabilities, called the Output Analyzer, comes with Arena. We’ll show you how to 

use the Process Analyzer and the Output Analyzer in Sections 6.5 and 6.4, respec-

tively. The Arena Visual Designer will be discussed in Section 10.6, with an overview 

of the new 3D animation and business dashboard capabilities, which can be used to 

display your simulation results. The Expression Builder, introduced in Section 3.4.10 

and used in several models in later chapters, provides an easy way to form mathe-

matical and logical expressions while guiding you in the proper syntax and built-in 

Arena variables. Report Database exports summary statistics from a run to a CSV 

 (Comma-Separated Values) fi le to be read into a spreadsheet for post-processing anal-

ysis. Model Documentation Report produces a compact but complete set of documen-

tation, including run conditions, modules used, and any submodels. Export Model to 

Database allows you to save the details of your model to an Access or Excel database; 

Import Model from Database allows you to bring in those details from such a data-

base to construct or update a model quickly. OptQuest for Arena is an application 
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that decides how to change model inputs that you select and then runs a sequence of 

simulations to search for a combination of these inputs that optimizes (maximizes or 

minimizes) an output performance measure that you designate; we’ll give an exam-

ple of its use in Section 6.6. AVI Capture enables recording many actions, including 

editing and animation, into a video ( .avi ) fi le for playback. The Macro item provides 

the tools to record and run Visual Basic (VB) macros and to open the VB Editor for 

writing custom logic. These VB topics are discussed in Section 10.2. Finally, the Op-

tions item lets you change and customize a lot of how Arena works and looks to suit 

your needs (or tastes).     

  Arrange menu.  The items here pertain to the position of modeling modules and graph-

ics objects; some apply only to graphics objects. Bring to Front and Send to Back posi-

tion the selected object(s) on the top and bottom, respectively, of a 

“stack” of objects that may overlap. Group and Ungroup, respec-

tively, put together and subsequently take apart objects logically, 

without affecting their physical appearance; grouping is useful if 

you want to move or copy a complex picture built from many indi-

vidual objects. The Flip entries invert the selected object(s) around 

a line in the indicated direction, and Rotate spins the selection 

clockwise 90°. Align lines up the selected objects along their top, 

bottom, left, or right edges. Distribute arranges the selected objects 

evenly in either the horizontal or vertical direction, and Flowchart 

Alignment arranges the selected fl owchart modules evenly both 

vertically and horizontally. Snap Object to Grid forces the selec-

tion to align to the underlying grid of points, and Change Object 

Snap Point lets you alter the exact point on the selected object that gets snapped.     

  Object menu.  These items relate to the model’s logical structure, its fl owchart mod-

ules, and the connections between logical pieces of the model. Connect changes the 

pointer to crosshairs and lets you establish graphically a connection between modules 

for entities to follow; selecting it twice sets up a Con-

nect “session” for repeated use (right-click or hit  Esc  to 

end the session). Auto-Connect is a toggle that allows 

you automatically to connect a newly placed module 

to one that’s already selected. Smart Connect causes 

newly added connections to be drawn in horizontal/

vertical segments instead of possibly diagonal lines, 

unless you make intermediate clicks if you’re placing 

the Connection by hand. Animate Connectors causes 

entities to show up as they move along Connections 

between fl owchart modules, even if this movement is occurring instantly in the simula-

tion. Animate At Desktop Color Depth, if checked, runs the animation with all the colors 

on your desktop, which could slow down the simulation; if not checked, the animation 

runs at 8-bit color depth with no slowdown. Submodel, whose submenu is shown, lets 

you defi ne and manage hierarchical submodels.     
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  Run menu.  This menu contains the  Run . Setup  di-

alog boxes that we discussed in Sections 3.3.11 and 

3.4.12, which control the manner in which the current 

model will be run (including possibly its run length). 

It also contains entries for running the simulation in 

different ways, as well as several options to watch the 

execution, check it (and view any errors), and to set 

up and control how the run goes and is displayed on 

your screen. We’ll describe these capabilities further 

in Section 3.8. You can also access the code that Arena 

actually generates in the underlying SIMAN simula-

tion language.     

  Window menu.  If you have several models open at once, you can arrange them 

 physically in an overlapping Cascade, or in a non-overlapping Tile arrangement. If 

you have several models minimized (via the    button in each win-

dow), select Arrange Icons to organize them. The Use System 

Background Color entry causes this model to use whatever back-

ground color is selected at the Windows® operating-system level 

rather than what is set internal to Arena; to return your model to 

Arena’s internal color, select this item again. (This menu item 

changes/toggles between “System” and “Custom” each time you 

select it.) Finally, you can activate a model that’s already open by selecting it at the 

bottom of the menu.     

  Help menu.  This is one of several ways to access Arena’s online Help system (see 

Section 3.7 for more help on Help). If you select Arena Help, you’ll get to the table of 

Contents, an Index, and a Search utility for 

getting to the topic you want. What’s This 

changes the pointer to    that you can then 

use to click on a menu entry or toolbar but-

ton to fi nd out a little bit about it. Release 

Notes has information on recent changes 

and system requirements. Arena SMART 

Files produces a subject-based index to a 

few hundred little Arena models that illus-

trate a wide variety of specifi c modeling 

techniques. Next on this menu, you’ll fi nd 

general help topics on whatever modeling panels you have attached at the moment. 

Arena Product Manuals takes you to detailed documents on the various components of 

the Arena software and related products. The last two entries on this menu provide in-

formation on activation procedures used for commercial and other versions of Arena, 

and detailed version information.      
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     3.6.2 Toolbars 

 Arena has several  toolbars  with groups of buttons and drop-down list boxes to facilitate 

quick access to common activities. Some of these buttons are just faster ways to get at 

menu items (discussed previously), and some represent the only way to do something. 

 Select the menu option  View  .  Toolbars  (or right-click in a toolbar) to choose which 

toolbars will be displayed. As in many applications, you can tear off toolbars and fl oat 

them in the interior of the Arena window as palettes, or dock them to an edge (if you 

want it near the edge but not docked, hold down the  Ctrl  key while approaching the 

shoreline). You won’t have to set your toolbar confi guration every time you use Arena 

as it will remember your last confi guration. You can also have different confi gurations 

for when you’re editing your model, when the simulation is running, and when various 

other Arena window types are active (such as the Picture Editor), and again, Arena will 

remember what each was. 

 Customize how toolbars are displayed via  View  .  Toolbars  .  Customize  or 

right-clicking in a toolbar, then selecting Customize, and then Customize again. We’ll 

mention each toolbar in turn next, but you have the option to rearrange what buttons 

are on which toolbars by this customization capability. We pulled each toolbar away 

from the top margin before taking the screenshots of them in what follows, so that their 

names (Standard, Draw, Animate, etc.) will show up here, but these names will not be 

visible if you have the toolbars docked to the top of the Arena window, which is where 

they usually live. 

    ■  While you could choose to hide the  Standard  toolbar, it’s a little hard to see how 

you could do much without it:       

    It starts with buttons to create a New model, Open an existing one, and Save the 

active model, as on the File menu; also from that menu are buttons to Attach 

a panel or Detach the visible one, and to Print and do a Print Preview. From 

the Edit menu are Cut, Copy, and Paste, as well as Undo and Redo. Next is the 

Toggle Split Screen button for a split model window, and then the magnifying 

glass to View a Region that you select with it in the fl owchart view of the model 

window at the closest possible zoom. You can choose a Zoom percent from a 

drop-down list. The Layers button lets you control which types of objects show 

up in the fl owchart view of the model window in both edit and run mode. You 

can add a Submodel and Connect fl owchart modules, as well as access the Arena 

Visual Designer and Expression Builder from the Tools menu (and introduced 

in Section 3.6.1). The next six buttons are run controls and will be discussed in 

Section 3.8. The slider bar allows you to speed up or slow down the animation 

during a run. The Standard toolbar ends with the context-sensitive Help button; 

click on it (note the  ?  that gets added to the mouse pointer), then click on a tool-

bar button or a menu command or a module in the Project Bar to learn about it.  
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   ■  Buttons on the  Draw  toolbar have no corresponding menu options, so drawing 

can be done only by toolbar access:       

    This is how you can draw static Lines, Polylines, Arcs of ellipse boundaries, 

Bézier Curves, Boxes, Polygons, and Ellipses to dress up your model, as well as 

add Text to annotate it. There are also controls for changing the color of Lines 

(including borders of shapes), Fill of objects, Text, and the Background of the 

fl owchart view of the model window. You can alter the Line Width and Style 

(thickness as well as whether it’s there or not, and dash patterns), and put arrow-

heads on lines. Line Patterns provides different pre-drawn line appearances, like 

roads, tracks, and belts. Fill Pattern provides hatch patterns for shapes. Show 

Dimensions lets you display the sizes of shapes and lines for precise drawing. 

You’ve probably used draw features in other applications, so Arena’s capabilities 

will be familiar. By far, the best way to familiarize yourself with these things is 

to open up a throw-away “test” model window and just try them out; see Sec-

tion 3.6.3 for more on drawing.  
    ■  The  Animate  toolbar contains capabilities to allow you to animate your model or 

enhance the animation that is inherent in some Arena modules:        

    Typically, click one of these buttons, enter a dialog box to describe exactly what 

you want, then place the animation in your model. There are a lot of different ca-

pabilities here, and we’ll illustrate most of them as we progress through building 

models in later chapters (we’ve already used Plot and Resource). For now, hover 

your mouse above each button to show the Tooltip with its name.  
   ■  The  Integration  toolbar contains buttons related to Arena’s Module Data Trans-

fer wizard and VBA (the Visual Basic Editor and VBA Design Mode button):         

    Chapter 10 discusses the use of VBA, which augments Arena’s standard model-

ing features with a complete Visual Basic programming interface.  
   ■  The  View  toolbar has buttons to control how you view the fl owchart view of the 

model window:           
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    From here you can Manage Named Views, Zoom In and Out, or choose to View 

All the model or View Previous. You can also reveal the Rulers and Grid, create 

Guides, show page breaks for printing, and Snap new objects to the Grid, as well 

as Glue objects to Guides. Buttons for access to the Arena Visual Designer and 

Expression Builder are again provided here at the end of the View toolbar.  
   ■  The  Arrange  toolbar corresponds closely to the Arrange menu:

    

 

    You can Bring a selected object to the Front or Send it to the Back. A selection 

of multiple drawing objects can be made into a logical Group and Ungrouped 

later. Drawing objects can also be Flipped around a Vertical or Horizontal line on 

their midpoint or Rotated clockwise 90°. You can also Align the selected objects 

on their Top, Bottom, Left, or Right edges, as well as Space them evenly either 

horizontally or vertically. Finally, you can Snap selected objects to the Grid.  
   ■  The  Run Interaction  toolbar has buttons corresponding to the Check Model, 

Command, Break, Watch, and Break on Module entries from the Run menu (see 

Section 3.8 for more). The last button corresponds to Animate Connectors from 

the Object menu:

    

  

   ■  The  Record Macro  toolbar has buttons to Start/Pause/Resume as well as Stop 

recording a VB macro. A macro is a series of Visual Basic statements stored in a 

subroutine in a Visual Basic module (macros are discussed in Chapter 10):

    

  

   ■  The  AVI Capture  toolbar has buttons to start and stop capturing everything going 

on in the Arena model window, including editing and animation during a run:

    

 

    This results in a  .avi  fi le that can later be played by any of a variety of video-

player software products. Explore the  Help  button in this dialog and try it out.  
   ■  The  Animate Transfer  toolbar gives you tools to add animation objects to your 

model:

    

 

    These include Storage, Seize, Parking, Transporter, Station, Intersection, Route, 

Segment, Distance, Network, and Promote Path. We’ll discuss these capabilities 

in subsequent chapters as we develop models whose animations can benefi t from 

them.  
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      3.6.3 Drawing 

 The  Draw  toolbar, mentioned in Section 3.6.2, has a variety of shapes, text tools, and 

control features to allow you to enhance the model by placing static (no participation in 

the simulation or animation) objects in the model window to help document things or 

to make the animation seem more “real” by adding items like walls, aisles, and potted 

plants. This isn’t intended to be a complete, full-featured CAD or artwork capability, 

but it usually proves adequate; of course, you can always import graphics from other 

packages, as mentioned in Section 3.4.11. Arena’s drawing tools work a lot like other 

drawing packages, so we’ll just point out what’s there and let you play with things to 

get used to them:

    ■   Line,    : Click once on this button, changing the mouse pointer to crosshairs, 

then click where you want the line to start and again where you want it to end. 

To constrain the line to be vertical or horizontal or on a 45° angle, hold down the 

 Shift  key while moving to the end of the line.  
   ■   Polyline,    : Lets you draw a jagged line with an unlimited number of points. 

After selecting this button, click where you want to start and then again for each 

new point; double-click for the endpoint. Hold down the  Shift  key during a seg-

ment to constrain it to vertical, horizontal, or 45°.  
   ■   Arc,    : Draws part of the border of an ellipse. Click fi rst for the center of the 

ellipse, then move the mouse and follow the bounding outline, clicking again 

when it’s the size and shape you want (hold down the  Shift  key to constrain the 

ellipse to be a circle). At this point, the mouse pointer becomes the end of a line 

emanating from the ellipse’s center; click to defi ne one end of the arc, then again 

for the other end. To edit the arc later, select it and use the lines to change what 

part of the arc is shown and use the disconnected handle to change the ellipse 

size or shape.  
   ■   Bézier Curve,    : These have become popular due to their ability to assume 

a lot of different shapes yet maintain their smoothness and inherent beauty. 

Click for one endpoint, then make intermediate clicks (up to 30) for the in-

terior “attractor” points; double-click to place the other endpoint. Holding 

down the  Shift  key while moving to the next point causes the (invisible) lines 

connecting them to be horizontal, vertical, or at 45°. To change the curvature, 

select the curve and drag the interior attractor points around; dragging the 

endpoints anchors the curve to different places. Move the curve by dragging 

it directly.  
   ■   Box,    : Click fi rst for one corner, then again for the opposite corner. Hold down 

the  Shift  key to constrain it to a square. This object, like the next two, has a bor-

der regarded as a “line” for color and style, as well as a “fi ll” for color or pattern 

choices.  
   ■   Polygon,    : Click for the fi rst point, then move to new locations to click the 

others; double-click for the fi nal point, which you want to be connected back 

to the fi rst one. Hold down the  Shift  key to force line segments to be horizontal, 

vertical, or at 45°. This object has a line border and a fi ll like a box.  

kel01315_ch03_053-120.indd   106kel01315_ch03_053-120.indd   106 17/12/13   10:11 AM17/12/13   10:11 AM



A Guided Tour Through Arena     107

   ■   Ellipse,    : First click for the center, move the mouse and follow the bounding 

outline to the size and shape you want, and fi nally click again. Hold the  Shift  key 

to force it to a circle. This object has a line border and a fi ll like a box.  
   ■   Text,    : This is how you add annotation to your model to label things or provide 

documentation. Clicking the button brings up a dialog box where you type in 

your text; use  Ctrl 1 Enter  to go to a new line and  Ctrl 1 Tab  for a tab. The Font 

button lets you change the font, style, and size. Closing this dialog box changes 

the mouse pointer to crosshairs, which you click where you want to position the 

northwest corner of your text. Use the underline to move, resize, or reorient the 

text to a different angle (hold the  Shift  key to constrain the angle to horizontal, 

vertical, or 45°).  
   ■   Line Color , : If a line object (a line, polyline, arc, Bézier curve, or the bor-

der of a shape) is selected, clicking the paintbrush part of the button changes that 

object to the color underlining the paintbrush. Clicking the drop-down arrow 

changes the selected line object to the color you then select from the palette, and 

changes the underline color to this as well. New line objects will be in the un-

derline color. Arena will remember this line color not only for future line objects 

in this window, but also for new windows and future Arena sessions, until you 

change it again.  
   ■   Fill Color,    : Operates on the interior of a shape (box, polygon, or ellipse) 

just as Line Color operates on line objects.  
   ■   Text Color,    : Operates on Text drawing objects just as Line Color operates 

on line objects.  
   ■   Window Background Color,    : Sets the background color of the fl owchart 

view of the model window to the color you select from the palette.  
   ■   Line Width,    : Operates on the width of line objects just as Line Color oper-

ates on their color.  
   ■   Line Style,    : Provides dash patterns for lines. The No Line option makes the 

line invisible, but it is still logically there (this might make sense for a border of 

a shape).  
   ■   Arrow Style,    : Provides various arrowheads for lines.  
   ■   Line Pattern,    : Provides different pre-drawn line appearances, like roads, 

tracks, and belts.  
   ■   Fill Pattern,    : Operates on the pattern for the interior of a shape just as Fill 

Color operates on its color.  
   ■   Show Dimensions,    : Shows sizes of shapes and lengths of lines and line 

segments, for precise drawing.    

 3.6.4     Printing 

 All or parts of the fl owchart view of the active model window can be printed directly 

from Arena (in color, if you have it).  File  .  Print Preview  (or   ) lets you preview 

what’s coming,  File  .  Print  (or    or  Ctrl 1 P ) lets you print it, and  File  .  Print Setup  

lets you select a print driver or do a setup of your printer. 
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 If your model is big, the print will extend across several pages. And if you have 

Named Views, you’ll get a print of the current view, followed by a separate print of each 

named view. If you don’t want all this, use Print Preview to see what’s on which page, 

then selectively print only the pages you want. The menu option  View . Page Breaks  

will show in the fl owchart view where the pages will end if the model is printed. 

 As an alternative to printing directly from Arena, remember that you can get to a 

view you like (maybe even during a pause in the animation), press the  Prnt Scrn  (Print 

Screen) key, switch over to your word-processing document, and paste in the shot where 

you want it. In more recent versions of Windows you can also use the Snipping Tool 

to capture parts of the Arena window and then save that to a graphics fi le or paste into 

another document. Then you can print this document when you’d like. You could also 

paste the Prnt Scrn image into a paint program and perhaps crop it or otherwise clean it 

up (in fact, that’s exactly how we got all the pieces of the Arena window into this book). 

       3.7 Help! 

  Arena has an extensive and comprehensive help system to serve as a reference, guide 

you through various operations, and supply examples of modeling facets as well as com-

plete projects. The help system is carefully integrated and provides extensive hyperlinks 

to other areas to aid in getting the information you need quickly and easily. There are 

several different ways to access the help system, which we’ll describe briefl y in this 

section. However, you may fi nd that the best way to learn about help is just to get in and 

start exploring. 

 At any time, you can access the full help system from the  Help  menu. The contents 

of this menu were described at the end of Section 3.6.1. 

 The    button invokes  context-sensitive help . To use it, just click the button, then click 

on whatever you’re curious about—a toolbar button, a command from a menu, a module 

in the Project Bar—and you can get to the information you need via a visual path. 

 Most Arena dialog boxes have a  Help  button that you can press. This is a good way 

to get direct information on what that part of the software is about, what your options 

are, how relevant things are defi ned, related concepts (via hyperlinks to other parts of 

the Help system), and examples. You can also use the  ?  button at the top of the dialog 

box to access What’s This? help information on individual items in a dialog box. Simply 

click the  ?  and then click on the selected item. 

 In case you forget what a particular button does, you can let your pointer stay motion-

less on it for a second or two; a little boxed  Tooltip  will appear to remind you what it is. 

 SMART fi les, via the Help menu, are subject-categorized Arena models (a few  

hundred) that illustrate, via small working models, a wide variety of Arena modeling 

capabilities. 

 Online help is available in the form of technical notes and updates, at http://www

.rockwellautomation.com/support/. 

 In the Examples folder found in the c:\Users\Public\Public Documents\Rockwell 

Software\Arena folder are several detailed Example models that you can open, browse, 

copy, edit (to be safe, edit a copy), and run. If you have a student or other limited version 

of Arena, you may not be able to run these models to completion due to the limit on the 
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number of concurrent entities. If you open a large model (one that exceeds the Student 

version limits), Arena will enter a runtime mode. Runtime mode allows you to make 

minor changes and run the model, but does not allow signifi cant changes like adding and 

deleting modules. The Example models illustrate different aspects of building and study-

ing models. The Help topic  4     “Example Models” has a description of what’s in each one.   

       3.8 More on Running Models 

  Usually you’ll just want to run your model to completion as you have it set up, but there 

are times when you might like to control how the run is done. Entries from the  Run  

menu, as well as corresponding buttons from the  Standard  and  Run Interaction  toolbars, 

let you do this. (See Section 4.5 for details and examples of using these capabilities.) 

    ■   Run  .  Setup  gives you access to many options for how runs are made for the 

current model, like deciding whether to see the animation and perhaps running in 

full-screen mode. These selections and specifi cations are saved with the current 

model rather than going into global effect. Click the  Help  button inside any  Run .
Setup  dialog box and browse through the hyperlinked topics to get familiar with 

what the (numerous) possibilities are.  
   ■   Run  .  Go  (or    from the  Standard  toolbar or the F5 function key) just does it 

(or resumes it after a pause). If you’ve made changes to the model since the last 

check (see following), it gets checked before it’s run.  
   ■   Run  .  Step  (or    or F10) executes the model one action at a time so you can see 

in detail what’s going on. This gets really boring so is useful primarily as a de-

bugging or demonstration tool. As with the  Go  button, the use of  Step  causes the 

model to be checked if Arena detects changes since the last check was performed.  
   ■   Run  .  Fast-Forward  (or   ) disables the animation and executes the run at a 

much faster rate. You can pause at any time during the run to view the animation. 

 Fast-Forward  causes the model to be checked if Arena detects changes since the 

last check was performed.  
   ■   Run  .  Pause  (or    or  Esc ) interrupts the run so you can look at something. Press   

 ,   , or    to resume it.  
   ■   Run  .  Start Over  (or    or  Shift 1 F5 ) goes back to the beginning of the simula-

tion and reruns the model.  Start Over  causes the model to be checked if Arena 

detects changes since the last check was performed.  
   ■  While Arena is running your model, it’s in what’s called run mode, and most of 

the model-building tools are disabled. So when the run is over, you need to select 

 Run  .  End  (or    or  Alt 1 F5 ) to get out of run mode and enable the modeling tools 

again. If you’ve paused your run before it terminated, this will kill it at that point.  
   ■  Use  Run  .  Check Model  (or    or  F4 ) to “compile” your model without running 

it. If Arena detects errors at this stage, you’re told about them (gently, of course) 

in an Errors/Warnings window; the buttons at the bottom of this window help 

 4  To go to a specifi c Help topic, select  Help . Arena Help . Index , type the topic name into the fi rst 

region, and then open (double-click, or single-click and then click Display) the index topic in the second 

region below.
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you fi nd the problem (for example, by selecting the offending module in the 

fl owchart view of the model window).  
   ■   Run  .  Review Errors  recalls the most recent Errors/Warnings window contain-

ing whatever Arena found wrong during that check.  
   ■   Run  .  Run Control  .  Command  (or   ) gets you to an interactive command-line 

window that allows control over a lot of how the run is done—like interrupts and 

altering values. This also checks the model, if required, and starts the run if it’s 

not yet started. See Section 8.4.1 for an example.  
   ■   Run  .  Run Control  .  Breakpoints  (or   ) lets you set times or conditions to 

interrupt the model in order to check on or illustrate something.  
   ■   Run . Run Control  .  Watch  (or   ) establishes a window in which you can ob-

serve the value of a variable or expression as the run progresses.  Run  .  Setup  .

 Run Control  lets you determine whether this is concurrent with the run or only 

when the Watch window is the active window (the latter will speed things up).  
   ■   Run  .  Run Control  .  Break on Module  (or   ) either sets or clears a break put on 

the selected module. A break on a module halts execution when an entity starts 

or resumes execution of the logic for the module.  
   ■   Run  .  Run Control  .  Highlight Active Module  causes a fl owchart module to be 

highlighted when it is being executed, which provides a visual indication of the 

action during the animation.  
   ■  If  Run  .  Run Control  .  Batch Run (No Animation)  is checked, the model will 

be run without any animation. This is even faster than Fast-Forward, and is usu-

ally used when the project is in production mode to produce adequate statistics 

for precise analysis.  
   ■   Run  .  SIMAN  allows you to view or write to a fi le the model fi le ( .mod ) and 

experiment fi le ( .exp ) for the code in the underlying SIMAN simulation language 

that your Arena model generates. To understand this, you’ll of course need to 

know something about SIMAN (see Pegden, Shannon, and Sadowski, 1995).  

       3.9 Summary and Forecast 

 After this guided tour through Arena, you should be a pretty knowledgeable (and tired) 

tourist. In Chapters 4 through 9, we’ll set you out to explore on your own, but with a 

pretty detailed road map from us. In those chapters, you’ll build a sequence of progres-

sively more complex models that illustrate many of Arena’s modeling capabilities and 

sometimes require you to perform a few creative modeling stunts. We’ll also integrate at 

the end of Chapter 4, throughout Chapter 6, at the end of Chapter 7, and in Chapter 12 

some information on the statistical aspects of doing simulation studies with Arena, on 

both the input and output sides. 

   3.10 Exercises 

    3-1  Make fi ve replications of Model 3-1 by just asking for them in  Run  .  Setup  . 

 Replication Parameters . Look at the output and note how the performance measures 

vary across replications, confi rming Table 2-4. To see the results for each of the fi ve 
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replications individually, you’ll need to open the Category by Replication report; the 

confi dence-interval half-widths can be seen in the Category Overview report, however.  

   3-2  Implement the double-time arrival modifi cation to Model 3-1 discussed in Sec-

tion 2.6.3 by opening the Create module and changing the Value  5  to  2.5  for the 

mean of the exponential distribution for Time Between Arrivals (don’t forget to click 

 OK , rather than  Cancel , if you want this change to happen). Make fi ve replications 

and compare the results to what we got in the hand simulation (see Figure 2-4). Put 

a Text box inside your  .doe  fi le; remember to hit CTRL-Return inside an Arena 

text box to go to the next line (if you just hit Return it will close out the text box and 

change the cursor to crosshairs for you to place the box); alternatively, you may want 

to compose your comparison outside of Arena, in, say, Notepad or some other plain-

text editor (not in word-processing software), then copy/paste that into an Arena Text 

box. To see the results for each of the fi ve replications individually, you’ll need to 

open the Category by Replication report.   

   3-3  Lengthen the run in Model 3-1 to 8 hours for a more interesting show. If you want 

the plots to be complete, you’ll have to open them and extend the Maximum in the Scale 

for the Time (X) Axes (mind the units!), as well as possibly adjust the Major Increment 

there. Make just one replication.  

   3-4  Implement the change to Model 3-1 described in Exercise 2-4 from Chapter 2. 

Open the Process module, change the Delay Type to  Expression , and enter the 

appropriate Expression (use the Expression Builder if you like). Run the model for 

20 minutes and check against your hand-simulation results. If they’re different, what 

might be the explanation (assuming you did everything right)? 

   Next, try running this for 48 hours and watch the queue-length plot (for both 

plots, change the Scale Maximum for the Time (X) Axis to  2880  and increase the 

 MajorIncrement to  240 ). To allow more room in the queue animation, click on the line 

for the queue and drag its left end to the left. What’s happening? Why? Put Text boxes 

inside each of your Arena fi les to contain the discussions requested.  

   3-5  Implement the additional statistic-collection function described in Exercise 2-1, 

and add a plot that tracks the total number of parts in the system (also called  work in 
process , abbreviated as WIP) over time. Note that at any given point in simulated time, 

WIP is the number in queue plus the number in service; you might also use the Expres-

sion Builder and check the Help topic EntitiesWIP Variable.  

   3-6  Modify Model 3-1 with all of the following changes in the same single model 

(not three separate models). Put a text box in your model with your results on the num-

ber of parts that both pass and fail inspection (which you can just read off of your fi nal 

 “frozen” animation), and at the inspection center, the average and maximum time in 

queue, the average and maximum queue length, and the utilization of the inspector re-

source. To help format your text box, choose the Courier New font in it; you might want 

to use Notepad or another plan-text editor (not word-processiong software) to compose 

your text-box contents, then copy/paste them into the Arena text box.    
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 ■  Add a second machine to which all parts go immediately after exiting the fi rst 

machine for a separate kind of processing (for example, the fi rst machine is drill-

ing and the second machine is washing). Processing times at the second machine 

are independent of those from the fi rst machine but drawn from the same distri-

bution as for the fi rst machine. Gather all the statistics as before, plus the time in 

queue, queue length, and utilization at the second machine.  
   ■  Immediately after the second machine, there’s a pass/fail inspection that takes 

a constant 4.5 minutes to carry out and has a 75% chance of a passing result; 

queueing is possible for the single inspector, and the queue is fi rst-in, fi rst-out. 

All parts exit the system regardless of whether they pass the test. Count the num-

ber that fail and the number that pass, and gather statistics on the time in queue, 

queue length, and utilization at the inspection center. (HINT: Try the Decide 

fl owchart module.)  
   ■  Include plots to track the queue length and number busy at all three stations; 

put all queue lengths together in the same plot, and put all numbers busy in the 

same plot (you’ll need to turn on the plot Legends to identify the three curves). 

Confi gure them as needed.  
    ■  Run the simulation for 480 minutes instead of 20 minutes.     

   3-7  In Exercise 3-6, suppose that parts that fail inspection after being washed are sent 

back and re-washed, instead of leaving; such re-washed parts must then undergo the 

same inspection, and have the same probability of failing (as improbable as that might 

seem). There’s no limit on how many times a given part might have to loop back through 

the washer and inspector. Run this model under the same conditions as Exercise 3-6, and 

compare the results for the time in queue, queue length, and utilization at the inspection 

center. Of course, this time there’s no need to count the number of parts that fail and 

pass, since they all eventually pass (or do they?). You may have to allow for more room 

in some of the queue animations. Put a text box in your model comparing the same 

inspection-center results with those requested in Exercise 3-6. Do a paper-and-pencil, 

that is, no-simulation, analysis of what’s happening in the long run, that is, infi nite run-

length, at both the inspection center and the washing center; fi gure out the “effective” 

arrival rates to both of those places, and compare with their service rates—are your 

simulation results consistent with this? Maybe extend your simulation run as far past the 

480 minutes as you can.  

   3-8  In Exercise 3-7, suppose the inspection can result in one of three outcomes: pass 

(probability 0.75, as before), fail (probability 0.11), and re-wash (probability 0.14). Fail-

ures leave immediately, and re-washes loop back to the washer. These probabilities hold 

for each part undergoing inspection, regardless of its past history. Count the number that 

eventually fail and the number that eventually pass, and gather statistics (in a Text box in 

your model) on the time in queue, queue length, and utilization at the inspection center. 

(HINT: Explore the Decide fl owchart module and contemplate a higher-dimensional 

coin to fl ip.) Put a Text box in your model comparing the same inspection-center results 

with those requested in Exercises 3-6 and 3-7.  
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   3-9  In Model 3-1, suppose that instead of having a single source of parts, there are 

three sources of arrival, one for each of three different kinds of parts that arrive: Blue 

(as before), Green, and Red. For each color of arriving part, interarrival times are ex-

ponentially distributed with a mean of 16 minutes. Run the simulation for 480 minutes, 

and compute the same performance measures as for Model 3-1. Once the parts are in 

the system, they retain their correct color (for the animation) but are not differentiated 

for collection of statistics on time in queue, queue length, or utilization (that is, they’re 

lumped together for purposes of processing and statistics collection on these output per-

formance measures); however, collect statistics separately by part color for total time in 

system. Processing times at the drilling center are the same as in Model 3-1 and are the 

same regardless of the color of the part. Make just a single replication. Put a text box in 

your Arena fi le with the values for the output performance measures mentioned (average 

time in queue for all part types together, average queue length for all part types together, 

server utilization for all part types together, and three average time-in-system results, 

one for each part type separately).  

   3-10  In science museums, you’ll often fi nd what’s called a  probability board  (also 

known as a  quincunx ):    

 This is like a big, shallow, tilted baking pan with a slot at the midpoint of the top 

edge through which marbles roll, one at a time, from a reservoir outside the board; let’s 

say the reservoir has  k  marbles in it. Just below the slot is a fi xed peg, which each in-

coming marble hits and causes the marble to roll left or right off of; assume that you’ve 

tilted the board so that there’s an equal chance that the marble will roll left vs. right 

(interpret “left” and “right” from your viewpoint as you look at the board from in front 

of it, which is the opposite from the marbles’ viewpoint as they dive down the board 

nose fi rst on their stomachs). Below this peg is a row of two pegs, parallel to the top 

edge of the board but offset horizontally from the fi rst peg so that the two pegs in this 

second row are diagonally arranged below the fi rst peg, as in the picture. Assume that 

the board’s tilt angle, the peg spacing, the marbles’ mass, and the gravitational fi eld of 
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the host planet are just right so that each marble will next hit exactly one of the two pegs 

in the second row (which peg it hits is determined by whether it rolled left or right off 

of the fi rst peg). The marble will next roll left or right off of whichever peg it hits in the 

second row (again, assume a 50-50 chance of rolling left vs. right). The next parallel 

row of pegs has three pegs in it, again offset so that each marble will hit exactly one of 

them and roll left or right, again with equal probabilities. This continues through the last 

row; let’s say that the number of rows is  n  so that the last row has  n  pegs in it ( n  5 6 in 

the picture, counting the fi rst peg at the top as its own row). After rolling off of a peg in 

the last row, the marble will land in exactly one of  n  1 1 bins arranged diagonally under 

the last row of pegs. Create an Arena simulation model to simulate a probability board 

with  n  5 6 rows of pegs and  k  5 1,500 marbles in the reservoir. Animate the marbles 

bouncing down the board, and also animate the number of marbles accumulating in the 

bins at the bottom with Level animation objects from the  Animate  toolbar. In addition, 

count the number of marbles that land in each of the 7 bins. The proportion of marbles 

landing in each bin estimates the probabilities of what distribution? What if somebody 

opens a window to the left of the board and a wind comes in to blow the marbles toward 

the right as they roll, so that there’s a 75% (rather than 50%) chance that they’ll roll to 

the right off of each peg?  

   3-11  In Exercise 3-9, as part of the processing of parts, an inspection is included 

(there’s no extra processing time required for the inspection, and during the inspec-

tion, the part entity continues to occupy the resource). Each part passes this inspection 

with probability 0.85, regardless of its color. If it passes, it just leaves the system, as 

before. If it fails, it must loop back and be re-processed, going to the end of the queue 

if there is one and taking an amount of time for re-processing that is an indepen-

dent draw from the same processing-time distribution; parts undergoing re-processing 

must still be inspected (with the same pass probability) and can fail multiple times 

(there’s no limit on the number of failures for a given part) before fi nally passing and 

leaving. Adjust the plots if needed so they show the entire curve. Put a Text box in 

your Arena fi le with the same output performance measures as in Exercise 3-9, and 

compare them to what you got in Exercise 3-9, with a short discussion explaining any 

differences you fi nd. (HINT: Explore the Decide module, with “Type” chosen to be 

“2-way by Chance.”)  

   3-12  In Exercise 3-11, after (fi nally) passing inspection, paint on the parts needs to 

be touched up, so they are sent to one of three separate touch-up-paint booths, one for 

each color, with each part being directed to the booth for its color (of course); each 

touch-up booth has its own FIFO queue and its own (single) server. Touch-up times are 

TRIA(3, 10, 18) minutes, regardless of color. Add a plot that tracks, on a single set of 

axes, the queue lengths of each of the touch-up booths (with appropriate colors for each 

of the three curves). In a Text box in your model, collect the same output statistics as 

for  Exercise 3-9, in addition to the average time in queue, number in queue, and utiliza-

tion for each touch-up booth. (HINT: Explore the Decide module some more, this time 

with “Type” chosen to be “N-way by Condition” and then “Add” conditions based on 

Entity Type.)  
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   3-13  In Model 3-3, time studies showed that moving to this integrated work entailed an 

average increase of 18% in the time it takes to complete each of the four tasks to process 

an application since employees are no longer specialized in just one task, as they were 

in Model 3-2. Model this as increasing each service time by 18% from what it was in 

Model 3-3. If this happens, is the generalized parallel integrated-work scheme still ad-

visable, in comparison with the specialized serial organization of Model 3-2? In a Text 

box in your model, give pertinent results and comparisons.  

   3-14  Five identical machines operate independently in a small shop. Each machine is 

up (that is, works) for between 7 and 10 hours (uniformly distributed) and then breaks 

down. There are two repair technicians available, and it takes one technician between 

1 and 4 hours (uniformly distributed) to fi x a machine; only one technician can be as-

signed to work on a broken machine even if the other technician is idle. If more than two 

machines are broken down at a given time, they form a (virtual) FIFO “repair” queue 

and wait for the fi rst available technician. A technician works on a broken machine 

until it is fi xed, regardless of what else is happening in the system. All uptimes and 

downtimes are independent of each other. Starting with all machines at the beginning 

of an “up” time, simulate this for 160 hours and observe the time-average number of 

machines that are down (in repair or in queue for repair), as well as the utilization of 

the repair technicians as a group; put your results in a Text box in your model. Animate 

the machines when they’re either undergoing repair or in queue for a repair technician, 

and plot the total number of machines down (in repair plus in queue) over time. (HINT: 

Think of the machines as “customers” and the repair technicians as “servers” and note 

that there are always fi ve machines fl oating around in the model and they never leave.)  

   3-15  A compromise between complete specialization (Model 3-2) and complete gener-

alization (Model 3-3) of work might be for Alfi e and Betty to form a two-unit resource, 

each unit of which would check credit and prepare the covenant for a loan application. 

The application would then move on to a second two-unit resource (Chuck and Doris), 

each unit of which would price the loan and disburse the funds. This would require less 

investment in cross-training all four employees for all four tasks (each employee would 

have to do two tasks for each loan). Run this compromise model under the same condi-

tions as for Models 3-2 and 3-3 and compare (in a Text box in your model) the pertinent 

results with those from Models 3-2 and 3-3.  

   3-16  In Exercise 3-15, increase each service time by 9%, similar to the 18% increase 

in Exercise 3-13 but not as big an increase since there’s still some specialization here.  

Compare (in a Text box in your model) your results to those of Models 3-2 and 3-3, as 

well as to Exercise 3-15.  

   3-17  In Model 3-2, the long-run (a.k.a.  steady-state ) expected total time in system of 

a loan application is 20 hours, which can be derived from queueing theory, namely, 

exponential queues in series. This means that in a mythical simulation of infi nite length 

(rather than the 160 hours we ran), loan applications would average 20 hours from entry 

to exit; there’s no uncertainty associated with this 20, since this mythical run is infi nitely 

long. Another way of looking at it is that a loan application arriving after the system has 
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already been in operation for a long (infi nite) time would have an expected total time in 

system of 20 hours. In Section 3.5.1, we saw that Model 3-2 produced an average total 

time in system of 16.0831 hours, well under the steady-state mean of 20. Why is our 

result so much lower than the 20?   

  (a)  Maybe it’s just because of random fl uctuation, as we’ve discussed, and we 

made only one replication that might have just bounced low. Instead, make 

50 replications to dampen the randomness, and investigate. (Throughout this 

exercise you might want to select  Run . Run Control . Batch Run (No Anima-
tion)  to turn off the animation and speed things up.)  Since you’re making more 

than one replication, the Average column in the Category Overview report for 

Total Time is the average of 50 independent and identically distributed average 

(within-run) total times, the fi rst of which is our 16.0831, and then there are 49 

more. The “Half Width” column you’ll see is the “6” part of a 95% confi dence 

interval on the expected average total time in system, found by taking the stan-

dard deviation of the 50 within-run average total times, dividing by the square 

root of 50, and multiplying by the student  t  critical value for a 95% confi dence 

interval with 49 degrees of freedom (this  t  critical value is 2.010, as you can 

confi rm by consulting your favorite  t  table; remember, you want to divide that 

other 5% equally in the two tails, so you want 2.5% out in each tail). So is it just 

random fl uctuation that caused us to be unlucky and have our fi rst replication 

bounce low, down to 16.0831?  

   (b)  Or maybe it’s because our 160-hour run is not long enough. Lengthen it to 

16,000 hours (100 times as long) and go back to just one replication. The Half 

Width you see here is again that of a 95% confi dence interval, but it’s formed 

in a different way, discussed in Section 7.2.3. So is it run length?  

   (c)  To see if your result from part  (  b  )  might be subject to random fl uctuation as 

well (HINT: it is, but not as much as in the original short run), replicate the 

16,000-hour run in part  (  b  )  50 times.  

   (d)  Or maybe it’s because of the way we initialized our simulation. Like most simu-

lations, Model 3-2 starts out  empty  and  idle , that is, it’s  empty  of entities and all 

resources are  idle . So for a while at the beginning, the model could be uncharac-

teristically uncongested (in comparison to long-run steady-state conditions) until 

it starts fi lling up with application entities. As you’ve no doubt noticed, there’s 

a fi eld called  Warm-up Period  in  Run . Setup . Replication Parameters  and, 

as its name suggests, Arena “warms up” your model this long before starting to 

collect output statistics (this Warm-up Period is taken out of the beginning of your 

Replication Length, so statistics are collected for the last  Replication Length - 
Warm-up Period  time units). The Warm-up Period defaults to zero, in which case 

statistics are collected from the very beginning of the run, but you could fi ll in a 

positive value. Try warming up for 40 hours, and repeat the original Model 3-2 

(one replication of length 160 hours, of which only the last 160 2 40 5 120 hours 

will be counted in the output), as well as each of parts  (  a  ) – (  c  )  above, to see what 

difference this warm-up period makes in these different cases.  
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    Other than changing entries in  Run . Setup . Replication Parameters  and turning off 

the animation, there’s no modeling to do here, so just make a table of your results and 

discuss what you see, as a result of changing only the run conditions, not anything in 

the model. Do you necessarily “want” to estimate steady-state, long-run performance 

measures? Later, have a look at Section 7.2. (Thanks to Professor Jim Morris of the 

University of Wisconsin–Madison for conceiving this exercise.)  

   3-18  Embellish your model for Exercise 3-9 as follows:

    (a)  After drilling, each part goes immediately to a polishing station, where a single 

person hand-polishes the part. Polishing times are (continuously) uniformly 

distributed between 5 and 15 minutes. Animate both the queue and the resource 

for polishing. For the resource animation, open some of the other picture librar-

ies (in the Arena folder that’s in turn inside the Rockwell Software folder) like 

 People.plb  or  Workers.plb ; have an appropriately different resource 

picture for the idle and busy states of each resource.  

   (b)  After polishing, each part goes immediately to a shipping station, where a sin-

gle person hand-prepares the part for shipping. Shipping-preparation times are 

always exactly 7.5 minutes per part. Animate both the queue and the resource 

for shipping preparation, similarly to what you did for polishing.  

   (c)  For both the queue-length and number-busy plots, add curves (on the same set 

of axes, so don’t create new plots) depicting the two new stations. Use different 

colors for the curves within each plot, and add a legend to each plot to show 

which station is which color in the plot. 

   From your results (one replication), fi ll in the following table and put it into your model 

in an Arena text box:

                             Drilling  Polishing  Shipping  
Avg. time in queue          xx.xx     xx.xx      xx.xx  
Avg. queue length           xx.xx     xx.xx      xx.xx  
Utilization                 xx.xx     xx.xx      xx.xx    

Average total times in system by part type: 
 Blue avg. time in system    xx.xx  
Green avg. time in system   xx.xx  
Red avg. time in system     xx.xx  

   Speculate on what would happen if you ran your model for a far longer time (or, go 

ahead and try it). If you could hire one more person to work as a second driller, a second 

polisher, or a second shipper, what would you do, and why? (Add your brief answers to 

these two questions to your model in the previous text box.)     

   3-19  A two-workstation system processes two different kinds of parts. Parts of type 1 

arrive according to an exponential interarrival-time distribution with mean 5.5 (all times 

are given in minutes) and are fi rst processed at workstation 1, and then workstation 2; 

each workstation has only a single server. Parts of type 2 arrive according to an exponen-

tial interarrival-time distribution with mean 9 and are processed only on workstation 2. 
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The fi rst arrival of both types of parts is at time 0, and both part types are in the same 

FIFO queue for workstation 2 and have the same priority there as each other. The pro-

cessing time at workstation 1 follows a triangular distribution with a minimum of 2, mode 

of 5, and maximum of 9. The processing time at workstation 2 for both parts follows a 

uniform distribution between 1 and 5. Run your simulation for a single replication of one 

7-day week (around-the-clock days) and observe the mean total time in system for part 

types 1 and 2 separately (Hint: In your Create modules give the two part types different 

entity types, then in the Category Overview report look under Entity . Time . Total 
Time), the time-average number of parts in the system of each type separately, the average 

time in each queue of all parts combined, the time-average length or each queue, and the 

utilizations of the resources at each workstation. Animate your queues and resources, and 

include a plot of each queue length separately on the same axes.  

   3-20  A painting system contains two operations. Parts arrive according to an exponen-

tial interarrival-time distribution with mean 5 (all times are in minutes), with the fi rst 

part’s arriving at time 0. Parts fi rst enter a painting station (there is only one painting re-

source) that has a triangular operation time with minimum 1, mode 4.5, and maximum 7. 

Once the part completes the painting operation, it must be allowed to dry for 15 minutes; 

during this unattended (that is, there’s no resource required) drying time the part is out 

of the painting station so other parts can be painted, and there is no limit on how many 

parts can be in their 15-minute drying period at the same time. After drying, the part 

enters the second operation, which is a fi nishing operation; this operation has a uniform 

processing time between 0.5 and 9, and there is only one fi nishing resource. Run your 

simulation for a single replication of 24 hours and observe the average total time in sys-

tem of parts, the time-average number of parts in the system; also observe, for the paint 

and fi nishing operations separately, the average time in queue, the time-average number 

of parts in queue, and the utilizations of the painting and fi nishing resources. Put a text 

box in your model with all these output performance metrics. Animate the painting and 

fi nishing resources and the queues leading into them, but do not animate the drying op-

eration, and include a plot of each queue length separately on the same axes. Comment 

briefl y on the relationship in your results between the time-average number of parts in 

system and the sum of the time averages of the number in each of the queues, and what 

might explain any apparent discrepancies.  

   3-21  In Exercise 3-20, the parts undergoing drying were not animated, which is a kind 

of animation error; more importantly, we were not able to get the time-average number 

of parts undergoing drying; and, you should have noticed a discrepancy between the 

time-average number of parts in the system and the sum of the time averages of the 

number in each of the queues. Fix all this at once by assuming that there will never be 

more than ten parts at a time undergoing drying (which turns out, after the fact, to be true 

for this model with these input distributions and parameters and only one replication of 

this run length, but might not be true if you changed any of these input specifi cations). 

Think about modeling the “spots” for parts to dry as a new Resource with Capacity 10. 

(See Exercise 5-27 for a better, more general, and easier way of doing this, using the 

concept of Storages, which will be introduced in Chapter 5.)  
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   3-22  A small manufacturing department contains three serial workstations (that is, 

parts go through each of the three workstations in order, one workstation after the other). 

Parts arrive according to an exponential interarrival-time distribution with mean 8 (all 

times are given in minutes), with the fi rst part’s arriving at time 0. Before a new part can 

start processing, it must be mounted on a special fi xture, and this mounting operation 

takes 2 minutes (there are four fi xtures available, which can be reused, but each fi xture 

can carry only one part at a time). The part remains on the fi xture until it completes 

processing on all the workstations, at which time it is removed from the fi xture (this re-

moval operations takes 1 minute), after which the fi xture becomes available for another 

part that might be waiting for it. Processing times at the fi rst workstation follow a tri-

angular operation time with minimum 4, mode 7, and maximum 9. Processing times at 

the second workstation have a uniform distribution between 5 and 10. Processing times 

at the third workstation have a triangular operation time with minimum 5, mode 6.5, 

and maximum 9. Run your simulation for a single replication of length 48 hours, and 

observe the time-average and maximum total work in process (WIP) in the whole sys-

tem. At each workstation separately, observe the average and maximum queue lengths, 

and the resource utilization. Also observe the utilization of the four fi xtures as a group, 

as well as the time-average and maximum number of parts that are waiting for a fi xture 

(before they can even get going into the system for processing). Add a plot for the total 

WIP and by-workstation queue lengths, all on the same set of axes; add a second plot 

showing the number of fi xtures that are in use. Animate the resources and queues for 

each of the workstations, and animate the parts waiting for a fi xture, but do not animate 

the fi xtures themselves. Put in a text box with the numerical results requested. What ap-

pears to be the bottleneck in this system preventing better effi ciency? HINT: Remember 

that an entity can have multiple different resources Seized at the same time, and that the 

Process module has “Action” options other than the usual Seize-Delay-Release.  
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    CHAPTER 4 

 Modeling Basic Operations 
and Inputs 

  In Chapters 2 and 3, we introduced you to a simple processing system (Model 3-1), 

conducted a hand simulation (Chapter 2), and examined an Arena model (Chapter 3). 

We also considered a couple of other models, in Sections 2.7 and 3.5, but all were quite 

simple and stylized. In this chapter, we’ll work with a more realistic system and develop 

complete models of several versions of that system, with each version adding complex-

ity and new modeling concepts. We’ll also talk about how you can realistically specify 

input probability distributions that represent the actual system under study. 

 Section 4.1 describes this more complicated system—a sealed electronic assem-

bly and test system. We then discuss how to develop a modeling approach, introduce 

several new Arena concepts, build the model, and show you how to run it and view the 

results. By this time, you should start to become dangerous in your modeling skills. In 

Section 4.2, we’ll enhance the model by enriching the scheduling, failure, and states of 

resources, and give you alternate methods for studying the results. Section 4.3 shows 

you how to dress up the animation a little bit. In Section 4.4, we’ll generalize how enti-

ties move around, introducing the notions of Stations, Routes for non-zero travel times, 

and animation of transfers. Section 4.5 addresses how to fi nd and correct errors in your 

models. Finally, in Section 4.6, we take up the issue of how you specify quantitative 

inputs, including probability distributions from which observations on random variables 

are “generated” to drive your simulation. When you fi nish this chapter, you should be 

able to build some reasonably elaborate models of your own, as well as specify appro-

priate and realistic distributions as input to your models. 

      4.1 Model 4-1: An Electronic Assembly and Test System 

  This system represents the fi nal operations of the production of two different sealed 

electronic units, shown in   Figure 4-1  . The arriving parts are cast metal cases that have 

already been machined to accept the electronic parts.   

 The fi rst units, called Part A, are produced in an adjacent department, outside the 

bounds of this model, with interarrival times to our model being exponentially dis-

tributed with a mean of 5 (all times are in minutes). Upon arrival, they’re transferred 

 (instantly) to the Part A Prep area, where the mating faces of the cases are machined to 

ensure a good seal, and the part is then deburred and cleaned; the process time for the 

combined operation at the Part A Prep area follows a TRIA(1, 4, 8) distribution. The part 

is then transferred (instantly, again) to the sealer. 

 The second units, called Part B, are produced in a different building, also outside this 

model’s bounds, where they are held until a batch of four units is available; the batch 
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is then sent to the fi nal production area we are modeling. The time between the arrivals 

of successive batches of Part B to our model is exponential with a mean of 30 minutes. 

Upon arrival at the Part B Prep area, the batch is separated into the four individual units, 

which are processed individually from here on, and the individual parts proceed (in-

stantly) to the Part B Prep area. The processing at the Part B Prep area has the same three 

steps as at the Part A Prep area, except that the process time for the combined operation 

follows a TRIA(3, 5, 10) distribution. The part is then sent (instantly) to the sealer. 

 At the sealer operation, the electronic components are inserted, the case is assem-

bled and sealed, and the sealed unit is tested. The total process time for these operations 

depends on the part type: TRIA(1, 3, 4) for Part A and WEIB(2.5, 5.3) for Part B (2.5 

is the scale parameter  �  and 5.3 is the shape parameter  � ; see Appendix C). Ninety-one 

percent of the parts pass the inspection (that is, each part has a 0.91 probability of pass-

ing inspection) and are transferred immediately to the shipping department; whether 

a part passes is independent of whether any other parts pass. The remaining parts are 

transferred instantly to the rework area where they are disassembled, repaired, cleaned, 

assembled, and retested. Eighty percent of the parts processed at the rework area are sal-

vaged (that is, each part at this point has a 0.80 probability of being salvaged) and trans-

ferred instantly to the shipping department as reworked parts, and the rest are transferred 

instantly to the scrap area. The time to rework a part follows an exponential distribution 

with mean of 45 minutes and is independent of part type and the ultimate disposition 

(salvaged or scrapped). 

 We want to collect statistics in each area on resource utilization, number in queue, 

time in queue, and the cycle time (or total time in system) separated out by shipped 

parts, salvaged parts, or scrapped parts. We will initially run the simulation for four 

consecutive 8-hour shifts, or 1,920 minutes. 

    4.1.1 Developing a Modeling Approach 

 Building a simulation model is only one component of a complete simulation project. 

We will discuss the entire simulation project in Chapter 13. Presume for now that the 

fi rst two activities are to state the study objective and defi ne the system to be studied. In 

this case, our objective is to teach you how to develop a simulation model using Arena. 

The system defi nition was given previously. In the real world, you would have to de-

velop that defi nition, and you may also have to collect and analyze the data to be used to 

  Figure 4-1.  Electronic Assembly and Test System   
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specify the input parameters and distributions (see Section 4.5). We recommend that the 

next activity be the development of a modeling approach. For a real problem, this may 

require the defi nition of a data structure, the segmentation of the system into submodels, 

or the development of control logic. For this problem, it requires only that we decide 

which Arena modules will provide the capabilities we need to capture the operation of 

the system at an appropriate level of detail. In addition, we must decide how we’re going 

to model the different processing times at the sealer operation. To simplify this task, 

let’s separate the model into the following components: part arrival, prep areas, sealer 

operation, rework, part departure, and part animation. Also, we’ll assume that all entities 

in the system represent individual parts that are being processed. 

 Because we have two distinct streams of arriving entities to our model, each with its 

own timing pattern, we will use two separate Create modules (one for each part type) to 

generate the arriving parts. 

 We also have different processing times by part type at the sealer operation, so we’ll 

use two Assign modules to defi ne an attribute called  Sealer Time  that will be as-

signed the appropriate sealer processing time after the parts are generated by the Create 

modules. When the parts are processed at the sealer operation, we’ll use the time con-

tained in the  Sealer Time  attribute for the processing time there, rather than gener-

ating it on the spot as we did in the models in Chapter 3. 

 Each of the two prep areas and the sealer operation will be modeled with its own 

Process module, very much like the Process module used in the models in Chapter 3. An 

inspection is performed after the sealer operation has been completed, which results in 

parts going to different places based on a “coin fl ip” (with just the right bias in the coin). 

We’ll use a Decide module with the pass or fail result being based on the coin fl ip. The 

rework area will be modeled with Process and Decide modules, as it also has a pass or 

fail option. The part departures will be modeled with three separate Record and Dispose 

modules (shipped, salvaged, and scrapped) so we can keep corresponding cycle-time 

statistics sorted out by shipped vs. salvaged vs. scrapped. All of these modules can be 

found on the Basic Process panel. 

     4.1.2 Building the Model 

 To build the model, you need to open a new model window and place the required mod-

ules on the screen: two Create, two Assign, four Process, two Decide, three Record, and 

three Dispose modules. 

 Your model window should now look something like   Figure 4-2  , assuming you’ve 

made the Connections or used the Auto-Connect feature (Object menu) while placing 

the modules in the appropriate sequence (the numbers inside your module shapes might 

be different if you placed your modules in a different order, but that doesn’t matter since 

they’re all “blanks” at this point). You might want to use the  File . Save  function now 

to save your model under a name of your choosing.   

 Now let’s open each module and enter the information required to complete the 

model. Start with the Create 1 module that will create the arriving Part A entities.   Dis-

play 4-1   (the “Display” device was described in Section 3.4.4) provides the information 

required to complete this module. Note that this is very similar to the Create module 

kel01315_ch04_121-206.indd   123kel01315_ch04_121-206.indd   123 05/12/13   3:29 PM05/12/13   3:29 PM



124     Chapter 4

used in Model 3-1. We’ve given the module a different Name and specifi ed the Entity 

Type as  Part A . The Time Between Arrivals is  Random  (that is, an exponential dis-

tribution) with a Value (that is, mean) of  5 , and the units are set to  Minutes . The re-

maining entries are the default options. We can now accept the module by clicking  OK .  

  Figure 4-2.  Model Window of Placed Modules   

 Name   Part A Arrive  
 Entity Type   Part A  

 Time Between Arrivals   

 Type   Random (Expo)  
 Value   5  
 Units   Minutes  

  Display 4-1.  The Completed Part A Create Dialog Box   
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 The Create module for the Part B arrivals is very similar to that for Part A, as shown 

in   Display 4-2   (we’ll skip the graphics since they’re almost the same as what you just 

saw), except we have fi lled in one additional fi eld (Entities per Arrival) to refl ect the 

batch size of four. Recall that the Part B entities arrive in batches of four. Thus, this entry 

will cause each arrival to consist of four separate entities rather than one.    

 Having created the arriving parts, we must next defi ne an attribute  Sealer Time  

and assign it the sealer processing time, which is different for each part type. We’ll as-

sign these values in the Assign 1 and Assign 2 modules that we previously placed. The 

Part A assignment is shown in   Display 4-3  . We’ve defi ned the new attribute and assigned 

it a value from a TRIA(1, 3, 4) distribution. We’ve also defi ned an attribute,  Arrive 
Time , which is used to record the arrival time of the entity. The Arena variable  TNOW  

 Name   Part B Arrive  
 Entity Type   Part B  

 Time Between Arrivals   
 Type   Random (Expo)  
 Value   30  
 Units   Minutes  

 Entities per Arrival   4  

 Display 4-2.  The Completed Part B Create Dialog Box Entries

 Name   Assign Part A Sealer and 
Arrive Time  

 Assignments:   
 Type   Attribute  
 Attribute Name   Sealer Time  
 New Value   TRIA(1, 3, 4)  
 Type   Attribute  
 Attribute Name   Arrive Time  
 New Value   TNOW  

  Display 4-3.  Assigning the Part A Sealer Time and Arrival Time 
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provides the current simulation time, which in this case is the time the part arrived or 

was created (a good way to discover  TNOW  is to right-click in the New Value fi eld of 

the Assign module’s Assignments dialog box, select Build Expression, guess Date and 

Time Functions, and it’s fi rst in the list, described as Current Simulation Time).  

 The assignment to the  Sealer Time  and  Arrive Time  attributes for Part B is 

shown in   Display 4-4  . Although four entities are created in the previous module for each 

arrival, they’ll each be assigned a different (independent) value from the sealer-time 

distribution in the following Assign module.  

 Having completed the two part-arrival modules and the assignment of the sealer 

times, we can now move to the two prep areas that are to be modeled using the two Pro-

cess modules previously placed. The completed dialog box for the  Prep A Process  

area is given in   Display 4-5  .  

 The Process module has four possible Actions: Delay, Seize Delay, Seize Delay Re-

lease, and Delay Release. The Delay action will cause an entity to undergo a specifi ed 

time Delay. This Action does not require a Resource. This implies that waiting will occur 

and that multiple entities could undergo the Delay simultaneously. Since our prep area 

requires the use of a machine or Resource, we need an Action that will allow for waiting, 

queueing until the prep resource is available, and delaying for the processing time. The 

Seize Delay Action provides the waiting and delaying, but it does not release the Re-

source at the end of processing to be available for the next entity. If you use this Action, 

it is assumed that the Resource would be Released downstream in another module. The 

Seize Delay Release option provides the set of Actions required to model our prep area 

accurately. The last Action, Delay Release, assumes that the entity previously Seized a 

Resource and will undergo a Delay here, followed by the Release of the Resource. 

 You might notice that when you select one of the last three options, a list box appears 

in the empty space below the Action selection box. Click  Add  to enter the Resource 

information. 

 In entering data, we strongly urge you to make use of drop-down lists whenever pos-

sible. The reason for this caution is that once you type a name, you must always match 

what you typed the fi rst time. Arena names are not case-sensitive, but the spelling and 

any embedded blanks must be identical. Picking the name from the list ensures that it is 

the same. If you type in a slightly different name, Arena will give you an error message 

 Name   Assign Part B Sealer and 
Arrive Time  

 Assignments:   
 Type   Attribute  
 Attribute Name   Sealer Time  
 New Value   WEIB(2.5, 5.3)  
 Type   Attribute  
 Attribute Name   Arrive Time  
 New Value   TNOW  

  Display 4-4.  Assigning the Part B Sealer Time and Arrival Time 
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the fi rst time you check or attempt to run the model (or, worse yet, your model might 

run but it will be wrong). 

 Also note that when you place a module, Arena automatically provides default 

names and values. These default names are the object name (module, resource, etc.) 

with an appended number. The appended number is incremented for each additional 

 Name   Prep A Process  
 Action   Seize Delay Release  

 Resources   
 Type   Resource  
 Resource Name   Prep A  
 Quantity   1  

 Delay Type   Triangular  
 Units   Minutes  
 Minimum   1  
 Value (Most Likely)   4  
 Maximum   8  

  Display 4-5.  Prep A Process Dialog Box 
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name, if a unique name is required; for example, Process 1, Process 2, and so on. There 

are two reasons for this. The fi rst is a matter of convenience—you can accept the default 

resource name, or you can change it. The second reason is that all names for any objects 

in Arena must be unique, even if the object type is different. Otherwise, Arena could not 

determine which object to associate with a name that had been used more than once. 

 To help you, Arena does a lot of automatic naming, most of which you won’t even 

notice. For example, if you click on the Queue data module, you’ll see that Arena also 

assigned the name  Prep A Process.Queue  to the queue at this prep area. In most 

cases, you can assign your own names rather than accepting the default names. 

 You might also notice that when you select either of the two actions that include a 

Seize and then accept the module, Arena will automatically place an animated queue (a 

horizontal line with a small vertical line at the right) near the associated Process module. 

This will allow you to visualize entities waiting in the queue during the simulation run. 

If you click on this queue, the queue name will be displayed. 

 The second Process module is fi lled out in an almost-identical fashion, with the 

exception of the name ( Prep B Process ), the resource name ( Prep B ), and the pa-

rameters for the process time ( 3 ,  5 ,  10 ). We have not included a display for this module. 

 The next step is to enter data for the sealer operation, which is the third Process 

module we placed. The entries for the dialog box are shown in   Display 4-6  . Note that 

in the upstream Assign modules we defi ned the attribute  Sealer Time  when the ar-

riving parts were created. When an entity gains control of, or  seizes , the resource, it will 

undergo a process delay equal to the value contained in its  Sealer Time  attribute.  

 The inspection following the sealer operation is modeled using the fi rst Decide mod-

ule. We’ll accept the default Type,  2-way by Chance , as we have only a pass or fail 

option, and it will be decided by chance. The dialog box requires that we enter a Percent 

True, and it provides two ways for entities to leave the module—True or False. In this 

case, we will enter the Percent True as  9% . This will result in 9% of the entities (which 

we’ll treat as the failed items) following the True branch, and 91% (the passed items) fol-

lowing the False branch.  1     Parts that pass are sent to Shipping, and parts that fail are sent to 

 Name   Sealer Process  
 Action   Seize Delay Release  

 Resources   
 Resource Name   Sealer  
 Quantity   1  

 Delay Type   Expression  
 Units   Minutes  
 Expression   Sealer Time  

  Display 4-6.  The Sealer Dialog Box 

  1  We could have just as well reversed the interpretation of True as fail and False as pass, in which case the 

Percent True would be  91  (and we’d probably change the module Name to  Passed Sealer Inspection ), 

and we’d need to reverse the destinations of the True and False Connectors leading out of this module. 
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Rework. The data for this Decide module are shown in   Display 4-7  . By the way, if you’ve 

been building this model as we’ve moved through the material, now would be a good time 

to click the  Save  button—you never know when somebody might bump the power switch!   

 The remaining Process module will be used to model the rework activity. The data 

for this Process module are in   Display 4-8  . This module is very similar to the Prep A and 

B Process modules with the exceptions of the Name, Resource Name, and Expression.  

 The fi nal Decide module is used to separate the salvaged and scrapped parts fol-

lowing rework. The data for this Decide module are in   Display 4-9  . We’ve chosen the 

True branch to represent the scrapped parts (20%) and the False branch to represent the 

salvaged parts. 

 Name   Failed Sealer Inspection  
 Percent True   9  

  Display 4-7.  The Sealer Inspection Dialog Box 

 Name   Rework Process  
 Action   Seize Delay Release  

 Resources   
 Resource Name   Rework  
 Quantity   1  

 Delay Type   Expression  
 Units   Minutes  
 Expression   EXPO(45)  

  Display 4-8.  The Rework Process Dialog Box 

 Name   Failed Rework Inspection  
 Percent True   20  

  Display 4-9.  The Rework Inspection Dialog Box 
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  Having defi ned all of the operations, we now need to fi ll in the Record and Dispose 

modules. Remember that as part of the simulation output, we wanted to collect statistics 

on resource utilization, number in queue, and time in queue at each of the operations. 

These three statistics are automatically collected whenever you use a Process module 

with an Action option that requires a Resource (assuming that the Report Statistics box 

for the module is checked and that the Processes box is checked in  Run . Setup . Project 
Parameters ). We also wanted statistics on the cycle time separated by shipped parts, 

 salvaged parts, and scrapped parts. The Record module provides the ability to collect 

these cycle times in the form of Tallies. The completed dialog box for the scrapped parts 

tally is shown in   Display 4-10  . We picked the Type  Time Interval  from the drop-

down list. The Tally Name defaults to the module name. This will cause Arena to record 

as a Tally statistic the time between the attribute carrying the arrival time ( Arrive 
Time ) of the part to the system and the time that it arrived at this Record module, which 

will be the entity’s time in system.  

 The remaining two Record modules are named  Record Salvaged Parts  and 

 Record Shipped Parts . We have not bothered to include displays on these mod-

ules as they are completely analogous to the  Record Scrapped Parts  module in 

  Display 4-10  . 

 The fi nal three modules Dispose of the entities as they leave the system. For this 

model, we could have directed all entities to a single Dispose module. However, one 

of the features of a Dispose module is the inclusion of an animation variable, which 

appears near the lower right-hand corner of the module. This animation variable will 

display the current count for the total number of entities that have passed through this 

module during the run and allow the viewer to discern the proportion of entities that 

have taken each of the three possible paths through the system. 

 Name   Record Scrapped Parts  

 Type   Time Interval  
 Attribute Name   Arrive Time  
 Tally Name   Record Scrapped Parts  

  Display 4-10.  The Record Scrapped Parts Dialog Box 
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 The data for the  Scrapped  Dispose module are shown in   Display 4-11  . We have 

defaulted on the check in the box entitled Record Entity Statistics. However, if we had 

wanted to keep entity fl ow statistics only on the parts that were shipped, including the  

salvaged parts, then we could have cleared this box (leaving checks in the remaining two 

Dispose modules). Doing so would have caused only the selected parts to be included 

in the automatic entity-fl ow statistics. Of course, you need to make sure the Entities box 

in  Run . Setup . Project Parameters  is checked in order to get any of these results.  

 The two other Dispose modules,  Salvaged  and  Shipped , are fi lled out in a sim-

ilar way. 

 You’re nearly ready to run the model. Although it has taken you some time to get 

this far, once you get accustomed to working with Arena, you’ll fi nd that you could have 

accomplished these steps in only a few minutes. 

 The model could actually run at this point, but once started, it would continue to 

run forever because Arena doesn’t know when to stop the simulation. You establish the 

run parameters for the model by selecting  Run . Setup . The Run Setup dialog box has 

six tabbed pages that can be used to control the simulation run. The data for the fi rst 

tab, Project Parameters, are shown in   Display 4-12  . We’ve entered the project title and 

analyst name so they will appear on the output reports, and also a brief synopsis under 

Project Description for documentation purposes. In the statistics collection area, we 

have  cleared  the Entities selection as we don’t need those data for our analysis (so we 

won’t get statistics on time in system sorted out by entity type). You might try running 

the simulation with this box checked to see the difference in the output reports.  

 Name   Scrapped  

  Display 4-11.  The Scrapped Dispose Dialog Box 
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 You also need to specify the run length, which is done under the Replication Param-

eters tab. We’ve set the Replication Length to  32  hours (four consecutive 8-hour shifts), 

the Base Time Units to  Minutes , and defaulted the remaining fi elds. The completed 

dialog box is shown in   Display 4-13  . We’ve also accepted the defaults for the remaining 

four tabs in  Run . Setup : Array Sizes, Run Speed, Run Control, and Reports. You might 

want to look at these tabs to get an idea of the options available.  

 Before we run our newly created model, let’s give it one fi nal tweak. Since we have 

two different part types, it might be nice if we could distinguish between them in the 

animation. Click on the Entity data module found in the Basic Process panel and note 

that the initial picture for both parts is  Picture.Report . When we run our model, all 

of our parts will use this same icon for displaying entities on the animation. 

 Now click on the Initial Picture cell for Part A, and use the list to select a different 

picture. We’ve chosen the blue ball for Part A and the red ball for Part B, as shown 

 Project Title   Electronic Assembly and Test  

 Analyst Name   Mr. Munchkin  

 Project Description   The first version of the electronic 
assembly and test model, as 
described in Section 4.1.  

 Statistics Collection 

Entities   clear  

  Display 4-12.  The Run Setup Project Parameters 
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in   Display 4-14  . This will allow us to distinguish easily between the two parts in the 

animation. If you’re interested in seeing what these icons look like, you can select 

 Edit . Entity Pictures  from the menu bar at the top of your screen to open the Entity 

Picture Placement window, which will allow you to see the icons currently available 

down the left column. We’ll show you later how to use this feature in more detail.  

 Your fi nal model should look something like   Figure 4-3  .   

 Replication Length   32  
 Base Time Units   Minutes  

  Display 4-13.  The Run Setup Replication Parameters 

 Initial Picture (Part A)   Picture.Blue Ball  
 Initial Picture (Part B)   Picture.Red Ball  

  Display 4-14.  The Entity Data Module 
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     4.1.3 Running the Model 

 Before running your model, you might want to check it for errors. You can do this by 

clicking the  Check  button (  ) on the Run Interaction toolbar, the  Run . Check Model  
command, or the  F4  key on the keyboard. With a little luck, the response will be a small 

window with the message “No errors or warnings in model.” If you have no luck at all, 

an error window will open with a message describing the error. If this occurs, you might 

want to select the  Find  option, if the button is enabled. This feature attempts to point 

you to where Arena thinks the error might be. We suggest that you intentionally insert 

an error into your model and try these features. As you build more complex models, you 

might just fi nd yourself using these features quite often. 

 If your model check results in no errors, you’re now ready to run the simulation. 

There are four ways to run a simulation, but we’ll only talk about three of them here. 

The fi rst way is to run the simulation with the animation. Use the  Go  button (  ) on the 

Standard toolbar, the  Run  .  Go  command, or the  F5  key. If you’ve not yet checked your 

model or if you’ve made a change since the last check, Arena will fi rst check the model, 

then initialize the model with your data, and fi nally run it. You’ll notice during the run 

that Arena hides some of the graphics so that your focus is on the animation. Don’t 

worry, though. They’ll return when you end the run (or you can check to see that they’re 

still there by using the  View . Layers  command). 

  Figure 4-3.  The Final Model 4-1   
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 If you leave the status bar active (at the bottom of the screen), you can tell what 

Arena is doing. Toward the right of this bar are three pieces of information: the replica-

tion number, the current simulation time, and the simulation status. 

 After the simulation starts to run, you may want to speed up or slow down the ani-

mation. You can do this while the model is running with the slider bar on the right end 

of the Standard toolbar, or by pressing the “,” key to slow it down or the “.” key to 

speed it up. If you do either, the current Animation Speed Factor is displayed at the far 

left of the status bar. You can also increase or decrease the Animation Speed Factor from 

the Run Speed tab of the Run Setup dialog box. This option can also be used to enter an 

exact speed factor. 

 During the simulation run, you can also pause the simulation using the  Pause  button 

(  ) on the Standard toolbar,  Run . Pause , or the  Esc  key. This temporarily suspends the 

simulation, and the message “User interrupted” will appear on the status bar. 

 While you’re in Pause mode, you might want to double-click on one of the entities 

that is visible in the animation. An Entity Summary dialog box lists the values of each 

of the entity’s attributes. This can be a very useful feature when trying to debug a model. 

You can also use the  Step  button (  ) on the Run toolbar to move entities through the 

system one step at a time. You can continue the simulation run “normally” at any time 

with the  Go  button. 

 This method of running a simulation provides the greatest amount of information, 

but it can take a long time to fi nish. In this case, the time required to complete the run 

depends on the Animation Speed Factor. You can skip ahead in time by selecting the 

 Fast-Forward  button (  ) on the Run toolbar, or  Run  .  Fast-Forward . This will cause 

the simulation to run at a much faster speed by not updating the animation graphics. At 

any time during the Fast-Forwarding run, you can select the  Go  button again and return 

to the animation mode. During an animation-mode run, you can Zoom In ( 1 ), Zoom 

Out ( − ), or move about in the simulation window (arrow keys or scroll bars). 

 Using Fast-Forward will run the simulation in much less time, but if you’re only 

interested in the numerical simulation results, you might want to disable the animation 

(computation and graphics update) altogether. You do this with the  Run . Run Control . 
Batch Run (No Animation)  option. 

 The  Run  .  Run Control  option also allows you to confi gure a number of other 

runtime options. For now, select the  Batch Run (No Animation)  option. Note that if you 

revisit this option, there is a check to the left. Accept this option and click the  Run  but-

ton. Note how much faster the simulation runs. The only disadvantage is that you must 

terminate the run and reset the animation settings to get the animation back. If you have 

large models or long runs and you’re interested only in the numerical results, this is the 

option to choose since it is even faster than Fast-Forward. 

 While you’re building a model, you should probably have most of the toolbars visi-

ble and accessible. However, when you’re running a model, many of the toolbars simply 

consume space because they are not active during runtime. Arena recognizes this and 

will save your toolbar settings for each mode. To take advantage of this, pause during the 

run and remove the toolbars that you want to inactivate while the simulation is running. 

When you end the run, these toolbars will reappear. You could also go to  Run  .  Setup  .
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 Run Control  before the run, and check the box for Run in Full-Screen Mode (since the 

 End  button will be gone at the end, you need to use the menu option  Run  .  End  instead). 

     4.1.4 Viewing the Results 

 If you selected the  Run . Go  menu option (or the  Go  button,   ), you might have noticed 

that, in addition to the blue and red balls (our Part A and B entities) moving through the 

system, there are several animated counters being incremented during the simulation 

run. There is a single counter for each Create, Process, and Dispose module and two 

counters for each Decide module. The counters for the Create, Dispose, and Decide 

modules are incremented each time an entity exits the module. In the case of the Pro-

cess modules, the counter is the number of entities that are currently at that module, 

including any entities in the queue waiting for the resource plus any entities currently in 

process. If you selected the  Run . Fast-Forward  menu option (or the  Fast-Forward  but-

ton,   ), these counters (and the entities in the queues) will be updated at the end of the 

run and whenever you pause or change views of the model. The fi nal numbers resulting 

from our simulation are shown in   Figure 4-4  .   

 If you run the model to completion, Arena will ask if you want to see the results. 

If you select  Yes , you should get a window showing the Category Overview Report 

(the default report). When the fi rst page of the report appears, you might fi nd it strange 

that the message “No Summary Statistics Are Available” is displayed. The system sum-

mary statistics are entity and costing statistics, which we elected not to collect when we 

 cleared  the Entities selection on the Project Parameters tab of the Run Setup dialog box 

(see   Display 4-12  ). At some point, you might want to change these selections and view 

the difference in the reports. 

  Figure 4-4.  The Animated Results for Model 4-1   
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 Recall that you can navigate through the report using the tree listing under the 

 Preview tab at the left side of the report window or by using the arrow buttons in the 

 upper-left corner of the report window. This report will provide statistics by the categories 

selected in the Run Setup dialog box (Project Parameters tab, Statistics Collection area). 

For our model, you will fi nd sections on Process, Queue, Resource, and User Specifi ed. 

The User Specifi ed section is there because we included Record modules in our model 

to collect statistics on the cycle times sorted by departure type. 

 As in Chapter 3, you will fi nd three types of statistics in our report:  tally ,  time- 
persistent , and  counter . A fourth statistic ( outputs ) is available when multiple replications 

are made (we’ll talk about them in Chapter 6, when we do multiple replications). The 

tally statistics here include several process times, queue times, and the interval times 

collected by our Record modules. The time-persistent statistics include number waiting 

in queue, resource usage, and resource utilization. Counters include accumulated time, 

number in, number out, and total number seized. 

 The tally and time-persistent statistics provide the average, 95% confi dence-interval 

half width, and the minimum and maximum observed values. With the exception of the 

half-width column, these entries are as described in Chapters 2 and 3, and should be 

self-explanatory. 

 At the end of a single-replication simulation run, Arena attempts to calculate a 95% 

confi dence-interval half width for the steady-state (long-run) expected value of each 

observed statistic, using a method called  batch means  (see Section 7.2.3). Arena fi rst 

checks to see if suffi cient data have been collected to test the critical statistical assump-

tion (uncorrelated batches) required for the batch-means method. If not, the annotation 

“Insuffi cient” appears in the report and no confi dence-interval half width is produced, 

as can be seen for several of the results. If there are enough data to test for uncorrelated 

batches, but the test is failed, the annotation “Correlated” appears and once again there’s 

no half width, which is the case for several of the results. If there was enough data to 

perform the test for uncorrelated batches  and  the test were passed, the half width (the 

“plus-or-minus” amount) of a 95% confi dence interval on the long-run (steady-state) 

expected value of the statistic would be given (this happens for a few of the results in 

this run). In this way, Arena refuses to report unreliable half-width values even though it 

could do so from a purely computational viewpoint. The details and importance of these 

tests are further discussed in Section 7.2.3. 

 Trying to draw conclusions from this single short run could be misleading because 

we haven’t yet addressed issues like run length, number of replications, or even whether 

long-run steady-state results are appropriate (but we will, in Section 7.2). However, if 

you look at the results for the waiting time in queue and number waiting in queue (  Fig-

ure 4-5  ), you see that the rework station is plagued by waiting times and queue lengths 

that are much longer than for the other stations (you can corroborate this imbalance in 

congestion by looking at the Process and Resources sections of the Category Overview 

report as well). This implies either that the rework area doesn’t have enough capacity to 

handle its work, or there is a great deal of variability at this station. We’ll address this 

issue in a minute in Section 4.2. (By the way, note that in some places in the Category 

Overview Report, you get a color-coded graphic for some of the results.)   
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       4.2 Model 4-2: The Enhanced Electronic Assembly and Test System 

  Having constructed and run our model, the next activity would be to verify that the 

“code” (Arena fi le) is free of bugs  2     and also to validate that the conceptual model re-

ally represents the system being studied (see Sections 2.8 and 13.6). For this example, 

that’s fairly easy. We can examine the logic constructs we selected from the modules we 

used and compare them to the problem defi nition. With much larger and more complex 

systems, this can become a challenging task. An animation is often useful during the 

verifi cation and validation phases because it allows you to view the entire system being 

modeled as it operates. If you ran the model we developed and viewed its animation, you 

should have noted that it appeared to operate quite similarly to the way we described 

the system. If verifi cation can be diffi cult, complete validation (the next activity) can 

sometimes be almost impossible. That’s because validation implies that the simulation 

is behaving just like the real-world system, which may not even exist, so you can’t tell. 

And even if the system does exist, you must have output performance data from it, as 

well as convince yourself and other nonbelievers that your model can really capture and 

predict the events of the real system. We’ll discuss both of these activities in much more 

detail in Chapter 13. 

  For now, let’s assume that as part of this effort you showed the model and its ac-

companying results to the production manager. Her fi rst observation was that you didn’t 

have a complete defi nition of how the system works. Whoever developed the problem 

  Figure 4-5.  The Queue Section of the Category Overview Report: Model 4-1   

  2  Of course, you’re already familiar with this term “bug” in reference to an error in a computer program, 

but do you know the etymology of this entomological neology? We do. The original computer “bug” was a 

luckless moth electrocuted in a relay panel of an early computer used by the venerable Grace Murray Hopper 

(who coined the term) at Vassar College, thus shorting circuits and causing errors; you can see its sad post-

mortem photo at http://vcencyclopedia.vassar.edu/alumni/grace-murray-hopper.html. 
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defi nition looked only at the operation of the fi rst shift. But this system actually operates 

two shifts a day, and on the second shift, there are two operators assigned to the rework 

operation. This would explain our earlier observation when we thought the rework oper-

ation might not have enough capacity. The production manager also noted that she has 

a failure problem at the sealer operation. Periodically, the sealer machine breaks down. 

Engineering looked at the problem some time ago and collected data to determine the 

effect on the sealer operation. They felt that these failures did not merit any signifi cant 

effort to correct the problem because they didn’t feel that the sealer operation was a bot-

tleneck. However, they did log their observations, which are still available. Let’s assume 

that the mean uptime (from the end of one failure to the onset of the next failure) was 

found to be 120 minutes and that the distribution of the uptime is exponential (which, 

by the way, is often used as a realistic model for uptimes if failures occur randomly at a 

uniform rate over time). The time to repair also follows an exponential distribution with 

a mean of 4 minutes.  

 In addition, the production manager indicated that she was considering purchasing 

special racks to store the waiting parts in the rework area. These racks can hold ten as-

semblies each, and she would like to know how many racks to buy. Our next step is to 

modify the model to include these three new aspects, which will allow us to use some 

additional Arena features.  

 To incorporate these changes into our model, we’ll need to introduce several new 

concepts. Changing from a one- to a two-shift operation is fairly easy. In Model 4-1, we 

set our run length to four 8-hour shifts and made no attempt to keep track of the day/

shift during the run. We just assumed that the system conditions at the end of a shift were 

the same at the start of the next shift and ignored the intervening time. Now we need to 

model explicitly the change in shifts, because we have only one operator in the fi rst shift 

and two in the second shift for the rework process.  

 We’ll add this to our model by introducing a Resource Schedule for the rework re-

source, which will automatically change the number of rework resources throughout the 

run by adjusting the resource capacity. While we’re making this change, we’ll also in-

crease the run length so that we simulate more than just 2 days of a two-shift operation. 

We’ll model the sealer failures using a Resource Failure, which allows us to change the 

available capacity of the resource (much like the Resource Schedule), but has additional 

features specifi cally designed for representing equipment failures. Finally, we’ll use the 

Frequencies statistic to obtain the type of information we need to determine the number 

of racks that should be purchased. 

    4.2.1 Expanding Resource Representation: Schedules and States 

 So far we’ve modeled each of our resources (prep area, sealer, and rework) as a single 

resource with a fi xed capacity of 1. You might recall that we defaulted all of this infor-

mation in the Resource data module. To model the additional rework operator, we could 

simply change the capacity of the rework resource to 2, but this would mean that we 

would  always  have two operators available. What we need to do is to schedule one re-

work operator for the fi rst shift (assume each shift is 8 hours) and two rework operators 

for the second shift. Arena has a built-in construct to model this, called a  Schedule , that 
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allows you to vary the capacity of a resource over time according to a fi xed pattern. A re-

source Schedule is defi ned by a sequence of time-dependent resource capacity changes. 

 We also need to capture in our model the periodic random breakdowns (or failures) 

of the sealer machine. This could be modeled using a Schedule, which would defi ne an 

available resource capacity of 1 for the uptimes and a capacity of 0 for the time to repair. 

However, there is a built-in construct designed specifi cally to model failures. First, let’s 

introduce the concept of  Resource States . 

 Arena automatically has four Resource States:  Idle ,  Busy ,  Inactive , and  Failed . For 

statistical reporting, Arena keeps track of the time the resource was in each of the four 

states. The resource is said to be Idle if no entity has seized it. As soon as an entity 

seizes the resource, the state is changed to Busy. The state will be changed to Inactive if 

Arena has made the resource unavailable for allocation; this could be accomplished with 

a Schedule’s changing the capacity to 0. The state will be changed to Failed if Arena 

has placed the resource in the Failed state, which also implies that it’s unavailable for 

allocation. 

 When a failure occurs, Arena causes the entire resource to become unavailable. If 

the capacity is 2, for example, both units of the resource will be placed in the Failed state 

during the repair time. 

     4.2.2 Resource Schedules 

 Before we add our resource schedule for the rework operation, let’s fi rst defi ne our new 

16-hour day. We do this in the Replication Parameters tab of the  Run . Setup  option, 

by changing the Hours Per Day from 24 to  16  (ignore the warning about Calendars that 

you might get here). While we’re in this dialog box, let’s also change our Time Units for 

the Replication Length to  Days  and the Replication Length itself to  10  days. 

 You can start the defi nition of a resource schedule in either the Resource or Sched-

ule data module. We’ll start with the Resource data module. When you click on this 

module from the Basic Process panel, the information on the current resources in the 

model will be displayed in the spreadsheet view of the model window along the bottom 

of your screen. Now click in the Type column for the Rework resource row and select 

 Based on Schedule  from the list. When you select this option, Arena will add 

two new columns to the spreadsheet view—Schedule Name and Schedule Rule. Note 

that the  Capacity cell for the Rework resource has been dimmed because the capacity 

will instead be based on a schedule. In addition, the cells for two new columns are also 

dimmed for the other three resources because they still have a fi xed capacity. Next you 

should enter the schedule name (for example,  Rework Schedule ) in the Schedule 

Name cell for the Rework resource. 

 Finally, you need to select the Schedule Rule, which can affect the specifi c timing of 

when the capacity defi ned by the schedule will actually change. There are three options 

for the Schedule Rule: Wait (the default), Ignore, and Preempt. If a capacity decrease of 

 x  units is scheduled to occur and at least  x  units of the resource are idle, all three options 

immediately cause  x  units of the resource unit(s) to become Inactive. But if fewer than  x  

units of the resource are idle, each Schedule Rule responds differently (the three options 

are illustrated in   Figure 4-6):     
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    ■  The  Ignore  option immediately decreases the resource capacity, ignoring the fact 

that the resource is currently allocated to an entity, but “work” on the in-service 

entities continues unabated. When units of the resource are released by the entity, 

these units are placed in the Inactive state. However, if the resource capacity is 

increased again (that is, the scheduled time at the lower capacity expires) before 

the entities release the units of the resource, it’s as if the schedule change never 

occurred. The net effect is that the time for which the resource capacity is sched-

uled to be reduced may be shortened with this option.  
   ■  The  Wait  option, as its name implies, will wait until the in-process entities re-

lease their units of the resource before starting the actual capacity decrease. Thus 

the reduced capacity time will always be of the specifi ed duration, but the time 

between these reductions may increase.  
   ■  The  Preempt  option attempts to preempt the last unit of the resource seized by 

taking it away from the controlling entity. If the preempt is successful and a 

single unit of capacity is enough, then the capacity reduction starts immediately. 

The preempted entity is held internally by Arena until the resource becomes 

available, at which time the entity will be reallocated the resource and continue 

with its remaining processing time. This provides an accurate way to model 

schedules and failures because, in many cases, the processing of a part is sus-

pended at the end of a shift or when the resource fails. If the preempt is unsuc-

cessful or if more than one unit is needed, then the Ignore rule will be used for 

any remaining capacity.  

  So when should you use each of the rules? Generally, we recommend that you ex-

amine closely the actual process and select the option that best describes what actually 

occurs at the time of a downward schedule change or resource failure. If the resource 

  Figure 4-6.  The Preempt, Wait, and Ignore Schedule Rules   
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under consideration is the bottleneck for the system, your choice could signifi cantly 

affect the results obtained. But sometimes it isn’t clear what to do, and, while there are 

no strict guidelines, a few rules of thumb may be of help. First, if the duration of the 

scheduled decrease in capacity is very large compared to the processing time, the Ignore 

option may be an adequate representation. If the time between capacity decreases is 

large compared to the duration of the decrease, the Wait option could be considered. For 

this model, we’ve selected the  Ignore  option because, in most cases, an operator will 

fi nish his task before leaving and that additional work time is seldom considered. 

 The fi nal spreadsheet view is shown in   Display 4-15  . There is also a dialog form for 

entering these data, which can be opened by right-clicking on the Rework cell in the 

Name column and selecting  Edit via Dialog .  

 Now that you’ve named the schedule and indicated the schedule rule, you must 

defi ne the actual schedule the resource should follow. One way to do this is by clicking 

on the Schedule data module and entering the schedule information in the spreadsheet 

view. A row has already been added that contains our newly defi ned Rework Schedule. 

Clicking in the Durations column will open the Graphical Schedule Editor, a graphical 

interface for entering the schedule data. The horizontal axis is the calendar or simulation 

time. (Note that a day is defi ned as 16 hours based on our day defi nition in the Run Setup 

dialog box.) The vertical axis is the capacity of the resource. You enter data by clicking 

on the  x-y  location that represents day 1, hour 1, and a capacity value of 1. This will 

cause a solid blue bar to appear that represents the desired capacity during this hour; 

in this case, 1. You can complete the data entry by repeatedly clicking or by clicking, 

holding, and then dragging the bar over the fi rst 8 hours. Complete the data schedule 

by entering a capacity of 2 for hours 9 through 16. It’s not necessary to add the data for 

Day 2, as the data entered for Day 1 will be repeated automatically for the rest of the 

simulation run. The complete schedule is shown in   Figure 4-7  . You might note that we 

used the  Options  button to reduce our maximum vertical axis (capacity) value from ten 

to four; other things can be changed in the Options dialog box, like how long a time slot 

lasts, the number of time slots, and whether the schedule repeats from the beginning or 

remains forevermore at a fi xed-capacity level.   

 Rework Resource   

 Type   Based on Schedule  
 Schedule Name   Rework Schedule  
 Schedule Rule   Ignore  

  Display 4-15.  The Resource Data Module: Selecting a Resource Schedule 
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 You can also enter these data by hand by right-clicking in the Durations column in 

the Schedule module spreadsheet view and selecting  Edit via Dialog . If you select this 

option, fi rst enter the schedule name, then click the  Add  button to open the Durations 

window. Here you defi ne the (Capacity, Duration) pairs that will make up the sched-

ule. In this case, our two pairs are  1 ,  8  and  2 ,  8  (  Display 4-16  ). This implies that the 

capacity will be set to 1 for the fi rst 480 minutes, then 2 for the next 480 minutes. This 

schedule will then repeat for the duration of the simulation run. You may have as many 

(Capacity, Duration) pairs as are required to model your system accurately. For exam-

ple, you might want to include operator breaks and the lunch period in your schedule. 

There is one caution, or feature,  3     of which you should be aware. If, for any pair, no entry 

is made for the Duration, it will default to infi nity. This will cause the resource to have 

that capacity for the entire remaining duration of the simulation run. As long as there are 

positive entries for all durations, the schedule will repeat for the entire simulation run.  

  If you use the Graphical Schedule Editor to create the schedule and then open the 

dialog box, you will fi nd that the data have been entered automatically. Note that you 

cannot use the Graphical Schedule Editor if you have any time durations that are not 

integer, or if any entries require an Expression (for example, a time duration that’s a 

draw from a random variable). 

  Figure 4-7.  The Graphical Schedule Editor: The Rework Schedule   

  3  This is called a feature if you do it intentionally and an error if you do it accidentally. 
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     4.2.3 Resource Failures 

 Schedules are intended to model the planned variation in the availability of resources 

due to shift changes, breaks, vacations, meetings, etc. Failures are primarily intended to 

model random events that cause the resource to become unavailable. You can start your 

failure defi nition in either the Resource or the Failure data module. The Failure data 

module can be found in the Advanced Process panel (which you might need to attach at 

this point via the    button or  File . Template Panel . Attach  if it’s not already acces-

sible in the Project Bar). Since we started with the Resource module in developing our 

schedule, let’s start with the Failure data module for our Sealer failure. 

 If you need to make the Advanced Process panel visible in the Project Bar, click 

on its name, and then click on the Failure data module. The spreadsheet view for this 

module will show no current entries. Double-click where indicated to add a new row. 

Next select the default name in the Name column and replace it with a meaningful fail-

ure name, like  Sealer Failure . Then select whether the failure is Count-based or 

Time-based using the list in the Type cell. A Count-based failure causes the resource to 

fail after the specifi ed number of entities have used the resource. This count may be a 

fi xed number or may be generated from any expression. Count-based activities are fairly 

 Name   Rework Schedule  

 Durations   
 Value   1  
 Duration   8  
 Value   2  
 Duration   8  

  Display 4-16.  The Schedule Data Module Dialog Box 
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common in industrial models. For example, tool replacement, cleaning, and machine 

adjustment are typically based on the number of parts that have been processed rather 

than on elapsed time. Although these may not normally be viewed as “failures,” they do 

occur on a periodic basis and prevent the resource from producing parts. On the other 

hand, we frequently model failures as Time-based because that’s the way we’ve col-

lected the failure data. In our model, the problem calls for a Time-based failure. So click 

on the Type cell and select the  Time  option. When you do this, the column further to the 

right in the spreadsheet will change to refl ect the different data requirements between 

the two options. Our Up Time and Down Time entries are exponential distributions with 

means of 120 minutes and 4 minutes, respectively. We also need to change the Up Time 

Units and Down Time Units from  Hours  to  Minutes . 

 The last fi eld, Uptime in this State only, allows us to defi ne the state of the resource 

that should be considered as “counting” for the uptimes. If this fi eld is defaulted, then all 

states are considered. Use of this feature is dependent on how your data were collected 

and the calendar timing of your model. Most failure data are simply logged data; for 

example, only the time of the failure is logged. If this is the case, then holidays, lunch 

breaks, and idle time are included in the time between failures, and you should default 

this fi eld. Only if your time between failures can be linked directly to a specifi c state 

should this option be chosen. Many times equipment vendors will supply failure data 

based on actual operating hours; in this case, you would want to select this option and 

specify the Busy state. Note that if you select this option you must also defi ne the Busy 

state using the StateSet data module found in the Advanced Process panel. The fi nal 

spreadsheet view for our Sealer Failure is shown in   Display 4-17  .  

 Having completed the defi nition of our Sealer Failure, we now need to attach it to the 

Sealer resource. Open the Resource data module (back in the Basic Process panel) and 

click in the Failures column for the Sealer resource row. This will open another window 

with the Failures spreadsheet view. Double-click to add a new row and, in the Failure 

Name cell, select  Sealer Failure  from the list. We must also select the Failure 

Rule—Ignore, Wait, or Preempt. These options are the same as for schedules, and you 

respond in an identical manner. Returning to our rules of thumb for choosing the Failure 

Rule option, because our expected uptime (120 minutes) is large compared to our failure 

 Name   Sealer Failure  

 Type   Time  
 Up Time   EXPO(120)  
 Up Time Units   Minutes  
 Down Time   EXPO(4)  
 Down Time Units   Minutes  

  Display 4-17.  The Sealer Failure Spreadsheet View 
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duration (4 minutes), we’ll use the Wait option. The fi nal spreadsheet view is shown in 

  Display 4-18  . If you have multiple resources with the same failure profi le, they can all 

reference the same Failure Name. Although they will all use the same failure profi le, 

they will each get their own independent random samples during the simulation run.  

     4.2.4 Frequencies 

 Frequencies are used to record the time-persistent occurrence frequency of an Arena 

variable, expression, or resource state. We can use the  Frequencies  statistic type to ob-

tain the information we need to determine the number of racks required at the Rework 

area. We’re interested in the status of the rework queue—specifi cally, how many racks 

of 10 should we buy to ensure that we have suffi cient storage almost all of the time. In 

this case, we’re interested in the amount of time the number in queue was 0 (no racks 

needed), greater than 0 but no more than 10 (one rack needed), greater than 10 but no 

more than 20 (two racks needed), etc. 

 Frequency statistics are entered using the Statistic data module, which can be found 

in the Advanced Process panel. Clicking on this data module will open the spreadsheet 

view, which is initially empty; double-click to add a new row. We’ll fi rst enter the name 

as  Rework Queue Stats . Next, select  Frequency  in the Type list and default 

on the  Value  entry for the Frequency Type. You might note that when we selected the 

Type, the Report Label cell was automatically given the same name as the Name cell, 

 Rework Queue Stats , which we’ll accept to label this output in the reports. 

 We now need to develop an Expression that represents the number in the rework 

queue. To request this information, we need to know the Arena variable name for the 

number in queue, NQ. We can get the name of the queue,  Rework Process.Queue , 

from the Queue data module found in the Basic Process panel. Thus, the Expression we 

want to enter is  NQ(Rework Process.Queue) . At this point, you should be asking, 

“Did you expect me to know all that?” To an experienced (and thus old) SIMAN user, 

this is obvious. However, it is clearly  not  obvious to the new user. Fortunately, Arena 

provides an easy way to develop these types of expressions without the need to know 

all the secret words (for example, NQ). Place your pointer in the blank Expression cell, 

right-click, and select Build Expression. This will open the Arena Expression Builder 

window shown in   Display 4-19  . Under the Expression Type category Basic Process 

Variables, you’ll fi nd the sub-category Queue. Click on the 1 sign to expand the options 

and then select Current Number In Queue. When you do this, two things will happen: 

 Sealer Resource Failure   

 Failure Name   Sealer Failure  
 Failure Rule   Wait  

  Display 4-18.  The Sealer Resource Data Module: Failures Spreadsheet View 
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the Queue Name fi eld will appear at the right and the Current Expression at the bottom 

will be fi lled in using the queue name shown. In our case, the Current Expression was 

 NQ(Prep A Process.Queue) , which is not yet what we want (it’s the wrong queue). 

Now use the drop-down list arrow for Queue Name to view and select the  Rework 
Process.Queue . Now when you click  OK , that expression will automatically be en-

tered into the fi eld from which the Expression Builder was opened.   

 You can right-click on just about any fi eld in which an expression can be entered to 

open the Expression Builder. For example, we could have used the Expression Builder 

to fi nd the expression for the current simulation time ( TNOW ). You can also build com-

plex expressions by using the function buttons in the Expression Builder, as well as 

typing things (the old-fashioned way, assuming that you know what to type) into the 

Current Expression fi eld at the bottom. 

 The spreadsheet view to this point (we’re not done yet) is shown in   Display 4-20  .  

 The last step in setting up the rework queue statistics is to build the categories that 

defi ne how we want the values displayed, done in the Categories column at the far right 

  Display 4-19.  The Expression Builder Dialog Box   

 Name   Rework Queue Stats  

 Type   Frequency  
 Frequency Type   Value  
 Expression   NQ(Rework Process.Queue)  

  Display 4-20.  Partial Frequency Entry in the Statistic Data Module 
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(click the “0 Rows” button to open a spreadsheet to which you add a row for each cate-

gory).   Display 4-21   shows the entries for the fi rst three categories. The fi rst entry is for a 

queue size of a Constant 0 (in which case, we’d need 0 racks); the following entries are 

for one rack, two racks, etc. For now, we’ll only request this information for up to four 

racks. If the queue ever exceeds 40 parts, Arena will create an out-of-range category on 

the output report. In the case of a Range, note that Value is not included in the range, but 

High Value is. Thus, for instance, Value 5 10 and High Value 5 20 defi nes a range of 

numbers (10, 20]; that is, (strictly) greater than 10 and less than or equal to 20.  

 Before leaving the Statistic data module, we might also want to request additional 

information on the Sealer resource. If we run our current model, information on the uti-

lization of the Sealer resource will be included in our reports as before. However, it will 

not specifi cally report the amount of time the resource is in a failed state. We can request 

this statistic by adding a new row in our Statistic data module as shown in   Display 4-22  . 

For this statistic, we enter the Name and Type,  Sealer States  and  Frequency , 

and select  State  for the Frequency Type. Finally, we select the  Sealer  resource from 

the list in the Resource Name cell. This will give us statistics based on all the states of 

the Sealer resource—Busy, Idle, and Failed.  

 Before you run this model, we recommend that you check the  Run  .  Run Control . 
Batch Run (No Animation)  option, which will greatly reduce the amount of time required 

to run the model. Although slower, an alternative is to select  Run . Fast-Forward  (  ). 

This would also be a good time to save your work. Note that you can still pause the run 

at any time to determine how far you’ve progressed. 

 Constant or Range   Constant  

 Value   0  
 Category Name   0 Racks  

 Constant or Range   Range  
 Value   0  
 High Value   10  
 Category Name   1 Rack  

 Constant or Range   Range  
 Value   10  
 High Value   20  
 Category Name   2 Racks  

  Display 4-21.  Categories for Rework Queue Stats Frequency Statistic 
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     4.2.5 Results of Model 4-2 

   Table 4-1   gives selected results from the Reports for this model (rightmost column), as 

well as for Model 4-1 for comparison. We rounded everything to two decimals except 

for the two kinds of utilization results, which we give to four decimals (to make a par-

ticular point about them).    

 Name   Sealer States  

 Type   Frequency  
 Frequency Type   State  
 Resource Name   Sealer  

  Display 4-22.  The Statistic Data Module for the Sealer States 

  Table 4-1.   Selected Results from Model 4-1 and Model 4-2  

 Result  Model 4-1  Model 4-2 

 Average Waiting Time in Queue     

 Prep A  14.62  19.20 

 Prep B  26.90  51.42 

 Sealer  2.52  7.83 

 Rework  456.35  116.25 

 Average Number Waiting in Queue     

 Prep A  3.17  3.89 

 Prep B  3.50  6.89 

 Sealer  0.86  2.63 

 Rework  12.95  3.63 

 Average Time in System     

 Shipped Parts  28.76  47.36 

 Salvaged Parts  503.85  203.83 

 Scrapped Parts  737.19  211.96 

 Instantaneous Utilization of Resource     

 Prep A  0.9038  0.8869 

 Prep B  0.7575  0.8011 

 Sealer  0.8595  0.8425 

 Rework  0.9495  0.8641 

 Scheduled Utilization of Resource     

 Prep A  0.9038  0.8869 

 Prep B  0.7575  0.8011 

 Sealer  0.8595  0.8425 

 Rework  0.9495  0.8567 
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 The results from this model differ from those produced by Model 4-1 for several 

reasons. We’re now running the simulation for ten 16-hour days (so 160 hours) rather 

than the 32 hours we ran Model 4-1. And, of course, we have different modeling as-

sumptions about the Sealer and Rework Resources. Finally, all of these facts combine 

to cause the underlying random-number stream to be used differently (more about this 

in Chapter 12). 

 Going from Model 4-1 to Model 4-2 didn’t involve any changes in the Prep A or 

Prep B parts of the model, so the differences we see there are due just to the differences 

in run length or random bounce. The difference for the Prep B queue results are pretty 

noticeable, so either this area becomes more congested as time goes by, or else the 

results are subject to a lot of uncertainty—we don’t know which (all the more reason to 

do statistical analysis of the output, which we’re not doing here). 

 For the Sealer, the queue statistics (both average waiting time and average length) 

display considerably more congestion for Model 4-2. This makes sense, since we added 

the Failures to the Sealer in this model, taking it out of action now and then, during 

which time the queue builds up. The utilization statistics for the Sealer are not much 

different across the two models, though, since when it’s in the Failed state the Sealer is 

not available, so these periods don’t count “against” the Sealer’s utilizations. 

 Unlike the Sealer, the Rework operation seems to be going much more smoothly in 

Model 4-2. Of course, the reason for this is that we added a second unit of the Rework 

resource during the second 8-hour shift of each 16-hour day. This increases the capacity 

of the Rework operation by 50% over time, so that it now has a time-average capacity of 

1.5 rather than 1. And accordingly, the utilization statistics of the Rework operation seem 

to have decreased substantially (more on these different kinds of utilizations below). 

 Looking at the average time in system of the three kinds of exiting parts, it seems 

clear that the changes at the Sealer and Rework operations are having their effect. All 

parts have to endure the now-slower Sealer operation, accounting for the increase in the 

average time in system of shipped parts. Salvaged and scrapped parts, however, enjoy 

a much faster trip through the Rework operation (maybe making them feel better after 

failing inspection), with the net effect being that their average time in system seems to 

decrease quite a lot. 

 Now we need to discuss a rather fi ne point about utilizations. For each Resource, 

Arena reports two utilization statistics, called  Instantaneous Utilization  and  Scheduled 
Utilization . 

    ■   Instantaneous Utilization  is calculated by computing the utilization at a par-

ticular instant in time (that is, [number of Resource units busy] / [number of 

Resource units scheduled] at that point in time), and then calculating a time-

weighted average of this over the whole run to produce the value shown in the 

reports. If there are no units of the Resource scheduled at a particular instant in 

time, the above ratio is simply defi ned to be zero, and it is counted as a zero in 

the time-weighted average reported. This can be a useful statistic for tracking 

utilization over time (for example, a utilization plot). However, it should be used 

with caution as it can provide confusing results under certain conditions (more 

on this shortly). If you like math (and even if you don’t), we can express all this 

kel01315_ch04_121-206.indd   150kel01315_ch04_121-206.indd   150 05/12/13   3:29 PM05/12/13   3:29 PM



Modeling Basic Operations and Inputs      151

as follows. Let  B ( t ) be the number of units of the Resource that are busy at time 

 t , and let  M ( t ) be the number of units of that Resource that are scheduled (busy 

or not) at time  t.  Let  U ( t ) 5  B ( t )/ M ( t ) whenever  M ( t ) . 0, and simply defi ne  U ( t ) 
to be 0 if  M ( t ) 5 0. If the run is from time 0 to time  T , then the reported Instan-

taneous Utilization is 

      ∫
T

0 
U(t)dtyT   

    which is just the time average of the  U ( t ) function as defi ned. It’s important 

to note that in reporting this, Arena accounts for time periods when there’s no 

 capacity scheduled as time periods with a utilization of zero.  

   ■   Scheduled Utilization  is the time-average number of units of the Resource that 

are busy (taken over the whole run), divided by the time-average number of units 

of the Resource that are scheduled (over the whole run). In the preceding nota-

tion, the reported Scheduled Utilization is 

            =   

    There’s no problem with dividing by zero here as long as the Resource was ever 

scheduled at all to have units available (the only situation that makes sense if the 

Resource is even present in the model).  

  Under different conditions, each of these reported utilizations can provide useful 

information. If the capacity of a Resource stays constant over the entire simulation run 

(the Resource is never in an Inactive or Failed state), the two reported utilizations will be 

the same (you’re asked to prove this in Exercise 4-19, and you can verify from   Table 4-1   

that this is so in Model 4-2 for the Resources that have fi xed capacity). If a Schedule is 

attached to the Resource and the scheduled capacities are either zero or a single positive 

constant (for example, 1), the reported Instantaneous Utilization tells you how busy the 

Resource was over the entire run (counting zero-capacity periods as zero-utilization 

periods); a plot of  U ( t ) as defi ned would tell you how closely your Schedule tracks 

what’s being asked of the Resource, so it could be useful to investigate staffi ng plans. 

The reported Scheduled Utilization tells you how busy the Resource was over the time 

that it was available at all (in other words, capacity was non-zero). 

 For example, consider the case where a Resource is scheduled to be available 2/3 of 

the time with a capacity of 1, and unavailable the other 1/3 of the time (capacity of 0). 

Suppose further that during the time the Resource was available, it was busy half the 

time. For this example, the reported Instantaneous Utilization would be 0.3333 and the 

reported Scheduled Utilization would be 0.5000. This tells you that over the entire run 

the Resource was utilized 1/3 of the time, but during the time that it was scheduled to be 

available, it was utilized 1/2 the time. In this case, the reported Instantaneous Utilization 

is less than or equal to the reported Scheduled Utilization. 

∫
T

0  
B(t)dtyT

∫
T

0  
M(t)dtyT

∫
T

0  
B(t)dt

∫
T

0  
M(t)dt
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 We need to modify the preceding with an even fi ner point. If you select a Schedule 

Rule other than Wait, it is possible to get a reported Scheduled Utilization greater than 

1. For example, if you select the Ignore option and the Resource is allocated when it 

is scheduled to become unavailable (capacity of 0), the Resource capacity is decreased 

to zero, but the Resource stays allocated until it is released. Say you have a 10-hour 

run time and the Resource is scheduled to be available for only the fi rst 5 hours. Let’s 

assume that the Resource was allocated at time 0 to an activity with duration of 6 hours. 

At time 5, the capacity of the Resource would be reduced to 0, but the Resource would 

remain allocated until time 6. The reported Instantaneous Utilization would be 0.6 (it 

was utilized 6 of the 10 hours), while the reported Scheduled Utilization would be 1.2 

(it was utilized 6 hours, but only scheduled to be available 5 hours). 

 A further (and, we promise, fi nal) complication arises when a Schedule is attached 

to the Resource and the scheduled capacities vary among different positive values over 

time (for example, 1, 7, 4) rather than varying only between 0 and a single positive 

constant. If you have this situation, we strongly recommend that you not use Instanta-

neous Utilization even though it will still be reported. Depending on the capacities, the 

time durations, and the usage, this utilization can be less than, equal to, or greater than 

the Scheduled Utilization (you’re asked to demonstrate this in Exercise 4-20). In this 

case, we suggest that you instead take advantage of the Frequencies statistic, which will 

give you detailed and precise information on how the Resource was utilized; see the 

Help topic “Resource Statistics: Instantaneous Utilization vs. Scheduled Utilization” for 

more on this. So, for example, in Model 4-2 for the Rework Resource, we’d suggest that 

you use the Scheduled Utilization of 0.8567 in   Table 4-1   rather than the Instantaneous 

Utilization of 0.8641. 

 The new frequency statistics are not part of the normal Category Overview report. 

You must click on the Frequencies report in the Reports panel of the Project Bar. The 

results are given in   Figure 4-8  .   

 The fi rst section shows the statistics we requested to determine the number of racks 

required at the rework process. In this particular run, there were never more than 20 in 

the rework queue (that is, there are no data listed for three or four racks), and there were 

  Figure 4-8.  The Arena Frequencies Report: Model 4-2   
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more than 10 only 5.35% of the time. This might imply that you could get by with only 

one rack, or at most, two. The Sealer States statistics give the percentage of times the 

Sealer spent in the Busy, Failed, and Idle states. 

 One last note is worth mentioning about frequency statistics. For our results, the last 

two columns, Standard and Restricted Percent, have the same values. It is possible to 

exclude selective data resulting in differences between these columns. For example, if 

you exclude the Failed state for the sealer Frequency, the Standard Percent would re-

main the same, but the Restricted Percent column would have values only for Busy and 

Idle, which would sum to 100%. 

       4.3 Model 4-3: Enhancing the Animation 

  So far in this chapter we’ve simply accepted the default animation provided with the 

modules we used. Although this base animation is often suffi cient for determining 

whether your model is working correctly, you might want the animation to look more 

like the real system before allowing decision makers to view the model. Making the 

animation more realistic is really very easy and seldom requires a lot of time. To a large 

extent, the amount of time you decide to invest depends on the level of detail you decide 

to add and the nature of the audience for your efforts. A general observation is that, for 

presentation purposes, the higher you go in an organization, the more time you should 

probably spend on the animation. You will also fi nd that making the animation beautiful 

can be a lot of fun and can even become an obsession. So with that thought in mind, let’s 

explore some of what can be done. 

 We’ll modify Model 4-2 into what we’ll call Model 4-3, and we’ll start by looking 

at the existing animation. The current animation has three components: entities, queues, 

and variables. The entities we selected using the Entity data module can be seen when 

they travel from one module to another or when they’re waiting in a queue. For each 

Process module we placed, Arena automatically added an animation queue, which dis-

plays waiting entities during the run. Variables were also placed automatically by Arena 

to represent the number of entities resident in or that have exited a module. 

 As suggested by how they came to exist in the model—added when you placed the 

module—the animation constructs are “attached” to the module in two respects. First, 

their names, or  Identifi ers , come from values in the module dialog box; you can’t change 

them directly in the animation construct’s dialog box. Second, if you move the module, the 

animation objects that were automatically supplied move with it; however, if you want the 

animation to stay where it is, just hold the  Shift  key when you move the module. On the 

second point, if for some reason you replace the animation objects (for example, queues, 

counters) that automatically came with the module, they do not move with the module. 

 Sometimes it’s helpful to “pull apart” the animation to a completely different area 

in the model window, away from the logic. If you do so, you might consider setting up 

some Named Views (see Section 3.4.13) to facilitate going back and forth. If you want 

to disconnect an animation construct completely from the module it originally accom-

panied,  Cut  it to the  Clipboard  and  Paste  it back into the model. It will retain all of its 

characteristics, but no longer will have any association with the module. An alternative 

method is to delete the animation construct that came with the module and add it back 

from scratch using the constructs from the Animate toolbar. 
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 You might even want to leave some of the automatically placed animation con-

structs with the modules and just make copies of them for the separate animation. If 

you decide to do this, there are some basic rules to follow. Any animation construct that 

provides information (for example, variables and plots) can be duplicated. Animation 

constructs that show an activity of an entity (for example, queues and resources) should 

not be duplicated in an animation. The reason is quite simple. If you have two animated 

queues with the same name, Arena would not know which animated queue should show 

a waiting entity. Although Arena will allow you to duplicate an animated queue, it will 

generally show all waiting entities in the last animated queue that you placed. 

 We’ll use the “pull apart” method to create our enhanced animation. Let’s start by 

using the zoom-out feature,  View . Zoom Out  (    or the − key), to reduce the size of our 

model. Now click on a queue and use  Edit . Cut  (   or  Ctrl 1 X ) to cut or remove it from 

the current model and then  Edit . Paste  (    or  Ctrl  1  V ) to place the queue in the gen-

eral area where you want to build your animation (click to place the fl oating rectangle). 

Repeat this action for the remaining queues, placing them in the same general pattern 

as in the original model. You can now zoom in on the new area and start building the 

enhanced animation. We’ll start by changing our queues. Then we’ll create new pictures 

for our entities and add resource pictures. Finally, we’ll add some plots and variables. 

    4.3.1 Changing Animation Queues 

 If you watched the animation closely, you might have noticed that there were never more 

than about 14 entities visible in any of the queues, even though our variables indicated 

otherwise. This is because Arena restricts the number of animated entities displayed in 

any queue to the number that will fi t in the drawn space for the animation queue. The 

simulation may have 30 entities in the queue, but if only 14 will fi t on the animation, 

only the fi rst 14 will show. Then, as an entity is removed from the queue, the next undis-

played entity in the queue will be shown. While the output statistics reported at the end 

will be correct, this can be rather deceptive to the novice and may lead you to assume 

that the system is working fi ne when, in fact, the queues are quite large. There are three 

obvious ways (at least to us) to avoid this problem: one is to watch the animation vari-

able for the number in queue, the second is to increase the size of the animation queue, 

and the third is to decrease the size of the entity picture (if it remains visually accurate). 

 Let’s fi rst increase the size of the queue.   Figure 4-9   shows the steps we’ll go through 

as we modify our queue. We fi rst select the queue (View 1) by single-clicking on the Re-

work queue,  Rework Process.Queue . Notice that two handles appear, one at each 

end. You can now place your pointer over the handle at the left end, and it will change 

to crosshairs. Drag the handle to stretch the queue to any length and direction you want 

(View 2). If you now run the simulation, you should occasionally see a lot more parts 

waiting at Rework.   

 We can also change the form of the queue to represent the physical location  point  
of each entity in it. Double-click on the selected queue, and the Queue dialog box will 

appear as in   Display 4-23  .  

 Select the Point Type of the queue and click the  Points  button. Then add points by 

successively clicking  Add . We could change the rotation of the entity at each point, 

but for now we’ll accept the default of these values. When you accept these changes, 
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the resulting queue should look something like the one shown in View 3 of   Figure 4-9  . 

Note that the front of the queue is denoted by a point surrounded by two circles. You can 

then drag any of these points into any formation you like (View 4). If you want all these 

points to line up neatly, you may want to use the Snap option discussed in Chap ter 3. 

Arena will now place entities on the points during an animation run and move them for-

ward, much like a real-life waiting line operates. 

 For our animation, we’ve simply stretched the queues (as shown in View 2 of   Fig-

ure 4-9  ) for the Prep A, Prep B, and Sealer areas. We did get a little fancy with the 

Rework queue. We changed the form of the queue to points and added 38 points. This 

allowed us to align them in four rows of ten to represent four available racks as shown 

in   Figure 4-10   (this was much easier to do with the Snap option on).   

  Figure 4-9.  Alternate Ways to Display a Queue 

 Type   

 Point   select  

  Display 4-23.  The Queue Dialog Box 

View 1:View 1:View 1:View 1:View 1:

View 2:View 2:View 2:View 2:View 2:

View 3:View 3:View 3:View 3:View 3:

View 4:View 4:View 4:View 4:View 4:
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     4.3.2 Changing Entity Pictures 

 Now let’s focus our attention on our animation entities. In our current animation, we 

arbitrarily selected blue and red balls for the two kinds of entities. Let’s say we want 

our entities to be similar to the balls but have the letter “A” or “B” displayed inside 

the ball. You create new pictures in the Entity Picture Placement window, as shown in 

  Figure 4-11  , which is opened using  Edit . Entity Pictures . The left side of this window 

contains entity pictures currently available in your model, displayed as a list of buttons 

with pictures and associated names. The right side of this window is used for accessing 

 picture libraries , which are simply collections of pictures stored in a fi le. Arena provides 

several of these libraries with a starting selection of icons; you might want to open and 

examine them before you animate your next model (their fi le names end with  .plb ).   

 There are several ways to add a new picture to your animation. You can use the  Add  

button (on the left) to draw a new picture for the current list, or you can use the  Copy  

button (on the left) to copy a picture already on the current list. If you use the Add  func-

tion, your new entry will not have a picture or a name associated with it until you draw 

it and give it a name in the Value fi eld above the list. If you use the Copy function, the 

new picture and name will be the same as the picture selected when you copied. 

 To add a picture from a library to your current entity picture list, highlight the picture 

you want to replace on the left, highlight the new selection from a library on the right, 

and click on the left arrow button (  ) to copy the picture to your picture list. You can 

also build and maintain your own picture libraries by choosing the  New  button, creating 

your own pictures, and saving the fi le for future use. Or you can use clip art by using the 

standard copy and paste commands. 

 For this example, as for most of our examples, we’ll keep our pictures fairly simple, 

but you can make your entity and resource pictures as fancy as you want. Since the blue 

and red balls were about the right size, let’s use them as our starting point. Click on the 

 Picture.Blue Ball  icon in the current list on the left and then click  Copy . Now 

select one of these two identical pictures and change the name (in the Value dialog box) 

to  Picture.Part A  (now wasn’t that obvious?). Note that as you type in the new 

name it will also change on the selected icon. To change the picture, double-click on 

the picture icon. This opens the Picture Editor window that will allow you to modify 

the picture drawing. Before you change this picture, notice the small gray circle in the 

center of the square; this is the  entity reference point , which determines the entity’s 

relation with the other animation objects. Basically, this point will follow the paths 

  Figure 4-10.  The Rework Queue with 40 Points   
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when the entity is moving, will reside on the seize point when the entity has control of 

a resource, and so on. 

 We’ll change this picture by inserting the letter “A” in the center of the ball and 

changing to a lighter fi ll color so the letter will be visible. When you close this window, 

the new drawing will be displayed beside the Picture.Part A name. Now repeat the same 

procedure to make a new picture for Part B. Your fi nal pictures should look something 

like   Figure 4-12  .   

 If you click on one of the pictures, the full name will be displayed in the Value fi eld 

at the top. Also note that there is a Size Factor fi eld in the lower left-hand portion of 

the window (see   Figure 4-11  ). You can increase or decrease your entity picture size by 

changing this value. For our animation, we increased the Size Factor from 1 to 1.3. 

 The fi nal step is to assign these new pictures to our parts so they will show up in 

the animation. You do this by clicking on the Entity data module and entering the new 

names in the Initial Picture cell for our two parts. You might note that your new names 

will not appear on the drop-down list, so you will need to type them in. However, once 

you have entered the new names and accepted the data, they will be refl ected on the list. 

  Figure 4-11.  The Entity Picture Placement Window   

  Figure 4-12.  The Final Entity Pictures   
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     4.3.3 Adding Resource Pictures 

 Now that we’ve completed our animated queues and entities, let’s add resource pic-

tures to our animation. You add a resource picture by clicking the  Resource  button (  ) 

found in the Animate toolbar. This will open the Resource Picture Placement window, 

which looks very similar to the Entity Picture Placement window. There’s very little 

difference between an entity picture and a resource picture other than the way we refer 

to them. Entities acquire pictures by assigning a  picture name  somewhere in the model. 

Resources acquire pictures depending on their state. In Section 4.2.1, we discussed 

the four automatic resource states (Idle, Busy, Failed, and Inactive). When you open a 

Resource Picture Placement window, you might notice that there is a default picture for 

each of the four default states. You can, however, change the drawings used to depict the 

resource in its various states, just like we changed our entity pictures. 

 First we need to identify which resource picture we are creating. You do this by 

using the drop-down list in the Identifi er box to select one of our resources (for example, 

Prep A). Now let’s replace these pictures as we did for the entity pictures. Double-click 

on the Idle picture to open the Picture Editor window. Use the background color for the 

fi ll, make the line thickness 3 points (from the Draw toolbar), and change the line color. 

Note that the box must be highlighted to make these changes. The small circle with the 

cross is the  reference point  for the resource, indicating how other objects (like entity 

pictures) align to its picture; drag this into the middle of your box. Accept this icon 

(by closing the Picture Editor window) and return to the Resource Picture Placement 

window. Now let’s develop our own picture library. Choosing the  New  button from the 

Resource Picture Placement window opens a new, empty library fi le. Now select your 

newly created icon, click  Add  under the current library area, and then click the right 

arrow button. Click the  Save  button to name and save your new library fi le (for example, 

 Book.plb ). 

 We’ll now use this picture to create the rest of our resource pictures. Highlight the 

Busy picture on the left and the new library picture on the right and use the left arrow 

button to make your busy picture look just like your idle picture. When the animation is 

running, the entity picture will sit in the center of this box, so we’ll know it’s busy. How-

ever, you do need to check the Seize Area toggle at the bottom of the window for this to 

happen. Now copy the same library picture to the inactive and failed states. Open each 

of these pictures and fi ll the box with a color that will denote whether the resource is in 

the failed or inactive state (for example, red for failed and gray for inactive). Now copy 

these two new pictures to your library and save it. Your fi nal resource pictures should 

look something like those shown in   Figure 4-13  . We also increased our Size Factor to 

1.3 so the resource size will be consistent with our entity size.   

 When you accept the resource pictures and return to the main model window, your 

pointer will be a crosshair. Position this pointer in the approximate area where you want 

to place the resource and click. This places the new resource on your animation. (By 

the way, have you remembered to save your model recently?) Your new resource icon 

may be larger than you want, so adjust it appropriately by dragging one of its corner 

handles. The resource picture also contains an object that appears as a double circle with 

a dashed line connected to the lower left portion of the resource picture—the  Seize Area . 
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This Seize Area is where your entity will sit when it has control of the resource; drag it 

to the center of your resource picture if necessary. Now run your animation to see if your 

entity and resource pictures are the sizes you want. If not, you can adjust the position of 

the seize area by pausing the run, displaying seize areas (using the  View . Layers  menu 

option), and dragging it to the desired location. After you’ve fi ne-tuned its position, 

you’ll probably want to turn off the display of the seize area layer before ending the run. 

 Once you’re satisfi ed with your animation of the Prep A resource, you’ll want to add 

animations for the rest of the resources. You could repeat the above process for each re-

source, or you can copy and paste the Prep A resource for the Prep B and Sealer pictures. 

Once you’ve done this, you’ll need to double-click on the newly pasted resource to open 

the Resource Picture Placement window and select the proper name from the drop-down 

list in the Identifi er fi eld. 

 The picture of the rework resource will have to be modifi ed because it has a capacity 

of two during the second shift. Let’s start by doing a copy/paste as before, but when 

we open the Resource Picture Placement window, edit the Idle picture and add another 

square ( Edit . Duplicate  or  Edit  .  Copy  followed by  Edit . Paste ) beside or under 

the fi rst picture. This will allow room for two entities to reside during the second shift. 

Copy this new picture to your library and use it to create the remaining rework pictures. 

Rename the resource (Rework) and close the window. 

 The original resource animation had only one seize area, so double-click on the seize 

area, click the  Points  button, and add a second seize area. Seize areas are much like point 

queues and can have any number of points, although the number of points used depends 

on the resource capacity. Like a queue, seize areas can be shown as a line. Close this 

window and position the two seize-area points inside the two boxes representing the 

resource. 

  Figure 4-13.  The Resource Pictures   
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 You should now have an animation that’s starting to look more like your perceived 

system. You may want to reposition the resources, queues, stations, and so forth, until 

you’re happy with the way the animation looks. If you’ve been building this model your-

self and based it on Model 4-2, you’ll need to clear (uncheck)  Run  .  Run Control . 
Batch Run (No Animation)  to enjoy the fruits of your artistic labors to create Model 4-3. 

You also could add text to label things, place lines or boxes to indicate queues or walls, 

or even add a few potted plants. 

     4.3.4 Adding Variables and Plots 

 The last thing we’ll do is add some additional variables and a plot to our animation. 

Variables of interest are the number of parts at each process (in service plus in queue) 

and the number of parts completed (via each of the three exit possibilities). We could 

just copy and paste the variables that came with the fl owchart modules. First copy and 

paste the four variables that came with our process modules; put them right under the 

resource picture that we just created. Then resize them by highlighting the variable and 

dragging one of the handles to make the variable image bigger or smaller. You can also 

reformat, change font, change color, etc., by double-clicking on the variable to open the 

Variable window shown in   Figure 4-14  . We’ll repeat this process for the three variables 

that came with our Dispose modules. Finally, we’ll use the Text tool from the Animate 

toolbar to label these variables.   

 Now let’s add a plot for the number in the rework queue. Clicking the  Plot  button 

(  ) from the Animate toolbar opens the Plot window. Use the  Add  button to enter the 

expression  NQ(Rework Process.Queue) . Recall that we used this same expres-

sion when we created our Frequencies data. We also made a number of other entries as 

shown in   Display 4-24  .  

  Figure 4-14.  The Variable Window   
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 Data Series tab   

 Add button   click  
 Series1 Properties . Source Data . Name   Number in Rework Queue  

(changes Series1 Properties above to 
 Number in Rework Queue 
Properties ) 

 Queue Length Properties:   

 Source Data . Expression   NQ(Rework Process.Queue)  
(or use Expression Builder) 

 Line . DrawMode   Stairs  (select from pull-down) 

 Axes tab   

 Axes . Time (X) Axis   click  (on this text to highlight, 
leave the box checked) 

 Time (X) Axis Properties:   

 Scale . Maximum   9600  
 Scale . MajorIncrement   960  
 Title . Text   Time (Minutes)  
 Title . Visible   True  (select from pull-down) 

 Axes . Left Value (Y) Axis   click  (on this text to highlight, 
leave the box checked) 

 Left Value (Y) Axis Properties:   

 Scale . MajorIncrement   5  

 Title . Text   Number in Rework Queue  
 Title . Visible   True  (select from pull-down) 

 Legend tab   

 Show Legend check box   clear  (uncheck) 

  Display 4-24.  The Plot Window with Data Series Tab Showing in the Graphic 
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 After you’ve accepted these data, you may want to increase the size of the plot in the 

model window and move it somewhere else on the animation. Finally, we used the Text 

tool from the Animate toolbar to add the  y -axis limits for our plot. 

 Your animation should now be complete and look something like the snapshot 

shown in   Figure 4-15  , which was taken at simulation time 5475.2289 minutes. The fi nal 

numerical results are, of course, the same as those from Model 4-2 since we changed 

only the animation aspects to create the present Model 4-3.   

       4.4 Model 4-4: The Electronic Assembly and Test System with Part Transfers 

  So far in this chapter, we’ve developed successive models of the electronic assembly and 

test system with the assumption that all part transfers between operations occurred in-

stantaneously. Let’s generalize that assumption and now model the system with all part 

transfers taking 2 minutes, regardless of where they’re coming from or going to. This 

includes the transfer of arriving parts to the prep areas and transfer of the departing parts 

from either the Sealer or Rework station to be scrapped, salvaged, or shipped. We’ll 

modify Model 4-3 to create Model 4-4. 

    4.4.1 Some New Arena Concepts: Stations and Transfers 

 To model the 2-minute transfer times and to show the part movement, we need to un-

derstand two new Arena concepts:  Stations  and  Station Transfers . Arena approaches 

the modeling of physical systems by identifying locations called  Stations . Stations may 

be thought of as a place at which some process occurs. In our example, stations will 

represent the locations for the part arrivals, the four manufacturing cells, and part de-

partures. Each station is assigned a unique name. In the model, stations also appear as 

entry points to sections of model logic, working in conjunction with our other new topic, 

 Station Transfers . 

  Station Transfers  allow us to send an entity from one station to another without a 

direct connection. Arena provides several different types of station transfers that allow 

for positive transfer times, constrained movement using material-handling devices, 

and fl exible routings that depend on the entity type. The station transfer we’ll use here 

is called a  Route , which allows the movement of entities from one station to another. 

  Figure 4-15.  The Animation at Time 5475.2289 Minutes: Model 4-3   
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Routes assume that time may be required for the movement between stations, but that no 

additional delay is incurred because of other constraints, such as blocked passageways 

or unavailable material-handling equipment. The route time can be expressed as a con-

stant, a sample from a distribution, or, for that matter, any valid expression. 

 We often think of stations as representing a physical location in a system; however, 

there’s no strict requirement that this be so, and in fact, stations can be used effectively 

to serve many other modeling objectives. Stepping back for a moment from their in-

tended use in representing a system, let’s examine what happens in Arena when an 

entity is transferred (for example, routed) to a station. First, we’ll look at the model 

logic—moving entities from module to module during the run. Underneath the hood, 

as we discovered (in painstaking detail) in Chapter 2, a simulation run is driven by the 

entities—creating them, moving them through logic, placing them on the event calendar 

when a time delay is to be incurred, and eventually destroying them. From this perspec-

tive, a station transfer (route) is simply another means of incurring a time delay. 

 When an entity leaves a module that specifi es a Route as the transfer mechanism, 

Arena places the entity on the event calendar with an event time dictated by the route 

duration (analogous to a Delay module). Later, when it’s the entity’s turn to be removed 

from the event calendar, Arena returns the entity to the fl ow of model logic by fi nding 

the module that defi nes its destination station, typically a Station module. For example, 

let’s assume a Route module is used to send an entity to a station named  Sealer . When 

the entity comes off the event calendar, Arena fi nds the module that defi nes the  Sealer  

station, and the entity is directed or sent to that module. This is in slight contrast to 

the direct module connections we’ve seen so far, where the transfer of an entity from 

module to module occurred without placing the entity on the event calendar and was 

represented graphically in the model by a Connection line between two modules. While 

the direct connections provide a fl owchart-like look to a model, making it obvious how 

entities will move between modules, station transfers provide a great deal of power 

and fl exibility in dispatching entities through a model, as we’ll see when we cover Se-

quences in Section 7.1. 

 Stations and station transfers also provide the driving force behind an important 

part of the model’s animation—displaying the movement of entities among stations 

as the model run progresses. The stations themselves are represented in the fl owchart 

view of the model using station marker symbols. These stations establish locations 

on the model’s drawing where station transfers can be initiated or terminated. The 

movement of entities between the stations is defi ned by route path objects, which 

visually connect the stations to each other for the animation and establish the path of 

movement for entities that are routed between the stations. 

 You’ll soon see that the station markers defi ne either a destination station (for the 

ending station of a route path) or an origin station that allows transfer out of the module 

via a station transfer (for the beginning of a route path). You add animation stations 

via the Station object from the Animate Transfer toolbar. You add route paths by using 

the Route object from the Animate Transfer toolbar and drawing a polyline that estab-

lishes the graphical path that entities follow during their routes. When the simulation is 

running, you’ll see entity pictures moving smoothly along these route paths. This begs 
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the question: How does this relate to the underlying logic where we just learned that 

an entity resides on the event calendar during its route time delay? The answer is that 

Arena’s animation “engine” coordinates with the underlying logic “engine,” in this case, 

the event calendar. When an entity encounters a route in the model logic and is placed on 

the event calendar, the animation shows the entity’s picture moving between the stations 

on the route path. The two engines coordinate so that the timing of the entity fi nishing 

its animation movement on the route and being removed from the event calendar to 

continue through model logic coincide, resulting in an animation display that is repre-

sentative of the model logic at any point in time. 

     4.4.2 Adding the Route Logic 

 Since the addition of stations and transfers affects not only the model, but also the an-

imation, let’s start with our last model (Model 4-3). Open this model and use  File . 
Save As  to save it as  Model 04-04.doe . Let’s start with the part arrivals. Delete the 

connections between the two Assign modules and the  Part A Prep  and  Part B 
Prep   Process modules. Now move the two Create/Assign module pairs to the left to 

allow room for the additional modules that we’ll add for our route logic. To give you a 

preview of where we’re headed here, our fi nal modifi cation to this section of our model, 

with the new modules, is shown in   Figure 4-16  .   

 The existing Create and Assign modules for the Part A and Part B arrivals remain the 

same as in the original model. To add our stations and transfers, we fi rst need to defi ne 

the station where the entity currently resides and then route the entity to its destination 

station. Let’s start with Part A. We place a Station module (from the Advanced Transfer 

panel, which you may need to attach to your model) to defi ne the location of Part A, as 

seen in   Display 4-25  . We’ve entered a Name ( Part A Arrival Station ), defaulted 

the Station Type to  Station , and defi ned our fi rst station ( Part A Station ). This 

module defi nes the new station (or location) and assigns that location to the arriving part. 

Note that the Name box in the Station module simply provides the text to appear in the 

model window and does not defi ne the name of the station itself. The Station Name box 

defi nes the actual station name to be used in the model logic— Part A Station .  

 We’ll next add the Route module (from the Advanced Transfer panel), which will 

send the arriving part to the Prep A area with a transfer time of 2 minutes. We’ll provide 

a module name, enter a Route Time of  2 , in units of  Minutes , default the Destination 

Type ( Station ), and enter the destination Station Name as  Prep A Station , as 

shown in   Display 4-26  . This will result in any Part A part arrival being sent to the yet-to-

be-established  Prep A Station  (though we just defi ned its name here). 

  Figure 4-16.  The Part Arrival Logic Modules   
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  We’ve added the same two modules to the Part B arrival stream. The data entries are 

essentially the same, except that we use  Part B  in place of all  Part A  occurrences 

(modelers who are both lazy and smart would duplicate these two modules, make the 

few required edits, and connect as needed). You might note that there are no direct con-

nects exiting from the two Route modules. As discussed earlier, Arena will take care of 

getting the entities to their correct stations. 

 Now let’s move on to the prep areas and make the necessary modifi cations, the result of 

which is depicted in   Figure 4-17   (almost—we’ll make one slight modifi cation here before 

we’re done). The two modules preceding the prep areas’ Process modules are Station mod-

ules that defi ne the new station locations,  Prep A Station  and  Prep B Station . 

The data entries are basically the same as for our previous Station modules (  Display 4-25  ), 

 Name   Route to Prep A  

 Route Time   2  
 Units   Minutes  
 Station Name   Prep A Station  

  Display 4-26.  The Route Module 

 Name   Part A Arrival Station  

 Station Name   Part A Station  

  Display 4-25.  The Station Module 
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except for the module Name and the Station Name. The parts that are transferred from the 

part arrival section using the Route modules will arrive at one of these stations. The two 

Process modules remain the same. We then added a single Route module, with incoming 

connectors from both Prep areas. Although the two prep areas are at different locations, 

the parts are being transferred to the same station,  Sealer Station . Arena will keep 

track of where the parts originated, the Prep A or Prep B station. Again, the only change 

from the previously placed Route modules are the module Name,  Route to Sealer , 

and the destination Station Name,  Sealer Station .   

 By now you can see what is left to complete our model changes. We simply need 

to break out our different locations and add Station and Route modules where required. 

The model logic for the Sealer and Rework areas is shown in   Figure 4-18  . We’ve 

used the same notation as before with our new stations named  Sealer Station , 

 Rework Station ,  Scrapped Station ,  Salvaged Station , and  Shipped 
Station . 

 The model logic for our Scrapped, Salvaged, and Shipped areas is shown in 

  Figure 4-19  . 

 At this point, your model should be ready to run (correctly), although you prob-

ably will not notice much difference in the animation, except maybe that the queues 

for Part B Prep and Rework seem to get a lot longer (so we made more room in these 

queue animations). If you look at your results, you might observe that the part cycle 

  Figure 4-17.  The Prep Area Logic Modules (Almost…)   

   Figure 4-18.  The Sealer and Rework Area Logic Modules    
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times are longer than in Models 4-3 and 4-2, which is caused by the added transfer 

times; however, if you were to make multiple replications of each of these models (see 

Section 2.6.2), you’d notice quite a lot of variability in these output performance mea-

sures across replications, so concluding much from single replications of this model vs. 

Model 4-3 (or, equivalently, Model 4-2) is risky business. 

 Maybe you’re wondering about a simpler approach to modeling non-zero transfer 

times—instead of all these Station and Route modules all over the place, why not just 

stick in a Process module interrupting each arc of the fl owchart where the transfer time 

occurs with Action 5 Delay and a Delay Type that’s Constant at 2 Minutes? Actually, 

this  would  work and would produce valid numerical output results. However, it would 

not allow us to animate the entities moving around, which we’d like to do (for one thing, 

it’s fun to watch—briefl y). So we’ll now add the route transfers to our animation. 

     4.4.3 Altering the Animation 

 In the process of modifying the animation, we moved a lot of the existing objects. If 

you want your animation to look like ours, you might want to fi rst take a look ahead at 

  Figure 4-20  . (Of course, you could always just open  Model 04-04.doe .) 

 We’ll now show you how to add stations and routes to your animation. Let’s start by 

adding the fi rst few animation station markers. Click the  Station  button (  ) found in the 

Animate Transfer toolbar to open the Station dialog box shown in   Display 4-27   (note 

the little station-marker symbol out to its left). If you don’t have the Animate Transfer 

toolbar open, you can use  View . Toolbars  (or right-click in any toolbar area) to choose 

to display it. Now use the drop-down list to select from the already-defi ned stations our 

fi rst station,  Part A Station . When you close the dialog box, your pointer will have 

changed to crosshairs with a station-marker symbol attached. Position this new pointer 

to the left of the Prep A queue and click to add the station marker. Alternatively, you 

don’t need to close the dialog box, but just move the pointer (which will be crosshairs 

with a station-marker symbol attached) to where you want the station marker to be and 

click (the dialog box will close itself). 

 

   Figure 4-19.  The Scrapped, Salvaged, and Shipped Logic Modules    
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 Repeat the same set of steps to place the  Prep A Station  marker just above the 

Prep A queue. Now that we have our fi rst two stations placed, let’s add the route path. 

Click the  Route  button (   ) in the Animate Transfer toolbar. This will open the Route 

dialog box shown in   Display 4-28  . For our animation, we simply accepted the default 

values, even ignoring the default (and wrong) “From” and “To” station names. After 

you close the Route dialog box (or even if you don’t close it), the pointer changes to 

crosshairs. Place the crosshairs inside a station marker ( Part A Station ) at the start 

of a path and click; this will start the route path. Move the pointer and build the remain-

der of the path by clicking where you want “corners,” much like drawing a polyline. 

The route path will automatically end when you click inside the end station marker 

( Prep A Station ). 

 The above two-step process (fi rst place the Station markers, and then place the Route 

animations) could be replaced by a one-step process involving only the Route animation 

tool. Try clicking it on the toolbar, then click the crosshairs in the fl owchart view of 

your model, make a few more clicks for corners, and fi nally double-click. You’ll notice 

that you got a station marker “for free” at each end of the Route animation. Then dou-

ble-click on the Station marker at the beginning, use the pull-down list to associate it 

to the correct logical Station (assumed to be already in your model…if not, you could 

name it here and forget the pull-down list); do the same for the ending Station marker. 

 If this is your fi rst animated route, you might want to go ahead and run your model 

so you can see the arriving parts move from the  Part A Station  to the  Prep A 

 Identifi er   Part A Station  

  Display 4-27.  The Station Dialog Box   

   Display 4-28.  The Route Dialog Box    

kel01315_ch04_121-206.indd   168kel01315_ch04_121-206.indd   168 05/12/13   3:29 PM05/12/13   3:29 PM



Modeling Basic Operations and Inputs      169

Station . If you’re not happy with the placement of the routes, they can be easily 

changed. For example, if you click on the station marker above the Prep A.Process 

queue (or, if you have the options checked under  View . Data Tips , merely hover your 

pointer over the station marker), the name of the station ( Prep A Station ) will 

appear below the marker. You can drag the station marker anywhere you want (well, 

almost anywhere, as long as you stay in the model window). Note that if you move the 

station marker, the routes stay attached. Once you’ve satisfi ed your curiosity, place the 

stations and route path for the Part B arrival and transfer to the Prep B station. 

 If you add the remaining stations and routes, your animation will be complete. How-

ever, from a visual point of view you may not have an animation that accurately captures 

the fl ow of parts. Recall that we placed our prep stations just above the prep queues, 

which are to the left of the prep areas. Let’s assume that in the physical facility the 

parts exit from the right side of the area. If you had used the existing prep stations, the 

parts would have started their routes from the left side of the areas. The solution to this 

problem is simple—just add a second station marker at the prep areas (placed on the 

right side) with the same Identifi er for the logical station. When Arena needs to route an 

entity, it will look for the route path, not just the station. So as you build the remaining 

routes, you’ll need to have two station markers (with the same name) at each of the prep 

areas, the sealer area, and the rework area. Your fi nal animation should look something 

like   Figure 4-20  . 

 Finally, there’s one subtle point that you may not have noticed. Run your animation 

and watch the Part B entities as they travel from arrival to the Part B Prep area. Remem-

ber that we’re creating four entities at a time, but we see only one moving. Now note 

what happens as they arrive at the queue—suddenly there are four entities. As it turns 

out, there are really four entities being transferred, it’s just that they’re all on top of one 

another during the transfer—they’re all moving at precisely the same speed because the 

transfer times are a constant for all entities. You can check this out by opening the Route 

to Prep B Route module and changing Route Time from a constant  2  to  EXPO(2) , 

causing the entities’ individual travel times to differ. Now when you run the anima-

tion, you should see all four entities start out on top of one another and then separate 

as they move toward the queue. You can exaggerate this by clicking on the route path 

   Figure 4-20.  The Completed Animation for Model 4-4    
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and making it much longer. Although this will show four entities moving, it may not 

represent reality since, if you believe the modeling assumptions, this travel time was 

supposed to be a constant 2 minutes (but your boss will probably never know). 

 Here’s a blatant sleight of hand to keep the model assumptions yet make the anima-

tion look right. If we show the B parts arriving, with each part animated as a “big batch” 

picture, we’ll get the desired visual results. There will still be four moving across to the 

Prep B Station, but only the top one will show. We need only convert the picture back 

to a single entity when they enter the queue at the prep area. To implement this concept, 

we’ll need to create a new “big batch” picture and make two changes to the model. 

 First use  Edit  .  Entity Pictures  to open the Entity Picture Placement window. Next 

make a copy of the  Picture.Part B  picture and rename it  Picture.Batch B  in 

the Value fi eld above it. Edit this new picture’s drawing by double-clicking on its button 

in the list. In the Picture Editor, use Copy and Paste to get four Part B circles as shown 

in   Figure 4-21  ; move the entity reference point to be near the center of your four-pack. 

Then close the Picture Edit window and click  OK  to return to the model window. 

 Now that we have a batch picture, we need to tell Arena when it should be used. 

Open the  Assign Part B Sealer and Arrive Time  Assign module and 

Add another assignment (in this case, it doesn’t matter where in the list of assignments 

it’s added since there’s no dependency in these assignments of one on another). This 

new assignment will be of Type  Entity Picture , with the Entity Picture being 

 Picture.Batch B  (which you’ll need to type in here for the fi rst time). This 

will cause Arena to show the batch picture when it routes the Part B arrivals to the 

Prep B station. Now we need to convert the picture back to a single entity when it 

arrives at the Prep B area. You’ll need to insert a new Assign module ( Assign Picture ) 

between the Prep B station,  Prep B Arrival Station , and the  Prep B Pro-
cess  Process module. This assignment will have  Entity Picture  Type, with 

the Entity Picture being  Picture.Part B  (which will be on the drop-down list for 

Entity Picture). Thus, when the entities enter the queue or service at Prep B Process, 

they will be displayed as individual parts. 

 Now if you run the simulation (with the animation turned on), you’ll see an arriving 

batch being routed to the Prep B area and individual parts when the batch enters the 

queue. Defi ning different entity pictures allows you to see the different types of parts 

move through the system. Note the batch of four B parts when they enter the system. 

Although there are still four of these pictures, each on top of the other, the new Batch B 

picture gives the illusion of a single batch of four parts entering. 

 Now that you understand the concept of routes, we’ll use them in Chapter 7 in a 

more complex system. 

   Figure 4-21.  The Batch B Entity Picture    
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       4.5 Finding and Fixing Errors 

  If you develop enough models, particularly large ones, sooner or later you’ll fi nd that 

your model either will not run or will run incorrectly. It happens to all of us. If you’re 

building a model and you’ve committed an error that Arena can detect and that prevents 

the model from running, Arena will attempt to help you fi nd that error quickly and eas-

ily. We suspect that this may already have happened to you, so consider yourself lucky 

if that’s not the case. 

 Typical errors that prevent a model from running may include: undefi ned variables, 

attributes, resources, unconnected modules, duplicate use of module names, misspelling 

of names (or, more to the point, inconsistent spelling whether it’s correct or not), and so 

on. Although Arena tries to prevent you from committing these types of errors, it can’t 

give you maximum modeling fl exibility without the possibility of an occasional error 

occurring. Arena will fi nd most of these errors when you attempt to check or run your 

newly created model. To illustrate this capability, let’s intentionally insert some errors 

into the model we just developed, Model 4-4. Unless you’re really good, we suggest 

that you save your model under a different name before you start making these changes. 

 We’ll introduce two errors. First, delete the connector between the fi rst Create mod-

ule,  Part A Arrive , and the following Assign module. Next, open the dialog box 

for this Assign module,  Assign Part A Sealer and Arrive Time , and 

change the New Value of the second assignment from  TNOW  to  TNO . These two errors 

are typical of the types of errors that new (and sometimes experienced) modelers make. 

After making these two changes, use the  Run  .  Check  option or the  Check  button (  ) 

on the Run Interaction toolbar to check your model. An Arena Errors/Warnings window 

should open with the message 

  ERROR:  
 
 Unconnected exit point  

 This message is telling you that there is a missing connector (the one we just de-

leted). Now look for the  Find  and  Edit  buttons at the bottom of the window. If you click 

the  Find  button, Arena will take you to and highlight the offending module. If you click 

the  Edit  button, Arena will take you directly to the dialog box of that offending module. 

Thus, Arena attempts to help you fi nd and fi x the discovered error. So, click  Find  and 

add the connector that we deleted. 

 Having fi xed this problem, a new check of the model will expose the second error: 

  ERROR: 
  
 A linker error was detected at the following block: 
  
 *    3 0$              ASSIGN: 
                            Sealer Time=TRIA(1,3,4): 
                            Arrive Time=TNO: 
                            NEXT(14$); 
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 Undefined symbol : TNO 
 Possible cause: A variable or other symbol was used 
                 without first being defined. 
 Possible cause: A statistic was animated, but statistics collection 
                 was turned off. 
 To find the problem, search for the above symbol name using 
 Edit-Find from the menu.  

 This message tells you that the symbol  TNO  (the misspelled Arena variable  TNOW ) is 

undefi ned. Click  Edit  and Arena will take you directly to the dialog box of the Assign mod-

ule where we planted the error. Go ahead and fi x the error. During checking, if you fi nd 

that you’ve misused a name or just want to know where a variable is used, use the  Edit  . 

 Find  option to locate all occurrences of a string of characters. You might try this option 

using the string  TNOW . If for some reason you forgot what the error was, use  Run . 
Review Errors  to reopen the error window with the last error message. 

 There are a number of ways to check the model accuracy or fi nd logic errors. The 

most obvious is through the use of an animation that shows what the model logic is 

doing. However, there are times when you must dig a little deeper to resolve a problem. 

Let’s fi rst look at the Highlight Active Module option by selecting  Run . Run Control . 
Highlight Active Module . 

 Now run your model. If your modules were not visible at the start of the run, Arena 

will change the view so you can see modules highlighted as entities pass through. How-

ever, on some computers, this happens so fast that you’ll typically see only the modules 

highlighted where the entity stops; for example, Delay and Dispose modules. If you 

don’t believe us, use the zoom option to zoom in so that only one or two modules fi ll the 

entire screen. Now click either the  Go  or  Step  button and you’ll see that Arena jumps 

around and tries to show you only the active modules. Again, it’s generally working so 

fast that not all the modules are highlighted, but it does at least try to show them. When 

you fi nally get bored, stop your model and clear the Highlight Active Module option. 

 You also have some options as to what you see when the model is running. Select  View . 
Layers  to bring up the dialog box shown in   Figure 4-22  . You can do this while you’re 

still in Run mode. This dialog box will allow you to turn on (check) or turn off (clear) 

different items from displaying during the model run. 

 Now let’s assume that you have a problem with your model and you’re suspicious 

of the Process module in the Sealer logic,  Sealer Process . It would be nice if the 

simulation would stop when an entity reaches this module, and there are ways to cause 

this to happen. You can use the  Run  .  Run Control  .  Break on Module  option or the 

 Module Break  button in the Run Interaction toolbar. You fi rst need to highlight the mod-

ule or modules on which you want to break. Then select  Run  .  Run Control  .  Break 
on Module  or press the  Module Break  button. This will cause the selected options to 

be outlined in a red box. Now click the  Go  button. Your model will run until an entity 

arrives at the selected module—it may take a while! The module will pause when the 

next entity arrives at the selected module. You can now attempt to fi nd your error (for 

instance, by repeatedly clicking the  Step  button until you notice something odd) or click 

 Go , and the run will continue until the next entity arrives at this module. When you no 
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longer want this break, highlight the module and use  Run . Run Control . Break on 
Module  to turn off the break. 

 Now we’ll introduce you to the Debug Bar. You can activate this window by se-

lecting the  View . Debug Bar  or the  Run . Run Control . Breakpoints  option. This 

window has several tabs at the bottom that alter the window contents and allow you to 

perform different functions. 

    ■  The Breakpoints window provides the ability to manipulate the execution to 

examine operations and logic, evaluate changes in system status, or make pre-

sentations to others. Breaks in execution can be established at specifi c times, 

when a specifi c entity number becomes active, on a module, or on a conditional 

statement.  
   ■  The Calendar window allows you to view all future events scheduled on Arena’s 

event calendar for the running simulation. Event times, entity numbers, and 

event descriptions are displayed in a table format.  
   ■  The Active Entity window displays the attribute values of the active entity in a 

tree-view organization. The value of user-defi ned and other assignable attributes 

can be changed via that tree view.  
   ■  The Watch windows provide three identical Watch windows that allow you to 

monitor the values of any expression in the simulation.  

  Now let’s assume that you think you have a problem that occurs at about time 29 and 

you would like to stop the simulation at that time to see if you can locate the perceived 

problem. You could slow the model way down and try to hit the  Pause  button at time 29, 

but chances are fairly good that you will fi nd this rather tedious and hard to do. The easy 

way is to select the Breakpoints tab in the now-opened Debug window and then press the 

 New Breakpoint  button in the upper left corner of that window. The Breakpoint Properties 

dialog will appear, which allows you to set a new breakpoint. We’ll accept the defaults 

except for the Time fi eld where we’ll enter a value of  29 , as shown in   Display 4-29  . 

   Figure 4-22.  The Layers Dialog Box    
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  When you click  OK , the window should resemble   Figure 4-23  . 

 Now click  Go  and you’ll see your simulation run and then stop at time 29. Before we 

proceed, let’s take a peek at the other windows. Select the Calendar tab and you should 

see the data as displayed in   Figure 4-24  . This shows that the next event (shown in pa-

rentheses) is scheduled to occur at time 29.2390. This is the simulation time in minutes. 

The information to the right shows the time based on how you set your calendar. We 

didn’t use this feature, so it shows the current day and date. You might note that this time 

is listed as 00:29:14, which appears to be a slightly different time. They are the same 

because the fi rst time is expressed as fractional units of the base time units (minutes), 

and the second is expressed as hours:minutes:seconds. It also tells you that it’s entity 

17 and it will enter an Assign block that is part of the Process module named  Prep A 
Process . It also shows you the remaining events scheduled to occur, including the last 

entry, which is the end of the replication at time 9600 minutes. 

 Break On   Time  

 Time   29  
 Units   Base Time Units  

  Display 4-29.  The Breakpoints Option 

   Figure 4-23.  The Breakpoints Window    
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 Just out of curiosity, you might want to press the  Step  button and you’ll see the sim-

ulation take the next step and stop at time 29.2390, just as predicted (if you do this, Stop 

the run and then run it again to exactly time 29 minutes, as described previously, before 

reading on, to make sure you see the same results that we discuss next). You might also 

want to check the contents of the other tabs, but you should fi nd that they currently do 

not contain any entries. 

 Now let’s open the Runtime Elements window by selecting the  View . Runtime 
Elements Bar  option. This window allows you to browse the current property values of 

simulation elements easily (for example, resources, queues, transporters) during a run-

ning simulation. As additional elements are defi ned, they will automatically appear as 

a new tab under this bar. Our window contains six tabs; Variables, Queues, Resources, 

Statistics, Activity Areas, and Processes. The Variables tab shows a window with all 

of the variables and their values that were used in this model. In this case, it’s not very 

interesting since we didn’t defi ne any user variables and it only contains those defi ned 

by Arena. 

 Now let’s examine the contents of the Queues tab. After you open this tab, make sure 

that the animation shows in the upper portion of your screen. If it’s not there, reposition 

the display. You should see four queues, one for each of the four Process modules in our 

model. You might also note that the current number in each queue matches the number 

shown in the animation. Now press the “1” sign at the left of Prep B Process.Queue. 

Next expand the Entities in Queue section, then the second entity (Entity 13), and fi nally 

both the Attributes and User-Defi ned entries for that entity. The resulting window is 

shown in   Figure 4-25  . 

 This window now shows the details for the second entity in the Prep B queue. You 

could also get the same information by going to the animation and double-clicking on 

the second entity in that queue. Most of this information should be self-explanatory. 

Having said that, let’s explain the difference between the Entity Number (13) and Serial 

Number (8). Each of these identifi ers is unique in that as new entities are created, they 

are assigned numbers. Normally they are just incremented by one, although this is not 

always the case. The serial number refers to entities created by the model, and the entity 

number refers to entities created by Arena, including entities created by the model. If 

you refer to   Figure 4-24  , you’ll see that entities 1, 2, and 3 were created by Arena (since 

they’re not associated with a CREATE block in the Description column). They repre-

sent events that are scheduled by Arena: the end of the replication, a sealer failure, and 

   Figure 4-24.  The Calendar Window    
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a change of capacity for the Rework resource. The fi rst entity created by the model was 

assigned entity number 5 and serial number 1 (not shown in   Figure 4-24  ). If you want 

to check this out, you can restart your model and use the  Step  button to step through the 

fi rst couple of events. 

 In either of these views, the values of user-defi ned and other assignable attributes 

can be changed, so let’s try this feature. In the Runtime Elements window, double-click 

on the value for the Animation Picture, 9, of the entity. Let’s change it to 1, which turns 

out to be an airplane. If you want to know what pictures are available, you’ll need to go 

to the SIMAN Elements view—see Section 7.1.6. If you can see your animation, you’ll 

notice that the airplane is now visible in our Prep B queue. Now double-click on the 

Sealer Time, 2.768368, and enter a value of 100. 

 Before we run our model, you might want to look at the other tabs on the  Runtime 

Elements window. Most of this information does not require an explanation. You’ll 

fi nd an entry in the Processes tab for each of the Process modules in the model. The 

Resources tab shows the resources in our model, and the Activity Areas tab shows the 

model’s activity areas. These activity areas were defi ned by Arena as we constructed our 

model. Users can also defi ne activity areas, but rather than covering that now, we’ll refer 

you to the Arena online help. Finally, the Statistics tab shows the current values of the 

statistics being collected by our model. 

 Let’s illustrate some additional features by setting another breakpoint on the sealer 

queue. Since we changed the sealer process time for entity 13, we should expect to 

see that queue get rather large once that entity is being processed at the sealer. Open a 

new breakpoint dialog and select Condition from the drop-down list for the Break On 

fi eld and enter the expression  NQ(Sealer Process.Queue) > 20  in the Condition 

Expression fi eld. This will cause Arena to stop when the number of entities in the sealer 

queue exceeds 20. 

   Figure 4-25.  The Queues Window    
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 Now press  Go  and watch the animation. You should see the airplane enter and seize 

the sealer resource and then see the sealer queue grow. At time 119.7135, the run will 

pause because of our breakpoint, with 21 entities in the sealer queue. If you check the 

calendar, you’ll see that entity 13 (our airplane) is not scheduled to leave the sealer until 

time 146.0733, so we would expect the queue to continue to grow for at least the next 

35 minutes of our simulation. 

 Now it’s time to introduce you to the Arena command-driven Run Controller. Before 

we go into the Run Controller, let’s defi ne two Arena variables that we’ll use: MR and 

NR. There are many Arena variables that can be used in developing model logic and can 

be viewed during runtime. The two of interest are:

        MR(Resource Name) – Resource capacity  
       NR(Resource Name) – Number of busy resource units  

 Note that these can change during the simulation so their values refer to the status at the 

moment. 

 You can think of Arena variables as magic words in that they provide information 

about the current simulation status. However, they’re also reserved words, so you can’t 

redefi ne their meanings or use them as your own names for anything. We recommend 

that you take a few minutes to look over the extensive list of Arena variables in the 

Help system. You might start by looking at the variables summary and then look at the 

 detailed defi nition if you need more information on a specifi c variable. 

 We’re now going to use the Run Controller to illustrate just a few of the many com-

mands available. We’re not going to explain these commands in any detail; we leave it to 

you to explore this capability further, and we recommend starting with the Help system. 

 Open the Run Control Command window (shown in   Figure 4-26  ) by the  Run . Run 
Control . Command  option or the  Command  button (  ) on the Run Interaction toolbar. 

 Now let’s use the features in the Run Control Command window to increase the 

capacity of the sealer resource. First we’ll check the current values of NR and MR 

for the Sealer resource. To do this, use the drop-down feature to select the command 

   Figure 4-26.  The Run Control Command Window    
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SHOW (that fi eld currently has the command ASSIGN showing). Then press the  

 Insert Command  button (  ) to insert the SHOW command into the window. Now type 

 MR(Sealer)  and press the  Enter  key. The response will be 

        MR(Sealer) 5 1.  

  This tells you that the Sealer resource currently has a capacity of one. Now repeat the 

process for NR(Sealer). The response will be 

        NR(Sealer) 5 1.  

  This tells you that one unit of the Sealer resource is currently busy, which should be 

obvious from the animation since it shows the airplane parked on that resource. Now 

let’s increase the Sealer resource capacity to 3. Use the ASSIGN command to make the 

following entry 

        ASSIGN MR(Sealer) 5 3  

  and press the  Enter  key. The Sealer resource now has a capacity of 3. Now press  Go  

and watch the animation to see the sealer queue shrink to zero in about 30 minutes of 

simulation time. 

 Finally, during a run, you might want to view reports on the status of the model. You 

can view reports at any time during a run. Simply go to the Project Bar and click on the 

Reports panel. You can request a report when the model is running or when the model 

is in Pause mode. Just like the Watch window, you could have an animation running and 

periodically request a report and never stop the run. Just remember to close the report 

windows when you’re done viewing them. 

 Even if you don’t use the Run Controller, the options available on the Run Interac-

tion toolbar provide the capability to detect model logic errors without your needing to 

become a SIMAN expert. So that you’ll understand how they work, we recommend that 

you take a simple animated model and practice using these tools. You could wait until 

you need them, but then not only would you be trying to fi nd an error, but you’d also be 

trying to learn several new tools! 

      4.6 Input Analysis: Specifying Model Parameters and Distributions 

  As you’ve no doubt noticed, there are a lot of details that you have to specify completely 

to defi ne a working simulation model. Probably you think fi rst of the logical aspects of 

the model, like what the entities and resources are, how entities enter and maybe leave 

the model, the resources they need, the paths they follow, and so on. These kinds of 

activities might be called  structural  modeling since they lay out the fundamental logic 

of what you want your model to look like and do. 

 You’ve also noticed that there are other things in specifying a model that are more 

numerical or mathematical in nature (and maybe therefore more mundane). For exam-

ple, in specifying Model 4-2, we declared that interarrival times for Part A were dis-

tributed exponentially with a mean of 5 minutes, total processing times for Part B Prep 

followed a triangular (3, 5, 10) distribution, the “up” times for the sealer were draws 

from an exponential (120) distribution, and we set up a schedule for the number of 
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rework operators at different times. You also have to make these kinds of specifi cations, 

which might be called  quantitative  modeling, and are potentially just as important to the 

results as are the structural-modeling assumptions. 

 So where did we get all these numbers and distributions for Model 4-2 (as well as for 

practically all the other models in this book)? Okay, we admit that we just made them 

up, after playing around for a while, to get the kinds of results we wanted to illustrate 

various points. We get to do this since we’re just writing a book rather than doing any real 

work, but unfortunately, you won’t have this luxury. Rather, you need to observe the real 

system (if it exists) or use specifi cations for it (if it doesn’t exist), collect data on what 

corresponds to your input quantitative modeling, and analyze these data to come up with 

reasonable “models,” or representations of how they’ll be specifi ed or generated in the 

simulation. For Model 4-2, this would entail collecting data on actual interarrival times 

for Part A, processing times for Part B Prep, up times for the sealer, and actual staffi ng 

at the rework station (as well as all the other quantitative inputs required to specify the 

model). You’d then need to take a look at these data and do some kind of analysis on them 

to specify the corresponding inputs to your model in an accurate, realistic, and valid way. 

 In this section, we’ll describe this process and show you how to use the Arena Input 

Analyzer (which is a separate application that accompanies and works with Arena) to 

help you fi t probability distributions to data observed on quantities subject to variation. 

    4.6.1 Deterministic vs. Random Inputs 

 One fundamental issue in quantitative modeling is whether you’re going to model an 

input quantity as a deterministic (non-random) quantity, or whether you’re going to 

model it as a  random variable  following some probability distribution. Sometimes 

it’s clear that something should be deterministic, like the number of rework operators, 

though you might want to vary the values from run to run to see what effect they have 

on performance. 

 But sometimes it’s not so clear, and we can offer only the (obvious) advice that you 

should do what appears most realistic and valid so far as possible. In Section 4.6.2, we’ll 

talk a little about using your model for what’s called  sensitivity analysis  to measure how 

important a particular input is to your output, which might indicate how much you need 

to worry about whether it should be modeled as deterministic or random. 

 You might be tempted to assume away your input’s randomness, since this seems 

simpler and has the advantage that the model’s outputs will be non-random. This can be 

pretty dangerous, though, from the model-validity viewpoint because it’s often the ran-

domness itself that leads to important system behavior that you’d certainly want to cap-

ture in your simulation model. For instance, in a simple single-server queue, we might 

assume that all interarrival times are  exactly  1 minute and that all processing times are 

 exactly  59 seconds; both of these fi gures might agree with  average  values from observed 

data on arrivals and service. If the model starts empty with the server idle and the fi rst 

arrival is at time 0, then there will never be a queue since each customer will fi nish 

service and leave 1 second before the next customer arrives. However, if the reality is 

that the interarrival and service times are exponential random variables with respective 

means of 1 minute and 59 seconds (rather than constant at these values), you get a very 

different story in terms of queue length (go ahead and build a little Arena model for this, 

kel01315_ch04_121-206.indd   179kel01315_ch04_121-206.indd   179 05/12/13   3:29 PM05/12/13   3:29 PM



180     Chapter 4

and run it for a long time); in fact, in the long run, it turns out that the average number 

of customers in the queue is 58.0167, a far cry from 0. Intuitively, what’s going on here 

is that, with the (correct) random model, it sometimes happens that some obnoxious 

customer has a long service demand, or that several customers arrive at almost the same 

time; it’s precisely these kinds of random occurrences, which never happen in the (in-

correct) deterministic model, that cause the queue to build up. 

     4.6.2 Collecting Data 

 One of the very early steps in planning your simulation project should be to identify 

what data you’ll need to support the model. Finding the data and preparing them for use 

in your model can be time-consuming, expensive, and often frustrating; and the avail-

ability and quality of data can infl uence the modeling approach you take and the level of 

detail you capture in the model. 

 There are many types of data that you might need to collect. Most models require a 

good bit of information involving time delays: interarrival times, processing times, travel 

times, operator work schedules, etc. In many cases, you’ll also need to estimate proba-

bilities, such as the percentage yield from an operation, the proportions of each type of 

customer, or the probability that a caller has a touch-tone phone. If you’re modeling a 

system where the physical movement of entities among stations will be represented in 

the model, the operating parameters and physical layout of the material-handling system 

will also be needed. 

 You can go to many sources for data, ranging from electronic databases to interviews 

of people working in the system to be studied. It seems that when it comes to fi nding 

data for a simulation study, it’s either “feast or famine,” with each presenting its own 

unique challenges. 

 If the system you’re modeling exists (or is similar to an actual system somewhere 

else), you may think that your job’s easier, since there should be a lot of data available. 

However, what you’re likely to fi nd is that the data you get are not the data you need. 

For example, it’s common to collect processing-time data on machines (that is, a part’s 

time span from arriving at the machine to completing the process), which at fi rst glance 

might look like a good source for processing times in the simulation model. But, if 

the observed processing-time data included the queue time or included machine failure 

times, they might not fi t into the model’s logic, which explicitly models the queueing 

logic and the machine failures separately from the machining time. 

 On the other hand, if you’re about to model a brand new system or a signifi cant 

modifi cation to an existing one, you may fi nd yourself at the other end of the spectrum, 

with little or no data. In this case, your model is at the mercy of rough approximations 

from designers, equipment vendors, etc. We’ll have a few suggestions (as opposed to 

solutions) for you in Section 4.6.5. 

 In either case, as you decide what and how much data to collect, it’s important to 

keep the following helpful hints in mind: 

    ■   Sensitivity analysis:  One often-ignored aspect of performing simulation studies 

is developing an understanding of what’s important and what’s not. Sensitivity 

analysis can be used even very early in a project to assess the impact of changes 
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in data on the model results. If you can’t easily obtain good data about some 

aspect of your system, run the model with a range of values to see if the system’s 

performance changes signifi cantly. If it doesn’t, you may not need to invest in 

collecting data and still can have good confi dence in your conclusions. If it does, 

then you’ll either need to fi nd a way to obtain reliable data or your results and 

recommendations will be coarser.  
   ■   Match model detail with quality of data:  A benefi t of developing an early 

understanding of the quality of your input data is that it can help you to decide 

how much detail to incorporate in the model logic. Typically, it doesn’t make 

any sense to model carefully the detailed logic of a part of your system for which 

you have unreliable values of the associated data, unless you think that, at a later 

time, you’ll be able to obtain better data.  
   ■   Cost:  Because it can be expensive to collect and prepare data for use in a model, 

you may decide to use looser estimates for some data. In making this assessment, 

sensitivity analysis can be helpful so that you have an idea of the value of the 

data in affecting your recommendations.  
   ■   Garbage in, garbage out:  Remember that the results and recommendations you 

present from your simulation study are only as reliable as the model and its in-

puts. If you can’t locate accurate data concerning critical elements of the model, 

you can’t place a great deal of confi dence in the accuracy of your conclusions. 

This doesn’t mean that there’s no value in performing a simulation study if you 

can’t obtain “good” data. You still can develop tremendous insight into the oper-

ation of a complex system, the interactions among its elements, and some level 

of prediction regarding how it will perform. But take care to articulate the reli-

ability of your predictions based on the quality of the input data.  

  A fi nal hint that we might offer is that data collection (and some of their analysis) is 

often identifi ed as the most diffi cult, costly, time-consuming, and tedious part of a sim-

ulation study. This is due in part to various problems you might encounter in collecting 

and analyzing data, and in part due to the undeniable fact that it’s just not as much fun 

as building the logical model and playing around with it. So, be of good cheer in this 

activity, and keep reminding yourself that it’s an important (if not pleasant or exciting) 

part of why you’re using simulation. 

     4.6.3 Using Data 

 If you have historical data (for example, a record of breakdowns and repair times for a 

machine), or if you know how part of a system will work (for example, planned operator 

schedules), you still face decisions concerning how to incorporate the data into your 

model. The fundamental choice is whether to use the data directly or whether to fi t a 

probability distribution to the existing data. Which approach you decide to use can be 

chosen based on both theoretical issues and practical considerations. 

 From a theoretical standpoint, your collected data represent what’s happened in the 

past, which may or may not be an unbiased prediction of what will happen in the future. 

If the conditions surrounding the generation of these historical data no longer apply 

(or if they changed during the time span in which the data were recorded), then the 
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historical data may be biased or may simply be missing some important aspects of the 

process. For example, if the historical data are from a database of product orders placed 

over the last 12 months, but 4 months ago a new product option was introduced, then the 

order data stored in the preceding 8 months are no longer directly useful since they don’t 

contain the new option. The trade-offs are that if you use the historical data directly, no 

values other than those recorded can be experienced; but if you sample from a fi tted 

probability distribution, it’s possible to get values that aren’t possible (for example, from 

the tails of unbounded distributions) or to lose important characteristics (for example, 

bimodal data, sequential patterns). 

 Practical considerations can come into play too. You may not have enough historical 

data to drive a simulation run that’s long enough to support your analysis. You may very 

well need to consider the effect of fi le access on the speed of your simulation runs as 

well. Reading a lot of data from a fi le is typically slower than sampling from a proba-

bility distribution, so driving the model with the historical data during a run can slow 

you down. 

 Regardless of your choice, Arena supplies built-in tools to take care of the mechan-

ics of using the historical data in your model. If you decide to fi t a probability distri-

bution to the data, the Input Analyzer facilitates this process, providing an expression 

that you can use directly in your model; we’ll go into this in Section 4.6.4. If you want 

to drive the model directly from the historical data, you can bring the values in once to 

become part of the model’s data structure, or you can read the data dynamically during 

the simulation run, which will be discussed in Section 10.1. 

     4.6.4 Fitting Input Distributions via the Input Analyzer 

 If you decide to incorporate your existing data values by fi tting a probability distribu-

tion to them, you can either select the distribution yourself and use the Input Analyzer 

to provide numerical estimates of the appropriate parameters, or you can fi t a number 

of distributions to the data and select the most appropriate one. In either case, the Input 

Analyzer provides you with estimates of the parameter values (based on the data you 

supply) and a ready-made expression that you can just copy and paste into your model. 

 When the Input Analyzer fi ts a distribution to your data, it estimates the distribution’s 

parameters (including any shift or offset that’s required to formulate a valid  expression) 

and calculates a number of measures of how good the distribution fi ts your data. You can 

use this information to select which distribution you want to use in your model, which 

we discuss next. 

 Probability distributions can be thought of as falling into two main types:  theoretical  
and  empirical . Theoretical distributions, such as the exponential and gamma, generate 

samples based on a mathematical formulation. Empirical distributions simply divide the 

actual data into groupings and calculate the proportion of values in each group, possibly 

interpolating between points for more accuracy. 

 Each type of distribution is further broken into  continuous  and  discrete  types. The 

continuous theoretical distributions that Arena supports for use in your model are the ex-

ponential, triangular, and Weibull distributions mentioned previously, as well as the beta, 

Erlang, gamma, lognormal, uniform, and normal distributions. These distributions are 
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referred to as continuous distributions because they can return any real-valued quantity 

(within a range for the bounded types). They’re usually used to represent time durations in 

a simulation model. The Poisson distribution is a discrete distribution; it can return only 

integer-valued quantities. It’s often used to describe the number of events that occur in an 

interval of time or the distribution of randomly varying batch sizes. 

 You also can use one of two empirical distributions: the discrete and continuous prob-

ability distributions. Each is defi ned using a series of probability/value pairs representing 

a histogram of the data values that can be returned. The  discrete empirical distribution  

returns only the data values themselves, using the probabilities to choose from among the 

individual values. It’s often used for probabilistically assigning entity types. The  continu-
ous empirical distribution  uses the probabilities and values to return a real-valued quantity. 

It can be used in place of a theoretical distribution in cases where the data have unusual 

characteristics or where none of the theoretical distributions provide a good fi t. 

 The Input Analyzer can fi t any of these distributions to your data. However, you 

must decide whether to use a theoretical or empirical distribution, and unfortunately, 

there aren’t any standard rules for making this choice. Generally, if a histogram of your 

data (displayed automatically by the Input Analyzer) appears to be fairly uniform or has 

a single “hump,” and if it doesn’t have any large gaps where there aren’t any values, 

then you’re likely to obtain a good fi t from one of the theoretical distributions. However, 

if there are a number of value groupings that have many observations (multimodal) or 

there are a number of data points that have a value that’s signifi cantly different from the 

main set of observations, an empirical distribution may provide a better representation 

of the data; an alternative to an empirical distribution is to divide the data somehow, 

which we’ll describe at the end of this section. 

 The Input Analyzer is a standard tool that accompanies Arena and is designed spe-

cifi cally to fi t distributions to observed data, provide estimates of their parameters, and 

measure how well they fi t the data. There are four steps required to use the Input Ana-

lyzer to fi t a probability distribution to your data for use as an input to your model:

    1.  Create a text fi le containing the data values.  

   2.  Fit one or more distributions to the data.  

   3.  Select which distribution you’d like to use.  

   4.  Copy the expression generated by the Input Analyzer into the appropriate fi eld in 

your Arena model.  

   To prepare the data fi le, simply create an ordinary ASCII text fi le containing the data 

in free format. Any text editor, word-processor, or spreadsheet program can be used. The 

individual data values must be separated by one or more “white space characters” (blank 

spaces, tabs, or line feeds). There are no other formatting requirements; in particular, 

you can have as many data values on a line as you want, and the number of values per 

line can vary from line to line. When using a word-processor or spreadsheet program, 

be sure to save the fi le in a “text only” format. This eliminates any character or para-

graph formatting that otherwise would be included. For example,   Figure 4-27   shows 

the contents of an ASCII fi le called  partbprp.dst  (the default fi le extension for 
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plain-text data fi les for the Input Analyzer is  .dst ) containing observations on 187 Part B 

Prep times; note that the values are separated by blanks or line feeds, there are different 

numbers of observations per line, and there is no particular order or layout to the data.  

 To fi t a distribution to these data, run the Input Analyzer (for example, select  Tools . 
Input Analyzer  from Arena). In the Input Analyzer, load the data fi le into a data fi t win-

dow by creating a new window ( File . New  or the    button) for your fi tting session (not 

for a data fi le), and then attaching your data fi le using either  File . Data File . Use 
Existing  or the    button. The Input Analyzer displays a histogram of the data in the 

top part of the window and a summary of the data characteristics in the bottom part, as 

shown in   Figure 4-28  .  

  6.1    9.4    8.1    3.2    6.5    7.2    7.8    4.9    3.5    6.6    6.1    5.1    4.9    4.2  
  6.4    8.1    6.0    8.2    6.8    5.9    5.2                
  6.5    5.4    5.9    9.3    5.4    6.5    7.4                
  6.0    12.6    6.8    5.6    5.8    6.2    5.6    6.4    9.5    7.2    5.6    4.7    4.5    7.0  
  7.7    6.9    5.4    6.3    8.1    4.9    5.3    5.0    4.7    5.7    4.9    5.3    6.4    7.5  
  4.4    4.9    7.6    3.6    8.3    5.6    6.2    5.0              
  7.4    5.2    5.0    6.5    8.0    6.2    5.0    4.8    6.2    4.9          
  7.0    7.7    4.7    5.0    6.0    9.0    5.7    7.1    5.0    5.6          
  4.9    7.8    7.1    7.1    11.5    5.4    5.2                
  6.1    6.8    5.4    3.5    7.1    5.7    5.4                
  5.7    6.1    4.2    8.8    7.4    5.5                  
  5.3    5.9    5.2    6.4    4.5    5.1    5.6    6.1              
  8.1    8.1    5.1    8.3    7.5    7.6    10.9    6.5    9.0    5.9    6.8    9.0    6.5    6.0  
  5.8    5.0    6.4    4.7    4.5    6.2    5.2    7.9    5.5    4.9    7.2    4.9    4.5    6.0  
  6.3    8.3    5.5    7.8    5.4    5.3    6.6    3.6    7.3    5.3    8.9    6.8    7.1    8.7  
  6.4    3.3    7.0    7.7    6.7    7.6    7.6    7.1    5.6    5.9    4.1    7.5    7.7    5.4  
  4.8    5.5    8.8    7.2    6.3    10.0    4.3    4.9    5.7    5.1    6.7    6.0    5.6    7.2  

  7.0    7.8    6.3    6.1    8.4                    

  Figure 4-27.  Listing of the ASCII File  partbprp.dst  

  Data Summary  

  Number of Data Points    =  187  
  Min Data Value    =  3.2  
  Max Data Value    =  12.6  
  Sample Mean    =  6.33  
  Sample Std Dev    =  1.51  

  Histogram Summary  
  Histogram Range    =  3 to 13  
  Number of Intervals    =  13  

  Figure 4-28.  Histogram and Summary of  partbprp.dst  
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 You can adjust the relative size of the windows by dragging the splitter bar in the 

center of the window. Or, to see more of the data summary, you can scroll down through 

the text. Other options, such as changing the characteristics of the histogram, are de-

scribed in online Help. 

 The Input Analyzer’s  Fit  menu provides options for fi tting individual probability dis-

tributions to the data (that is, estimating the required parameters for a given distribution). 

After you fi t a distribution, its density function is drawn on top of the histogram display, 

and a summary of the characteristics of the fi t is displayed in the text section of the window. 

(This information also is written to a plain ASCII text fi le named DISTRIBUTION.OUT, 

where DISTRIBUTION indicates the distribution you chose to fi t, such as TRIANGLE 

for triangular.) The exact expression required to represent the data in Arena is also given in 

the text window. You can transfer this to Arena by selecting  Edit  .  Copy Expression  in the 

Input Analyzer, opening the appropriate dialog box in Arena, and pasting the expression 

( Ctrl 1 V ) into the desired fi eld.   Figure 4-29   shows this for fi tting a triangular distribution 

to the data in  partbprp.dst . Though we’ll go into the goodness-of-fi t issue below, it’s 

apparent from the plot in   Figure 4-29   that the triangular distribution doesn’t fi t the data 

particularly well.  

 If you plan to use a theoretical distribution in your model, you may want to start by 

selecting  Fit . Fit All  (or the    button on the toolbar). This automatically fi ts all of the 

applicable distributions to the data, calculates test statistics for each (discussed next), 

and displays the distribution that has the minimum square error value (a measure of the 

quality of the distribution’s match to the data).   Figure 4-30   shows the results of the Fit 

All option for our Part B Prep times and indicates that a gamma distribution with  �  5 

0.775 and  �  5 4.29, shifted to the right by three, provides the “best” fi t in the sense of 

  Distribution Summary  

  Distribution:   Triangular    
  Expression:    TRIA(3, 5.69, 13)    
  Square Error:   0.024551    

  Chi-Square Test    
  Number of intervals    =  10  
  Degrees of freedom    =  8  
  Test Statistic    =  60.6  
  Corresponding p-value    <  0.005  

  Kolmogorov-Smirnov Test    
  Test Statistic    =  0.222  
  Corresponding p-value    <  0.01  

  Figure 4-29.  Fitting a Triangular Distribution to  partbprp.dst    
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minimum square error. Comparing the plot with that in   Figure 4-29   indicates that this 

fi tted gamma distribution certainly appears to be a better representation of the data than 

did the fi tted triangular distribution. Other considerations for selecting which theoretical 

distribution to use in your model are discussed following.  

 If you want to use a discrete or continuous empirical distribution, use the  Empirical  
option from the  Fit  menu. You may fi rst want to adjust the number of histogram cells, 

which determines how many probability/value pairs will be calculated for the empirical 

distribution. To do so, select  Options . Parameters . Histogram  and change the num-

ber of intervals. The expression returned, which you should retrieve via the  Edit  .  Copy 
Expression  menu option rather than selecting it with your mouse in the Distribution 

Summary region below the histogram, may be rather long and complicated. For in-

stance, when “fi tting” an Empirical distribution to the data in  partprb.dst , you get 

  CONT or DISC (0.000,  3.000, 0.032,  3.769, 0.080,  4.538, 0.278,  
5.308, 0.481,  6.077, 0.674,  6.846, 0.818,  7.615, 0.920,  8.385, 
0.963,  9.154, 0.979,  9.923, 0.984, 10.692, 0.989, 11.462, 0.995, 
12.231, 0.995, 13.000)  

 all in one line without any linefeeds or line breaks (which is as it should be for past-

ing into your Arena model, and is why you should retrieve it as suggested rather than 

dragging over it with your mouse). Note that the expression covers both the continuous 

( CONT ) and discrete ( DISC ) cases, so you should delete either  CONT  or  DISC  (and of 

course, the “ or ”) for whichever one you don’t want. And to make this actually work in 

  Distribution Summary  

  Distribution:    Gamma  
  Expression:    3+ GAMM(0.775, 4.29)  
  Square Error:    0.003873  

  Chi-Square Test    
  Number of intervals    =  7  
  Degrees of freedom    =  4  
  Test Statistic    =  4.68  
  Corresponding p-value    =  0.337  

  Kolmogorov-Smirnov Test    
  Test Statistic    =  0.027  
  Corresponding p-value    >  0.15  

  Figure 4-30.  Fit All Option to  partbprp.dst    
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Arena, you’ll need to edit the end of it slightly, by inserting another pair at the end but 

still in the parentheses, of the form 

  , 1.000, xmax  

 where  xmax  is a number at least as big as the biggest one in the existing list ( 13.000  in 

this example) and will be the largest value possible to be generated from this expression.  

Since these are processing times in this example, they would be continuous random 

variables, so our fi nal expression is 

  CONT (0.000,  3.000, 0.032,  3.769, 0.080,  4.538, 0.278,  5.308, 
0.481,  6.077, 0.674,  6.846, 0.818,  7.615, 0.920,  8.385, 0.963,  
9.154, 0.979,  9.923, 0.984, 10.692, 0.989, 11.462, 0.995, 12.231, 
0.995, 13.000, 1.000, 14.000)  

 (note the “ , 1.000, 14.000 ” added at the end, and we decided that 14 would be 

the largest generated value possible). 

 In addition to “eyeballing” the fi tted densities on top of the histograms, the Input 

 Analyzer provides three numerical measures of the quality of fi t of a distribution to the 

data to help you decide. The fi rst, and simplest to understand, is the  mean square error . 

This is the average of the square error terms for each histogram cell, which are the 

squares of the differences between the relative frequencies of the observations in a cell 

and the relative frequency for the fi tted probability distribution function over that cell’s 

data range. The larger this square error value, the further away the fi tted distribution is 

from the actual data (and thus the poorer the fi t). If you fi t all applicable distributions 

to the data, the Fit All Summary table orders the distributions from smallest to largest 

square error (select  Window . Fit All Summary ), shown in   Figure 4-31   for  partbprp.
dst . While we see that gamma won the square-error contest, it was followed closely by 

Weibull, beta, and Erlang, any of which would probably be just as accurate as gamma 

to use as input to the model.  

 The other two measures of a distribution’s fi t to the data are the chi-square and 

Kolmogorov-Smirnov (K-S) goodness-of-fi t hypothesis tests. These are standard statis-

tical hypothesis tests that can be used to assess whether a fi tted theoretical distribution 

is a good fi t to the data. The Input Analyzer reports information about the tests in the 

  Function    Sq Error  

  Gamma    0.00387  
  Weibull    0.00443  
  Beta    0.00444  
  Erlang    0.00487  
  Normal    0.00633  
  Lognormal    0.00871  
  Triangular    0.0246  
  Uniform    0.0773  
  Exponential    0.0806  

  Figure 4-31.  Fit All Summary for  partbprp.dst  
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text window (see the bottoms of Figures   4-29   and   4-30  ). Of particular interest is the 

 Corresponding p-value , which will always fall between 0 and 1.  4     To interpret this, larger 

 p -values indicate better fi ts. Corresponding  p -values less than about 0.05 indicate that 

the distribution’s not a very good fi t. Of course, as with any statistical hypothesis test, 

a high  p -value doesn’t constitute “proof” of a good fi t—just a lack of evidence against 

the fi t. 

  When it comes down to fi tting or choosing a distribution to use, there’s no rigorous, 

universally agreed-upon approach that you can employ to pick the “best” distribution. 

Different statistical tests (such as the K-S and chi-square) might rank distributions dif-

ferently, or changes in the preparation of the data (for example, the number of histogram 

cells) might reorder how well the distributions fi t. 

 Your fi rst critical decision is whether to use a theoretical distribution or an empirical 

one. Examining the results of the K-S and chi-square tests can be helpful. If the  p -values 

for one or more distributions are fairly high (for example, 0.10 or greater), then you can 

use a theoretical distribution and have a fair degree of confi dence that you’re getting a 

good representation of the data (unless your sample is quite small, in which case the 

discriminatory power of goodness-of-fi t tests is quite weak). If the  p -values are low, you 

may want to use an empirical distribution to do a better job capturing the characteristics 

of the data. 

 If you’ve decided to use a theoretical distribution, there often will be a number of 

them with very close goodness-of-fi t statistics. In this case, other issues may be worth 

considering for selecting among them:

    ■  First of all, you may want to limit yourself to considering only bounded or un-

bounded distributions, based on your understanding of how the data will be 

used in your model. For instance, often the triangular (bounded) and normal 

(unbounded) distributions will be good fi ts to data such as process times. Over a 

long simulation run, they each might provide similar results, but during the run, 

the normal distribution might periodically return fairly large values that might 

not practically occur in the real system. A normal distribution with a mean that’s 

close to zero may return an artifi cially large number of zero-valued samples if 

the distribution’s being used for something that can’t be negative, such as a time 

(Arena will change all negative input values to zero if they occur in a context 

where negative values don’t make sense, like an interarrival or process time); this 

might be a compelling reason to avoid the normal distribution to represent quan-

tities like process times that cannot be negative. On the other hand, bounding the 

triangular to obtain a faithful overall representation of the data might exclude a 

few outlying values that should be captured in the simulation model.  
   ■  Another consideration is of a more practical nature; namely, that it’s easier to ad-

just parameters of some distributions than of others. If you’re planning to make 

any changes to your model that include adjusting the parameters of the distri-

bution (for example, for sensitivity analysis or to analyze different scenarios), 

  4  More precisely, the  p -value is the probability of getting a data set that’s more inconsistent with the fi tted 

distribution than the data set you actually got, if the fi tted distribution is truly “the truth.” 
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you might favor those with more easily understood parameters. For example, 

in representing interarrival times, Weibull and exponential distributions might 

provide fi ts of similar quality, but it’s much easier to change an interarrival-time 

mean by adjusting an exponential mean than by changing the parameters of a 

Weibull distribution since the mean in the latter case is a complicated function of 

the parameters.  
   ■  If you’re concerned about whether you’re making the correct choice, run the 

model with each of your options to see if there’s a signifi cant difference in the re-

sults (you may have to wait until the model’s nearly complete to be able to draw 

a good conclusion). You can further investigate the factors affecting distribution 

fi ts (such as the goodness-of-fi t tests) by consulting Arena’s online Help or other 

sources, such as Pegden, Shannon, and Sadowski (1995) or Law and Kelton 

(2000). Otherwise, select a distribution based on the qualitative and practical 

issues discussed above.    

 Before leaving our discussion of the Input Analyzer, we’d like to revisit an issue we 

mentioned earlier, namely, what to do if your data appear to have multiple peaks or per-

haps a few extreme values, sometimes called  outliers . Either of these situations usually 

makes it impossible to get a decent fi t from any standard theoretical distribution. As we 

mentioned before, one option is to use an empirical distribution, which is probably the 

best route unless your sample size is quite small. In the case of outliers, you should cer-

tainly go back to your data set and make sure that they’re actually correct rather than just 

being some kind of error, perhaps just a typo; if data values appear to be in error and you 

can’t backtrack to confi rm or correct them, then you should probably just remove them. 

 In the case of either multiple peaks or (correct) outliers, you might want to consider 

dividing your data set into two (maybe more) subsets before reading them into the Input 

Analyzer. For example, suppose you have data on machine downtimes and notice from 

the histogram that there are two distinct peaks; that is, the data are  bimodal . Reviewing 

the original records, you discover that these downtimes resulted from two different sit-

uations—breakdowns and scheduled maintenance. Separating the data into two subsets 

reveals that downtimes resulting from breakdowns tend to be longer than downtimes 

due to scheduled maintenance, explaining the two peaks. You could then separate the 

data (before going into the Input Analyzer), fi t separate distributions to these data sets, 

and then modify your model logic to account for both kinds of downtimes. 

 You can also do a different kind of separation of the data directly in the Input Ana-

lyzer, based purely on their range. After loading the data fi le, select  Options . Parame-
ters . Histogram  to specify cutoffs for the Low Value and High Value, and these cutoffs 

will then defi ne the bounds of a  subset  of your entire data set. For bimodal data, you’d 

focus on the left peak by leaving the Low Value alone and specifying the High Value as 

the point where the histogram bottoms out between the two peaks, and later focus on the 

right peak by using this cutpoint as the Low Value and using the original High Value for 

the entire data set; getting the right cutpoint could require some trial and error. Then fi t 

whatever distribution seems promising to each subset (or use the Fit All option) to rep-

resent that range of the data. If you’ve already fi t a distribution (or used Fit All) before 

making Low/High Value cut, the Input Analyzer will immediately redo the fi t(s) and 
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give you the new results for the data subset included in your cut; if you’ve done Fit All, a 

different distribution form altogether might come up as “the best.” You’d need to repeat 

this process for each subset of the data. As a practical matter, you probably should limit 

the number of subsets to two or three since this process can become cumbersome, and 

it’s probably not obvious where the best cutpoints are. To generate draws in your simula-

tion model representing the original entire data set, the idea is to select one of your data 

subsets randomly, with the selection probabilities corresponding to the relative sizes of 

the subsets, then generate a value from the distribution you decided on for that subset. 

For instance, if you started out with a bimodal data set of size 200 and set your cutpoint 

so that the smallest 120 points represented the left peak and the largest 80 points rep-

resented the right peak, you’d generate from the distribution fi tted to the left part of the 

data with probability 0.6 and generate from the distribution fi tted to the right part of the 

data with probability 0.4. This kind of operation isn’t exactly provided automatically in 

a single Arena module, so you’d have to put something together yourself. If the value 

involved is an activity time like a time delay an entity incurs, one possibility would be 

to use the Decide module with a Type of 2-way by Chance or N-way by Chance, de-

pending on whether you have two versus more than two subsets to do a “coin fl ip” to 

decide from which subset to generate, then Connect to one of several Assign modules 

to Assign a value to an entity attribute as a draw from the appropriate distribution, and 

use this attribute downstream for whatever it’s supposed to do. A different approach 

would be to set up an Arena Expression for the entire thing; Expressions are covered in 

Section 5.2.3. 

     4.6.5 No Data? 

 Whether you like it or not, there are times when you just can’t get reliable data on what 

you need for input modeling. This can arise from several situations, like (obviously) the 

system doesn’t exist, data collection is too expensive or disruptive, or maybe you don’t 

have the cooperation or clearance you need. In this case, you’ll have to rely on some 

fairly arbitrary assumptions or guesses, which we dignify as “ ad hoc data .” We don’t 

pretend to have any great solutions for you here, but have a few suggestions that people 

have found useful. No matter what you do, though, you really should carry out some 

kind of sensitivity analysis of the output to these  ad hoc  inputs to have a realistic idea of 

how much faith to put in your results. You’ll either need to pick some deterministic value 

that you’ll use in your study (or run the model a number of times with different values), 

or you’ll want to represent the system characteristic using a probability distribution. 

 If the values are for something other than a time delay, such as probabilities, op-

erating parameters, or physical layout characteristics, you can either select a constant, 

deterministic value or, in some cases, use a probability distribution. If you use a deter-

ministic value by entering a constant in the model (for example, 15% chance of failing 

inspection), it’s a good idea to perform some sensitivity analysis to assess what effect 

the parameter has on the model’s results. If small changes to the value infl uence the 

performance of the system, you may want to analyze the system explicitly for a range of 

values (maybe small, medium, and large) rather than just for your best guess. 

 If the data represent a time delay, you’ll almost surely want to use a probability 

distribution to capture both the activity’s inherent variability as well as your uncertainty 
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about the value itself. Which distribution you’ll use will be based on both the nature of 

the activity and the type of data you have. When you’ve selected the distribution, then 

you’ll need to supply the proper parameters based on your estimates and your assess-

ment of the variability in the process. 

 For selecting the distribution in the absence of empirical data, you might fi rst look at 

the exponential, triangular, normal, and uniform distributions. The parameters for these 

distributions are fairly easy to understand, and they provide a good range of characteris-

tics for a range of modeling applications, as indicated in   Table 4-2  .  

 If the times vary independently (that is, one value doesn’t infl uence the next one), 

your estimate of the mean isn’t too large, and there’s a large amount of variability in 

the times, the exponential distribution might be a good choice. It’s most often used for 

interarrival times; examples would be customers coming to a restaurant or pick requests 

from a warehouse. 

 If the times represent an activity where there’s a “most likely” time with some vari-

ation around it, the triangular distribution is often used because it can capture processes 

with small or large degrees of variability and its parameters are fairly easy to understand. 

The triangular distribution is defi ned by minimum, most likely (modal), and maximum 

values, which is a natural way to estimate the time required for some activity. It has the 

advantage of allowing a non-symmetric distribution of values around the most likely, 

which is commonly encountered in real processes. It’s also a bounded distribution—no 

value will be less than the minimum or greater than the maximum—which may or may 

not be a good representation of the real process. 

 You may be wondering why we’re avoiding what might be the most familiar distri-

bution of all, the normal distribution, which is the classical “bell curve” defi ned by a 

mean and standard deviation. It returns values that are symmetrically distributed around 

the mean and is an unbounded distribution, meaning that you could get a very large or 

very small value once in a while. In cases where negative values can’t be used in a model 

(for example, the delay time in a process), negative samples from a normal distribution 

are set by Arena to a value of 0; if the mean of your distribution is close to 0 (for exam-

ple, no more than about three or four times the standard deviation from 0), the normal 

distribution may be inappropriate. 

  Table 4-2.   Possible No-Data Distributions  

 Distribution  Parameters  Characteristics  Example Use 

 Exponential  Mean  High variance  Interarrival times 

     Bounded on left  Time to machine failure 

     Unbounded on right  (constant failure rate) 

 Triangular  Min, Mode, Max  Symmetric or non-symmetric  Activity times 

     Bounded on both sides   

 Uniform  Min, Max  All values equally likely  Little known about process 

     Bounded on both sides   
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 On the other hand, if the mean is positive and quite a bit larger than the standard 

deviation, there will be only a small chance of getting a negative value, like maybe one 

in a million. This sounds (and is) small, but remember that in a long simulation run, or 

one that is replicated many times,  one in a million can really happen , especially with 

modern, fast computers; and in that case, Arena would truncate the negative value to 

zero if its usage in the model can only be positive, perhaps causing an unwanted or 

extreme action to be taken and possibly even invalidating your results.   Figure 4-32   

shows a fairly useless little Arena model (Model 4-5) in which entities arrive, spaced 

exactly an hour apart, an observation from a normal distribution with mean  �  5 3.0 and 

standard deviation  �  5 1 is assigned to the attribute Normal Observation, and the en-

tity goes to one of two Record modules, depending on whether Normal Observation is 

non- negative or negative, which count the number of non-negative and negative obser-

vations obtained out of the total (we’ll leave it to you to look through this model on your 

own).   Table 4-3   gives the results for several values of  �  (holding  �  at 1), and you can see 

that this is going to occur even if the mean is three or four (or more) standard deviations 

above zero. Using electronic normal tables, the exact probability of getting a negative 

value can be computed, and one over this number gives the approximate number of ob-

servations (on average) you’d need to get a negative value—not too many, considering 

the speed of generating these (it took less than 2 seconds on a garden-variety 2.8GHz 

computer to complete each of the million-draw runs, and under 14 seconds to complete 

the 10-million-draw run). The last value of  �  in the table was picked since it yields a 

probability of exactly one in a million of a getting a negative observation (the fi rst mil-

lion happened not to produce any negatives, but 7 in 10 million is close enough to 1 in 

a million). Now we respect and admire Gauss as a great mathematician, but we’re just 

not big fans of using the normal as a simulation input distribution to represent logically 

non-negative things like process times, even though Arena allows it. For data sets that 

appear to be well fi t (or even best fi t) by a normal distribution, a different distribution 

that completely avoids negative values, like Weibull, gamma, lognormal, Erlang, beta, 

or perhaps empirical, will probably fi t almost as well and not expose you to the risk of 

generating any naughty negative values at all.  

 Finally, if you really don’t know much about the process but can guess what the min-

imum and maximum values will be, you might use the uniform distribution. It returns all 

values between a minimum and maximum with equal likelihood. 

   Figure 4-32.  Model 4-5 to Count Negative Normal Observations    
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     4.6.6 Nonstationary Arrival Processes 

 This somewhat specialized topic deserves mention on its own since it seems to come 

up often and can be very important in terms of representing system behavior validly. 

Many systems subject to external arrivals, like service systems for people, telephone 

call centers, and manufacturing systems with outside customer demands, experience 

arrival loads that can vary dramatically over the time frame of the simulation. Examples 

include a noon rush for burgers, heavy calls to a technical support line in the middle of 

the afternoon, and strong demand on a manufacturing system during certain seasons. A 

specifi c probabilistic model for this, the  nonstationary Poisson process , is useful and 

often provides an accurate way to refl ect time-varying arrival patterns. You need to deal 

with two issues: how to estimate or specify the rate function, and then how to generate 

the arrival pattern in the simulation. 

 There are a lot of ways to estimate or specify a rate function from the data, some 

of which can be pretty complicated. We’ll stick to one fairly simple method called the 

 piecewise-constant  rate function, which seems to work well in many applications. First, 

identify lengths of time within which the arrival rate appears to be fairly fl at; for in-

stance, a call center’s arrivals might be fairly constant over half-hour periods but could 

be quite different in different periods. Count up the numbers of arrivals in each period, 

and then compute a different rate for each period. For instance, suppose the call center 

experiences the following numbers of incoming calls for the four 30-minute periods 

between 8:00  am  and 10:00  am : 20, 35, 45, and 50. Then the rates,  in units of calls per 
minute , for the fi rst four 30-minute periods would be 0.67, 1.17, 1.50, and 1.67. 

 Once you’ve estimated the rate function in this way, you need to make sure that 

Arena follows this pattern in generating the arrivals to your model. The Create module 

will do this if you select Schedule as the Type for Time Between Arrivals. You then 

must specify the rate function via the Schedule data module, similarly to what we did 

in Section 4.2.2 for a Resource Schedule. One caution here: Arena allows you to mix 

and match whatever time units you want, but you must be careful that the numbers and 

time units are defi ned properly (and expressed to Arena in terms of arrivals per  hour,  no 

matter what other time units you’re using or have specifi ed as your Base Time Units). 

We’ll do this in Model 5-2 in Chapter 5. In Chapter 12, we’ll have more to say about 

  Table 4-3.    Getting Negative Values from a Normal Distribution with Standard Deviation s 5 1  

 Mean  m  
 Number of 

Draws 
 Number of 

Negative Draws 

Exact Probability 
That an Observation 

Will Be Negative

“One in This Many” 
Will Be Negative 

(on Average)

 3.0  1 million  1,409 0.001350 741

 3.5  1 million  246 0.000233 4,298

 4.0  1 million  37 0.000032 31,560

 4.5  1 million  3 0.000003 294,048
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estimating the rate function, as well as what underlies Arena’s generation method for 

nonstationary arrivals. 

     4.6.7 Multivariate and Correlated Input Data 

 Most of the time we assume that all random variables driving a simulation are gener-

ated independently of each other from whatever distribution we decide on to represent 

them. Sometimes, though, this may not be the best assumption, for purely physical 

reasons. For instance, in Model 4-2 you could imagine that certain parts are “diffi cult”; 

maybe you’d detect this by noticing that a large prep time for a specifi c part tends to 

be followed by a large sealer time for that part; that is, these two times are positively 

correlated. Ignoring this correlation could lead to an invalid model and biased results. 

 There are a number of ways to model situations like this, to estimate the required 

parameters (including the strength of the correlations), and to generate the required ob-

servations on the random variables during the simulation. Some of these methods entail 

viewing the associated random variables as coordinates of a random  vector  having some 

joint  multivariate  distribution to be fi tted and generated from. You might also be able 

to specify some kind of formula-based association between related input quantities. 

Frankly, though, this is a pretty diffi cult issue in terms of both estimating the behavior 

and generating it during the simulation within high-level dynamic systems simulation 

software like Arena. For more on these and related issues, see Law and Kelton (2000) 

or Devroye (1986). 

       4.7 Summary and Forecast 

 If you’ve read and understood the material in this chapter, you should be getting danger-

ous in the use of Arena. We encourage you to press other buttons in the modules we’ve 

used and even try modules that we’ve not used. If you get stuck, try the online Help 

feature, which may not answer your question, but will answer the questions you should 

be asking. You might also want to try other animation features or provide nicer pictures. 

At this point, the best advice we can give you is to  use  Arena. Chapters 5 through12 will 

cover most of the modeling capabilities (and some of the statistical-analysis capabili-

ties) of Arena in more depth. 

   4.8 Exercises 

    4-1  Travelers arrive at the main entrance door of an airline terminal according to an 

exponential interarrival-time distribution with mean 1.6 minutes, with the fi rst arrival 

at time 0. The travel time from the entrance to the check-in is distributed uniformly 

between 2 and 3 minutes. At the check-in counter, travelers wait in a single line until 

one of fi ve agents is available to serve them. The check-in time (in minutes) follows a 

Weibull distribution with parameters  �  5 7.78 and  �  5 3.91. Upon completion of their 

check-in, they are free to travel to their gates. Create a simulation model, with animation 

(including the travel time from entrance to check-in), of this system. Run the simulation 

for a single replication of 16 hours to determine the average time in system, number of 

passengers completing check-in, and the time-average length of the check-in queue. Put 

a text box in your model with the numerical results requested.  
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   4-2  Develop a model of a simple serial two-process system. Items arrive at the system 

with a mean time between arrivals of 10 minutes, with the fi rst arrival at time 0. They 

are immediately sent to Process 1, which has a single resource with a mean service time 

of 9.1 minutes. Upon completion, they are sent to Process 2, which is identical to (but 

independent of) Process 1. Items depart the system upon completion of Process 2. Per-

formance measures of interest are the time-average numbers in queue at each process 

and the average total time in system of items; put a text box in your model with each of 

these performance measures’ values for each of the four run conditions listed. Using a 

single replication of length 10,000 minutes, make the following four runs and compare 

the results (noting that the structure of the model is unchanged, and it’s only the input 

distributions that are changing):

       Run 1: exponential interarrival times and exponential service times  

      Run 2: constant interarrival times and exponential service times  

      Run 3: exponential interarrival times and constant service times  

      Run 4: constant interarrival times and constant service times     

   4-3  Modify the Exercise 4-1 check-in problem by adding agent breaks. The 16 hours 

are divided into two 8-hour shifts. Agent breaks are staggered (that is, one agent goes on 

break, and immediately upon return, the next agent goes on break, until all agents have 

had their breaks), starting at 90 minutes into each shift. Each agent is given one 15-minute 

break. Agent lunch breaks (30 minutes) are also staggered, starting 3.5 hours into each 

shift. The agents are rude and, if they’re busy when break time comes around, they just 

leave anyway and make the passenger wait until break time is over before fi nishing up that 

passenger (since all agents are identical, it’s not necessary for the same agent to fi nish up 

that passenger). Compare the results of this model to those of the model without agent 

breaks. Put a text box in your model with the numerical results requested, and repeat those 

same results from Exercise 4-1 in this text box for ready comparison; write a few words in 

your text box to address the question about comparison with Exercise 4-1.  

   4-4  Two different part types arrive at a facility for processing. Parts of Type 1 arrive 

with interarrival times following a lognormal distribution with a log mean of 11.5 hours 

and log standard deviation of 2.0 hours (note that these values are the mean and standard 

deviation of this lognormal random variable itself); the fi rst arrival is at time 0. These 

arriving parts wait in a queue designated for only Part Type 1’s until a (human) operator 

is available to process them (there’s only one such human operator in the facility) and 

the processing times follow a triangular distribution with parameters 5, 6, and 8 hours. 

Parts of Type 2 arrive with interarrival times following an exponential distribution with 

mean of 15.1 hours; the fi rst arrival is at time 0. These parts wait in a second queue 

(designated for Part Type 2’s only) until the same lonely (human) operator is available to 

process them; processing times follow a triangular distribution with parameters 3, 7, and 

8 hours. After being processed by the human operator, all parts are sent for processing 

to an automatic machine not requiring a human operator, which has processing times 

distributed as triangular with parameters of 4, 6, and 8 hours for both part types; all parts 

share the same fi rst-come, fi rst-served queue for this automatic machine. Completed 

parts exit the system. Assume that the times for all part transfers are negligible. Run the 
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simulation for 5,000 hours to determine the average total time in system (sometimes 

called  cycle time ) for all parts (lumped together regardless of type), and the average 

number of items in the queues designated for the arriving parts. Animate your model, 

including use of different pictures for the different part types, and use resources that 

look different for busy vs. idle.  

   4-5  During the verifi cation process of the airline check-in system from Exercise 4-3, 

it was discovered that there were really two types of passengers. The fi rst passenger type 

arrives according to an exponential interarrival distribution with mean 2.41 minutes and 

has a service time (in minutes) following a gamma distribution with parameters  �  5 

0.42 and  �  5 14.4. The second type of passenger arrives according to an exponential 

distribution with mean 4.4 minutes and has a service time (in minutes) following 3 plus 

an Erlang distribution with parameters ExpMean 5 0.54 and  k  5 15 (that is, the Expres-

sion for the service time is 3 1 ERLA(0.54, 15)). A passenger of each type arrives at 

time 0. Modify the model from Exercise 4-3 to include this new information. Compare 

the results. Put a text box in your model with the numerical results requested, and repeat 

those same results from Exercise 4-3 in this text box for ready comparison; write a few 

words in your text box to address the question about comparison with Exercise 4-3.  

   4-6  Parts arrive at a single workstation system according to an exponential interarrival 

distribution with mean 21.5 seconds; the fi rst arrival is at time 0. Upon arrival, the parts 

are initially processed. The processing-time distribution is TRIA(16, 19, 22) seconds. 

There are several easily identifi able visual characteristics that determine whether a part 

has a potential quality problem. These parts, about 10% (determined after the initial 

processing), are sent to a station where they undergo a thorough inspection. The re-

maining parts are considered good and are sent out of the system. The inspection-time 

distribution is 95 plus a WEIB(48.5, 4.04) random variable, in seconds. About 14% of 

these parts fail the inspection and are sent to scrap. The parts that pass the inspection 

are classifi ed as good and are sent out of the system (so these parts didn’t need the thor-

ough inspection, but you know what they say about hindsight). Run the simulation for 

10,000 seconds to observe the number of good parts that exit the system, the number 

of scrapped parts, and the number of parts that received the thorough inspection. Ani-

mate your model. Put a text box in your model with the output performance measures 

requested, and make just one replication.  

   4-7  A proposed production system consists of fi ve serial automatic workstations. The 

processing times at each workstation are constant: 11, 10, 11, 11, and 12 (all times given 

in this exercise are in minutes). The part interarrival times are UNIF(13.0, 15.1). There 

is an unlimited buffer in front of all workstations, and we will assume that all transfer 

times are negligible or zero. The unique aspect of this system is that at workstations 2 

through 5 there is a chance that the part will need to be reprocessed by the workstation 

that precedes it. For example, after completion at workstation 2, the part can be sent 

back to the queue in front of workstation 1. The probability of revisiting a workstation is 

independent in that the same part could be sent back many times with no change in the 

probability. At present, it is estimated that this probability, the same for all four work-

stations, will be between 5% and 10%. Develop the simulation model and make six runs 
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of 10,000 minutes each for probabilities of 5%, 6%, 7%, 8%, 9%, and 10%. Using the 

results, construct a table (put this table inside your .doe fi le using an Arena Text box) of 

the average cycle time (system time) against the probability of a revisit. Also include the 

maximum cycle time for each run in your table.  

   4-8  A production system consists of four serial automatic workstations. The fi rst part 

arrives at time zero, and then (exactly) every 9.8 minutes thereafter. All transfer times 

are assumed to be zero and all processing times are constant. There are two types of 

failures: major and jams. The data for this system are given in the table (all times are 

in minutes). Use exponential distributions for the uptimes and uniform distributions 

for repair times (for instance, repairing jams at workstation 3 is UNIF(2.8, 4.2)). Run 

your simulation for a single replication of 10,000 minutes to determine the percent of 

time each resource spends in the failure state and the ending status of each workstation 

queue. Animate your Resources, and put a text box in your Arena fi le with the numerical 

results requested. 

  Workstation   Major Failure Means Jam Means
 Number  Process Time Uptimes Repair Uptimes Repair

 1  8.5 475 20, 30 47.6 2, 3

 2  8.3 570 24, 36 57 2.4, 3.6

 3  8.6 665 28, 42 66.5 2.8, 4.2

 4  8.6 475 20, 30 47.5 2, 3

 

   4-9  An offi ce that dispenses automotive license plates has divided its customers into 

categories to level the offi ce workload. Customers arrive and enter one of three lines 

based on their residence location. Model this arrival activity as three independent arrival 

streams using an exponential interarrival distribution with mean 10 minutes for each 

stream, and an arrival at time 0 for each stream. Each customer type is assigned a single, 

separate clerk to process the application forms and accept payment, with a separate 

queue for each. The service time is UNIF(8, 10) minutes for all customer types. After 

completion of this step, all customers are sent to a single, second clerk who checks the 

forms and issues the plates (this clerk serves all three customer types, who merge into a 

single fi rst-come, fi rst-served queue for this clerk). The service time for this activity is 

UNIF(2.65, 3.33) minutes for all customer types. Develop a model of this system and 

run it for a single replication of 5,000 minutes; observe the average and maximum time 

in system for all customer types combined. 

   A consultant has recommended that the offi ce not differentiate between customers 

at the fi rst stage and use a single line with three clerks who can process any customer 

type. Develop a model of this system, run it for a single replication of 5,000 minutes, 

and compare the results with those from the fi rst system. Put text boxes in your Arena 

fi les with the numerical results requested.  

   4-10  Customers arrive at an order counter with exponential interarrivals with a mean of 

10 minutes; the fi rst customer arrives at time 0. A single clerk accepts and checks their 

orders and processes payments, taking UNIF(7.9, 10) minutes. Upon completion of this 
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activity, orders are randomly assigned to one of two available stock persons (each stock 

person has a 50% chance of getting any individual assignment) who retrieve the orders 

for the customers, taking UNIF(16, 20) minutes. These stock persons only retrieve orders 

for customers who have been assigned specifi cally to them. Upon receiving their orders, 

the customers depart the system. Develop a model of this system and run the simulation 

for 5,000 minutes, observing the average and maximum customer time in system. 

   A bright, young engineer has recommend that they eliminate the assignment of an 

order to a specifi c stock person and allow both stock persons to select their next activity 

from a single fi rst-come, fi rst-served order queue. Develop a model of this system, run 

it for 5,000 minutes, and compare the results to the fi rst system. For the output statistics 

and comparison comments requested, put text boxes inside your Arena fi les. Add Re-

source animations appropriate to each part of the exercise, and make just one replication 

of each model.  

   4-11  Using the model from Exercise 4-2, set the interarrival-time distribution to expo-

nential and the process-time distribution for each Process to uniform on the interval 

[9 −  h , 9 1  h ]. Setting the value of  h  to 1.732, 3.464, and 5.196, compute the (exact) 

variance of this distribution and make three different runs of 100,000 minutes each and 

compare the results. Note that the mean of the process time is always 9 and the distribu-

tion form is always the same (uniform); the standard deviation (and thus the variance) is 

the only thing that’s changing.  

   4-12  Using the model from Exercise 4-11, assume the process time has a mean of 9 

and a  variance  of 4. Calculate the parameters for the gamma distribution that will give 

these values. Make a 100,000-minute run and compare the results with those from the 

 h  5 3.464 case of Exercise 4-11. Note that here both the mean  and  the variance are the 

same—it’s only the shape of the distribution that differs.  

   4-13  Parts arrive at a single machine system according to an exponential interarrival 

distribution with mean 20 minutes; the fi rst part arrives at time 0. Upon arrival, the parts 

are processed at a machine. The processing-time distribution is TRIA(11, 16, 18) min-

utes. The parts are inspected and for each part there is a 0.24 probability that it will need 

to be sent back to the same machine to be reprocessed (same processing-time distribu-

tion but a fresh draw from it, and all send-back decisions are independent of each other). 

There’s no limit on how many times a given part might have to go through the machine 

for processing/reprocessing. Run the simulation for a single replication of length 20,000 

minutes to observe the average and maximum number of times a part is processed, the 

average number of parts in the machine queue, and the average part cycle time (time 

from a part’s entry to the system to its exit after however many passes through the ma-

chine system are required). Add an appropriate Resource animation.  

   4-14  Using the model from Exercise 4-13, make two additional runs with run times of 

60,000 minutes and 100,000 minutes and compare the results with those of Exercise 4-13.  

   4-15  Items arrive from an inventory-picking system according to an exponential interar-

rival distribution with mean 1.1 (all times are in minutes), with the fi rst arrival at time 0. 

Upon arrival, the items are packed by one of four identical packers, with a single queue 
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“feeding” all four packers. The packing time is TRIA(2.75, 3.3, 4.0). Packed boxes are 

then separated by type (each box has an independent probability of 0.2 of being interna-

tional, and the rest are domestic), and sent to shipping. There is a single shipper for inter-

national packages and two shippers for domestic packages with a single queue feeding 

the two domestic shippers. The international shipping time is TRIA(2.2, 3.3, 4.8), and the 

domestic shipping time is TRIA(1.7, 2.0, 2.7). This packing system works three 8-hour 

shifts, 5 days a week. All the packers and shippers are given a 15-minute break 2 hours 

into their shift, a 30-minute lunch break 4 hours into their shift, and a second 15-minute 

break 6 hours into their shift; use the Wait Schedule Rule. Run the simulation for a single 

replication of 2 weeks (10 working days) to determine the average and maximum num-

ber of items or boxes in each of the three queues (put a text box in your model reporting 

these output values). Animate your model, including a Resource animation, and a change 

in the appearance of entities after they’re packed into a box.  

   4-16  Using the model from Exercise 4-15, change the packer and domestic shipper 

schedules to stagger the breaks so there are always at least three packers and one do-

mestic shipper working. Start the fi rst 15-minute packer break 1 hour into the shift, the 

30-minute lunch break 3 hours into the shift, and the second 15-minute break 6 hours 

into the shift. Start the fi rst domestic shipper 15-minute break 90 minutes into the shift, 

the 30-minute lunch break 3.5 hours into the shift, and the second 15-minute break 6 

hours into the shift. Include Resource animations. Compare the new results to those 

from Exercise 4-15 in a text box in your model.  

   4-17  Using the Input Analyzer, open a new window and generate a new data fi le (use 

 File . Data File . Generate New ) containing 50 points for an Erlang distribution with 

parameters: ExpMean equal to 12,  k  equal to 3, and Offset equal to 5. Once you have the 

data fi le, perform a Fit All to fi nd the “best” fi t from among the available distributions. 

Repeat this process for 500, 5,000, and 25,000 data points, using the same Erlang pa-

rameters. Compare the results of the Fit All for the four different sample sizes.  

   4-18  Hungry’s Fine Fast Foods is interested in looking at their staffi ng for the lunch 

rush, running from 10  am  to 2  pm . People arrive as walk-ins, by car, or on a (roughly) 

scheduled bus, as follows:

    ■  Walk-ins—one at a time, interarrivals are exponential with mean 3 minutes; the 

fi rst walk-in occurs EXPO(3) minutes past 10  am .  
   ■  By car—with one, two, three, or four people to a car with respective probabilities 

0.2, 0.3, 0.3, and 0.2; interarrivals distributed as exponential with mean 5 min-

utes; the fi rst car arrives EXPO(5) minutes past 10  am .  
   ■  A single bus arrives every day sometime between 11  am  and 1  pm  (arrival time 

distributed uniformly over this period). The number of people on the bus varies 

from day to day, but it appears to follow a Poisson distribution with a mean of 

30 people.    

   Once people arrive, either alone or in a group from any source, they operate in-

dependently regardless of their source. The fi rst stop is with one of the servers at the 

order/payment counter, where ordering takes TRIA(1, 2, 4) minutes and payment then 
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takes TRIA(1, 2, 3) minutes; these two operations are sequential, fi rst order-taking then 

payment, by the same server for a given customer. The next stop is to pick up the food 

ordered, which takes an amount of time distributed uniformly between 30 seconds and 

2 minutes. Then each customer goes to the dining room, which has 30 seats (people are 

willing to sit anywhere, not necessarily with their group), and partakes of the sublime 

victuals, taking an enjoyable TRIA(11, 20, 31) minutes. After that, the customer walks 

fulfi lled to the door and leaves. Queueing at each of the three “service” stations (order/

pay, pickup food, and dining room) is allowed, with FIFO discipline. There is a travel 

time of EXPO(30) seconds from each station to all but the exit door—entry to order/pay, 

order/pay to pickup food, and pickup food to dining. After eating, people move more 

slowly, so the travel time from the dining room to the exit is EXPO(1) minute. 

   The servers at both order/pay and pickup food have a single break that they “share” 

on a rotating basis. More specifi cally, at 10:50, 11:50, 12:50, and 1:50, one server from 

each station goes on a 10-minute break; if the person due to go on break at a station is 

busy at break time, he or she fi nishes serving the customer but still has to be back at the 

top of the hour (so the break could be a little shorter than 10 minutes). 

   Staffi ng is the main issue facing Hungry’s. Currently, there are six servers at the 

order/pay station and two at the pickup food station throughout the 4-hour period. Since 

they know that the bus arrives sometime during the middle 2 hours, they’re considering 

a variable staffi ng plan that, for the fi rst and last hour would have three at order/pay and 

one at pickup food, and for the middle 2 hours would have nine at order/pay and three 

at pickup food (note that the total number of person-hours on the payroll is the same, 

32, under either the current staffi ng plan or the alternate plan, so the payroll cost is the 

same). What’s your advice? 

   In terms of output, observe the average and maximum length of each queue, the av-

erage and maximum time in each queue, and the total number of customers completely 

served and out the door. Make plots of the queues to get into order/pay, pickup food, and 

the dining room. Animate all queues, resources, and movements between stations. Pick 

from a  .plb  picture library a humanoid picture for the entities (different for each arrival 

source), and make an appropriate change to their appearance after they’ve fi nished eat-

ing and leave the dining room. Also, while you won’t be able to animate the individual 

servers or seats in the dining room, pick reasonable pictures for them as well.  

   4-19  In the discussion in Section 4.2.5 of Arena’s Instantaneous Utilization vs. Sched-

uled Utilization output values, we stated that if the Resource has a fi xed Capacity (say, 

 M ( t ) 5  c  . 0 for all times  t ), then Instantaneous Utilization and Scheduled Utilization 

will be the same. Prove this.  

   4-20  In the discussion in Section 4.2.5 of Arena’s Instantaneous Utilization vs. Sched-

uled Utilization output values, we stated that neither of the two measures is always 

larger. Prove this; recall that to prove that a general statement is  not  true you only have 

to come up with a single example (called a  counterexample ) for which it’s not true.  

   4-21  Modify your solution for Exercise 4-7 to include transfer times between part ar-

rival and the fi rst workstation, between workstations (both going forward and for repro-

cessing), and between the last workstation and the system exit. Assume all part transfer 
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times are UNIF(2,5) minutes. Animate your model to show entity movement and run 

for 10,000 minutes using a reprocess probability of 8% only. Put in a text box with the 

average and maximum cycle time.  

   4-22  Management wants to study Terminal 3 at a hub airport with an eventual eye 

toward improvement. The fi rst step is to model it as it is during the 8 hours through 

the busiest part of a typical weekday. We’ll model the check-in and security operations 

only, that is, once passengers get through security they’re on their way to their gate and 

out of our model. Passengers arrive one at a time through the front door from curbside 

ground transportation with interarrival times distributed exponentially with mean 0.5 

minute (all times are in minutes unless otherwise noted). Of these passengers, 35% 

go left to an old-fashioned manual check-in counter, 50% go right to a newfangled 

automated check-in counter, and the remaining 15% don’t need to check in at all and 

proceed directly from the front door to security (it takes these latter types of passengers 

between 3 and 5 minutes, uniformly distributed, to make the walk from the front door 

to the entrance to the security area; the other two passenger types move instantly from 

their arrival to the manual or automated check-in counter as the case may be). There are 

two agents at the manual check-in station, fed by a single FIFO queue; manual check-in 

times follow a triangular distribution between 1 and 5 minutes with a mode of 2 minutes. 

After manual check-in, passengers walk to the security area, a stroll that takes them be-

tween 2.0 and 5.8 minutes, uniformly distributed. The automated check-in has two sta-

tions (a station consists of a touch-screen kiosk and an employee to take checked bags; 

view a kiosk-employee pair as a single unifi ed unit, that is, the kiosk and its employee 

cannot be separated), fed by a single FIFO queue, and check-in times are triangularly 

distributed between 0.5 and 1.5 with a mode of 1. After automated check-in, passengers 

walk to the security area, taking between 1 and 3 minutes, uniformly distributed, to get 

there (automated check-in passengers are just quicker than manual check-in passengers 

at everything). All passengers eventually get to the security area, where there are six 

stations fed by a single FIFO queue; security-check times are triangularly distributed 

between 1 and 6 with a mode of 2 (this distribution captures all the possibilities there, 

like x-ray of carry-ons, walking through the metal detector, bag search, body wanding, 

shoes off, laptop checking, etc.). Once through the security check (everybody passes, 

though it takes some longer than others to do so), passengers head to their gates and are 

no longer in our model. Simulate this system for one replication of an 8-hour period 

and look at the average queue lengths, average times in queue, resource utilizations, and 

average total time in system of passengers (for all passenger types combined). Animate 

your model, including queues, resources, and passengers walking to security. Put in 

plots that track the length of each of the three queues over the 8-hour simulation (either 

three separate plots or three curves in a single plot). Put a text box in your model sum-

marizing all the requested results.  

   4-23  Modify Model 4-1 to include a packing operation for “shipped” parts (those that 

pass the initial inspection and don’t need rework) before they exit the system; don’t 

count parts as having left the system until they’re packed. Packing takes between 2 

and 4 minutes, distributed (continuously) uniformly, and there’s a single packer named 
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Brett to do this. Also, add a similar but separate packing operation for “salvaged” parts, 

where the packing-time distribution is the same and there’s a separate packer named 

AJ for these. Leave the run conditions the same as for Model 4-1. In addition, collect 

statistics on entities and compare the total system time (for both part types) between the 

two models. Put a text box in your Arena fi le with the values for the average total time 

in system for Model 4-1 and this exercise (just one replication of each).  

   4-24  In the results from Exercise 4-23, you might have noticed that AJ doesn’t have 

much to do. So say goodbye to him, and send salvaged parts to Brett for packing, along 

with the shipped parts. Both types of parts have the same priority for Brett, but they 

reside in separate queues. (HINT: It’s okay in Arena to have multiple places where en-

tities are trying to seize on the same resource.) Compare the results to those obtained 

from Exercise 4-23. Put a text box in your Arena fi le with the values for the average 

total time in system for Model 4-1, Exercise 4-23, and this exercise (just one replica-

tion of each).  

   4-25  Compare the results for Model 4-1, Exercise 4-23, and Exercise 4-24, looking at 

the average total times in system of the three different exit possibilities (shipped, sal-

vaged, and scrapped). In an attempt to make the comparison more statistically meaning-

ful, make 100 replications of each. Make a table or graph summarizing your results, and 

discuss with respect to the relative structures of these three models. What suggestions 

would you have for further investigation of these differences?  

   4-26  Modify Model 4-1 so that, in both inspections, only half of what had failed before 

now really fail, and the others have returned for a re-do and the preceding operation 

(that is, to the Sealer and Rework for the fi rst and second inspections, respectively). The 

redone parts still have to be reinspected with the same probabilities for what happens to 

them there as for parts arriving there for the fi rst time. There’s no limit on the number 

of redos in either place. (HINT: Explore the Help topic in the Decide modules and think 

about a three-sided coin.) Compare the results (making 100 replications) to Model 4-1, 

looking at the total times in system of the three different exit possibilities (shipped, sal-

vaged, and scrapped).  

   4-27  An acute-care facility treats non-emergency patients (cuts, colds, etc.). Patients 

arrive according to an exponential interarrival-time distribution with a mean of 11 

(all times are in minutes). Upon arrival they check in at a registration desk staffed 

by a single nurse. Registration times follow a triangular distribution with parameters 

6, 10, and 19. After completing registration, they wait for an available examination 

room; there are three identical rooms. Data show that patients can be divided into two 

groups with regard to different examination times. The fi rst group (55% of patients) 

has service times that follow a triangular distribution with parameters 14, 22, and 39. 

The second group (45%) has triangular service times with parameters 24, 36, and 59. 

Upon completion, patients are sent home. The facility is open 16 hours each day. Make 

200 independent replications of 1 day each and observe the average total time pa-

tients spend in the system. Put a text box in your Arena fi le with the numerical results 

requested.  
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   4-28  Modify your solution from Exercise 4-27 to include lunch breaks for the doctors 

who staff the examination rooms. There are three doctors on duty for the fi rst 3.5 hours 

of each 8-hour shift. For the next 90 minutes, the doctors take rotating 30-minute lunch 

breaks, resulting in only two doctors being available at any point during these 90 min-

utes. If all three doctors are busy with patients when the 90-minute lunch period begins, 

they wait until the fi rst patient among the three is done, and that doctor takes the fi rst 

30-minute lunch break; each doctor gets a full 30-minute lunch, so if the 90-minute 

lunch period starts a little late, it also ends that much late. After all the lunch breaks 

end, all three doctors are available until the end of their 8-hour shift, at which point the 

second 8-hour shift begins with the same staffi ng and lunch (maybe call it dinner) rules. 

Note that the 8 hours in a doctor’s shift include the 30-minute lunch break. Compare 

your results to those from Exercise 4-27 in a text box in your Arena fi le.  

   4-29  Further study of the facility in Exercise 4-28 reveals that after registration, 5% of 

arriving patients are told to go immediately to a nearby emergency room (the emergency 

room is outside the boundaries of this model), that is, for each patient there is a 0.05 

probability of being sent to the emergency room. These patients immediately leave the 

system, and never go to an examination room. Modify your solution from Exercise 4-28 

to include this new feature and compare your results to those from Exercise 4-28 in a 

text box in your Arena model fi le. Do not include patients who are sent to the emergency 

room in your system-time statistics.  

   4-30  Patients arrive to a 24-hour, 7-days-a-week outpatient clinic with interarrival 

times being distributed as exponential with mean 5.95 (all times are in minutes); the fi rst 

patient arrives at time 0. The clinic has fi ve different stations (like nodes in a network), 

where patients might be directed for service before leaving. All patients fi rst sign in with 

a single receptionist; sign-in times have a triangular distribution with parameters 1, 4, 

and 8. From there, they might go to the nurses’ station (probability 0.9888) or to one of 

three exam rooms (probability 0.0112). The table below gives the fi ve stations, service 

times at those stations, and transition probabilities out of each station into the next sta-

tion for a patient (including out of the sign-in station, just described as an example):

     Next Station Probability (blank entries are zero probability) 

 Station  Service Time  Sign In 

 Nurses’ 

Station 

 Exam

Room 

 Lab and

X Ray 

 Check 

Out 

 Sign In  TRIA(1, 4, 8)    0.9888  0.0112     

 Nurses’ Station  TRIA(2, 5, 7)      0.9167  0.0833   

 Exam Room  TRIA(4, 7, 13)    0.0428  0.4706  0.0214  0.4652 

 Lab and X-ray  TRIA(15, 23, 38)    0.8333      0.1667 

 Check Out  TRIA(3, 5, 8)  From check out, all patients leave and go home .

   All patients eventually go through the checkout station and go home. Note that it is 

 possible that, after a visit to an exam room, a patient is directed to an exam room again 

(but may have to queue for it). After a patient checks in but is queueing for either 
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the nurses’ station or an exam room, regard that patient as being in the waiting room 

(and those patients leaving an exam room but again directed to an exam room are also 

regarded as being in the waiting room). There are three identical exam rooms, but only 

one resource unit at each of the other four stations. Queues for each station are fi rst-in, 

fi rst-out, and we assume that movement time between stations is negligible. Run a sim-

ulation of 30 round-the-clock 24-hour days and observe the average total time in system 

of patients, the average number of patients present in the clinic, as well as the through-

put of the clinic (number of patients who leave the clinic and go home over the 30 days); 

also make a plot of the number of patients present in the clinic, and display a throughput 

counter. If you could afford to add resources, where is the need most pressing? (See 

Exercises 6-24 and 6-25 for better ways to address this question.) 

   This is a modifi cation of a model developed by Bretthauer and Côté (1998) and 

Bretthauer (2000). The latter does an analytical evaluation and optimization under the 

assumption that this is a  Jackson network  of queues, where service times also have ex-

ponential distributions (not triangular or other kinds of distributions). The advantage of 

simulating instead is that the model can be more general and thus possibly more valid; 

for instance, we do not have to assume exponential service times if the data suggest 

otherwise. The disadvantage of simulation is that we do not get exact answers, so we 

must do proper statistical analysis of the output (see Chapter 6). (Thanks to Professor 

Jim Morris of the University of Wisconsin-Madison for suggesting these papers and this 

exercise.)  

   4-31  A grocery store has three checkout lanes (checkout 1, checkout 2, and checkout 3), 

each with a single checker. Shoppers arrive at the checkout area with interarrival times 

having an exponential distribution with mean 2.4 minutes. The shoppers enter the lane 

that has the fewest number of other shoppers already in the queue (not counting any 

shopper already in service at the checkouts). If there are ties for the shortest queue, 

the shopper will join the lowest-numbered checkout (that is, 1, 2, or 3). The checkout 

service time for all shoppers follows an exponential distribution with a mean of 6.35 

minutes regardless of which checkout they choose. Create a simulation of this system 

and run it for a single replication of 48 hours (starting empty and idle, and with the fi rst 

shopper’s arriving at time zero) to determine the average and maximum time from when 

the shopper arrives at the checkout area until they complete their checkout. Also observe 

the average and maximum of each of the three queue lengths, and the utilization of each 

of the three checkers. Add a plot to track the length of each queue on the same set of 

axes, color-coded, and animate your queues and resources. Put a text box in your model 

containing a table of your results, and comment briefl y on why they are consistent with 

both the queue-choice and tie-breaking rules.  

   4-32  Modify your solution to Exercise 4-31 so that shoppers choose the checkout lane 

has the smallest total service time, including the shoppers already in the queue and the 

total service time of the shopper currently being served (don’t account for any partial 

service time of the shopper currently being served). Again, break ties in favor of the 

lower-numbered checkout (but compared to Exercise 4-31, ties should be very unlikely, 
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actually, probability zero; why so here and not in Exercise 4-31?). Compare your results 

(same output performance metrics) with those from Exercise 4-31 in a text box in your 

model, and comment briefl y. HINT: Generate the service time when the shopper enters 

the system. See Exercise 6-28 for a better way to do this comparison, which pays proper 

attention to statistical-analysis issues.  

   4-33  Modify your solution to Exercise 4-32 and add a new checkout, Fast Checkout, 

that shoppers with a service time of less than 5 minutes will always use; those with 

service times that are 5 minutes or more will choose from the original three checkout 

lanes according to the same rules as in Exercise 4-32. On the basis of only average and 

maximum total time in the system (since the individual checkout lanes are no longer 

comparable with the added Fast Checkout lane here), compare your results here to those 

from both Exercises 4-31 and 4-32; comment briefl y. See Exercise 6-28 for a better way 

to do this comparison, which pays proper attention to statistical-analysis issues.  

   4-34  A small town hidden somewhere in the Midwest holds a mini-marathon each year 

with the proceeds going to charity. The fi le  Exercise 04-34 Input Data.xls  

in the Book Examples folder has the fi nishing times (in minutes) of 447 runners from 

several recent years. Fit a probability distribution to these data.  

   4-35  The race in Exercise 4-34 will have 125 runners this year. Develop a simulation 

model of the race and note the fi rst-place and the last-place times, using the fi tted distri-

bution you found in Exercise 4-34 for the times for runners to complete the race. Also 

develop an animation of your model. Make just one replication, and put a text box in 

your model with the fi rst- and last-place fi nishing times. See Exercise 29 for a statistical 

analysis of the fi rst- and last-place fi nish times, and consideration of which is harder to 

estimate and predict.  

   4-36  Two part types arrive to a three-workstation system. Part type 1 arrives according 

to an exponential distribution with interarrival-time mean 5 (all times are in minutes); 

the fi rst arrival is at time 0. This part type is fi rst processed at workstation 1 and then 

workstation 2. Its processing time at workstation 1 follows a triangular distribution with 

minimum 2, mode 2.5, and maximum 4. Its processing time at workstation 2 follows a 

triangular distribution with minimum 3, mode 4.5, and maximum 7. Part type 2 arrives 

according to an exponential distribution with interarrival-time mean 7; the fi rst arrival 

is at time 0. This part type is fi rst processed at workstation 1 and then workstation 3. 

Its processing time at workstation 1 follows the same distribution as does part type 1 at 

workstation 1. Its processing time at workstation 3 follows a triangular distribution with 

minimum 3, mode 6.8, and maximum 8. Run your simulation for a single replication of 

2,000 minutes and observe the average and maximum time in system for each part type 

separately; put a text box in your model with your results.  
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    CHAPTER 5 

 Modeling Detailed Operations 

  In Chapter 4, we showed you the kinds of modeling you could do with modules mostly 

from the Basic Process panel. They are relatively high-level, easy-to-use modules that 

will usually take you a long way toward building a model at a suffi cient level of detail. 

Sometimes it’s  all  you’ll need. 

 But sometimes it isn’t. As you gain experience in modeling, and as your models be-

come bigger, more complex, and more detailed, you might fi nd that you’d like to be able 

to control or model things at a lower level, in more detail, or just differently from what 

the modules of the Basic Process panel offer. Arena doesn’t strand you at this level or 

force you to accept a limited number of “canned” modeling constructs, nor does it force 

you to learn a programming language or some pseudo-programming syntax to capture 

complicated system aspects. Rather, it offers a rich and deep hierarchy of several differ-

ent modeling levels to get the fl exibility you might need to model some specifi c logic 

appropriately. It’s probably a good idea to start with the high-level modules, take them 

as far as they’ll go (maybe that’s all the way), and when you need greater fl exibility than 

they provide, go to a lower, more detailed level. This structure allows you to exploit the 

easy, high-level modeling constructs to the extent possible, yet allows you to drill down 

when you need to. And because standard Arena modules provide all of this modeling 

power, you’ll be familiar with how to use them. To put them to work, you’ll simply need 

to become familiar with what they do. 

 This chapter explores some (certainly not all) of the detailed, lower-level model-

ing constructs available in the Advanced Process and Blocks panels; the latter panel 

provides the lowest-level model logic where modules correspond to the blocks in the 

SIMAN simulation language that underlies Arena. 

 The example we’ll use for this is a telephone call center, including technical support, 

sales, and order-status checking. Section 5.1 describes the initial system and Section 

5.2 talks about how to model it using some new Arena modeling concepts. Section 5.3 

describes our basic modeling strategy. The model logic and animation are developed 

in Section 5.4. In Section 5.5, we embellish our model and present several new Arena 

modeling concepts. We’ll then show you how to modify the original model to create 

the embellished model. We’ll also touch on the important topics of nonstationary (time-

dependent) arrival processes and a greater level of customization in animation. In 

 Section 5.6, we add more output measures to our enhanced model. We close the chapter 

in Section 5.7 with an altogether different kind of model, an inventory system, and take 

the opportunity to illustrate the use of one of Arena’s lowest and most detailed modeling 

levels, the Blocks panel, which composes the underlying SIMAN simulation language. 

 After reading this chapter, you should be able to build detailed and complex models 

and be able to exploit Arena’s rich and deep hierarchy of modeling levels. 
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      5.1 Model 5-1: A Simple Call Center System 

  Our generic call center system provides a central number in an organization that cus-

tomers call for technical support, sales information, and order status. Incoming calls ar-

rive with interarrival times being exponentially distributed with a mean of 0.857 minute. 

This central number feeds 26 trunk lines. If all 26 lines are in use, a caller gets a busy 

signal; hopefully, the caller will try again later, but for our model, he just goes away. An 

answered caller hears a recording describing three options: transfer to technical support, 

sales information, or order-status inquiry (76%, 16%, and 8%, respectively). The esti-

mated time for this activity is UNIF(0.1, 0.6); all times are in minutes. 

 If the caller chooses technical support, a second recording requests which of three 

product types the caller is using, which requires UNIF(0.1, 0.5) minutes. The percent-

age of requests for product types 1, 2, and 3 are 25%, 34%, and 41%, respectively. If 

a qualifi ed technical support person is available for the selected product type, the call 

is automatically routed to that person. If none are currently available, the customer is 

placed in an electronic queue where he is subjected to annoying rock music until a 

support person is available. The time for all technical support calls is estimated to be 

TRIA(3, 6, 18) minutes regardless of the product type. Upon completion of the call, the 

customer exits the system. 

 Sales calls are automatically routed to the sales staff. If a salesperson is not avail-

able, the caller is treated to soothing new-age space music (after all, we’re hoping for 

a sale). Sales calls are estimated to be TRIA(4, 15, 45)—sales people tend to talk a lot 

more than technical support people! Upon completion of the call, the happy customer 

exits the system. 

 Callers requesting order-status information are automatically handled by the phone 

system, and there is no limit on the number the system can handle (except that there are 

only 26 trunk lines, which is itself a limit, since an ongoing order-status call occupies 

one of these lines). The estimated time for these transactions is TRIA(2, 3, 4) minutes, 

with 15% of these callers opting to speak to a real person after they have received their 

order status. 

 These calls are routed to the sales staff, where they wait with a lower priority than 

sales calls. This means that if an order-status call is in a queue waiting for a salesper-

son and a new arriving sales call enters, the sales call will be given priority over the 

order-status call and answered fi rst. These follow-up order-status calls are estimated to 

last TRIA(2, 3, 4) minutes. These callers then exit the system. 

 The call center hours are from 8  am  until 6  pm , with a small proportion of the staff 

on duty until 7  pm . Although the system closes to new calls at 6  pm , all calls that enter 

the system by that time are answered and served. 

 Over the course of a day there are eight technical support employees to answer tech-

nical support calls. Two are devoted to product Type 1 calls; three to product Type 2 calls; 

and three to product Type 3 calls. There are four sales employees to answer the sales 

calls and those order-status calls that opt to speak to a real person. 

 As a point of interest, we’ll count the number of customer calls that are not able 

to get a trunk line and are thus rejected from entering the system (similar to  balking  

in queueing systems, though balking usually means a decision on the customer’s part 
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not to enter, rather than being rejected as in our model). However, we won’t consider 

  reneging —customers who get a trunk line initially but later hang up the phone before 

being served (see Section 9.3 for a discussion of how to model reneging). 

 Some statistics of interest for these types of systems are: number of customer re-

jections (busy signals), total time on the line by customer type, time waiting for a real 

person by customer type, number of calls waiting for service by customer type, and 

personnel utilization. 

    5.2   New Modeling Issues 

  From a simulation viewpoint, this problem is quite different from the ones we covered 

in Chapters 3 and 4. The most obvious difference is that the previous systems were 

manufacturing oriented, and this system is of a service nature. Although the original 

version of SIMAN (the simulation language on which Arena is based) was developed 

for manufacturing applications, the current Arena capabilities also allow for accurate 

modeling of service systems. Applications in this area include fast-food restaurants, 

banks, insurance companies, service centers, and many others. Although these systems 

have some special characteristics, the basic modeling requirements are largely the same 

as for manufacturing systems. 

 Now let’s take a look at our call center and explore the new requirements. 

    5.2.1 Customer Rejections and Balking 

 A call generated by our arrival process is really a customer  trying  to access one of the 26 

trunk lines. If all 26 lines are currently in use, a busy signal is received and the customer 

is rejected and departs the system. The term for this is  balking  if done voluntarily by the 

customer, though in our call center it is involuntary, so we’ll call it a  rejection ; modeling 

and handling balking and rejection are similar to each other, however. 

 Consider a drive-through at a fast-food restaurant that has a single window with 

room for only fi ve cars to wait for service. The arriving entities would be cars entering 

a queue to wait to seize a resource called “Window Service.” We’d need to set the queue 

capacity to fi ve. This would allow one car to be in service and a maximum of fi ve cars to 

be waiting. If a sixth car attempted to enter the queue, it would balk (or be rejected). You 

decide as part of your modeling assumptions what happens to these balked/rejected cars 

or entities. They might be disposed of or we might assume that they would drive around 

the block and try to re-enter the queue a little later. 

 There are two methods to model balking/rejection in Arena. The fi rst method is to 

employ a Queue module from the Blocks panel and defi ne the queue capacity as zero. 

An arriving entity (an incoming call in our model) enters the zero-capacity queue and 

immediately attempts to seize one unit of a resource called “Trunk Line.” If a unit is 

available, it’s allocated to the call and the call enters the system. If a unit of the resource 

is not available, the entity attempts to stay in the queue. But since the queue has a capac-

ity of zero, the call would be balked from the queue and disposed. The second method 

would have the arriving entity use a Decide module to check whether a unit of the 

“Trunk Line” resource is available. If a unit is available, the entity is allowed to proceed 

and seize the resource. If no unit is available, the entity is sent to the balking section of 

the model. We’ll use this second method in our model. 
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 Balking and rejection clearly represent a kind of failure of the system to meet cus-

tomer needs, so we’ll count the number of times this happens in the simulation; smaller 

is better. 

     5.2.2 Three-Way Decisions 

 Once a call is allocated a trunk line and enters the system, we must then determine the 

call type so we can direct it to the proper part of the system for service. To do this, we 

need the ability to send entities or calls to  three  different parts of the system based on 

the given probabilities. The same requirement is true for technical calls since there are 

three different product types. 

 We could get out our calculator and dust off our probability concepts and compute 

the probability of each call type—there are a total of fi ve. We could then defi ne Se-

quences (see Section 7.1) for each of these call types and route them through the system. 

Although this might work, you would have to re-compute the probabilities each time 

you change the distribution of call types, which you might want to do to test the fl exi-

bility or robustness of the system. 

 You may not have been aware of it, but the capability is provided to branch in three 

or more directions in the same Decide module that we used in the models of Chapter 4. 

     5.2.3 Variables and Expressions 

 In many models, we might want to reuse data in several different places. For example, 

in our call center, there will be several places where we will need to enter the distribu-

tions for the time to handle the technical support calls. If we decide to change this value 

during our experimentation, we’ll have to open each dialog that included a call time and 

change the value. There are other situations where we might want to keep track of the 

total number of entities in a system or in a portion of the system. In other cases, we may 

want to use complex expressions throughout the model. For example, we might want 

to base a processing time on the part type. Arena  Variables  and  Expressions  allow us to 

fulfi ll these kinds of needs easily. 

 The Variable module allows you to defi ne your own global variables and their initial 

values. Variables can then be referenced in the model by their names. They can also be 

specifi ed as one- or two-dimensional arrays. The Expression module allows you to de-

fi ne expressions and their associated values. Similar to variables, expressions are refer-

enced in the model by their names and can also be specifi ed as one- or two-dimensional 

arrays. Although variables and expressions may appear to be quite similar, they serve 

distinctly different functions. 

 User-defi ned Variables store some real-valued quantity that can be reassigned 

during the simulation run. For example, we could defi ne a Variable called  Wait 
Time  with an initial value of two and enter the Variable name wherever a wait time 

was required. We could also defi ne a Variable called  Number in System  with 

an initial value of zero, add one to this variable every time a new part entered the 

system, and subtract one from it every time a part exited the system. For our call 

center, we’ll use three variables. The fi rst will keep track of the number of calls in 

the system, and the last two will be used to terminate the generation of incoming calls 

after ten hours. 
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 User-defi ned Expressions, on the other hand, don’t store a value. Instead, they pro-

vide a way of associating a name with some mathematical expression. Whenever the 

name is referenced in the model, the associated expression is evaluated and its numer-

ical value is returned. Typically, expressions are used to compute values from a distri-

bution or from a complex equation based on the entity’s attribute values or even current 

system variable values. If the mathematical expression is used in only one place in the 

model, it might be easier to enter it directly where it is required. However, if the expres-

sion is used in several places or the form of the expression to be used depends on an 

entity attribute, a user-defi ned expression is often better. For our call center, we’ll use 

the Expression module to defi ne an expression to generate the technical support times. 

 Variables and Expressions have many other uses that we hope will become obvious 

as you become more familiar with Arena. 

     5.2.4 Storages 

 Storages are an Arena concept that allow the user to animate the presence of entities that 

fall outside the normal animation features that you have seen to this point. Our previ-

ous models all showed an animated entity in a Queue, on a Resource, or moving along 

a Route. Consider an example where you have an entity arrival that initially enters a 

delay before it is allowed to proceed to the next module. If the delay represents a travel 

time from one area of the system to another, you might use the concept of Stations and 

Routes. This would allow you to animate the movement of an entity through the system, 

as we did in Model 4-4. But if during the delay the entity is not moving, we need the 

Storages concept to animate it. 

 A Storage holds a non-ordered set of entities that are waiting for an event to occur; 

for example, the conclusion of a predefi ned delay time, or the arrival of a requested 

transporter that is en route. You might think of a Storage as a variable that we can in-

crement and decrement with the added feature that we can animate the entities that are 

in a Storage. Placing an entity in a Storage does not prevent the entity from progressing 

through model logic. For example, we could place an entity in a Storage, and then show 

it on the animation, as it entered a delay, and then continued through the model logic 

until we decided to remove it from the Storage at a later point in the model. During the 

entire time, the entity would be displayed on the animated Storage. 

 There are two ways to place an entity in a Storage and then remove it. The fi rst uses 

the Store and Unstore modules found in the Advanced Process panel. The second way 

is to use a module that has a fi eld to enter a Storage ID. An example is the Delay mod-

ule from the Blocks panel. We’ll show you how to use both methods during our model 

development. 

     5.2.5 Terminating or Steady State 

 Most (not all) simulations can be classifi ed as either terminating or steady state. This is 

primarily an issue of intent or the goal of the study rather than having much to do with 

internal model logic or construction. 

 A  terminating  simulation is one in which the model dictates specifi c starting and 

stopping conditions as a natural refl ection of how the target system actually operates. As 

the name suggests, the simulation will terminate according to some model-specifi ed 
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rule or condition. For instance, a store opens at 9  am  with no customers present, closes 

its doors at 9  pm , and then continues operation until all customers are “fl ushed” out. 

Another example is a job shop that operates for as long as it takes to produce a “run” of 

500 completed assemblies specifi ed by the order. The key notion is that the time frame 

of the simulation has a well-defi ned (though possibly unknown at the outset) and natural 

end, as well as a clearly defi ned way to start up. 

 A  steady-state  simulation, on the other hand, is one in which the quantities to be 

estimated are defi ned in the long run; that is, over a theoretically infi nite time frame. 

In principle (though usually not in practice), the initial conditions for the simulation 

don’t matter. Of course, a steady-state simulation has to stop at some point, and as 

you might guess, these runs can get pretty long, so you need to do something to make 

sure that you’re running it long enough. This is an issue we’ll take up in Section 7.2. 

For example, a pediatric emergency room never really stops or restarts, so a steady-

state simulation might be appropriate. Sometimes people do a steady-state simulation 

of a system that actually terminates in order to design for some kind of worst-case or 

peak-load situation. 

 We now have to decide which to do for this call center model. Although we’ll lead 

you to believe that the distinction between terminating or non-terminating systems is 

very clear, that’s seldom the case. Some systems appear at fi rst to be one type, but on 

closer examination, they turn out to be the other. This issue is further complicated by the 

fact that some systems have elements of both types, and system classifi cation may de-

pend on the types of questions that the analyst needs to address. For example, consider 

a fast-food restaurant that opens at 11  am  and closes at 11  pm . If we were interested in 

the daily operational issues of this restaurant, we’d analyze the system as a terminat-

ing system. If we were interested only in the operation during the rush that occurs for 

2 hours over lunch, we might assume a stationary arrival process at the peak arrival rate 

and analyze the system as a steady-state system. 

 Our call center defi nitely appears to be a terminating system. The system would ap-

pear to start and end empty and idle, so we’re going to proceed to analyze our call center 

system as a terminating system. 

       5.3 Modeling Approach 

  In Figure 1-2 of Chapter 1, we briefl y discussed the Arena hierarchical structure. This 

structure freely allows you to combine the modeling constructs from any level into a 

single simulation model. In Chapters 3 and 4, we were able to develop our models using 

mostly only the constructs found in the Basic Process panel (yes, we planned it that 

way), although we did require the Advanced Process panel for our failure and special 

statistics, and the Advanced Transfer panel for some entity movement. 

 The general approach that we recommend when you are creating your models is to 

stay at the highest level possible for as long as you can. However, as soon as you fi nd 

that these high-level constructs don’t allow you to capture the necessary detail, we sug-

gest that you drop down to the next level for some parts of your model rather than sacri-

fi ce the accuracy of the simulation model (of course, there are elements of judgment in 

this kind of decision). You can mix modeling constructs from different levels and panels 
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in the same model. As you become more familiar with the various panels (and modeling 

levels), you should fi nd that you’ll do this naturally. Before we proceed, let’s briefl y 

discuss the available panels. 

 The Basic Process panel provides the highest level of modeling. It’s designed to 

allow you to create high-level models of most systems quickly and easily. Using a com-

bination of the Create, Process, Decide, Assign, Record, Batch, Separate, and Dispose 

modules allows a great deal of fl exibility. In fact, if you look around in these modules, 

you’ll fi nd many additional features we haven’t yet discussed. In many cases, these 

modules alone will provide all the detail required for a simulation project. These mod-

ules provide common functions required by almost all models, so it’s likely that you’ll 

use them regardless of your intended level of detail. 

 The Advanced Process panel augments the Basic Process panel by providing addi-

tional and more detailed modeling capabilities. For example, the sequence of modules 

Seize – Delay – Release provides basically the same fundamental modeling logic as a 

Process module, but could afford more fl exibility than the Process module. The handy 

feature of the Advanced Process panel modules is that you can put them together in 

almost any combination required for your model. In fact, many experienced modelers 

start at this level because they feel that the resulting model is more transparent to the 

user, who may or may not be the modeler. 

 The Advanced Transfer panel provides the modeling constructs for material-handling 

activities (like transporters and conveyors) and entity movement in general. Similar to 

the general modeling capabilities provided by the Advanced Process panel, the Advanced 

Transfer panel modules give you more fl exibility. 

 The Blocks panel (part of the SIMAN template) provides an even lower level of 

modeling capability. In fact, it provides the basic functionality that was used to create 

all of the modules found in the Basic Process, Advanced Process, and Advanced Trans-

fer panels. In addition, it provides many other special-purpose modeling constructs not 

available in the higher-level modules. Examples would include “while” loops, com-

bined probabilistic and logic branching, and automatic search features. You might note 

that several of the modules have the same names as those found in the higher-level pan-

els. Although the names are the same, the modules are not. You can distinguish between 

the two by the color and shape. 

 The difference between the Blocks panel on the one hand and the Basic Process, 

Advanced Process, and Advanced Transfer panels on the other hand is easy to explain 

if you’ve used SIMAN previously, where you defi ne the model and experiment frames 

separately, even though you may do this all in Arena. The difference is perhaps best 

illustrated between the Assign modules on the two panels. When you use the Basic Pro-

cess panel Assign module, you’re given the option of the type of assignment you want to 

make. If you make an assignment to a new attribute, Arena will automatically defi ne that 

new attribute and add it to the drop-down lists for attributes everywhere in your model. 

One reason for staying at the highest level possible is that the Blocks Assign module 

only allows you to make the assignment—it doesn’t defi ne the new attribute. Even with 

this shortcoming, there are numerous powerful and useful features available only in the 

Blocks panel. 
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 In addition, the Elements panel hosts the experiment frame modules. This is where, 

for example, you fi nd the Attributes module to defi ne your new attribute. You’ll rarely 

need these features since they’re combined with the modules of the Arena template, but 

if you need this lowest level for a special modeling feature (you can go to Visual Basic 

or C, if you’re a real glutton for punishment), it’s available via the same Arena interface 

as everything else. 

 The Blocks and Elements panels also provide modules designed for modeling con-

tinuous systems (as opposed to the discrete process we’ve been looking at). We’ll see 

these in Chapter 11, along with the Flow Process panel specifi cally designed for this. 

 Now let’s return to our call center system, which  does  require features not found 

in the Basic Process panel modules. In developing our model, we’ll use modules from 

the Basic Process, Advanced Process, and Blocks panels. In some cases, we’ll use 

lower-level constructs because they are required; in other cases, we’ll use them just to 

 illustrate their capabilities. When you model with lower-level constructs, you need to 

approach the model development in a slightly different fashion. With the higher-level 

constructs, we tend to group activities and then use the appropriate modules. With the 

lower-level constructs, we need to concentrate on the actual activities. In a sense, your 

model becomes a detailed  fl owchart  of these activities. Unfortunately, until you’re fa-

miliar with the logic in the available modules, it’s diffi cult to develop that fl owchart. 

      5.4 Building the Model 

  At this point, let’s divide our model into sections and go directly to their development 

where we can simultaneously show you the capabilities available. The seven sections, in 

the order in which they’ll be presented, are:

       Section 5.4.1: Create Arrivals and Direct to Service  

      Section 5.4.2: Arrival Cutoff Logic  

    Section 5.4.3: Technical Support Calls  

   Section 5.4.4: Sales Calls  

      Section 5.4.5: Order-Status Calls  

      Section 5.4.6: System Exit and Run Setup  

      Section 5.4.7: Animation    

 As you read through the next seven sections on building the model, you might get 

the impression that this is exactly how we developed the model. Ideally one would 

like to be able to plan the construction of the model so it’s that easy. In reality, though, 

you often end up going back to a previously developed section and adding, deleting, 

or changing modules or data. So as you start to develop more complex models, don’t 

assume that you’ll always get it right the fi rst time (we certainly didn’t). 

    5.4.1 Create Arrivals and Direct to Service 

 As you learn more about the capabilities of Arena and develop more complex models, 

you’ll fi nd it necessary to plan your logic in advance of building the model. Other-

wise, you may fi nd yourself constantly moving modules around or deleting modules 

that were erroneously selected. Whatever method you adopt for planning your models 

will  normally come about naturally, but you might want to give it some thought before 
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your models become really complicated—and they will! A lot of modelers use pencil (a 

pen for the overconfi dent) and paper to sketch out their logic using familiar terminology. 

Others use a more formal approach and create a logic diagram of sorts using standard 

fl owcharting symbols. Still another approach is to develop a sequential list of activities 

that need to occur. We’ve developed such a list for the logic that’s required to create and 

direct arrivals (which happens to look a lot like the fl owchart modules in   Figure 5-1  ): 

  Create arriving calls  
 Record attempted call  
  If a trunk line is available - Seize  
   Increment call counter  
   Delay for recording  
   Determine call type  
   Direct call type  
  Else (all trunk lines are busy)  
   Count rejected call  
   Dispose of call  

 These types of approaches will help you formalize the modeling steps and reduce 

the number of errors and model changes. As you become more profi cient, you may 

even progress to the point where you’ll start by laying out your basic logic using Arena 

modules (after all, they’re similar to fl owchart elements). However, even then we recom-

mend that you lay out your complete logic before you start fi lling in the details. 

 The Create module, which creates entities (arrivals) according to our previously 

defi ned process, is described in   Display 5-1  .  

  Figure 5-1.  Arrivals and Service Selection Process Logic   

 Name 

 Entity Type 

  Create Call Arrivals  
  Incoming Call  

 Time Between Arrivals 

 Type 

 Value 

 Units 

 Entities per Arrival 

 Max Arrivals 

  
  Random (Expo)  
  0.857  
  Minutes  
  CallsPerArrival  
  MaxCalls  

  Display 5-1.  Creating the Call Arrivals 

kel01315_ch05_207-278.indd   215kel01315_ch05_207-278.indd   215 05/12/13   3:28 PM05/12/13   3:28 PM



216     Chapter 5

 We used a very similar Create module in the models in Chapters 3 and 4, with the 

exception of the entries in the Entities per Arrival and Max Arrivals fi elds. Remember 

that the system closes to new calls after 6  pm.  We’ll show you how to use the variable 

 MaxCalls  to terminate the call arrivals in the next section. 

 In most cases where you defi ne a new object (variable, attribute, etc.) in the modules 

from the Basic Process and Advanced Process panels, Arena will automatically make an 

entry in the appropriate data module. This always happens when you specify the Type; 

for example, variable or attribute. However, in this case, we simply enter  MaxCalls  

without specifying the type. Therefore, we need to defi ne our variable  MaxCalls . We 

do this in the Variable data module found in the Basic Process panel, seen in   Figure 5-2  . 

Open this data module by clicking on it and double-clicking to add a new row. Next type 

in the Name of our new variable,  MaxCalls . Then click on the Initial Values cell to 

open the spreadsheet window where you can enter the initial value. We entered a value 

of 999999, which means that the arrival process will be terminated after 999999 arriving 

calls (clearly a ruse that we’ll explain). We also defi ne the variable CallsPerArrival and 

initialize it to a value of 1 (this initialization is not visible in   Figure 5-2  ); again, we’ll 

explain this a bit later.  

 As we continue to develop this model, we’ll sometimes be thinking ahead to how 

we would like to animate our model. Let’s assume that we want our arriving call to be 

animated as a black ball. We could assign a picture using an Assign module, but we 

specifi ed in our Create module that the entity type was  Incoming Call  so at this 

point we should click on our Entity data module and select  Picture.Black Ball  

from the drop-down list in the Initial Picture cell. 

 At this point in the model, we want to record the number of attempted calls using a 

Record module, as shown in   Display 5-2  .  

  Figure 5-2.  The Variable Data Module   

 Name 

 Type 

 Value 

 Counter Name 

  Record Attempted Call  
  Count  
  1  
  Attempted Calls  

  Display 5-2.  Counting the Attempting Calls 
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 We next need to check for an available trunk line. If a line is available, we seize 

that line; otherwise, the call is rejected from the system. In Section 5.2.1, we dis-

cussed two obvious ways (at least to us) to accomplish this. For this model, we’ll use 

a Decide module followed by a Seize module (in the Advanced Process panel) if a 

line is available. 

 The Decide module is used to check whether any units of the  Trunk Line  re-

source are available. You could use the Expression Builder to develop this condition. 

The expression  NR(Trunk Line)  <  MR(Trunk Line)  contains the Arena vari-

ables MR and NR. The variable NR is the current number of busy units of the resource, 

and the variable MR is the current number of units scheduled of the resource, or the total 

number of units of the resource currently in existence (busy or otherwise). The entries 

for the Decide module are shown in   Display 5-3  .  

 A condition can be any valid expression, but it typically contains some type of com-

parison. Such conditions may include any of the notations shown in   Table 5-1  . Logical 

expressions can also be used.    

 If a unit of the resource  Trunk Line  is available, we allow the entity to proceed 

to the Seize module (  Display 5-4   from the Advanced Process panel) where we seize that 

resource. Normally, we would have used a Process module, but in this case, we need 

to separate the seize part of the Process module from the delay part (you’ll see why 

shortly). Unlike the Process module, the Seize module includes only the queue and seize 

actions. When you defi ne the resource in the Seize module, that resource will be entered 

into the Resource data module (Basic Process panel) automatically, but its capacity will 

default to one. Since there are 26 trunk lines, you’ll need to open the Resource data 

module and change the capacity to 26.  

 Name 

 Type 

 If 

 Value 

  Trunk Line Available?  
  2-way by Condition  
  Expression  
  NR(Trunk Line) , MR(Trunk Line)  

  Display 5-3.  Determining if a Trunk Line Is Available 

  Table 5-1.   The Decide Module Condition Notation  

 Description  Syntax Options  Description  Syntax Options 

 And 

 Greater than 

 Less than 

 Equal to 

  .AND.  
  .GT.  >  
  .LT.  <  
  .EQ.  ==  

 Or 

 Greater than or equal to 

 Less than or equal to 

 Not equal to 

  .OR.  
  .GE.  >=  
  .LE.  <=  
  .NE.  <>  
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 After seizing one unit of the resource  Trunk Line , the entity is sent to the follow-

ing Assign module (in   Display 5-5  ) where we increment the variable  Total WIP . This 

variable will be used to keep track of how many active calls are currently in the system. 

Later on we’ll use this variable to determine when to stop the simulation run. 

 The entity then enters a Store module (from the Advanced Process panel) where 

we place the entity in the Storage  Initial Recording Delay Storage , in 

   Display 5-6  . Even though we think of this as placing the entity in the storage, it does not 

prevent the entity from proceeding in the model logic. We use this Storage so we can 

show the entity on the animation during the initial recording delay. We’ll show you how 

to add this storage animation in Section 5.4.7.   

 Name   Increment Active Call Counter  

 Assignments 

      Type 

      Variable Name 

      New Value 

  
  Variable  
  Total WIP  
  Total WIP + 1  

  Display 5-5.  Assign Module to Increment the Active Call Counter 

 Name   Seize Trunk Line  

 Resources 

      Type 

      Resource Name 

      Quantity 

  
  Resource  
  Trunk Line  
  1  

  Display 5-4.  The Seize Module 
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 Once the entity is in the storage, it enters a Delay module where it incurs a 

UNIF(0.1,0.6) delay representing the recording and option-selection time, in   Display 5-7  . 

 Upon completing the delay, it enters an Unstore module where the entity is removed 

from the storage where it was placed earlier. You might note that we have defaulted on 

the Type entry, in   Display 5-8  . The default option will remove an entity from the last 

storage that it entered, which was the  Initial Recording Delay Storage .   

 Name 

 Delay Time 

 Units 

  Initial Recording Delay  
  UNIF(0.1, 0.6)  
  Minutes  

  Display 5-7.  The Initial Recording Dela    y 

 Name 

 Type 

 Storage Name 

  Store for Initial Recording 
 Delay  
  Storage  
  Initial Recording Delay 
 Storage  

  Display 5-6.  Placing the Entity in a Storage   

 Name   Unstore from Initial
 Recording Delay  

   Display 5-8.  Removing the Entity from the Storage        
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 The call then is sent to the Decide module, described in   Display 5-9  , where the 

call type is determined according to the probabilities originally stated. We selected the 

 N-way by Chance  type and specifi ed percentages of  76  and  16 , which represent 

the technical support and sales calls. The  Else  exit point will be used to direct the 

order-status calls (the remaining 8%).  

 The fi rst branch from the Decide represents a technical support call. Entities taking 

this branch are sent to an Assign module where we assign the tech support call section 

of our model. Entities taking the second branch are sent to the sales call section of our 

model, and the remaining entities, the third branch, are sent to the order-status calls 

section. 

 Having dealt with the arriving calls that are successfully allocated a trunk line, we 

must now deal with those luckless calls that receive a busy signal—the rejected entities. 

These are sent to a Record module where we count (record) our rejected calls in the 

counter  Rejected Calls , shown in   Display 5-10  . These entities are fi nally sent to a 

Dispose module where they exit the system.  

 5.4.2     Arrival Cutoff Logic 

 In our problem description in Section 5.1, we indicated that the system closes to new 

calls after 6  pm , but all calls that entered the system before that time are answered and 

processed. This means that we allow calls to enter the system from 8  am  to 6  pm , a total 

of 600 minutes, but we need to turn off the arrivals after 600 minutes. Normally we 

would end the simulation run at time 600. However, before we terminate the simulation 

run, we need to handle any calls that arrived before time 600. We’ll show you how to 

determine when all the calls have been taken care of and how to terminate the run later. 

 One obvious way to shut off arrivals after 600 minutes would be to insert a Decide 

module that the arriving calls would enter immediately after the Create module that 

creates the arriving calls. The Decide module would check to see if the current simula-

tion time was less than 600. If true, the entity would be allowed to continue;   otherwise, 

 Name 

 Type 

  Determine Call Type  
  N-way by Chance  

 Percentages 

  

  76  
  16  

  Display 5-9.  Determining the Call Type 

 Name 

 Type 

 Value 

 Counter Name 

  Record Rejected Call  
  Count  
  1  
  Rejected Calls  

   Display 5-10.  The Record Module: Counting the Rejected Calls      

kel01315_ch05_207-278.indd   220kel01315_ch05_207-278.indd   220 05/12/13   3:28 PM05/12/13   3:28 PM



Modeling Detailed Operations  221

the entity would be sent to a Dispose module. Although this method would shut off the 

arrivals (though would not terminate the run), it could slow down the run with this extra 

checking of each potential arrival; therefore, we have chosen to be a little tricky and 

introduce the concept of a  logical  entity (sometimes called a  fake  entity) to cut off our 

arriving calls. 

 In the models developed so far, every entity that we have created has represented 

some physical object, a call in the case of our current model. Logical entities are just like 

any other entities, but they are created and used to perform some logical or control task. 

In this case, we create a logical entity that will cut off the incoming calls and then be 

destroyed. The activities to accomplish this are shown here, and the fl owchart modules 

are shown in   Figure 5-3  : 

  Create arrival cutoff entity  
 Cut off incoming calls  
 Dispose of entity  

 You might notice that these three modules appear to be totally independent of the 

rest of our model. They are, except that this section of our model will interact with the 

rest of the model via two global Variables. We start by creating our control entity with a 

Create module, in   Display 5-11  . We have specifi ed a Constant arrival type with a value 

of  999999 . If this was all we entered, we would have an arrival at time 0 and then every 

999999 time units. However, we have specifi ed that the fi rst arrival will occur at time 

600 (First Creation fi eld) and that there will be only one arrival (Max Arrivals fi eld). As 

it turns out, we could have selected any Type and any Value because they are never used.  

  Figure 5-3.  Arrival Cutoff Logic   

 Name 

 Entity Type 

  Create Arrival Cutoff Entity  
  Arrival Cutoff  

 Time Between Arrivals 

 Type 

 Value 

 Units 

 Max Arrivals 

 First Creation 

  
  Constant  
  999999  
  Minutes  
  1  
  600  

   Display 5-11.  Creating the Logical Entity      

kel01315_ch05_207-278.indd   221kel01315_ch05_207-278.indd   221 05/12/13   3:28 PM05/12/13   3:28 PM



222     Chapter 5

 The single logical entity created at time 600 enters the following Assign module where 

we assign the variable  MaxCalls  a value of  1 , and the Variable  CallsPerArrival  

a value of 0, in   Display 5-12  .  

 By setting the value of the variable  MaxCalls  to 1, we have stopped the creation 

of arriving calls. We are assuming that you might be a little confused at this point—you 

should be. Let’s fi ll in the details so you will understand how this works. At the begin-

ning when we populated the Create module that creates the arriving calls, in   Display 5-1  , 

we entered the variable  MaxCalls  in the Max Arrivals fi eld. We also assigned that 

Variable an initial value of 999999 in the Variable data module. Because we are at time 

600 in our simulation run, we can be assured that we have had more than one arrival, 

since the First Creation was at time 0. By now (at time 600), setting the value of 

 MaxCalls   to 1 we are shutting off our arriving call stream. 

 However, because of the way the Create module works, we need to do one more 

thing in the  Cut Off Incoming Calls  Assign module now at time 600 to ensure 

that no calls arrive after time 600. When a creation occurs, Arena schedules the next 

creation, as long as Max Arrivals has not been reached. So as time 600 is approached, 

there will be a last “legal” call that arrives prior to time 600, and this call will schedule 

one more “illegal” call, which will indeed arrive at some point after time 600. To “kill 

off” this illegal call when it arrives late, we now set the Variable  CallsPerArrival  

to 0 (it’s initialized to 1 in the Variable data module so will be 1 up until time 600, which 

is the way we want it and entered that in the Entities per Arrival fi eld of the  Create 
Call Arrivals  Create module). So when this illegal call arrives at some time past 

600, it will be set to have 0 entities, and the end result is that no call actually enters the 

system. After this time, no more call arrivals will be scheduled due to the entry of 1 in 

the Max Arrivals fi eld. 

 Having accomplished its single task in life, our logical entity is now sent to a Dis-

pose module that destroys entities, thus ending our logic-modeling section. 

     5.4.3 Technical Support Calls 

 In Section 5.4.1, we used a Decide module to determine the call type. The arriving calls 

that were determined to be technical support calls would have taken the fi rst branch and 

been sent to this portion of the model. The activities to service the technical support calls 

are listed here, and the fl owchart modules are shown in   Figure 5-4  :  

 Name   Cut Off Incoming Calls  

 Assignments 

 Type 

 Variable Name 

 New Value 

  
  Variable  
  MaxCalls  
  1  

 Type 

 Variable Name 

 New Value 

  Variable  
  CallsPerArrival  
  0  

   Display 5-12.  Assign the Cutoff Variables      
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 If a caller selects the technical support option, the entities will be sent to this portion 

of our model, where we fi rst assign the Entity Type to be  Tech Call , and the Entity 

Picture to be  Picture.Red Ball , as in   Display 5-13  .  

 Here a second recording requests which of the product types the caller is using. In 

Section 5.4.1, we decided to place an incoming call in a Storage for the fi rst recording 

so we could show it on our animation. We’ll do the same here, so we’ll fi rst place that 

entity in the storage  Tech Call Recording Delay Storage , as shown in 

  Display 5-14  .  

     Assign entity type and picture  
Delay for recording  
Determine call type and direct  
Seize technical support resource  
Delay for service  
Release technical support resource  
Send to system exit  

 Figure 5-4.  Technical Support Call Logic

 Name   Assign Tech Call Entity Type 
 and Picture  

 Assignments 

 Type 

 Entity Type 

 Type 

 Entity Picture 

  
  Entity Type  
  Tech Call  
  Entity Picture  
  Picture.Red Ball  

   Display 5-13.  Assign Tech Call Entity Type and Picture      
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 Once the entity has been placed in the storage, it enters the following Delay module 

where it incurs a UNIF(0.1, 0.5) delay representing the recording and option-se-

lection time, as shown in   Display 5-15  .  

 Upon completing the delay, it enters an Unstore module where the entity is removed 

from the storage where it had been placed, as shown in   Display 5-16  . Again, the default 

option will remove the entity from the last storage that it entered.  

 The call is sent to the Decide module next, as described in   Display 5-17  , where the 

product type is determined according to the probabilities originally stated. We selected 

the  N-way by Chance  type and specifi ed percentages of  25  and  34 , which represent 

the Type 1 and Type 2 technical support calls. The  Else  exit point will be used to direct 

the product Type 3 calls (the remaining 41%). 

 Each of the three branches from this Decide module connects to a Process module 

to service that type of technical support call. The entries for each of these three modules 

are very similar, so we’ll only walk you through the fi rst, for product Type 1 technical 

support, in   Display 5-18  . We’ve selected the Seize Delay Release Action and have re-

quested to seize one unit of resource  Tech 1 . As with the  Trunk Line  resource, you 

also need to open the Resource data module and change the Capacity from the default 

(1) to 2. We then delay for a time found in the expression  Tech Time , which we have 

not yet defi ned. After the delay, the  Tech 1  resource is released and the completed call 

is sent to the exit portion of our model. 

 Name 

 Type 

 Storage Name 

  Store for Tech Call 
 Recording Delay  
  Storage  
  Tech Call Recording Delay 
 Storage  

   Display 5-14.  Technical Support Call Storage      

 Name   Tech Call Recording Delay  
 Delay Time 

 Units 

  UNIF( 0.1 , 0.5 )  
  Minutes  

   Display 5-15.  The Technical Support Recording Delay      

 Name   Unstore from Tech Call 
 Recording Delay  

  Display 5-16.  Removing the Entity from the Storage 
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  The expression  Tech Time  is defi ned using the Expression data module found in 

the Advanced Process panel. Click on the module, double-click to add a new row, and 

enter the expression Name,  Tech Time . Then click on the Expression Values cell, 

which will open the spreadsheet window, and enter the expression  TRIA(3, 6, 18) , 

as shown in   Figure 5-5  . 

  The remaining two Process modules in this section accomplish the same task for 

product Types 2 and 3 that need to seize a  Tech 2  and  Tech 3  resource, respectively. 

The capacities for both of these resources also need to be set to  3  in the Resource data 

module. 

 Next we’ll develop the sales calls portion of our model. 

     5.4.4 Sales Calls 

 The sales calls from our Decide module in Section 5.4.1 are sent to this portion of our 

model. The logic for the sales calls is very similar to that described for the technical 

support calls. However, there are far fewer modules required (actually only two) since 

we don’t have the complexities of multiple product types and different resources. The 

 Name 

 Type 

  Determine Product Type  
  N-way by Chance  

 Percentages 

  

  25  
  34  

  Display 5-17.  Determining the Technical Support Product Type 

 Name   Process Product Type 1 
Tech Call  

 Action   Seize Delay Release  

 Resources 

 Type 

 Resource Name 

  
  Resource  
  Tech 1  

 Delay Type 

 Units 

 Expression 

  Expression  
  Minutes  
  Tech Time  

  Display 5-18.  The Technical Support Call Process Module for Product Type 1 

  Figure 5-5.  The Expression Data Module   
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 required logic steps for the sales calls are shown here, and the fl owchart modules are 

shown in   Figure 5-6  :  

   Assign entity type and picture  
 Seize sales call resource  
 Delay for service  
 Release sales call resource  

 An arriving sales call is sent to an Assign module where we assign the Entity Type to 

 Sales Call , and the Entity Picture to  Picture.Green Ball , as in   Display 5-19  .  
 It then proceeds to a Process module (  Display 5-20  ) where one unit of the  Sales  

resource is seized, it delays for service  TRIA(4, 15, 45)  minutes, and it releases 

its unit of the  Sales  resource. 

     5.4.5 Order-Status Calls 

 The order-status calls are handled automatically, so at least initially they don’t require a 

resource other than one unit of  Trunk Line . The logic steps for order-status calls are:  

 Name   Assign Sales Call Entity 
Type and Picture  

 Assignments 

 Type 

 Entity Type 

 Type 

 Entity Picture 

  
  Entity Type  
  Sales Call  
  Entity Picture  
  Picture.Green Ball  

  Display 5-19.  Assign Sales Call Entity Type and Picture 

  Figure 5-6.  Sales Call Logic   

 Name   Process Sales Call  

 Action   Seize Delay Release  

 Resources 

 Type 

 Resource Name 

  
  Resource  
  Sales  

 Delay Type 

 Units 

 Minimum 

 Value (Most Likely) 

 Maximum 

  Triangular  
  Minutes  
  4  
  15  
  45  

  Display 5-20.  The Sales Call Process Module 
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   Assign entity type and picture 
  Delay for automated call 
  If customer wants to speak to a real person 
   Set customer priority 
   Seize sales person 
   Delay for call 
   Release sales person  

 The Arena logic is shown in   Figure 5-7  .  

 The arriving order-status call is sent to an Assign module (  Display 5-21  ), where 

we  assign the entity Type to  Order Status Call , and the Entity Picture to  

Picture.Blue Ball .  

 The order-status calls are handled automatically by the phone system, which means 

that they initially incur a delay like the arriving and the technical support calls. As with 

the previous two delays, we want to show the call on the animation so we could use a 

Store–Delay–Unstore module combination like we did for the fi rst two delays. But this 

time let’s take a different approach and use a Delay module from the Blocks panel. By 

using this module, we can capture the same functionality as we did with the previous 

combination of modules since it contains the Store/Unstore logic. The entity will be 

placed in the defi ned storage, it will incur a delay, and the entity will be removed from 

the storage. We made entries for the Label (same as Name), the Duration, and the Storage 

ID, as shown in   Display 5-22  . 

 Name   Assign Order Status Entity 
 Type and Picture  

 Assignments 

 Type 

 Entity Type 

 Type 

 Entity Picture 

  
  Entity Type  
  Order Status Call  
  Entity Picture  
  Picture.Blue Ball  

  Display 5-21.  Assign Order-Status Call Entity Type and Picture 

  Figure 5-7.  The Order-Status Calls Process Logic   
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  When you use modules from the Blocks panel, you need to be aware of which Base 

Time Units you specifi ed in the  Run > Setup > Replication Parameters  dialog and make 

sure that the units for any time values (for example, the Duration in our Delay mod-

ule) are the same. In our model, we’ve specifi ed minutes, so we are consistent. If you 

had chosen to use the Delay module from the Advanced Process panel, it would have 

included an entry for the time units. When we used the Store module to place an entity 

in a Storage, Arena automatically entered the storage name in the Storage data module 

(Advanced Process panel). That’s not the case for the Delay module from the Blocks 

panel. So now you’ll need to click on the Storage data module and enter the storage 

name,  Order Status Delay Storage . 

 Having completed the delay, the entity enters a Decide module, in   Display 5-23  , 

where we decide whether it is necessary to connect to a live salesperson. If not, the 

entity is sent to the system exit; otherwise, it needs to seize a salesperson to complete 

the call. We arbitrarily decided that “True” means that it is indeed the case that no sales 

person is required (hence the module Name and  85  entry for Percent True). 

 Label 

 Duration 

 Storage ID 

  Order Status Delay  
  TRIA(2, 3, 4)  
  Order Status Delay Storage  

  Display 5-22.  The Delay Module from the Blocks Panel   

 Name 

 Type 

  No Sales Person Required?  
  2-way by Chance  

 Percent True (0-100)   85  

  Display 5-23.  Determining Whether a Salesperson Is Required 

for an Order-Status Call 
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  In our initial problem description, we indicated that order-status calls are routed to 

the sales staff where they will wait with a lower priority than sales calls. This means 

that if an order-status call is in a queue waiting for a sales person and a new sales call 

enters, the sales call will be given priority over the order-status call and be answered 

fi rst (though the new sales call would not preempt an order-status call that might already 

be in progress). At this point, to fi nd a solution to our problem, we need to digress and 

explain how Arena allocates resources to waiting entities. 

 We hope by now that this allocation process is fairly clear when all entities 

requesting a resource are resident in the same queue and have the same priority. 

However, if there are several places within a model (different Queue – Seize combi-

nations) where the same resource could be allocated, some special rules apply. Let’s 

fi rst consider the various circumstances under which a resource could be allocated 

to an entity:

  ■    An entity requests a resource and the resource is available.  
   ■  A resource becomes available, and there are entities requesting it in only one of 

the queues.  
   ■  A resource becomes available, and there are entities requesting the resource in 

more than one queue.    

 It should be rather obvious what occurs under the fi rst two scenarios, but we’ll cover 

them anyway. 

 If an entity requests a resource and the resource is available, you guessed it: the 

resource is allocated to the entity. In our second case, when a resource becomes avail-

able and there are entities in only one of the queues, then the resource is allocated 

to an entity in that queue. Here the determining factor for  which  entity in the queue 

gets the resource is the queue-ranking rule used to order the entities. Arena provides 

four ranking options: First In First Out (FIFO), Last In First Out (LIFO), Low Value 

First, and High Value First. The default, FIFO, ranks the entities in the order that they 

entered the queue, so the entity that’s been in the queue for the longest time would get 

the resource. LIFO puts the most recent arrival at the front of the queue (like a push/

pop stack), so the entity that most recently joined the queue would get the resource. 

The last two rules rank the queue based on the value of an attribute of entities in it; 

it’s up to you to defi ne an expression for such an attribute. For example, as each entity 

arrives in the system, you might assign a due date to an attribute of that entity. If you 

selected Low Value First based on this due-date attribute, you’d have the equivalent 

of an earliest-due-date queue-ranking rule. As each successive entity arrives in the 

queue, it is placed in position based on increasing due dates. 

 The last case, where entities in more than one queue request the resource, is a bit 

more complicated. Arena fi rst checks the seize priorities; if one of the seize priorities 

is a smaller number (higher priority) than the rest, the resource is allocated to the fi rst 

entity in the queue preceding that seize. We could employ this method and return to 

the Process module we used in our sales call logic and change the Priority selection to 

High(1). We would then use another Process module to seize the sales resource for our 

order-status calls and set the Priority selection to Medium(2) or Low(3). This would 
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solve our resource allocation problem. But let’s continue our discussion on resource 

allocation and see if there is another way. 

 If all priorities are equal, Arena applies a default tie-breaking rule, and the resource 

is allocated based on the entity that has waited the longest regardless of the queue it’s in. 

Thus, it’s essentially a FIFO tie-breaking rule among a merger of the queues involved. 

This means that if your queues were ranked according to earliest due date, then the 

entity that met that criterion might not always be allocated the resource. For example, 

a late job might have just entered a queue, whereas an early job may be at the front of 

another queue and has been waiting longer. 

 Arena provides a solution to this potential problem in the form of a  shared queue . 

A shared queue is just what its name implies—a single queue that can be shared by 

two or more seize activities. This allows you to defi ne a single queue where all enti-

ties requesting the resource will be placed regardless of where their seize activities 

are within your model. Arena performs the bookkeeping to ensure that an entity in 

a shared queue continues in the proper place in the model logic when it’s allocated 

a resource. 

 In our model, each sales call and a small percentage (15%) of the order-status calls 

will require a unit of the  Sales  resource. Since these activities are modeled separately, 

we’ll use a shared queue when we attempt to seize a unit of the  Sales  resource. Both 

types of calls are allocated a unit of the  Sales  resource based on a FIFO rule, or the 

longest waiting time, so a shared queue is not  required  in our model to ensure that the 

proper call is allocated the resource. However, a shared queue also allows us to collect 

composite statistics easily on the total number of calls waiting for a  Sales  resource 

and provides the ability to show all of these waiting calls in the same queue—if we 

decide to animate that queue. 

 Since we did not assign the sales calls a priority, we’ll take advantage of the fact that 

for an entity with an unassigned value for an attribute, that value will default to zero. 

Now we’ll use an Assign module to defi ne a new attribute,  Sales Call Priority , 

to those order-status calls requiring a unit of the  Sales  resource and set its value to  1 , 

as in   Display 5-24  .  

 The result is that sales calls will have a  Sales Call Priority  with a value 

of 0 and order-status calls will have a  Sales Call Priority  with a value of 1. 

Next we’ll send the entity to a Seize module. You might ask why we are using a Seize 

 Label   Set Order Status Call 
Priority  

 Type 

 Assignments 

 Attribute Name 

 New Value 

  Attribute  
  
  Sales Call Priority  
  1  

  Display 5-24.  Assigning the Call Priority 
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module rather than a Process module. It turns out that if we use a Process module, 

the queue name defaults to “module name” with a “.queue” extension, which can’t 

be changed. Since we want to use the same queue that was defi ned for the sales calls 

seize, we need to use a Seize module instead, which allows us to change the default 

queue name. 

 We make this queue a shared queue by fi rst placing and fi lling out the Seize module 

and selecting the name of the queue,  Process Sales Call.Queue , from the 

drop-down list, as shown in   Display 5-25  . 

  Once this is completed, you’ll go to the Basic Process panel and open the Queue data 

module. Your queue will already be in the spreadsheet view, and you’ll need to check 

the Shared box to make it available as a shared queue. Next, click on the Type cell for 

our queue and select the  Lowest Attribute Value  option. This allows you to 

select an attribute from the pull-down list in the Attribute Name cell. You should select 

the Attribute Name  Sales Call Priority . 

 Now both the sales call and the order-status call entities will reside in the same 

queue. Since the sales call entities have a priority of zero, they will always be allocated 

an available sales resource fi rst. The order-status call entity will be allocated an available 

 resource only if there are no sales call entities currently in the queue. This solves our 

resource allocation problem. 

 After seizing a Sales resource, the entity enters a Delay module, as shown in   Dis-

play 5-26  , with a delay of TRIA(2, 3, 4) minutes. 

  It is next sent to a Release module (Advanced Process panel) where we release the 

sales resource, shown in   Display 5-27  .  

 After releasing the sales resource, the entity is sent to the system exit. 

 Name   Order Status Call Seizes 
Sales Person  

 Resources 

 Type 

 Resource Name 

 Quantity 

  
  Resource  
  Sales  
  1  

 Queue Name   Process Sales Call.Queue  

  Display 5-25.  The Order-Status Seize Module 

 Name 

 Delay Time 

 Units 

  Delay for Order Status 
Conversation With Sales Person  

  TRIA(2, 3, 4)  
  Minutes  

  Display 5-26.  The Order-Status Sales Delay 
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     5.4.6 System Exit and Run Setup 

 Having completed their mission in life, the calls from the technical support, sales, and 

order-status sections are all sent to this portion of our model. The logic steps are shown 

here, and the fl owchart modules are shown in   Figure 5-8  :  

  Release Trunk Line  
Decrement active call counter  
Record completed calls  
Dispose of entity  

 The arriving entities enter a Release module where we release the  Trunk Line  

resource, in   Display 5-28  . 

  Exiting the Release module, they enter an Assign module where we decrement the 

active call counter, the variable  Total WIP , shown in   Display 5-29  . 

  We then use a Record module to record the completed call in the counter   Completed 
Calls , in   Display 5-30  .  

 The entity is fi nally sent to a Dispose module where it is destroyed. 

 Name   Order Status Call Releases 
Sales Person  

 Resources 

      Type 

      Resource Name 

  
  Resource  
  Sales  

   Display 5-27.  Releasing the Order-Status Sales Resource        

  Figure 5-8.  The System Exit Logic   

kel01315_ch05_207-278.indd   232kel01315_ch05_207-278.indd   232 05/12/13   3:28 PM05/12/13   3:28 PM



Modeling Detailed Operations  233

 Before we can test our model, we need to open the Run Setup dialog and make 

entries for the Project Title, Analyst Name, and Project Description found under the 

Project Parameters tab. We also accepted the defaults under the Statistics Collection 

section, which means that we’ll automatically get statistics on the entities, resources, 

and queues. Now go to the Replication Parameters tab where we requested a single rep-

lication with no warm-up period, an infi nite replication length, and where we specifi ed 

the base time units as minutes. 

 Name   Release Trunk Line  

 Resources 

      Type 

      Resource Name 

  
  Resource  
  Trunk Line  

  Display 5-28.  Releasing the Trunk Line Resource       

 Name   Decrement Active Call Counter  

 Resources 

      Type 

      Variable Name 

      New Value 

  
  Variable  
  Total WIP  
  Total WIP - 1  

   Display 5-29.  Decrement the Active Call Counter      

 Name 

 Counter Name 

  Record Completed Calls  
  Completed Calls  

   Display 5-30.  Record the Completed Calls      
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 At this point, you might remember (we are guessing you forgot by this time) that 

way back in the early part of Section 5.4.1 we told you that we were going to use the 

variable  Total WIP  to help determine when to stop the simulation. The call center 

accepts incoming calls only from 8  am  to 6  pm  (600 minutes), but any calls that are 

in the system at 6  pm  must be completed. We could have just set an arbitrarily long 

replication time, but this would have resulted in inaccurate results, specifi cally on 

resource utilizations and other time-persistent statistics. There are two conditions 

that must be true before we can shut down the system and end the simulation run. 

The fi rst is that the simulation time must be at least 600 minutes. The second con-

dition is that we must have completed all calls. Since the variable  Total WIP  is 

used to keep track of how many calls are currently in the system, we only need to 

check whether it is zero, which implies that all calls have been completed. So we’ll 

enter the expression

 TNOW >= 600.0  &&  Total WIP == 0 

into the Terminating Condition fi eld;  &&  means “and.” Actually, we used the Expression 

Builder to construct the expression. 

 We defi ned this variable specifi cally for our purposes, although we also could 

have used the Arena variable  NR(Trunk Line) . This variable tells us how many 

trunk lines are currently busy, so when its value is zero, there are no active calls in 

the system. 

 By now you should have a fairly good understanding of how to use the modules 

from the Advanced Process panel, and hopefully, have a better grasp of what the major 

modules in the Basic Process panel provide. You might have noticed that the logic for 

the last two sections, sales and order-status calls, have several common components. By 

defi ning and assigning a call type and expressions for the time delays, we could have 

developed one general section of logic that would have handled both call types. (We did 

consider doing that.) However, this approach can sometimes become quite complicated, 

and this type of logic is seldom obvious to another modeler (or client) if someone else 

has to use or modify your model. Unless you can combine signifi cant amounts of model 

logic and make it relatively transparent, we recommend that you lay out each section of 

logic separately, even if doing so might be a bit redundant at times. Basically, this is a 

matter of taste. 

 That completes our model development, but before we attempt to run our model, 

let’s develop our animation. 

     5.4.7 Animation 

 We’re not going to get fancy with the animation for our model, but we do want 

to represent the model activities. We’ll animate our recording delays (Storages), 

 resources, resource queues, the number of active calls in each section of the model, 

and the total number of trunk lines in use. Our complete animation is shown in 

   Figure 5-9  . This shows the status at approximately 281.6 minutes into the simula-

tion run.  
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 Let’s start by placing the storage animations for the recording delays. The storage 

animation object is located in the Animate Transfer toolbar, which you may need to 

add to your model. Selecting the  Storage  button will open the Storage dialog shown in 

  Display 5-31  . You can then select the storage you want to animate from the Identifi er 

drop-down list. An animated storage contains the same options as an animated queue. 

We elect to use the defaults, which will result in a line storage. Pressing  OK  places the 

line storage on your animation. When an entity is in this storage, it will appear on our 

animation as if it were in a queue.  

 Having placed the storage for the initial recording delay, we then place the storages 

for the technical-support call and order-status recording delays. 

  Figure 5-9.  The Simple Call Center System Animation   

 Identifi er   Initial Recording Delay 
Storage  

  Display 5-31.  Storage Animation         
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 Each time we placed a Process module (with Action being either Seize Delay, or 

Seize Delay Release) or Seize module in our model, Arena automatically provided a 

free animated queue. You could simply move these queues to the animation portion 

of your model, but there is one subtle point to know. These queues are attached to 

the module that created them. If you move the queue to your animation and then 

later move the module, the animated queue will be moved as well. This can be rather 

annoying as you will fi nd yourself creating an initial animation and later moving mod-

ules to make your model look pretty or to add logic. There are two ways to overcome 

this problem. The fi rst is to delete all the queues that are created when a module is 

placed and then add them back in using the Queue object found on the Animate tool-

bar. A more convenient way is to click on the queue, press the  Cut  button (or Ctrl-X) 

to delete it from the animation, and then use the  Paste  button (or Ctrl-V) to add it back. 

We did this for the four queues of interest—the three technical support queues and the 

sales call queue. 

 We then added resource animations for our technical support and sales, just like in 

Model 3-3 (Section 3.5.2), Model 3-5 (Section 3.5.3), Model 4-3 (Section 4.3.3), and 

Model 4-4 (Section 4.4), as shown in   Figures 5-9   and   5-10  . 

 Next we added variables to indicate the total number of calls in our major areas—the 

three technical support areas and the sales area. We used two different ways to get this 

information on our animation. First let’s look at what we did for the sales area. We added 

a variable using the Variable button from the Animate toolbar and entered the expression 

 NR(Sales) + NQ(Process Sales Call.Queue) . This expression represents 

the current number of busy  Sales  resource units plus the number of calls in the queue 

waiting for a resource.  

 We used a different approach for the technical support areas. There is a fairly large 

number of variables that are kept by Arena, so we suggest that you use Arena help to 

learn more about what Arena variables are available. For our needs, there is an appro-

priate variable. For every Process module you place in your model, Arena automatically 

defi nes a variable NAME.WIP, where NAME is the Name you enter for the module. It 

  Figure 5-10.  Adding Multiple Seize Points   
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also turns out that when you place and populate a Process module, Arena provides that 

variable as part of the standard animation for that module, along with the queue. If you 

look closely at your model when it’s not running, you’ll see a red 0 centered directly 

under each Process module. For our technical support for product Type 1, that turns 

out to be the variable  Process Product Type 1 Tech Call.WIP . You can 

place a new variable using the Variable button and enter the name—it’s not on the drop-

down list—or you can cut and paste the variable supplied by the Process module. We 

actually used the copy and paste functions in creating our animation. Arena will not let 

you  animate multiple queues or resources with the same name, but it will allow it for 

variables. We used this approach to add the three WIP variables to our technical support 

portion of the animation. 

 The last thing that we added to our animation was the total number of trunk lines in 

use. We could have used the Arena variable  NR(Trunk Lines) , which would have 

given us the current number of calls in the system. Instead, we decided to add a plot, 

of the same variable, which gives us a good view of how the demand on our system 

changes over the simulation run. To complete our animation, we added some labels and 

background color. 

 If you run your model, you might notice by looking at our plot of the number of busy 

trunk lines that the system is either full or close to full most of the time; the “fl at top” on 

the plot at height 26 confi rms our arrival logic that refuses incoming calls when all 26 

trunk lines are already taken. Looking at the output from the run, we see that there were 

734 attempted calls with 643 of them completed and 91 rejected or balked. You might 

also notice that the simulation run length was just over 637 minutes. The last 37 minutes 

were the time it took to complete the calls that were in the system at 6  pm ; note that the 

trunk-lines plot declines to zero at the end of the simulation, confi rming our termination 

logic described above. 

 That completes Model 5-1. 

       5.5 Model 5-2: The Enhanced Call Center System 

  In developing models for real systems, you want to keep your model as simple as 

possible and yet you want that model to capture the system’s behavior accurately. 

Our ultimate goal is to use our model to fi nd the most cost-effective way to increase 

our service level or customer satisfaction. We would like to consider the impact of 

such changes as increasing the number of trunk lines or changing our staffi ng levels. 

Although our current model would allow us to capture these changes, it’s lacking in 

detail. So let’s revisit our problem description and determine where we need to add 

more detail. 

    5.5.1 The New Problem Description 

 Let’s start with a more detailed examination of call arrivals. The call-arrival rate to this 

system actually varies over the course of the day according to a nonstationary Poisson 

process (see Section 12.3), which is typical of these types of systems. So we might col-

lect data expressed in calls per hour for each 30-minute period during which the system 

is open. These call-arrival rates are given in   Table 5-2  .  
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 Next let’s take a look at our staffi ng. Although our initial model assumed constant 

staffi ng levels for our sales and technical-support areas, the staffi ng level actually varies 

over the day. It turns out that there are six salespeople with the staggered daily schedules 

summarized as (number of people @ time period in minutes): 1@60, 3@60, 4@90, 

5@60, 6@60, 5@90, 6@90, 5@30, 3@60, and 2@60. 

 Our technical support employees work an 8-hour day with 30 minutes off for lunch 

(lunch is not included in the 8 hours). There are 11 technical support people whose work 

schedules are shown in   Table 5-3  . Charity and Noah are only qualifi ed to handle calls for 

product Type 1; Tierney, Aidan, and Emma are only qualifi ed to handle calls for product 

Type 2; Mya, Ian, and Christie are only qualifi ed to handle calls for product Type 3. 

Molly is qualifi ed to handle product Types 1 and 3, and Anna and Sammy are qualifi ed 

to handle calls for all three product types.        

 The last bit of detail that we omitted from our initial model was that 4% of techni-

cal calls require further investigation after completion of the phone call. The questions 

raised by these callers are forwarded to another technical group, outside the boundaries 

  Table 5-2.   Call Arrival Rates (Calls Per Hour)  

 Time  Rate  Time  Rate  Time  Rate  Time  Rate 

 8:00–8:30 

 8:30–9:00 

 9:00–9:30 

  9:30–10:00 

 10:00–10:30 

 20 

 35 

 45 

 50 

 70 

 10:30–11:00 

 11:00–11:30 

 11:30–12:00 

 12:00–12:30 

 12:30–1:00 

 75 

 75 

 90 

 95 

 105 

 1:00–1:30 

 1:30–2:00 

 2:00–2:30 

 2:30–3:00 

 3:00–3:30 

 110 

 95 

 105 

 90 

 85 

 3:30–4:00 

 4:00–4:30 

 4:30–5:00 

 5:00–5:30 

 5:30–6:00 

 90 

 70 

 65 

 45 

 30 

22212019181716151413121110987654321

Product

Lines
Name

Charity

Noah

Molly

Anna

Sammy

Tierney

Aidan

Mya

Ian

Emma

Christie

1

1

1, 3

1, 2, 3

1, 2, 3

2

2

2

3

3

3

Time Period (30 minutes)

  Table 5-3.   Technical Support Schedules  
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of our model, that prepares a response. The time to prepare these responses is estimated 

to be EXPO(60) minutes. The resulting response is sent back to the same technical sup-

port person who answered the original call. This person then calls the customer, which 

takes TRIA(2, 4, 9) minutes. These returned calls require one of the 26 trunk lines and 

receive priority over incoming calls. If a returned call is not completed on the same day 

the original call was received, it’s carried over to the next day. 

 If we are going to consider changing our staffi ng levels to increase customer satis-

faction, we might also want more detail on when the system is congested. So let’s add 

counters to our model that we’ll use to count the number of rejected calls during each 

hour of operation. 

     5.5.2 New Concepts 

 Our enhanced model requires two new concepts. The fi rst is the arrival process whose 

rate varies over time. The second concept shows that when a call attempts to seize a unit 

of a technical staff resource, it is really trying to seize a resource from a pool or set of 

resources qualifi ed to handle the call. Let’s discuss each of these new concepts before 

we build our model. 

 We’ll start with the arrival process, which has a rate that varies over time. This type 

of arrival process is fairly typical of service systems and requires a different approach. 

Arrivals at many systems are modeled as a  stationary Poisson process  in which arrivals 

occur one at a time, are independent of one another, and the average rate is constant 

over time. For those of you who are not big fans of probability, this implies that we have 

exponential interarrival times with a fi xed mean. You may not have realized it, but this 

is the process we used to model arrivals in our previous models (with the exception of 

Model 4-5, which was contrived to illustrate a particular point). There was a slight vari-

ation of this used for the Part B arrivals in Models 4-1 through 4-4, where we assumed 

that an arrival was a batch of four; therefore, our arrivals still occurred one  batch  at a 

time according to a stationary Poisson process. 

 For this model, the mean arrival rate is a function of time. These types of arrivals 

are usually modeled as a  nonstationary Poisson process . An intuitive, but incorrect, 

modeling approach would be to enter for the Time Between Arrivals in a Create mod-

ule an exponential distribution with a user-defi ned variable as a mean Value, then 

change this Value based on the rate for the current time period. For our example, we’d 

change this Value every 30 minutes. This would provide an approximate solution if 

the rate change between the periods was rather small. But if the rate change is large, 

this method can give very misleading (and wrong) results. The easiest way to illustrate 

the potential problem is to consider an extreme example. Let’s say we have only two 

periods, each 30 minutes long. The rate for the fi rst period is 3 (average arrivals per 

hour), or an interarrival-time mean of 20 minutes, and the rate for the second period is 

60, or an interarrival-time mean of 1 minute. Let’s suppose that the last arrival in the 

fi rst time period occurred at time 29 minutes. We’d generate the next arrival using an 

interarrival-time mean Value of 20 minutes. Using an exponential distribution with a 
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mean of 20 could easily     1  return a value more than 31 for the time to the next arrival. 

This would result in no arrivals during the second period, when in fact there should be 

an expected value of 30 arrivals.     2  In general, using this simplistic method causes an 

incorrect decrease in the number of arrivals when going from one period to the next 

with an increase in the rate, or a decrease in the interarrival time. Going from one 

period to the next with a decrease in the rate will incorrectly increase the number of 

arrivals in the second period.   

 Nevertheless, it’s important to be able to model and generate such arrival processes 

correctly since they seem to arise all the time, and ignoring the nonstationarity can 

create serious model-validity errors since the peaks and troughs can have signifi cant 

impact on system performance. Fortunately, Arena has a built-in ability to generate non-

stationary Poisson arrivals (and to do so correctly) in the Create module. The underlying 

method used is described in Section 12.3. 

 The second new concept is the need to model an entity arriving at a location or 

station and selecting from one of several similar (but not quite identical) objects. The 

most common situation is the selection of an available resource from a pool of re-

sources. Let’s assume you have three operators: Sean, Lynn, and Michael. Any one of 

these operators can perform the required task, and you would like to select any of the 

three, as long as one is currently available. The Sets data module in the Basic Process 

panel provides the basis for this functionality. Arena  sets  are groups of objects of the 

same type that can be referenced by a common name (the  set name ) and a  set index . 

The objects that make up the set are referred to as  members  of the set. Members of a 

particular set must all be the same type of object, such as resources, queues, pictures, 

etc. You can collect almost any type of Arena objects into a set, depending on your 

modeling requirements. An object can also reside in more than one set. Let’s assume 

in our  Operators  set that Lynn is also qualifi ed as a setup person. Therefore, we 

might defi ne a second resource set called  Setup  as Lynn and Doug (Doug’s not an 

operator). Now, if an operator is required, we’d select from the set called  Opera-
tors ; if a setup person is required, we would select from the set called  Setup . Lynn 

might be chosen via either case because she’s a member of both sets. You can have as 

many sets as you want with as much or as little overlap as required. 

 For our call center, we’ll need to use sets to model the technical support staff 

correctly. We also need to consider how to model the returned technical support calls. 

These are unique in that they must be returned by the same tech-support person who 

handled the original call, so we must have a way to track who handled the original 

  2  The probability of no arrivals in the second period should be  e  -60(1/2)  = 0.000000000000093576. 

  1  With probability  e  -31/20  = 0.21, to be (almost) exact. Actually this fi gure is the  conditional  probability of 

no arrivals in the second period,  given  that there were arrivals in the fi rst period and that the last of these was 

at time 29. This is not quite what we want, though; we want the  unconditional  probability of seeing no arrivals 

in the second period. It’s possible to work this out, but it’s complicated. However, it’s easy to see that a lower 

bound on this probability is given by the probability that the fi rst arrival after time 0, generated as exponential 

with mean 20 minutes, occurs after time 60—this is one way (not the only way) to have no arrivals in the 

second period, and has probability  e  -60/20  =  e  -3 = 0.0498. Thus, the incorrect method would give us at least a 

5% chance of having no arrivals in the second period. Now, go back to the text, read the next sentence, and 

see the next footnote.  
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call. We’ll do this by storing the set index of the specifi c resource allocated from the 

selected technical support staff, so we’ll know which individual needs to return the 

call, if necessary. 

     5.5.3 Defi ning the Data 

 In our fi rst model, we had a total of fi ve resources (one for the 26 trunk lines, one for the 

sales staff, and three for the technical support staff). In our new model, we’ll have a total 

of 13 resources (one for the 26 trunk lines, one for the sales staff, and the remaining 11 

for the individual technical support staff). All but the trunk lines follow a schedule (we 

discussed schedules in Section 4.2.2). We defi ned a separate schedule for each resource; 

however, as several of the technical support staff follow the same schedule (for example, 

Charity, Tierney, and Mya), you could simply reuse a single schedule (though doing so 

would make your model less fl exible in terms of possible future changes). In developing 

the schedules for the technical support staff, we used the Graphical Schedule Editor, set 

the number of time slots to 22, and the maximum capacity on the  y -axis of the graph to 

two (we could have made it one) in the Options dialog. The Charity schedule is shown 

in   Figure 5-11  .  

 If you’re building this model along with us, be sure that each schedule covers 

the entire 660 minutes of each day, from 8  am  to 7  pm  (22 half-hour time periods), 

even if you have to fi ll in many zeroes at the beginning or end (as we do at the end 

for Charity). Although the schedule shown in   Figure 5-11   may look like it covers the 

entire 660 minutes, it really only covers the fi rst 17 time periods (through 8:30). The 

graphical schedule editor does not assume that each schedule covers one day (they 

can be of any length). In this case, the schedule would start over in time period 18,  

  Figure 5-11.  The Graphical Schedule Editor: The Charity Schedule   
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 which is only 8.5 hours into the 11-hour day. We could have checked the box under 

the Options button to “Remain at capacity when at the end of the schedule,” and set 

that capacity to zero. This would have resulted in the correct schedule for the fi rst 

day. The problem in using this option is that if we decide to have multiple replica-

tions and we chose not to initialize the system at the start of each day (in the Run 

Setup dialog), this would forever result in a zero capacity after the fi rst replication. 

Thus, we would like to make sure that the last fi ve half-hour time periods explicitly 

have a capacity of zero. You can do this by right-clicking on the Durations cell of 

the schedule and selecting Edit via Dialog or Edit via Spreadsheet. Selecting Edit 

via Spreadsheet opens the Durations window in   Figure 5-12  , which allows you to 

double-click to add a new row and then enter the Value, Duration combination of 0, 5. 

This represents fi ve 30-minute periods with a capacity of zero, thus explicitly fi lling 

out the entire 11 hours of the day.  

 Selecting Edit via Dialog opens the Durations dialog, which allows you to enter the 

same values as shown in   Display 5-32  . If you reopen the Graphical Schedule Editor after 

adding these data, the fi gure will look the same as before. A word of caution—make sure 

you exit the editor without saving the data or the added data (0, 5) will be deleted. 

 We also developed a schedule for the sales staff and the arrival process. You develop 

the arrival process schedule just like you developed the resource schedules, with the 

exception that you select  Arrival  in the Type cell, rather than  Capacity . 

 The next step is to defi ne our 13 resources in the Resource data module. We selected 

the  Ignore  option for the tech-support Schedule type, even though it would appear 

that the  Wait  option is the most likely option for this type of operation. If a tech sup-

port person was on the phone when a break was scheduled to occur, that person would 

typically complete the call and then take the full break (the  Wait  option). This would 

work fi ne if we ran only one replication or we ran multiple replications and initialized 

the system at the start of each replication. Unfortunately, that’s not always the case. If 

we chose the Wait option and a resource was delayed for lunch by 10 minutes, the rest of 

the day’s schedule would be pushed out by 10 minutes. Although this is not a problem, 

that 10-minute delay would show up in the next day’s schedule. All delays would be 

cumulative over time. That could be a problem! 

 We’ve also included some costing data (Busy/Hour and Idle/Hour) for our technical-

support and sales staff, though we don’t actually use these entries in the model’s opera-

tion. The fi nal spreadsheet view is shown in   Figure 5-13  .   

  Figure 5-12.  The Durations Spreadsheet Window 
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 Having defi ned our resources, we can now defi ne our sets using the Set data module 

found in the Basic Process panel. We fi rst defi ne three resource sets. They are:

  Product 1: Charity, Noah, Molly, Anna, Sammy  
 Product 2: Tierney, Aidan, Emma, Anna, Sammy  
 Product 3: Mya, Ian, Christie, Molly, Anna, Sammy  

 The contents of these sets correspond to the technical staff qualifi ed to handle the 

calls for each product type. Note that Molly, Anna, and Sammy are included in more 

than one set. Also note that we’ve consistently listed these three versatile staff members 

at the end of each set for a deliberate reason. For instance, take the Product 1 set, which 

consists of Charity, Noah, Molly, Anna, and Sammy, in that order. If possible, we’d like 

  Figure 5-13.  The Resources Spreadsheet Window   

 Value (Capacity) 

 Duration 

  0  
  5  

   Display 5-32.  The Durations Dialog        
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to allocate Charity or Noah to an incoming call fi rst because they can only handle prod-

uct Type 1 calls. We’ll use the Preferred Order selection rule, which allocates resources 

based on their order in the set, starting with the fi rst (Charity). In our model, this will try 

to keep Molly, Anna, and Sammy available since they can handle other product types 

as well. 

 The Set module allows us to form sets of resources, counters, tallies, entity types, 

and entity pictures. You can also form sets of any other Arena objects by using the Ad-

vanced Set data module found in the Advanced Process panel. Form a set by clicking 

on the Set module and then double-clicking in the spreadsheet view to add a new entry. 

We’ll walk you through the details for creating the fi rst resource set. Enter  Product 1  

in the Name cell, and select  Resource  from the pull-down in the Type cell. To defi ne 

the members of the set, click on “0 Rows” in the Members column to open a spreadsheet 

for listing the members, and then double-click to open a new blank row. Since we have 

already defi ned our resources, you can use the pull-down option to select the Resource 

Name for each member. To add additional members to the set, just double-click where 

indicated to add more new rows. The completed member spreadsheet view for the Prod-

uct 1 set is shown in   Figure 5-14  . You’ll need to repeat this for the  Product 2  and 

 Product 3  sets.  

 We also defi ned a Counter set (called  Rejected Calls ) with ten members, 

which we’ll use to keep track of the number of rejected calls (busy signals) for each 

hour time period. For this set, we fi rst defi ned the ten counters using the Statistic data 

module (in the Advanced Process panel). We assigned the statistic names as  Period 
01  through  Period 10  and the corresponding Counter Names as  Period 01 
 Rejected Calls  through  Period 10 Rejected Calls  (the leading 0s for 

periods 1 through 9 are so   things will be alphabetized properly in the output reports). We 

also selected  Replicate  for the Initialize Option cell, which will cause the counters 

to be cleared whenever the other statistics are cleared, as specifi ed in the  Run > Setup  

dialog. We could have also selected the Yes option; if the No option is specifi ed and mul-

tiple replications are performed, then the value of the counter at the end of a replication 

will be retained as the initial value at the beginning of the next replication so that the 

reported values will be cumulative as the replications are made. The fi rst fi ve counter 

entries are shown in   Figure 5-15  .  

 The completed Set data module is shown in   Figure 5-16  , which includes three Re-

source sets and one Counter set. 

  Figure 5-14.  The Members Spreadsheet Window for the Product 1 Set   
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      5.5.4 Modifying the Model 

 We’ll modify Model 5-1 that we created earlier to develop our new Model 5-2. We’ve 

already covered almost all of the needed concepts contained in these modules, so we 

won’t bore you with the details of each one. Instead, we’ll focus on the new modules 

and concepts. 

 Let’s start with the call arrival section. We made our fi rst change to the Create mod-

ule that creates our incoming calls. In the Time Between Arrivals section, we selected 

 Schedule  from the Type drop-down list. The arrival schedule,  Arrival Sched-
ule , that we created above was entered in the Schedule Name fi eld. Since the Create 

module will follow our schedule and automatically stop creating new arrivals 11 hours 

into the simulation, we can delete the three modules that we had in our arrival cutoff sec-

tion of Model 5-1. We also deleted the Assign module,  Increment Active Call 
Counter , used to increment the variable  Total WIP . We used this variable in the 

expression that we entered in the Terminating Condition portion in the  Run > Setup  

dialog for Model 5-1. We replaced that variable with the variable  NR(Trunk Line) . 

We did this for two reasons. First, we really didn’t need the fi rst variable, so we made 

our model simpler by deleting it from our new model. The second reason is that using 

the variable  Total WIP  in the new logic required to handle the returned calls in our 

technical support area causes some modeling problems. We would have had to decre-

ment the variable when the returned call was sent to the back offi ce and then increment it 

when the response was returned to technical support. So we took the easy way out since 

that variable was really not needed and eliminated it from our model. The last change 

required for this fi rst section of our model was to the Record module used to record the 

number of rejected calls. As mentioned earlier, we decided to keep track of the number 

of rejected calls in each 1-hour time period. To accomplish this, we defi ned ten counters 

  Figure 5-15.  The Statistic Spreadsheet Window for the Counters   

  Figure 5-16.  The Set Spreadsheet Window   
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in the Statistic data module and formed a set called  Rejected Calls  containing 

these counters. We altered the Record module by checking the Record into Set box and 

entered the set name. We then developed an expression  AINT((TNOW/60)+1)  that 

would yield an integer value that represents the current period based on the simulation 

run time, in   Display 5-33  ; to understand how this expression works, note that  TNOW  is 

the internal Arena simulation-clock value (in minutes, our Base Time Units),  AINT  is 

a built-in Arena function that truncates its real-number argument toward zero, and then 

“play computer” for some minute values of  TNOW .  

 Now let’s proceed to the changes we made to the Tech Support Calls section of our 

model. The fi rst fi ve modules (up to and including the  Determine Product Type  

Decide module) remain the same as in Model 5-1. We’ll walk you through the changes 

required for the product Type 1 technical support and refer you to the fi le  Model 
05-02.doe  for the differences for the other two types of technical support calls. 

 Directly following the  Determine Product Type  Decide module, we inserted 

an Assign module where we made three assignments. We fi rst assigned a new entity type 

and entity picture so we could tell the difference between the calls for different product 

types in both the animation and the reports. We also defi ned a new attribute called  Tech 
Call Type , which is assigned an integer value of 1, 2 or 3, depending on the product 

type. Soon you’ll see why we need this new attribute. 

 The following Process module is the same except for the information in the Re-

sources section. Since we replaced the single resource,  Tech 1 , in Model 5-1 with 

resource set  Product 1 , we needed to modify this section. We changed the Type to 

 Set  and entered  Product 1  for the Set Name. We selected  Preferred Order  

for the Selection Rule and defi ned a new attribute,  Tech Agent Index , for the 

Save Attribute fi eld. When we defi ned our resource sets, we consistently listed the most 

versatile staff members at the end of each set. Recall that this set consists of Charity, 

Noah, Molly, Anna, and Sammy, in that order; notice that we placed Molly, Anna, and 

Sammy as the last resources in the set. Thus, if possible, we’d like to allocate Charity or 

Noah to an incoming call fi rst because they can only handle product Type 1 calls. The 

Preferred Order selection rule allocates resources based on their order in the set, if there 

is a choice among multiple idle resources, starting with the fi rst (Charity). In our model, 

this will try to keep Molly, Anna, and Sammy available; remember that they can handle 

other call types as well. We’ve also stored the index of the resource allocated in the Save 

 Name 

 Type 

 Value 

 Record into Set 

 Counter Set Name 

 Set Index 

  Record Rejected Call for 
Current Hour Period  

  Count  
  1  
  Check  
  Rejected Calls  
  AINT((TNOW/60) + 1)  

   Display 5-33.  Counting the Rejected Calls by 1-Hour Period      
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Attribute  Tech Agent Index  because we’ll need to know which person took the call 

if further investigation and a return call are required. This completes the changes to this 

section of our model, but as long as we are dealing with the technical support calls, we’ll 

develop a new section for our model to handle the returned technical calls. 

 The logic for this section is shown here, and the fl owchart modules are shown in 

  Figure 5-17  :  

  If customer call requires further investigation  
 Release trunk line resource  
 Delay for back office research  
 Increment Tech Return WIP variable  
 Determine product type and direct  
 Seize technical support resource  
 Seize trunk line resource  
 Delay for return-call service  
 Release trunk line resource  
 Release technical support resource  
 Decrement Tech Return WIP variable  
Send to system exit  

 The completed tech call entity is sent to a Decide module named “ Backoffice 
Research and Return Call? ” where 96% of the calls are considered com-

plete (we set this up as the False branch) and are directed to the same system exit we 

used in Model 5-1. The remaining 4% (the True branch) are sent to Release module 

where the Trunk Line is released since the call is going offl ine now. The following 

Delay module holds up the entity for EXPO(60) minutes, which is the time required 

for further investigation, conducted by undefi ned resources outside the boundaries of 

our model (any queueing out there is rolled into the EXPO(60) time). If a call enters 

this delay toward the end of a day and cannot be fi nished during that day, it would, in 

reality, be carried over into the next day. Since our model runs for just one day, such 

calls are simply not fi nished within the run. We also defi ned and entered the Storage 

ID  Backoffice Research Storage  so we could show these entities in our 

animation. After the delay, the entity is sent to an Assign module where we increment 

  Figure 5-17.  The Returned Technical Calls Section   
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the one-dimensionally arrayed variable  Tech Return WIP  using the value of the 

attribute  Tech Call Type  as the index. You   can defi ne this variable in the Assign 

module, but you fi rst need to open the Variable data module and enter a value of  3  in 

the Rows cell, which defi nes the array size. We next sense the product type with an 

N-way by Condition test in the “ Product Type? ” Decide module and direct the 

return call to the proper branch. 

 The return-call entity must seize both a trunk line (outgoing calls need a trunk line 

as do incoming calls), and the appropriate tech support person, being the one who took 

the original incoming call. We’ll describe things for product Type 1; the other two are 

similar. In the following Seize module, the return tech support call for product Type 1 

seizes from the appropriate Resource Set of tech support people. Queueing is possible, 

and we use a separate queue (and animation) for this, and specify the seize Priority as 

High (1), as outgoing return calls take priority over incoming calls. Here we seize only 

the tech support person and not the trunk line (we’ll do that in the following module). 

This return call must go to the same tech support person who took the original customer 

call, so we use the  Specific Member  Selection Rule and specify the Attribute  Tech 
Agent Index  in the Set Index fi eld to ensure this. 

 Having already seized the right Tech 1 agent, the return Tech 1 call now seizes a 

Trunk Line in the following Process module, with High-Priority over Medium-Priority 

incoming calls. The processing delay is based on the expression  Returned Tech 
Time  and when completed, the trunk line is released. Queueing could occur in this 

module, if no trunk line is immediately available. During that time, the animation is still 

accurate since the entity picture shows in the Resource animation’s Seize Area, so there 

is no separate queue animation for this. When the call is completed, the specifi ed tech 

support person is released in the following Release module. 

 In our fi rst attempt at developing this section, we used a single Process module 

with a high priority to seize both the tech support person and the trunk line at the same 

time. When we ran our simulation and watched the animation, we realized that these 

return calls were waiting a long time before they were processed. It turns out that 

when you take this modeling approach, both resources must be available at the same 

time for the entity to proceed. If only one of the specifi ed resources is available and 

the system is busy, it would most likely be allocated to another waiting entity. Since 

these return calls have a high priority, we decided to seize the resources separately. 

We realized that in the real system the returned call would most likely be given to the 

specifi ed tech support person, who would try to return the call as soon as he or she 

was available. Of course in doing so, he or she would have to fi rst seize an available 

trunk line. So we modifi ed our model logic by separating the two seize actions as 

previously described. 

 Upon completion of the return call, the entity enters an Assign module where the 

arrayed variable  Tech Return WIP  is decremented. The completed call is now ready 

to be sent to the system exit. In every other case where a completed call was sent to the 

system exit, it still had the trunk line resource, so the fi rst module was a Release module 

to release that resource. These entities have already released the trunk line resource, so 

we need to send the entities to the Record module following that Release module. 
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 If you look in the Statistic data module (Advanced Process panel), you’ll see the 

ten Counter-type entries we described earlier. We also set up four statistics of the Time- 

Persistent type to request results (time average, minimum, and maximum) on the total 

number of calls in backoffi ce research for a callback (tracking variable  NSTO(Back-
office Research Storage) ) and for the total numbers of each tech-support 

product type in the system (tracking expressions  Tech 1 Total Online WIP , 

 Tech 2 Total Online WIP , and  Tech 3 Total Online WIP) . 

 Our new model does not require any changes to the Sales Calls or Order-Status Calls 

of Model 5-1. 

 Now let’s review the modifi cations to our animation. The three animated storages 

for the recording delays, the Trunk Lines Busy plot, the variable for the Sales WIP, and 

the queues for the calls waiting for tech support and sales remain the same. We fi rst 

deleted the Tech 1, Tech 2, and Tech 3 resources from our animation. Then we changed 

the variable names for the three WIP displays to match our new model. For example, 

we changed the WIP variable for product Type 1 from  Process Product Type 1 
Tech Call.WIP  to  Tech 1 Total Online WIP , which is an expression we 

defi ned in the Expression data module to be  Process Product Type 1 Tech 
Call.WIP + Tech Return WIP(1)  so it is at all times the total number of tech 

calls for product Type 1 that are “open,” either as an incoming call or in the back of-

fi ce for a return call. We also rearranged our new animation to allow for a Back Offi ce 

Research area and added a WIP variable,  NSTO(Backoffice Research Stor-
age) ; NSTO is a built-in Arena function that returns the number of entities in the 

Storage given in its argument. 

 We also added three new queues to the tech support area to show the return calls waiting 

for service. This queue for the Tech 1 area is  Seize Tech Agent Type 1.Queue . 

We then added a storage animation to show the return calls that we had under investigation 

for the new back offi ce research area,  Backoffice Research Storage . 

 The fi nal change was to add the resources for our new tech support personnel. We 

selected Charity from the resource list and opened the Arena offi ce picture library, 

  Office.plb . There we found a picture of a person sitting at a desk with an idle phone 

and a second picture with the person talking on the phone. We copied the fi rst picture to 

represent our Idle picture and the second to be the Busy picture. For our Inactive state, 

we altered the fi rst picture to remove the person so the desk was unattended. We then 

closed the window and placed our resource. After sizing our resource, we used the Text 

option to label it. Then we made a copy of these two objects and changed the identifi ers 

to represent Noah. We repeated this for Tierney, but changed the color of the shirt in the 

Idle and Busy pictures. Our plan was to use different shirt colors to represent the differ-

ent capabilities of the support staff. 

 The fi nal animated simulation is similar to   Figure 5-18  , which was taken at approx-

imately time 341.1. In the Category Overview report, we see from the User Specifi ed 

section’s Counters that most rejected calls occur in hours 5 to 8 (corresponding to noon 

to 4:00  pm ), so this might be a time period to look at adding staff (to be more comfort-

able about this conclusion, try making, say, 100 replications instead of just one); we’ll 

take this up in a more organized and statistically reliable way in Chapter 6. 
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  Speaking of statistical reliability, here is one more object lesson (for us, actually) 

from Model 5-2. While developing and later updating this model, we added some fi n-

ishing touches by making a few small changes that we thought would not change the 

model at all (altering the names of two tech-support people, to be exact). We did not 

expect to change the output results—but the results  did  change, to our (initial) surprise. 

The reason is that  any  change to a model, no matter how (seemingly) inconsequential, 

potentially changes the executable code in terms of order of operations; for example, 

in the case of time ties, which are resolved in an essentially arbitrary way. Our name 

changes evidently did this, resulting in different events accessing the fi xed underlying 

random-number sequence (see Section 12.1) in a different order, and thus leading to dif-

ferent numerical results. At fi rst we were upset and wasted days trying to fi nd our error, 

but this actually just underscores the point that the numerical results of stochastic simu-

lations (those using random numbers in any way) are themselves random, so are subject 

to random variation. Thus, the exact numerical outputs from one replication cannot be 

trusted, and it really  is  necessary to do some sort of statistical analysis of simulation 

output, as discussed in Chapter 6. 

   5.6     Model 5-3: The Enhanced Call Center with More Output Performance Measures 

  While Model 5-2 produces plenty of output performance measures, it doesn’t produce 

an overall economic fi gure of merit on which we might easily make comparisons across 

different confi gurations. A lot of simulation studies focus on cost reduction (or ideally, 

cost minimization), so we’ll create an overall cost measure as the primary output. At 

the same time, we’ll add some options to the model to set the stage for comparison of 

alternatives and for optimum-seeking in Chapter 6. To get a little better statistical pre-

cision, we’ll also make fi ve replications, representing a work week, and will focus on 

weekly costs. 

 There are two basic areas in which costs appear: (1) staffi ng and resource costs, 

which are quite tangible and easily measured, and (2) costs due to poor customer 

  Figure 5-18.  Model 5-2 Animation   
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service, which are less tangible and can be diffi cult to quantify. We’ll consider these two 

kinds of costs separately. 

 First, let’s look at staffi ng and resource costs, some of which we defi ned in Model 5-2 

but didn’t use. In the Resource module of Model 5-2, we defi ned a cost of $20/hour for 

sales staff and $18 to $22/hour for tech support staff, depending on their level of training 

and fl exibility; these costs were incurred whenever the staff were present according to 

their schedules, regardless of whether they were busy or idle. Using the staffi ng infor-

mation described in Section 5.5 (and defi ned in the Schedule data module of Model 

5-2), the weekly cost for the current staff is: 

 Sales staff altogether: 45 hours/day × $20/hour × 5 days/week = $4,500/week 

 Tech support staff:

       8 people × (8 hours/day)/person × $18/hour × 5 days/week = $5,760/week  

      1 person × (8 hours/day)/person × $20/hour × 5 days/week = $800/week  

      2 people × (8 hours/day)/person × $22/hour × 5 days/week = $1,760/week    

 Adding, we get a current weekly payroll cost of $12,820. 

 To try to improve service, we now generalize the model to allow for additional staff. 

Looking at the hourly counts of the busy-signal balks from Model 5-2, it seems that the 

most severe staffi ng shortfalls are between noon and 4:00  pm , so we’ll create the ability 

in the model to add both sales and tech support during that 4-hour period, which corre-

sponds to the 4-hour-long time periods 5 through 8. 

 To add an easily controlled variable number of sales staff, we defi ne a variable  New 
Sales  to be the number of additional sales staff we hire for this 4-hour period each day, 

at a cost of $17/hour. Each additional sales staff person will thus work 20 hours/week, 

so the additional cost is $17/hour × 20 hours/week = $340/week for each new sales staff 

person. To place the new sales staff in the model, we edit the  Sales Schedule  line 

in the Schedule data module. Since we’ll use a Variable ( New Sales ) as part of the 

schedule, we cannot use the Graphical Schedule Editor and must access this schedule 

via its dialog (or spreadsheet); right-click in the  Sales Schedule  line and then se-

lect Edit via Dialog.   Display 5-34   illustrates where the edits are made. Of course, if we 

set  New Sales  to 0, we have the same sales-staff confi guration as in the base model.  

 We follow a similar strategy to add tech support people during this 12:00  pm  to 4:00 

 pm  period. We defi ned new Variables  New Tech 1 ,  New Tech 2 , and  New Tech 3 

to be the number of additional tech support staff added who are qualifi ed only on Prod-

uct Types 1, 2, and 3, respectively, and  New Tech All  to be the number of tech 

support people added who are qualifi ed on all three product types. Naturally, the new 

Type 1 techs are all named Larry, the new Type 2 techs are all named Moe, the new Type 

3 techs are all named Curly, and the new All-type techs are all named Hermann. Four 

new entries in the Resource data module are added to create these resources and defi ne 

hourly rates for them ($16 for each Larry, Moe, and Curly, and $18 for each Hermann). 

To express their qualifi cations, we add  Larry  to the  Product 1  set in the Set module, 

 Moe  to the  Product 2  set,  Curly  to the  Product 3  set, and  Hermann  to all three 

of these sets. We created schedule entries for all four of these new resources. The Larry 

schedule is in   Display 5-35   and the other three are similar; like the sales schedule, these 
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can be edited only via the dialog (or spreadsheet) and not by the Graphical Schedule 

Editor since they involve variables. As for costs, we incur 16 × 4 × 5 = $320/week for 

every Larry, Moe, and Curly and 17 × 4 × 5 = $360/week for every Hermann. 

  The fi nal way to alter the resource mix is to consider changing the number of trunk 

lines, which was previously assumed to be fi xed at 26. The  Trunk Line  resource 

is defi ned in the Resource module as a simple Fixed Capacity resource, so we’ll just 

alter the entry there if we want to change the number of trunk lines. To build a cost into 

this, we incur a fl at $98/week for each trunk line, a deal that includes all the local and 

long-distance usage of that line. 

 Name 

 Type 

 Time Units 

  Sales Schedule  
  Capacity  
  Halfhours  

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

  1,2  
  3,2  
  4,3  
  5,1  
  5 + New Sales, 1  
  6 + New Sales, 2  
  5 + New Sales, 3  
  6 + New Sales, 2  
  6,1  
  5,1  
  3,2  
  2,2  

  Display 5-34.  The Changed Sales Schedule Dialog for Model 5-3   
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 To put all of these resource costs together, we defi ne an Expression called  New Res 
Cost .   Display 5-36   shows the entry for it in the Expression data module. Everything 

involved in this Expression was discussed, except for  MR(Trunk Line) , which uses 

the built-in Arena function MR to give the number of units of the Resource in the argu-

ment, in this case,  Trunk Line . Note that this Expression does not depend on what 

happens during the simulation and is used only at the end in the Statistic module to help 

produce the fi nal output performance measures.  

 Now let’s turn to the other category of costs to the system, those incurred by making 

customers wait on hold. Clearly, these trade off against the resource and staffi ng costs; 

we can use our model to explore this trade-off, and maybe even to try to optimize it. In 

practice, these kinds of customer-dissatisfaction costs are diffi cult to quantify, so we’ll 

have to rely on customer surveys and techniques like regression analysis to come up 

with the numbers. 

 Name   Larry Schedule  

 Type 

 Time Units 

  Capacity  
  Halfhours  

 Value (Capacity), Duration 

 Value (Capacity), Duration 

 Value (Capacity), Duration 

  0,8  
  New Tech 1,8  
  0,6  

  Display 5-35.  The Larry Schedule Dialog for Model 5-3   

 Name 

 Expression Value 

  New Res Cost  
  New Sales*340 
 +(New Tech 1+New Tech 2+New Tech 3)*320 
 +New Tech All*360   
 +98*MR(Trunk Line)  

  Display 5-36.  The New Res Cost Expression for Model 5-3 
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 We assume that most people are by now hardened enough to expect some waiting time 

on hold when dealing with a call center. However, at some point, people will start getting 

mad, and the system will start incurring a cost. For tech calls, this point is 3 minutes; for 

sales calls, it’s 1 minute; and for order-status calls, it’s 2 minutes. Beyond this tolerance 

point for each call type, the system will incur a cost of 36.8 cents/minute for tech calls that 

continue on hold,  81.8 cents/minute for sales calls, and 34.6 cents/minute for order-status 

calls. For each call type, we accumulate in a variable the “excess” waiting times in queue 

(that is, the waiting time in queue beyond the tolerance cutoff) of all completed calls via a 

new Assign module through which entities pass after their calls are done. 

   Display 5-37   shows this new Assign module for tech support calls, and the other 

two are similar (we put bright orange boxes behind these new Assign modules so you 

can easily spot them in the model). Note that ENTITY.WAITTIME is a built-in Arena 

attribute that automatically accumulates the total of all times in queue for an entity as it 

goes along, as well as any other delay times that are allocated to “Wait.” In our model, 

there are no such delay allocations, and there are no upstream queue delays other than 

that on hold while waiting for the call to be answered, so this value indeed contains what 

we want in this case. (Computation of ENTITY.WAITTIME happens only if the Costing 

box is checked in the  Run > Setup > Project Parameters  dialog, so we need to make sure 

it is checked.) At the end of the simulation, the variable  Excess Tech Wait Time  

will be the total number of minutes beyond the 3-minute tolerance that completed tech 

calls endured during the 1-day run; over the fi ve replications, these will be averaged to 

produce, in the fi nal output, an average  daily  excess tech wait time. If we multiply this 

by the per-minute cost of 36.8 cents, we would get the cost for the excess tech wait time 

for a  day , but we’re costing things out on a  weekly  basis, so we need to multiply instead 

by 36.8 cents × 5 = $1.84 to get the  weekly  cost. The costs for the other two types of 

calls are computed similarly (the factors by which we need to multiply the excess wait 

times to get weekly costs are 81.8 cents × 5 = $4.09 for sales calls, and 34.6 cents × 5 

= $1.73 for order-status calls). While we are making fi ve 1-day replications, so it could 

be thought of as a work week, the model constructed in this way will produce weekly 

cost estimates regardless of the number of replications made (we’ll use this model in 

Chapter 6 with far more than fi ve replications, to improve output precision).  

 Putting all these various costs together into a single overall cost measure is fairly 

simple. Given all the preceding discussion and setup, the overall  Total Cost  output 

performance measure is

 Name 

 Assignments 

 Type 

 Variable Name 

 New Value 

  Assign Excess Tech Wait Time  
  
  Variable  
  Excess Tech Wait Time  
  Excess Tech Wait Time 
 +MAX(ENTITY.WAITTIME  − 3, 0)  

  Display 5-37.  The New Assign Module to Accumulate Excess Tech Waiting Times for Model 5-3 
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  New Res Cost 
  + Excess Sales Wait Time * 4.09 
  + Excess Status Wait Time * 1.73 
  + Excess Tech Wait Time * 1.84 
  + 12820,  

 which we enter in the Statistic data module (in the Advanced Process panel); the Type 

of this Statistic is chosen to be  Output , meaning that it is a quantity that’s computed 

only at the end of the simulation and we just want to see its value in the reports. Since 

we’re defi ning this output ourselves, rather than having Arena compute it internally, it 

will appear under User Specifi ed → Output in the Category Overview report. 

 At this point, you’re probably wondering about those poor unfortunate rejected souls 

who called only to get immediately brushed off by a busy signal. They didn’t even have 

the opportunity to get mad after their tolerance time on hold and start charging cost 

against the system (even though they’re  really  mad). We could have estimated a ( big ) 

cost for each busy signal and built that into our cost structure, but instead we decided 

just to compute the percent of incoming calls that receive a busy signal and produce that 

as a separate output. Instead of viewing this as part of the performance-measure objec-

tive of the model, we’ll view it later as a requirement (kind of like a constraint, except 

it’s on an output rather than on an input) that no more than 5% of incoming calls get a 

busy signal; any model confi guration not meeting this requirement will be regarded as 

unacceptable no matter how low its  Total Cost  output might be. 

 To compute the percent of incoming calls that get busy signals, we need to know the 

total number of attempted calls and rejected calls. We already have a Record module 

that counts the number of attempted calls (the counter  Attempted Calls ). We also 

count the number of rejected calls, but we are currently recording these rejected calls 

on a per-hour basis. We could just add up the values from these ten counters, but we 

took the easy way out and added another Record module in the call-arrival section of 

the model logic (with a bright orange box behind it) that will give us that total (counter 

 Total Rejected Calls ). To compute the output value  Percent Rejected , 

we added a line to the Statistic module with that name and the expression  100*NC
 (Total Rejected Calls)/NC(Attempted Calls) ; NC is the built-in Arena 

function that returns the value of the counter named in its argument. 

 Because we’ve requested multiple (fi ve) replications, we need to tell Arena what to 

do between replications. There are four possible options. 

 Option 1: Initialize System (yes), Initialize Statistics (yes) 

 This will result in fi ve statistically independent and identical replications and 

reports, each starting with an empty system at time 0 and each running for up to 

660 minutes. The random-number generator (see Section 12.1) just keeps on going 

between replications, making them independent and identically distributed (IID). 

Possible returned technical support calls that are carried over to the next day are lost. 

 Option 2: Initialize System (yes), Initialize Statistics (no) 

 This will result in fi ve independent replications, each starting with an empty system 

at time 0 and each running for up to 660 minutes, with the reports being cumulative. 
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Thus, Report 2 would include the statistics for the fi rst two replications, Report 3 

would contain the statistics for the fi rst three replications, etc. The random-number 

generator behaves as in Option 1. 

 Option 3: Initialize System (no), Initialize Statistics (yes) 

 This will result in fi ve runs, the fi rst starting at time 0, the second at the time the fi rst 

completed (remember that we are using a stopping rule to terminate a replication), 

the third at the time the second completed, etc. Since the system is not initialized 

between replications, the time continues to advance, and any technical support calls 

that were not returned will be carried over to the next day. The reports will contain 

only the statistics for a single replication or day, rather than being cumulative. 

 Option 4: Initialize System (no), Initialize Statistics (no) 

 This will result in fi ve runs, the fi rst starting at time 0, the second at the time the fi rst 

completed, the third at the time the second completed, etc. Since the system is not 

initialized between replications, the time continues to advance, and any technical 

support calls that were not returned will be carried over to the next day. The reports 

will be cumulative. 

 Ideally we would like to select either Option 3 or 4 since we’d like to carry all 

non-returned technical calls into the next day. However, this would require us to change 

our stopping rule and let each replication run for 660 minutes. So for now let’s just ac-

cept the defaults—Option 1. 

 As you’ve gone through the discussion in this section, you’ve probably thought of 

other ways we could have accomplished many of the things we did. It would have been 

possible, for instance, to exploit Arena’s built-in costing capabilities more fully rather 

than doing a lot of it on our own and to have parameterized the model differently with 

only the “primitive” input values like wage rates and number of employees. Or we could 

have let Arena do some of the calculations internally that we did externally on our own 

little calculators. That’s all true, but it also would have taken more time and effort for 

us to do so. This is a typical kind of judgment call you’ll have to make when building 

a model—trading off your model-building time against model generality (and maybe 

elegance), usually being guided by who’s going to use the model, and for what. The 

confi guration of this model will be useful in the next chapter, where we show you sev-

eral of Arena’s capabilities in the important activity of statistical analysis of simulation 

output data. 

 We ran the model in what might be called the “base case,” with no additional employ-

ees or trunk lines (that is,  New Sales ,  New Tech 1 ,  New Tech 2 ,  New Tech 3 ,

and  New Tech All  were all set to 0, and the number of trunk lines was set to 26). 

The  Total Cost  came out to be $22,242.55 for the week, and 11.96% of incoming 

calls got a busy signal. Since this percent of rejected calls is above our 5% target, we 

made another run where we increased each of the six input resource “control” variables 

by 3 (that is,  New Sales ,  New Tech 1 ,  New Tech 2 ,  New Tech 3 , and  New 
Tech All  were all set to 3, and the number of trunk lines was set to 29); this produced 

a  Total Cost  of $23,683.35 with only 1.61% of incoming calls getting a busy signal; 
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evidently, the cost of hiring the extra staff and adding three trunk lines is not a wise 

investment looking purely at  Total Cost . But it does reduce the percent of balked 

calls to an acceptable level. However, you should have an uneasy feeling about this 

“analysis” (we do) since each result came from only fi ve replications. We don’t know 

if the results we’re seeing are just random bounce, or if we could confi dently say that 

the second confi guration is better, or how we’d confi dently choose the best from among 

several different scenarios, or what might be the best scenario of all. These are exactly 

the issues we take up in Chapter 6, and we’ll use Model 5-3 to look into them. 

  5.7     Model 5-4: An ( s ,  S ) Inventory Simulation 

  We close this chapter by considering a completely different kind of system, an inventory, 

to indicate how such operations might be modeled and to illustrate the breadth of simula-

tion in general and of Arena in particular (it’s not just for queueing     3 -type models). We’ll 

use modules from the Blocks and Elements panels only, primarily to demonstrate their 

use and make you aware that they’re there if you need them (so, in effect, we’re using the 

SIMAN simulation language); in Exercise 5-17, we ask you to re-create this model using 

the higher-level modeling constructs of the Basic Process and Advanced Process panels. 

This model is essentially the same as the one in Section 1.5 of Law and Kelton (2000).  

5.7.1     System Description 

 Widgets by Bucky, a multi-national holding company, carries inventory of one kind of 

item (of course, they’re called widgets). Widgets are indivisible, so the inventory level 

must always be an integer, which we’ll denote as  I ( t ) where  t  is time (in days) past the 

beginning of the simulation. Initially, 60 widgets are on hand:  I (0) = 60. 

 Customers arrive with interarrival times distributed as exponential with mean 0.1 

day (it’s a round-the-clock operation), with the fi rst arrival occurring not at time 0 but 

after one of these interarrival times past time 0. Customers demand one, two, three, or 

four widgets with respective probabilities 0.167, 0.333, 0.333, and 0.167. If a custom-

er’s demand can be met out of on-hand inventory, the customer gets the full demand and 

goes away happy. But if the on-hand inventory is less than the customer’s demand, the 

customer gets whatever is on hand (which might be nothing), the rest of the demand is 

 backlogged , and the customer gets it later when inventory will have been suffi ciently re-

plenished; this is kept track of by allowing the inventory level  I ( t ) to go negative, which 

makes no sense physically but is a convenient accounting artifi ce. Customers with back-

logged items are infi nitely patient and never cancel their orders. If the inventory level 

is already negative (that is, we’re already in backlog) and more customers arrive with 

demands, it just goes more negative. We don’t keep track of specifi cally which widgets 

arriving in the future will satisfy which backlogged customers (they’re also infi nitely 

polite, so it doesn’t matter). 

 At the beginning of each day (including at time 0, the beginning of day 1), Bucky 

“takes inventory” to decide whether to place an order with the widget supplier at that 

  3  As pointed out by the late Carl M. Harris, “queueing” is evidently the only word in the English language 

with fi ve or more consecutive vowels; see Gass and Gross (2000). 
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time. If the inventory level (be it positive or negative) is (strictly) less than a constant 

 s  (we’ll use  s  = 20), Bucky orders “up to” another constant  S  (we’ll use  S  = 40). What 

this means is that he orders a quantity of widgets so that, if they were to arrive in-

stantly, the inventory level would pop up to exactly  S . So if  t  is an integer and thus  I ( t ) 
is the inventory level at the beginning of a day (could be positive, negative, or zero) 

and  I ( t ) <  s , Bucky orders  S  -  I ( t ) items; if  I ( t ) ≥  s , Bucky does nothing, lets the day 

go by, and checks again at the beginning of the next day, that is, at time  t  + 1. Due to 

the form of this review/replenishment policy, systems like this are often called  (s, S) 
inventory models . 

 However, an order placed at the beginning of a day does  not  arrive instantly, but 

rather sometime during the last half of that day, after a  delivery lag  (a.k.a.  lead time ) 

distributed uniformly between 0.5 and 1 day. So when the order arrives, the inventory 

level will pop up by an amount equal to the original order quantity but, if there were any 

demands since the order was placed, it will pop up to something less than  S  when the 

order is fi nally delivered. Note that the relative timings of the inventory evaluations and 

delivery lags are such that there can never be more than one order on the way, since an 

order placed at the beginning of a day will arrive, at the very latest, just before the end 

of that day, which is the beginning of the next day, the fi rst opportunity to place another 

order; see Exercise 5-18 for modeling implications of this particular numerical situation. 

 Bucky is interested in the average total operating cost per day of this system over 

120 days, which will be the sum of three components:

    1.   Average ordering cost per day . Every time an order is placed, there’s a cost 

incurred of $32 regardless of the order quantity, plus $3 per item ordered; if no 

order is placed, there’s no ordering cost, not even the fi xed cost of $32. The $3 

is not the (wholesale) price of a widget, but rather the administrative operational 

cost to Bucky of  ordering  a widget (we’re not considering prices at all in this 

model). At the end of the 120-day simulation, the total of all the ordering costs 

accrued is divided by 120 to get the average ordering cost per day.  

   2.   Average holding cost per day . Whenever there are items actually physically in 

inventory (that is,  I ( t ) > 0), a holding cost is incurred of $1 per widget per day. 

The total holding cost is thus

              ∫0

120

    
13max(I(t),0)dt

 (think about it), and the average holding cost per day is this total divided by the 

length of the simulation, 120 days.  

   3.   Average shortage cost per day . Whenever we’re in backlog (that is,  I ( t ) < 0), a 

shortage cost of $5 per widget per day is incurred, a harsher penalty than holding 

positive inventory. The total shortage cost is thus

             ∫0 

120

53max(2I(t),0)dt

 (think about it a little harder), and the average shortage cost per day is this total 

divided by the simulation length.    
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 Note that for periods when we have neither backlog nor items physically in inventory 

(that is,  I ( t ) = 0) there is neither shortage nor holding cost—cost-accountant nirvana. 

Also, you might notice that we’re not accounting for the wholesale or retail price of the 

widgets anywhere; in this model, we assume that these prices are fi xed and induce this 

demand, which will happen regardless, so the revenues and profi ts are fi xed and it’s only 

the operating cost that we can try to affect. 

 One fi nal fi ne point before we build our (rather simple) simulation. Inventory eval-

uations occur at the beginning of each day—that is, when the clock is an integer, and 

any ordering cost is incurred at that time. It happens that the run is supposed to end at 

an integer time (120), so normally there would be an inventory evaluation then, and 

possibly an order placed that would not arrive until after the end of the world, so we’d 

never get it but we’d have to pay the ordering cost. So we should prevent an inventory 

evaluation from happening at time 120, which we’ll do by actually stopping the run at 

time 119.9999 (a lazy fudge on our part, but we’ll ask you to clean up after us in Exer-

cise 5-19). 

  5.7.2    Simulation Model 

 As we mentioned earlier, we’ll build this model using only modules from the Blocks and 

Elements panels. It would have been a lot easier to do this with the higher-level (and less 

ancient) modules from the Basic Process and Advanced Process panels, but we leave 

that joy to you as Exercise 5-17. 

   Figure 5-19   shows the completed model, including the animation at the top right. 

The modules from the Blocks and Elements panels at the bottom are divided into three 

sections, as indicated by the outline boxes behind the modules.  

  Figure 5-19.  The Completed Inventory Model   
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 Let’s start with the data structure for the model. The modules in the bottom section 

of   Figure 5-19   are from the Elements panel, so are themselves called  elements . Note 

that they’re not connected to anything, since they defi ne various objects for the whole 

model. As we go through these, you’ll already be familiar with many of the terms, since 

many of the same constructs and functions in the higher levels of Arena are available 

here as well. 

 The Variables element, shown in its completed form with the entry for  Inventory 
Level  visible in   Figure 5-20  , defi nes and optionally initializes Arena variables (much 

like the Variable module from the Basic Process panel). If there’s no initialization for a 

variable, it defaults to zero. We’ll let you poke through the entries in this module on your 

own, which are defi ned as follows:

        Inventory Level : At any time in the simulation, this is the inventory level 

(positive, zero, or negative), and is initialized to  60  here. This variable is 

the function  I ( t ).  

       Little s : This is  s , initialized to  20 .  

       Big S : This is  S , initialized to  40 .  

       Total Ordering Cost : A statistical-accumulator variable to which all or-

dering costs are added; not initialized (so is implicitly initialized to 0).  

       Setup Cost : The fi xed cost of ordering, initialized to  32 .  

       Incremental Cost : The variable (per-widget) ordering cost, initialized to  3 .  

  Figure 5-20.  The Variables Element   
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       Unit Holding Cost : The cost of holding one widget in inventory for 1 day, 

initialized to  1 .    

   Unit Shortage Cost : The cost of having one widget in backlog for 1 day, 

initialized to  5 . 

  Days to Run : The length of the simulation (in days), initialized to  119.9999  

per our admitted fudge, as described previously. 

 We defi ned four Expressions via the Expressions element, in   Figure 5-21   with the 

entry for  Demand Size  visible. These Expressions defi ne the probability distributions 

for the quantities indicated by their names and should be self-explanatory as you look 

through them. We decided to defi ne  Evaluation Interval  as an Expression rather 

than a variable, even though it’s just a constant (1), for reasons of model generality 

should we want to try out some kind of random evaluation interval in the future (but, as 

seen in Exercise 6-12, there’s also an advantage to defi ning it as a Variable).  

 The Attributes element has only one entry, used to declare that  Order Quantity  

is an attribute to be attached to entities. The Entities element declares the two types of 

entities we’ll be using,  Customer  and  Inventory Evaluator . The Project ele-

ment allows you to specify a Title, Analyst Name, and other documentation, as well as 

control some of the reporting, similar to the  Run  >  Setup  >  Project Parameters  option 

we’ve used before. There’s not much to see in these modules, so we’ll skip the fi gures 

and let you take a look at them on your own. 

  Figure 5-21.  The Expressions Element   
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 The Replicate element, shown in   Figure 5-22  , basically replicates what’s available 

via  Run  >  Setup  >  Replication Parameters . We have only two non-default entries. First, 

we changed the Base Time Units to  Days , since all of our input time measurements 

are in days and the blocks from the Blocks panel have no provision for specifying input 

time units, assuming that they’re all in the Base Time Units. Second, we specifi ed the 

Replication Length to be  Days to Run , the Variable we initialized to 119.9999, our 

cheap fudge to avoid the useless inventory evaluation at time 120.  

 The DStats element, in   Figure 5-23   with the  Holding Cost  entry visible, does 

what Statistic module entries of type Time-Persistent do, in this case, saying that we 

want to accumulate the time-persistent values for the holding and shortage costs. The 

partly hidden SIMAN Expression in   Figure 5-23   is

 Unit Holding Cost * MX(Inventory Level, 0) 

and is the instantaneous holding cost to be charged whenever  Inventory Level  is 

positive (recall that MX is the built-in Arena function that returns the maximum of its 

arguments). Similarly, the other entry in the DStats element, with Name  Shortage 
Cost , accumulates the SIMAN Expression

 Unit Shortage Cost * MX(-Inventory Level, 0) 

for the shortage cost. What we want are the time-averages of these values, which we’ll 

get next. 

  Figure 5-22.  The Replicate Element   
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  The Outputs element of   Figure 5-24   does what Statistic module entries of type Out-

put do, and here we need to do two things. First (and visible in   Figure 5-24  ), we’ll get 

the average ordering cost per day by dividing  Total Ordering Cost  by  Days to 
Run , the length of the run, and storing this in the output name  Avg Ordering Cost . 

Second, we add up all three components of the overall output performance measure into 

what we call  Avg Total Cost , via the expression  

  OVALUE(Avg Ordering Cost) + DAVG(Holding Cost) + DAVG(Shortage Cost) 

The Arena function OVALUE returns the last (most recent) value of its argument, which 

in this case is what we defi ned in the preceding line of this module (we could have 

avoided this by entering  Total Ordering Cost/Days to Run  here instead, 

but doing it the way we did produces a separate output for the average-ordering-cost 

component of average total cost, which might be of interest on its own). And the Arena 

function DAVG returns the time-persistent average of its argument, so is used twice 

here to get the average daily holding and shortage costs (also produced separately in 

the reports). 

 Now let’s turn to the logic modules from the Blocks panel, which are themselves 

called  blocks . The top group of blocks in   Figure 5-19   represents customers arriving, 

making demands against the inventory, and leaving. 

  Figure 5-23.  The DStats Element   
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 The Create block, shown in   Figure 5-25  , required three non-default entries. For both 

First Creation and Interval, we entered  Interdemand Time , defi ned in the Expres-

sions element as  EXPO(0.1) . The Entity Type here we defi ned as  Customer .  

  Figure 5-25.  The Create Block for Customer Arrivals   

  Figure 5-24.  The Outputs Element   
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 The next Assign block, in   Figure 5-26  , decrements the customer’s demand from the 

 Inventory Level . The Expression  Demand Size  was defi ned in the Expressions 

module as a discrete random variable to return demands of 1, 2, 3, or 4 with the appro-

priate probabilities.  

 The  Customer  entity then goes away via the Dispose block, where the only thing 

we did was clear the box to Record Entity Statistics (we don’t care about them in this 

model). 

 The center group of blocks in   Figure 5-19   represents the periodic inventory evalua-

tion and decision about ordering. If an order is placed, we wait for it to arrive and then 

increment the inventory level; if no order is placed, there’s nothing to do. 

 This logic starts with a Create block, in   Figure 5-27  , to insert into the model what 

you can think of as a widget (not bean) counter who will count the widgets, decide 

whether to place an order, and then, if an order is placed, wait around for it to be de-

livered, and then put the widgets on the shelf. We want the First Creation to be at time 

 0  since our system calls for an inventory evaluation at the beginning of the run. The 

Entity Type is  Inventory Evaluator , and the Interval of time between successive 

creations is the Expression  Evaluation Interval , which was specifi ed to be the 

constant  1  in the Expressions element.  

 Once created, the  Inventory Evaluator  entity proceeds to the Branch block, 

in   Figure 5-28  , which does some of the same things as the Basic Process panel’s Decide 

module, with which you’re already familiar. In this case, we want to decide whether to 

place an order at this time. 

 First we Add a branch of type If with the condition  Inventory Level < 
 Little s , which, if true, indicates that we want to place an order now (the dialog 

  Figure 5-26.  The Assign Block for Customer Demands Against Inventory   
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box for this branch is visible in   Figure 5-28  ). The other branch is of type Else and is the 

only other possibility, indicating that no order is to be placed right now. The exit points 

from the Branch block correspond to truth of the corresponding branches; in this case, 

the fi rst exit point is followed if we are to place an order (and leads to the Assign block 

to the right of and just above the Branch block), and the second exit point corresponds 

  Figure 5-27.  The Create Block for Inventory Evaluator   

  Figure 5-28.  The Branch Block   
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to the Else branch and means that nothing is to be done (so the entity immediately goes 

to the Dispose block to the right of and just below the Branch block). An important part 

of the Branch block is the Max Number of Branches fi eld, which defaults to one (and 

we accepted this default); in general, the Branch block evaluates each branch in the list 

in sequence, and sends the incoming entity (or a duplicate of it) out through each branch 

that evaluates to True, until Max Number of Branches is used up. This is a powerful 

capability but one that can lead to errors if the entries in the block are not made and 

coordinated with care.  

 If we need to place an order, the  Inventory Evaluator  entity next goes to the 

following Assign block, seen in   Figure 5-29  , which fi rst computes the  Order Quan-
tity  (an attribute attached to the entity) as  Big S - Inventory Level . The next 

assignment in this block incurs the ordering cost for this order by replacing the Variable 

 Total Ordering Cost  by the expression

 Total Ordering Cost + Setup Cost + Incremental Cost * Order Quantity 

Note that it was important to do the assignments here in this order, since the result of the 

fi rst is used in the second.  

 Now it’s time to wait for the order to arrive, which is accomplished by sending the 

 Inventory Evaluator  entity to the Delay block in   Figure 5-30  , where it simply 

sits for  Delivery Lag  time units (remember, only the Base Time Units are available 

in blocks). Recall that  Delivery Lag  was defi ned in the Expressions element to be 

 UNIF(0.5, 1.0) .  

  Figure 5-29.  The Assign Block to Place an Order   
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 After the delivery lag, the  Inventory Evaluator  goes to the next Assign 

block, in   Figure 5-31  , where it increments  Inventory Level  by its attribute  Order 
Quantity .  

  Figure 5-30.  The Delay Block for the Delivery Lag   

  Figure 5-31.  The Assign Block for the Order Arrival   
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 After the order is delivered, this  Inventory Evaluator ’s job is done, so it goes 

to the fi nal Dispose block (don’t be sad, though, because another one of these entities 

will be created soon). 

 Now let’s add a little (just a little) animation. Our Plot dialog box is shown in   Fig-

ure 5-32   (with the Data Series tab showing for the Non-positive Inventory curve), which 

graphs the  Inventory Level  over time. We’d like to have different colors depend-

ing on whether the  Inventory Level  is positive (in the black) or negative (in the 

red), which we accomplish by plotting two separate curves (Data Series). To show posi-

tive inventory levels, we’ll plot the expression  MX(Inventory Level, 0)  in black, 

and for negative inventory levels, we’ll plot  MN(Inventory Level, 0) , which 

will be a negative value, in red (MN is Arena’s built-in function to return the minimum 

of its arguments). Note that when 0 “wins” in either of these plots, we’ll get a fl at line at 

zero, which maybe isn’t so bad since it will visually delineate where zero is (in a playful, 

multicolor fashion).  

 It might also be fun to see the inventory itself in some way (no, we’re not going to 

animate bins of little widgets or ghosts of them). For this, we installed a pair of Level an-

imations (sometimes called  thermometer animations ) just to the left of the plot. The top 

  Figure 5-32.  The Plot Dialog Box   
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animation (the black one, seen in   Figure 5-33  ) plots the number of widgets physically 

in the inventory, which is expressed by  MX(Inventory Level, 0) , and we’ll plot 

it so that it goes up as the inventory becomes more positive. The bottom animation (the 

red one, for which we didn’t bother making a fi gure here) plots the number of widgets 

in backlog, which is  MX(-Inventory Level, 0) ; when we’re in backlog, this is a 

positive number, but we’d like to plot it diving lower from a zero level as we go deeper 

into backlog, so we selected the Fill Direction to be Down.  

 After adding a few labels and such, we’re ready to go. Watch the plot and the ther-

mometers to see the inventory level drop as demands occur, then pop back up when 

orders arrive. The average daily costs (rounded to the nearest penny) were 9.37 for hold-

ing, 17.03 for shortage, and 100.39 for ordering, for a total of 126.79. Whether ( s ,  S ) = 

(20, 40) is the best policy is a good question and one that we’ll ask you to take up (in a 

statistically valid way) in Exercises 6-10 and 6-11 at the end of Chapter 6. 

5.8        Summary and Forecast 

 This chapter has gone into some depth on the detailed lower-level modeling capabili-

ties, as well as correspondingly detailed topics like fi ne-tuned animation. While we’ve 

mentioned how you can access and blend in the SIMAN simulation language, we’ve 

by no means covered it; see Pegden, Shannon, and Sadowski (1995) for the complete 

treatment of SIMAN. At this point, you should be armed with a formidable arsenal of 

modeling tools to allow you to attack many systems, choosing constructs from various 

levels as appropriate. In several of the following chapters, we’ll continue to expand on 

Arena’s modeling capabilities. 

  Figure 5-33.  The Level Animation Dialog Box   
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5.9    Exercises 

    5-1  Develop a model of the problem we described in Chapter 2 and modeled as Model 

3-1, but this time only using modules from the Advanced Process panel to replace the 

Process module. Use the Plot and Variable features from the Animate toolbar to com-

plete your model. Run it for 20 minutes and compare your results to what we got earlier.  

   5-2  Parts arrive at a two-machine system according to an exponential interarrival dis-

tribution with mean 20 minutes; the fi rst arrival is at time 0. Upon arrival, the parts are 

sent to Machine 1 and processed. The processing-time distribution is TRIA(4.5, 9.3, 11) 

minutes. The parts are then processed at Machine 2 with a processing-time distribution 

as TRIA(16.4, 19.1, 20.8) minutes. The parts from Machine 2 are directed back to Ma-

chine 1 to be processed a second time (same processing-time distribution as the fi rst 

visit but an independent draw from it). The completed parts then exit the system. Run 

the simulation for a single replication of 20,000 minutes to observe the average number 

in the machine queues and the average part cycle time.  

   5-3  Stacks of paper arrive at a trimming process with interarrival times of EXPO(10); 

all times are in minutes and the fi rst stack arrives at time 0. There are two trimmers, a 

primary and a secondary. All arrivals are sent to the primary trimmer. If the queue in 

front of the primary trimmer is shorter than fi ve, the stack of paper enters that queue to 

wait to be trimmed by the primary trimmer, an operation of duration TRIA(9, 12, 15). If 

there are already fi ve stacks in the primary queue, the stack is balked to the secondary 

trimmer (which has an infi nite queue capacity) for trimming, of duration TRIA(17, 19, 

22). After the primary trimmer has trimmed 25 stacks, it must be shut down for cleaning, 

which lasts EXPO(30). During this time, the stacks in the queue for the primary trimmer 

wait for it to become available. Animate and run your simulation for a single replication 

of 5,000 minutes. Collect statistics, by trimmer, for cycle time, resource utilization, 

number in queue, and time in queue. Put a text box in your Arena fi le with, separately 

for each of the two trimmers, the average time in system (a.k.a. cycle time) for stacks of 

paper that go through that trimmer, the resource utilization, the time-average number of 

stacks in that queue, and the average time of stacks in that queue.  

   5-4  Trucks arrive with EXPO(9.1) interarrival times (all times are in minutes) to an 

unload area that has three docks; the fi rst truck arrives at time 0. The unload times are 

TRIA(25, 28, 30), TRIA(23, 26, 28), and TRIA(22, 25, 27) for docks 1, 2, and 3, respec-

tively. If there is an empty dock, the truck proceeds immediately to that dock. Assume 

zero travel times to all docks. If there is more than one empty dock, the truck places 

preference on the higher-numbered dock (3, 2, 1). If all the docks are busy, it chooses the 

dock with the minimum number of trucks waiting. If there is a tie, it places preference 

on the lowest numbered dock (1, 2, 3). Note that in “by Condition” Decide modules, the 

tests are done from top to bottom, and the fi rst one resulting in a “true” sends the entity 

out through that corresponding exit point. Run your model for a single replication of 

length 20,000 minutes and collect statistics on dock utilization, number in queue, time 

in queue, and the time in system. Put a text box in your Arena fi le with, separately for 

each of the three docks, the utilization of that dock resource, the time-average number 
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of trucks in that queue, the average time of trucks in that queue, and the average time in 

system of trucks going through that dock.  

   5-5  Kits of ceiling fans arrive at an assembly system with TRIA(2, 5, 10) interarrival 

times (all times are in minutes). There are four assembly operators, and the kits are 

automatically sent to the fi rst available operator for assembly. The fan assembly time is 

operator-dependent as given. 

 Operator  Assembly Time 

 1  TRIA(15, 18, 21) 

 2  TRIA(16, 19, 22) 

 3  TRIA(16, 20, 24) 

 4  TRIA(17, 20, 23) 

   Upon completion of the assembly process, the fans are inspected with approximately 

7% being found defective. A defective fan is sent back for repair to the same operator 

who assembled it. These defective fans have non-preemptive priority over incoming 

kits. Since the fan needs to be disassembled and then reassembled, the repair time is 

assumed to be 30% greater than the normal assembly time. Run your model for 20,000 

minutes and collect statistics on operator utilization and the time in system.  

   5-6  The quality-control staff for the fan-assembly area of Exercise 5-5, has decided that 

if a fan is rejected a second time it should be rejected from the system and sent to a different 

area (outside the boundaries of this model) for rework. Make the necessary changes to the 

model and run the simulation for 20,000 minutes and compare the results (based on just one 

replication of each model). Also keep track of the number of fans rejected from the system.  

   5-7  Develop a model of a three-workstation serial production line with high reject rates: 

7% after each workstation. Parts rejected after the fi rst workstation are sent to scrap. Parts 

rejected after the second workstation are returned to the fi rst workstation where they are 

reworked, which requires a fresh “draw” from the processing-time distribution but increased 

by 50% from the distribution of the original operation. (This penalty factor of 1.5 applies 

only at workstation 1 and not at workstation 2 when the part returns to it.) Parts rejected at 

the third workstation are returned to the second workstation where they are reworked, with a 

50% penalty there (but not on its revisit to workstation 3). The operation times are TRIA(5, 

9, 12), TRIA(5, 8.5, 13), and TRIA(6.5, 8.9, 12.5) for workstations 1, 2, and 3 respectively 

(all times are in minutes). Part interarrival times to the system are UNIF(6, 14). Run the 

model for 20,000 minutes, collecting statistics on the number in queue at each workstation, 

the number of scrapped parts, workstation utilizations, and average and maximum cycle 

times for parts that are not rejected at any workstation and for parts that are rejected at least 

once. Also, collect statistics on the number of times a part was rejected.  

   5-8  To decrease the part cycle time in Exercise 5-7, a new priority scheme is being 

considered. The queue priority is based on the total number of times a part has been 

rejected, regardless of where it was rejected, with the more rejections already convicted 

against a part, the further back it is in the queue. Is there a difference in cycle times for 
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this new priority scheme? HINT: Use the Queue data module to use the reject count as 

a queue-ranking scheme.  

   5-9  Parts arrive at a machine shop with EXPO(25) interarrival times (all times are in 

minutes); the fi rst part arrives at time zero. The shop has two machines, and arriving 

parts are assigned to one of the machines by fl ipping a (fair) coin. Except for the pro-

cessing times, both machines operate in the same fashion. When a part enters a machine 

area, it requires operator attention to set up the part on the machine (there is only one 

operator in the shop). After the part is set up, the machine can process it without the 

operator. Upon completion of the processing, the operator is once again required to 

remove the part. After completion, the parts exit the system (parts have to go to only 

one machine). The same operator does all setups and part removals, with priority given 

to the machine waiting the longest for an operator. The times are (parameters are for 

triangular distributions):

 Machine Number  Setup Time  Process Time  Removal Time 

 1  8, 11, 16  20, 23, 26  7, 9, 12 

 2  5, 8, 14  11, 15, 20  4, 6, 8 

   The run length is 25,000 minutes, and any parts present at that time are simply aban-

doned; make just a single replication. Observe statistics on machine utilization, operator 

utilization, cycle times for parts separated by which machine they used, overall cycle 

times (that is, not separated by machine used), and the time that each machine spends 

waiting for operator attention (both at setup and removal); put a text box in your model 

with values on these output metrics. Animate the process using storages for the setup, 

process, and removal activities.  

   5-10  A small warehouse provides work-in-process storage for a manufacturing facility that 

produces four different part types. The part-type percentages and inventory costs per part are:

  Inventory Cost 

 Part Type  Percentage  Per Part 

 1  20  $5.50 

 2  30  $6.50 

 3  30  $8.00 

 4  20  $10.50 

   The interpretation of “inventory cost per part” is as follows. Each part in inventory 

contributes an amount from the last column of the above table to the total cost (value) of 

inventory being held at the moment. For instance, if the current inventory is three units 

of Part 1, none of Part 2, fi ve of Part 3, and one of Part 4, then the current inventory cost is

  3 × $5.50 + 0 × $6.50 + 5 × $8.00 + 1 × $10.50 = $67.00.   

   As parts arrive and depart, as described below, this inventory cost will rise and fall. 

kel01315_ch05_207-278.indd   273kel01315_ch05_207-278.indd   273 05/12/13   3:28 PM05/12/13   3:28 PM



274     Chapter 5

   Parts arrive with TRIA(1.25, 2.0, 2.8) interarrival times (all times are in minutes); 

the fi rst part arrives at time 0. Two cranes store and retrieve parts with a travel time of 

UNIF(1.25, 2.9), each way. Requests for part removal (think of them as customers) ar-

rive with TRIA(1.25, 2.0, 2.8) interarrival times, independently of the arrival process for 

the parts, and the fi rst request arrives at time 0. If no part is available, the request is not 

fi lled. All part requests are given priority over part storages in terms of getting the use of 

a crane, and priority is given to retrieving based on the highest part cost. 

   For part arrivals, increment the inventory cost upon arrival, and increment the total 

number of parts in inventory after the part is stored. For part requests, decrement the 

total number of parts in inventory as soon as you know there is a part to retrieve, and 

decrement the inventory cost after the part is retrieved. 

   Run your model for a single replication of length 5,000 minutes starting with four of 

each part type in the warehouse. Collect statistics on the crane utilization, the average 

inventory cost, the average number of each part type in the warehouse, and the number 

of unfi lled requests due to having no parts of the requested type. 

   HINTS: Use index variables for part inventory and per-part cost. (Note that you can 

use the “Other” option in the Assign module when assigning to index variables, or you 

could select the Type in the Assign module to be Variable Array [1D].) Use the Discrete 

distribution to determine the part type and the Statistic data module (with Type selected 

as Time-Persistent) to collect some of the required statistics.  

   5-11  A medium-sized airport has a limited number of international fl ights that arrive 

and require immigration and customs. The airport would like to examine the customs 

staffi ng and establish a policy on the number of passengers who should have bags 

searched and the staffi ng of the customs facility. The number of passengers who arrive 

on these large planes is uniformly distributed between 240 and 350, and the simulation 

is to run until all passengers on the plane have been completely processed (that is, the 

number of passengers on the plane determines the replication length). Arriving passen-

gers must fi rst pass through immigration (immigration is outside the boundaries of this 

model). They then claim their bags and proceed to customs. The interarrival times to 

customs are distributed as EXPO(0.2), with the fi rst passenger arriving at (or just barely 

after) time zero; all times are in minutes. The current plan is to have two customs agents 

dedicated to passengers who will not have their bags searched, with service times dis-

tributed as EXPO(0.56). A new airport systems analyst has developed a probabilistic 

method to decide which customers will have their bags searched. The decision is made 

when the passengers are about to enter the normal customs queue. The decision process 

is as follows: a number is fi rst generated from a Poisson distribution with a mean of 7.0. 

This number is increased by one, to avoid getting a zero, and a count is started. When the 

count reaches the generated number, that unlucky passenger is sent to a second line to 

have his or her bags searched. A new search number is generated and the process starts 

over. A single agent is dedicated to these passengers, with service times distributed as 

EXPO(3). Develop a simulation of the proposed system and make 20 replications (that 

is, process 20 planes, since a replication ends when the last customer from a plane clears 

customs), observing statistics on the system time by passenger type (searched vs. not 

searched), the number of passengers, and agent utilizations.  
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   5-12  A state driver’s license exam center would like to examine its operation for po-

tential improvement. Arriving customers enter the building and take a number to deter-

mine their place in line for the written exam, which is self-administered by one of fi ve 

electronic testers. The testing times are distributed as EXPO(8); all times are in minutes. 

Thirteen percent of the customers fail the test (it’s a hard test with lots of questions). 

These customers are given a booklet on the state driving rules for further study and leave 

the system (on foot). The customers who pass the test select one of two photo booths 

where their picture is taken and the new license is issued. The photo booth times are 

distributed TRIA(2.6, 3.6, 4.3). The photo booths have separate lines, and the customers 

enter the line with the fewest number of customers waiting in queue, ignoring whether 

anyone is in service; if there is a tie, they enter the nearest booth, Booth 1. Note that this 

set of rules could lead to what might appear to be irrational customer behavior in the 

case that neither booth has a queue (that is, the lengths of both queues are zero), Booth 

1 is busy, and Booth 2 is idle—a customer coming into the photo area would choose 

to queue up for Booth 1 (via the tie-breaking rule, since the queue lengths are tied at 

zero) rather than go right into service at Booth 2—but hey, they can’t see into the photo 

booths! These customers then leave the system (driving), proudly clutching their new 

licenses. The center is open for arriving customers 8 hours a day, although the services 

are continued for an additional hour to accommodate the remaining customers. The 

customer arrival pattern varies over the day and is summarized here:

 Hour  Arrivals per Hour  Hour  Arrivals per Hour 

 1  22  5  35 

 2  35  6  43 

 3  40  7  29 

 4  31  8  22 

   Run your simulation for 10 independent days, keeping statistics on the average number 

of test failures per day, electronic-tester and photo-booth utilization (not utilization for 

the testing resource overall, but separate utilizations for each photo booth), time-average 

number in each of the three queues, and average customer system time for those customers 

passing the written exam. Animate all the electronic-test booths and the photo booths. Note 

that the average customer time in system is to be computed only for those people who pass 

the examination (there are different ways to make that happen). For the output statistics 

and comparison comments requested, put a text box inside your Arena fi le.  

   5-13  An offi ce of a state license bureau has two types of arrivals. Individuals inter-

ested in purchasing new plates are characterized to have interarrival times distributed as 

EXPO(6.8) and service times as TRIA(8.8, 13.7, 15.2); all times are in minutes. Indi-

viduals who want to renew or apply for a new driver’s license have interarrival times 

distributed as EXPO(8.7) and service times as TRIA(16.7, 20.5, 29.2). The offi ce has two 

lines, one for each customer type. The offi ce has fi ve clerks: two devoted to plates (Mary 

and Kathy), two devoted to licenses (Sue and Jean), and the team leader (Neil) who can 
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serve both customer types. Neil will serve the customer who has been waiting the longest. 

Assume that all clerks are available all the time for the 8-hour day. Note that when entities 

from the front of multiple FIFO queues (corresponding to multiple Process modules) try 

to seize the same Resource, the logic to select which entity “wins” is as though all the 

queues were merged together into a single FIFO queue. Observe the system or cycle time 

for both customer types over an 8-hour day. Note that, since Neil is multi-talented, you’d 

want to assign someone else to the next customer if you have a choice of which employee 

to assign. For the output statistics requested, put a text box inside your Arena fi le.  

   5-14  The offi ce described in Exercise 5-13 is considering cross-training Kathy so she 

can serve both customer types. Modify the model to represent this, and see what effect 

this has on system time by customer. For the output statistics requested, put a text box 

inside your Arena fi le.  

   5-15  Modify the model from Exercise 5-14 to include 30-minute lunch breaks for each 

clerk. Start the fi rst lunch break 180 minutes into the day. Lunch breaks should follow 

one after the other covering a 150-minute time span during the middle of the day. The 

breaks should be given in the following order: Mary, Sue, Neil, Kathy, and Jean. What 

impact does this have on system time by customer? For the output statistics requested, 

put a text box inside your Arena fi le.  

   5-16  Modify the probability-board model from Exercise 3-10 so that the bounce-right 

probabilities for all the pegs can be changed at once by changing the value of just a sin-

gle variable. Run it with the bounce-right probabilities set to 0.25 and compare with the 

results of the wind-blown version of the model from Exercise 3-10.  

   5-17  Re-create Model 5-4 (the inventory model) without using anything from the 

Blocks or Elements panels, and using only modules from the Basic Process and 

 Advanced  Process panels.  

   5-18  In Model 5-4, the relative timings of the inventory-evaluation interval and the 

delivery lag were such that at no time could there be more than one order outstanding. 

What if the numbers were different so that there could be multiple orders on the way at 

a given time? Would Model 5-4 still work? (Note that in Model 5-4 we represented the 

order quantity, if any, by an attribute of the inventory-evaluator entity; what if that order 

quantity had been represented instead by a variable?)  

   5-19  In Model 5-4, remove the “fudge factor” of ending at time 119.9999 rather than 

the correct 120. Run the simulation to exactly time 120, but add logic to prevent a use-

less inventory evaluation at time 120. What is the effect on the output?  

   5-20  Generalize Model 5-4 to have two additional types of items (doodads and kon-

traptions), as well as widgets; initially, there are 60 widgets, 50 doodads, and 70 kon-

traptions. The customers arrive in the same pattern as before, but now each customer will 

have a demand for doodads and kontraptions, as well as for widgets. Widget demands 

are as before, doodad demands are POIS(1.9), and kontraption demands are POIS(2.3); 

assume that a customer’s demand for an item is independent of his or her demands 

for the other two items. There’s still one inventory evaluator, who still arrives at the 
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beginning of each day, but now has to look at all three inventories and order according 

to separate ( s ,  S ) policies for each of the three inventories; you may “clone” this inven-

tory evaluator for this triple duty, using two tandem instances of the Separate fl owchart 

module. For widgets, ( s ,  S ) = (20, 40) as before; for doodads, ( s ,  S ) = (15, 35); and for 

kontraptions, ( s ,  S ) = (25, 45). Delivery lags for widgets are UNIF(0.5, 1.0) as before; 

for doodads, it’s UNIF(0.4, 0.8); and for kontraptions, it’s UNIF(0.8, 1.7); note that for 

kontraptions, it’s possible for a delivery lag to extend beyond the time of the next inven-

tory evaluation, but make the order decision based on only the inventory on hand, rather 

than based on the inventory on hand plus on order (even though the latter might make 

more sense; see Exercise 5-25). Ordering costs (both setup and incremental), holding, 

and shortage costs for doodads and kontraptions are the same as for widgets. Run the 

simulation for the same length of time as Model 5-4 (that is, it’s okay to fudge the 

ending point to avoid useless inventory evaluations at time 120), and get the total daily 

cost, as well as separate holding and shortage costs for each type of item. Make separate 

Level (“thermometer”) and regular Plots for each of the three types of items in inven-

tory. Describe how you would model this if you had hundreds or thousands of different 

kinds of items in inventory instead of just three.  

   5-21  In Exercise 5-20, suppose that the suppliers for the three items merge and offer a 

deal to eliminate multiple setup costs on a given day’s orders—that is, if Bucky orders 

any items of any type at the beginning of a day, he only has to pay the $32 setup cost once 

for that day, not a separate $32 for each type of item he orders. (If no order is placed for 

anything, there’s still no setup cost.) Modify your model for Exercise 5-20 to do this. What 

kind of incentives do you think this alternate cost structure might place on Bucky in terms 

of picking better values of  s  and  S  for each item (see Exercises 6-13 and 6-14)?  

   5-22  In the machine-repair model of Exercise 3-14, suppose it costs $80 in lost produc-

tivity for each hour that each machine is broken down and $19/hour to employ each repair 

technician (the technicians are paid this hourly wage regardless of whether they are busy 

or idle). Modify the model to collect these cost data, and report the average total cost per 

hour. Also, show the machines in the “up” state in a separate area of the animation, make 

separate animation pictures for up vs. down machines, and keep track of the number of 

machines up (and plot it). Make the number of machines in the shop a Variable. If you 

want to minimize total average cost, is two the right number of repair technicians? Exper-

iment (though see Exercise 6-21 for a statistically valid way to experiment).  

   5-23  Modify Model 3-3 so that the Resource animations are really accurate, that is, so that 

each of Alfi e, Betty, Chuck, and Doris is individually animated. If a loan application arrives 

to fi nd more than one of them idle, assume that a random choice is made. Produce output 

statistics on the utilization of each individual resource, as well as the overall utilization of 

the four resources combined. The overall utilization of the four resources combined is the 

time-average number of the resources that are busy, divided by 4; add an entry to the Statis-

tic data module to compute and report this. Put a text box in your model with your overall 

utilization, and the four individual utilizations that Arena will compute automatically, and 

write a sentence or two there about how the overall utilization relates to the four individual 

utilizations, and why.  
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   5-24  Modify Model 3-5 so that the Resource animations are really accurate, that is, so 

that each of Alfi e, Betty, Chuck, and Doris is individually animated. If a loan application 

arrives to fi nd more than one of them idle, assume that a random choice is made. Pro-

duce output statistics on the utilization of each individual resource, as well as the overall 

utilization of the four resources combined. The overall utilization of the four resources 

combined is the time-average number of the resources that are busy, divided by 4; add 

an entry to the Statistic data module to compute and report this. Put a text box in your 

model with your overall utilization, and the four individual utilizations that Arena will 

compute automatically, and write a sentence or two there about how the overall utiliza-

tion relates to the four individual utilizations, and why.  

   5-25  In Exercise 5-20, base the reorder decision (for widgets, doodads, and kon- 

traptions) not on just the inventory level on hand, but rather on the inventory level on 

hand PLUS the total inventory on order (that is, en route from the supplier based on 

prior orders). Use the same values of  s  and  S  for each of the three types of items as in 

Exercise 5-20.  

   5-26  Modify Model 5-1 to use a nonstationary Poisson process (as used in Models 5-2 

and 5-3) to implement the stopping rule for this model differently. Get rid of the second 

two Variables and the non-default entries in the Entities per Arrival fi eld and the Max 

Arrivals fi eld in the “Create Call Arrivals” create module. Also get rid of the three mod-

ules in the “Arrival Cutoff Logical Entity” area. Put a Text box in your model to explain 

briefl y what you’ve done to implement this. Note that the requested use of a nonstation-

ary Poisson process here is only to “shut off” the arrivals at time 600 minutes and thus 

help in implementing the “fl ush-out” stopping rule, and you won’t actually be changing 

the arrival rate during the fi rst 600 minutes (and you’ll need to fi gure out what that fl at 

arrival rate is [in arrivals per  hour , of course] to produce the same arrival probability 

distribution as in Model 5-1, with interarrival times being exponentially distributed with 

a mean of 0.857 minute). Explain in a second Text box in your model why the results 

are a little different from those produced by Model 5-1, and why this is okay. Look spe-

cifi cally at two of the output performance measures (Number of Completed Calls and 

Average Total Time in System of Tech-Support Calls), and compare results from one 

replication each of Model 5-1 and your solution to this exercise; repeat this comparison, 

except make 100 replications of each model and report the means and half-widths of 

95% confi dence intervals from the Category Overview report. Is the stopping rule for 

this exercise “equivalent” to the original stopping rule in Model 5-1?  

   5-27  Redo Exercise 3-21, except now use a Storage to represent the parts that are 

undergoing the drying process. Collect and report the same statistics as before, and 

again reconcile the total number of parts in the system with the sum of the time- average 

number or parts in all the different places in the system. Also, all parts are painted 

green, regardless of what color they were when they came in, so adjust your animation 

accordingly.       
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 Statistical Analysis of Output from 
Terminating Simulations 

  As we warned you back in Section 2.6 with the hand simulation, there’s an issue of ran-

domness and thus statistical analysis when you build a model with any random (that is, 

distribution- or probability-driven) inputs, as has been the case with all our models so far. 

In this chapter, we’ll show you how to collect the appropriate data from the simulation and 

then statistically analyze it from the reports you’re already getting, using the third version 

of the call center model as created in Chapter 5, Model 5-3. We’ll also show you how to do 

more sophisticated statistical analyses with the help of the Output Analyzer (to compare 

two alternative versions of your model, called  scenarios ), the Process Analyzer (to run 

several scenarios conveniently and perhaps select the best or gauge the effects of inputs on 

outputs), and OptQuest for Arena (which “takes over” running your model in a quest for a 

confi guration of input controls that optimizes a selected output response). 

 In Section 6.1, we’ll talk about the time frame of simulations, which affects the kind 

of analysis you do. Then in Sections 6.2 and 6.3 we’ll describe the basic strategy for data 

collection and statistical analysis in the context of just a single variant (the  base case  of 

Model 5-3, with the number of trunk lines still at 26 and no additional people hired for 

hours 5 through 8). We’ll make some simple changes to the model’s input parameters in 

Section 6.4 and use the Arena Output Analyzer to see if it makes a (statistically signifi -

cant) difference. In Section 6.5, we’ll introduce several more model variants and use the 

Arena Process Analyzer to run them in an effi cient and organized way, as well as sort out 

which of them is probably best. In Section 6.6, we’ll use OptQuest for Arena to search 

intelligently and effi ciently among the bewildering number of possible input-parameter 

combinations for a model confi guration that appears to be optimal in some sense (if you 

are running the Student version of Arena, you will likely not have OptQuest available, 

though it could be in your college or university computer labs if a research lab license 

is present). Finally, in Section 6.7 we briefl y introduce Arena’s Periodic Statistics for 

observing Time-Persistent (that is, continuous-time) output processes for parts of a run 

instead of over the whole run. Throughout, we’ll be illustrating methods that result in 

reliable and precise statistical analyses, which promote informed and sound decisions. 

 In the past, which is fortunately now gone, a lot of people pretty much ignored these 

kinds of issues, and that’s a real shame. By just running your model once, and then trying 

out a few haphazardly chosen scenarios (and running them only once), you just have no 

idea how valid or precise or general your results or conclusions might be. Sometimes the 

truth about validity and precision and generality can be ugly, and thus dangerous if it’s un-

known, since you’d run a real risk of getting poor estimates and making bad decisions. As 

you’ll see, it doesn’t take much work at all on your part to do these things right; your com-

puter might have to work hard, but it spends most of its time loafi ng anyway and besides, 
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unlike you, it’s cheap (compared to the importance of the decisions you’ll make based on 

your simulation’s results). You’ve worked hard to build your model, so now it’s time to let 

the model (and your computer) work hard for you to fi nd out how it really behaves, and 

then you can confi dently transport that knowledge into solid decisions. 

  6.1     Time Frame of Simulations 

  As in Section 5.2.5, most (not all) simulations can be classifi ed as either terminating or 

steady state. For many models, this is primarily an issue of intent or the goal of the study 

rather than having much to do with internal model logic or construction. 

 A  terminating  simulation is one in which the model dictates specifi c starting and 

stopping conditions as a natural refl ection of how the target system actually operates. 

As the name suggests, the simulation will terminate according to some model-specifi ed 

rule or condition. For instance, a store opens at 9  am  with no customers present, closes 

its doors at 9  pm , but continues operation for a little while longer until all customers 

are “fl ushed” out. Another example is a job shop that operates for as long as it takes to 

produce a “run” of 500 completed assemblies specifi ed by the order. The key notion is 

that the time frame of the simulation has a well-defi ned (though possibly unknown-at-

the-outset) and natural end, as well as a clearly defi ned way to start up. 

 A  steady-state  simulation, on the other hand, is one in which the quantities to be 

estimated are defi ned in the long run; that is, over a theoretically infi nite time frame. 

In principle (though usually not in practice), the initial conditions for the simulation 

don’t matter. Of course, a steady-state simulation has to stop at some point, and as you 

might guess, these runs can get pretty long; you need to do something to make sure 

that you’re running it long enough, an issue we’ll take up in Section 7.2. For example, 

an emergency department in a hospital never really stops or restarts, so a steady-state 

simulation might be appropriate. Sometimes people do a steady-state simulation of 

a system that actually terminates in order to design for some kind of worst-case or 

peak-load situation. 

 In this chapter, we’ll stick to a terminating statistical analysis of the third version 

of the call center model from Chapter 5 in its Model 5-3 incarnation, viewing it as a 

terminating simulation starting and stopping as described in that chapter. Steady-state 

analyses have to be done differently (we’ll do this in Section 7.2 using the model we’ll 

develop in Section 7.1). 

   6.2    Strategy for Data Collection and Analysis 

  With a terminating simulation, it’s conceptually simple to collect the appropriate data 

for statistical analysis—just make some number  n  of independent replications.  1   

  To do this, just open the  Run  >  Setup  >  Replication Parameters  dialog box and 

enter the value of  n  you want for the Number of Replications. Be sure that the boxes 

under Initialize Between Replications are both checked (the default) to cause both the 

system-state variables and the statistical accumulators to be cleared at the end of each 

  1  While conceptually simple, this could still imply a lot of run time for big or highly variable models. 

kel01315_ch06_279-310.indd   280kel01315_ch06_279-310.indd   280 05/12/13   3:27 PM05/12/13   3:27 PM



Statistical Analysis of Output from Terminating Simulations  281

replication. There are reasons to leave one or both of these boxes unchecked, but to 

get true, statistically independent and identically distributed (IID) replications for ter-

minating analysis, you need to make sure that both boxes are checked. These changes 

will cause the simulation to be replicated  n  times, with each replication starting afresh 

(fresh system state and fresh statistical accumulators) and using separate basic random 

numbers  2   to drive the simulation. For each replication, a separate section is generated 

in the Category by Replication report containing the results on that replication (such 

by-replication results are not in the Category Overview report). 

  For instance, we created Model 6-1 to be the same as the base case of Model 5-3 (the 

number of trunk lines still at 26 and no additional people hired for hours 5 through 8), 

except we made  n  5 10 replications to obtain the values in   Table 6-1   for the  Total Cost  

and  Percent Rejected  performance measures. It’s important to remember that each 

of these values is the result over an entire simulation run and that each is an “observation” 

(or “realization”) of a random variable representing the  Total Cost  and  Percent 

 Rejected  over a “random” replication with these starting and stopping conditions. 

  How did we know ahead of time that  n  5 10 was the appropriate number of replica-

tions to make? We didn’t. And we really still don’t since we haven’t done any analysis 

on these data. This is typical since you don’t know up front how much variation you 

have in your output. We’ll have more to say below about picking (or guessing) an appro-

priate value for the number of replications. By the way, when cranking out replications 

like this for statistical analysis, you might want to turn off the animation altogether to 

move things along, as we did for Model 6-1: choose  Run  >  Run Control  and select 

(check)  Batch Run (No Animation) ; to get the animation back later, you’ll need to go 

back and clear this same entry. 

  2  Actually, each replication just keeps advancing within the same random-number “streams” being used; 

see Section 12.1 for more on how random-number generators work and can be controlled. 

  Table 6-1.   Total Cost and Percent Rejected from Ten Replications of Model 6-1 

(Same as Model 5-3)  

 Replication  Total Cost ($)  Percent Rejected 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 22,385.64 

 20,612.12 

 23,837.38 

 21,915.24 

 22,462.34 

 20,573.78 

 20,935.88 

 22,078.91 

 20,056.75 

 21,325.23 

 12.2759 

 11.6059 

 10.4558 

 11.9110 

 13.5546 

 10.9804 

 10.1093 

 9.4256 

 9.4972 

 11.3388 
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 You’re probably not going to want to copy out all the values for all the performance 

measures of interest over all the replications and then type or paste them into some 

statistical package or spreadsheet or (gasp!) calculator for analysis. Fortunately, Arena 

internally keeps track of all the results in the reports for all the replications. If you’re 

making more than one replication, the Category Overview report will give you the aver-

age of each result over the replications, together with the half width of a (nominal) 95% 

confi dence interval on the expected value of the output result; we’ll discuss further what 

this all means in Section 6.3. 

 You can also have Arena save to binary “. dat ” fi les (later to be fed into the Arena 

Output Analyzer, a separate application we’ll discuss in Section 6.4) whatever you want 

from the summary of each replication. You do this in the Statistic data module, by spec-

ifying fi le names in the Output File column on the right of each row that has Output as 

the selection in its Type column. This fi le will then contain the kind of data we listed in 

  Table 6-1  . 

  6.3     Confi dence Intervals for Terminating Systems 

  Just as we did for the hand simulation back in Section 2.6.2 (and using the same for-

mulas given there), we can summarize our output data across the  n  5 10 replications 

reported in   Table 6-1  . We give the sample mean, sample standard deviation, half width 

of a 95% confi dence interval, and both the minimum and maximum of the summary 

output values across the replications, in   Table 6-2  .  

 Arena will automatically produce the information in   Table 6-2   (except for the sample 

standard deviation, but the half width contains essentially the same information) in the 

Category Overview report if you call for more than a single replication in  Run  >  Setup  > 

 Replication Parameters.    Figure 6-1   shows the relevant part of the Category Overview 

report for Model 6-1 after we ran it for ten replications; except for a little bit of round-off 

error, this agrees with the information in   Table 6-2   that we computed by hand.  

 If you want to control the conditions and reporting in some way, such as specifying 

the confi dence level to something other than 95%, producing the results in particular 

groupings or orderings, or if you want to get the graphical displays of the confi dence in-

tervals, minima, and maxima, you can save the summary data to a . dat  fi le in the Statistic 

data module as described earlier and then use the Output Analyzer (see Section 6.4). You 

  Table 6-2.   Statistical Analysis from Ten Replications of Model 6-1 

(Same as Model 5-3)  

   Total Cost ($)  Percent Rejected 

 Sample Mean 

 Sample Standard Deviation 

 95% Confi dence Interval Half Width 

 Minimum Summary Output Value 

 Maximum Summary Output Value 

 21,618.33 

 1,136.24 

 812.76 

 20,056.75 

 23,837.38 

 11.12 

 1.30 

 0.93 

 9.43 

 13.55 

kel01315_ch06_279-310.indd   282kel01315_ch06_279-310.indd   282 05/12/13   3:27 PM05/12/13   3:27 PM



Statistical Analysis of Output from Terminating Simulations  283

can also get graphical displays of confi dence intervals as one of the capabilities of the 

Arena Process Analyzer (see Section 6.5). 

 It’s probably obvious that the way to reduce the half width of the confi dence interval 

on expected  Total Cost  or on  Percent Rejected  (or on anything, for that mat-

ter) is to increase the sample size  n . But by how much? If you have a certain “smallness” 

in mind that you’d like (or could tolerate) for the half width, you can easily get an idea, 

but not an exact answer, of how big  n  will have to be to achieve this goal. Suppose you 

have an initial set of replications from which you compute a sample average and stan-

dard deviation, and then a confi dence interval whose half width is disappointingly large. 

For instance, from our initial ten replications above in the case of  Total Cost , we got 

a sample mean of  X
_
  5 $21,618.33, a sample standard deviation of  s  5 $1,136.24, and 

the half width of the 95% confi dence interval turned out to be 

   t
n21,12a/2

   s ___ 
 � 

__
 n     5 2.262   

1,136.24
 _______ 

 � 
__

 10  
   5 $812.76   

 (up to round-off), which represents a 3.8% error in the point estimate $21,618.33. If you 

want to achieve a specifi c half-width  h , presumably smaller than the one you got from 

your initial set of replications, try setting  h  equal to the half-width formula and solve 

for  n : 

   n 5 t2

n21,12a/2
   s

2

 __ 
h2

  .   

 The diffi culty with this is that it isn’t really solved for  n  since the right-hand side still 

depends on  n  (via the degrees of freedom in the  t  distribution critical value and, though 

the notation doesn’t show it, via the sample standard deviation  s , which depends not 

only on  n  but also on the data obtained from the initial set of  n  replications). However, 

to get at least a rough approximation to the sample size required, you could replace the  t  
distribution critical value in the formula with the standard normal critical value (they’re 

close for  n  more than about 30), and pretend that the current estimate  s  will be about 

the same when you compute it from the larger sample. This leads to the following as an 

  Figure 6-1.  Results from Ten Replications of Model 6-1 (Same as Model 5-3)   
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approximate required sample size to achieve a confi dence interval with half width equal 

to a pre-specifi ed desired value  h : 

   n > z2

12a/2
   s

2

 __ 
h2

     

 where  s  is the sample standard deviation from an initial set of  n  replications (which 

you’d have to make before doing this). An easier but slightly different approximation is 

(we’ll leave the algebra to you) 

   n > n
0
   
h2

0 __ 
h2

     

 where  n  
0
  is the number of initial replications you have and  h  

0
  is the half width you got 

from them. In the  Total Cost  example, to reduce the half width from  h  
0
  5 $812.76 

to, say,  h  5 $250.00, we’d thus need a total of something like 

   n > 1.962   
1,136.242

 ________ 
2502

   5 79.4 (fi rst approximation)   

 or 

   n > 10   812.762

 _______ 
2502

   5 105.7 (second approximation)   

 (round up) replications instead of the ten we originally made. The second approximation 

will always be bigger since it uses tn021,12a/2 rather than z12a/2. Note the depressing quadratic 

growth of the number of replications as  h  shrinks (that is, we demand more precision)—to 

reduce the half width to half its initial value, you need about four times as many replications. 

While this might seem unfair (to do twice as well you have to work four times as hard), the 

intuition is that as you add more and more replications, each additional replication carries 

less and less percentage increase in your accumulating storehouse of knowledge. 

 Since this model runs very quickly without the animation, we decided to be con-

servative (statistically, not necessarily politically) and make 110 replications. The only 

change required to Model 6-1 was in  Run  >  Setup  >  Replication Parameters  where we 

changed the  10  in Number of Replications to  110 ; we’ll call the result Model 6-2. This 

produced a 95% confi dence interval of 

 22175.19 ± 369.54, 

 or in other words, [21805.65, 22544.73] (we’ll drop the “$” units from here on). Note 

that this does not quite meet our goal of getting the half width down to 250 or less, so ev-

idently our initial ten replications were a little less variable than “usual” so we undershot 

a little on the required number of replications; on the other hand, it could have happened 

that the half width would be below 250, since these are indeed only approximations 

and are not exact. In Section 12.5, we’ll discuss sequential sampling, which for us will 

be ways to trick Arena into continuing to run until it produces confi dence intervals that 

really are of the desired precision. 
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 By the way, from this 110-replication run of Model 6-2, the approximate 95% con-

fi dence interval on the expected percentage of incoming calls that are rejected was 

11.7396 ± 0.51. This seems like a pretty tight confi dence interval, with half width of 

about half a percentage point (on a dimensionless scale that’s always between 0 and 

100 for a percent). However, if you wanted even tighter precision, you could repeat the 

above approximations for the required number of replications and then use the  maxi-
mum  of this and the 110 we got for the  Total Cost  output performance measure so 

that you would meet your precision needs on  both  outputs. 

 It’s important to understand just what a confi dence interval is (and what it isn’t). 

Take the  Total Cost  output measure as an example. Each replication produces a 

 Total Cost  value for that replication, and due to random inputs, these values vary 

across replications. The average of the 110 values, you’ll agree, is probably a “better” 

indicator of what to expect from a “typical” run than is any one of the individual values. 

Also, it’s intuitive that the more replications you make, the “better” this average will be. 

The expected average, which is usually denoted by some kind of notation like  m , can 

be thought of as the  Total Cost  averaged over an infi nite number of replications; as 

such,  m  will have no uncertainty associated with it. 

 Unfortunately, mere mortals like us can’t wait for an infi nite number of replications, 

so we have to make do with a fi nite-sample estimate like the 22,175.19 from our 110 

replications. The confi dence interval centered around 22,175.19 can be thought of as a 

“random” interval (the next set of 110 replications will give you a different interval) that 

has approximately a 95% (in this case) chance of containing or “covering”  m  in the sense 

that if we made a lot of sets of 110 replications and made such an interval from each set, 

about 95% of these intervals would cover  m . Thus, a confi dence interval gives you both a 

“point” estimate (22,175.19) of  m , as well as an idea of how precise this estimate is. 

 A confi dence interval is not an interval in which, for example, 95% of the  Total 

Cost  measures from replications will fall. Such an interval, called a  prediction interval , 
is useful as well and can basically be derived from the same data. One clear difference 

between these two types of intervals is that a confi dence interval will shrink to a single 

point as  n  increases, but a prediction interval won’t since it needs to allow for variation 

in (future) replications. 

 A fi nal word about confi dence intervals concerns our hedging the confi dence-level 

language (“approximately” 95%, etc.). The standard methods for doing this, which 

Arena uses, assumes that the basic data, such as the 110 observations on  Total Cost  

across the replications, are IID (that’s satisfi ed for us) and normally distributed (that’s 

not satisfi ed, and will pretty much never be satisfi ed with output data generated from 

dynamic simulations). Basically, use of the  t  distribution in the confi dence-interval formula 

requires normality of the data. So what’s the effect on the actual (as opposed to stated) 

confi dence level of violation of this normality assumption? We can fi rmly and absolutely 

state that it depends on several things, including the “true” distribution as well as the 

number,  n , of replications. The  central limit theorem , one of the cornerstones of statistical 

theory, reassures us that we’ll be pretty much okay (in terms of actual confi dence being 

close to stated confi dence) if  n  is “large.” But how large? The answer to this is fairly im-

ponderable and depends on how closely the distribution of the data resembles a normal 
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distribution, particularly in terms of symmetry. This can be at least qualitatively checked 

out by making a histogram of the data values, as we do in   Figure 6-2   for  n  5 1,000 rep-

lications rather than the original 110 (the histogram with only 110 points didn’t illustrate 

much). To make this plot, we modifi ed Model 6-2 into Model 6-3 by fi rst changing the 

Number of Replications from  110  to  1000  in  Run  >  Setup  >  Replication Parameters  

and also arranged to save the 1000 individual  Total Cost  values to a fi le called  Total 

Cost.dat , which we named in the Output File column in the row for  Total Cost  

in the Statistic data module (and renamed  Total Cost - Model 06-03.dat  in the 

Book Examples folder). We then ran the Arena Output Analyzer (we’ll have more to say 

about this separate piece of software in Section 6.4) to read  Total Cost.dat ,  exported 

it to a plain ASCII text fi le ( File  >  Data File  >  Export  in the Output Analyzer), rear-

ranged it and streamlined it somewhat in a spreadsheet (named  Total Cost- Model 

06-03.xls  in the Book Examples folder), saved it as a plain ASCII text fi le named 

 Total Cost - Model 06-03.txt  in the Book Examples folder, and then brought it 

into the Arena Input Analyzer (see Section 4.6.4), even though it’s not “input” data for 

a simulation model (we saved this Input-Analyzer session as  Total Cost - Model 

06-03.dft  in the Book Examples folder).  

 Though admittedly just eyeballing the data, we see that the shape of the histogram 

is not too far from the familiar “bell” curve of the normal density function (though it 

appears to be a little bit skewed out to the right), suggesting that we’re probably okay 

in terms of using the standard confi dence-interval method even for a relatively small 

value of  n . For this model, which took about 26 seconds to run all 1,000 replications on a 

2.80 GHz machine, we had the luxury of doing these 1,000 replications to check for 

  Figure 6-2.  Histogram of 1,000 Total Cost Values   
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normality; with a big, industrial-strength model, you won’t be able to do anything of the 

sort, so how do you check this out in practice? Or is it just an article of faith? Though 

far from being a statement of general truth, a lot of simulation experience (backed up by 

some theory in the form of more general versions of the central limit theorem) indicates 

that if the value you’re getting out of each individual replication is a sum or average of 

something, as opposed to an extreme value (maximum or minimum of something), use 

of standard normal-theory statistical-inference methods is fairly safe. Our  Total Cost  

measure is of the “sum” form, perhaps explaining its approximate normality in   Figure 6-2  , 

and justifying use of Arena’s normal-theory-based statistical methods. 

6.4       Comparing Two Scenarios 

  In most simulation studies, people eventually become interested in comparing differ-

ent versions, or  alternatives , or  scenarios , of some general model. What makes the 

scenarios differ from each other could be anything from a simple parameter change to 

fundamentally different logic. In any case, you need to take care to apply the appropri-

ate statistical methods to the output from the scenarios to ensure that valid conclusions 

are drawn. In this section, we’ll restrict ourselves to the case of just two scenarios; in 

Section 6.5, we’ll allow for more. 

 We’ll begin by modifying Model 6-3 into what we’ll call Model 6-4, by simply 

knocking the Number of Replications in  Run  >  Setup  >  Replication Parameters  back 

down to 110; we left in the entry in the Statistic data module, Output File Column, 

 Total Cost  row to save the  Total Cost s from each replication to the fi le  Total 

Cost.dat  (more on this below). Let’s consider two versions. The fi rst, which we’ll 

call the  base case , is the same as Model 5-3 in Chapter 5, with exactly the same input pa-

rameters and run conditions (except that we’re doing 110 rather than 5 replications), that 

is, we still have 26 trunk lines and have added no Larrys (Variable  New Tech 1  is 0), no 

Moes ( New Tech 2  is 0), no Curlys ( New Tech 3  is 0), no Hermanns ( New Tech All  

is 0), or sales staff ( New Sales  is 0) during hours 5 to 8. The alternative scenario, what 

we’ll call the  more-resource scenario  is just the base case except that we’ll add three 

trunk lines (in the  Trunk Line  row of the Resource data module change the Capacity 

from 26 to 29), and hire three each of Larry, Moe, Curly, Hermann, and sales staff (in the 

Variable data module initialize each of  New Tech 1 ,  New Tech 2 ,  New Tech 3 ,  New 

Tech All , and  New Sales  to 3 rather than 0). By adding resources in this way, we’ll 

certainly increase salary cost, but will also reduce waiting and thus excess-wait costs. 

So it’s not clear whether this change will drive Total Cost down or up, much less by how 

much. And while these changes should reduce the percent of incoming calls that are 

rejected, it’s hard to say by how much. Sounds like a job for (you guessed it) simulation. 

 We made a run (just one replication) of both the base case and the more-resources 

case, and got  Total Cost  outputs of $22,385.64 and $23,306.75, respectively;  Per-
cent Rejected  was 12.2759 and 0.2833, respectively. On the surface, this looks 

mixed for the more-resources scenario since  Total Cost  seems to have increased 

somewhat while  Percent Rejected  decreased, apparently substantially. But if you 

were conscious when you read Section 6.3 (or Section 2.6.3), you’ll know better than to 

fall into this trap of concluding much of anything from just one run with no statistical 
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analysis of the output. So we’ll do this comparison in a way that will allow us to make 

a statistically valid conclusion. 

 Before doing the comparison the right way, we’ll do it in a reasonable-but-not-

quite-right way. Focusing on the  Total Cost  output measure, we saw in Section 6.3 

that, from 110 replications of the base-case scenario, a 95% confi dence interval on the 

 expected  Total Cost  is 

 22175.19 ± 369.54 or [21805.65, 22544.73]. 

 Rerunning the model in the more-resources confi guration, also with 110 replications, 

the confi dence interval becomes 

 24542.82 ± 329.11, or [24213.71, 24871.93]. 

 These two intervals do not overlap at all, suggesting that the expected  Total Cost s  

are signifi cantly different. Turning to the  Percent Rejected  output measure, the 

base-case confi dence interval was 11.7396 ± 0.51, while the more-resources interval 

was 1.7276 ± 0.31; these two intervals do not overlap, suggesting a statistically signifi -

cant difference on this measure. However, looking at whether confi dence intervals do or 

don’t overlap is not quite the right procedure; to do the comparison the right way, we’ll 

use the Arena Output Analyzer discussed next. 

 As we’ve mentioned before, the Output Analyzer is a separate application that runs 

apart from Arena itself, but operates on output fi les created by Arena through the Sta-

tistic data module (the . dat  fi les we’ve mentioned before). While some of the things the 

Output Analyzer does are also done by Arena itself (like forming confi dence intervals 

on expected output performance measures), the Output Analyzer has additional capabil-

ities, and statistical comparison of two scenarios is among them. 

 To save the values of  Total Cost  for each replication to a . dat  fi le for the Output 

Analyzer, we entered  Total Cost.dat  in the Output File column for the  Total 

Cost  row in the Statistic data module, and similarly for  Percent Rejected . After 

the simulation has been run, these fi les will contain the 110 values of these output perfor-

mance measures over the 110 replications; the fi le format is binary, however, and it can 

be read only by the Output Analyzer so will not be readable from applications like word 

processors or spreadsheets. Since we’ll want to save the  Total Cost  and  Percent 

Rejected  values over our 110 replications of both the base-case and more-resource 

scenarios, and since we’ll have two such fi les for each output performance measure, we 

either need to change their fi le names in the Arena model before each run, or rename 

them out in the operating system after each run to avoid overwriting them on subsequent 

runs; we took the latter route and appended “ - Base Case ” or “ - More Resources ” 

to the fi le names. Once you’ve made your runs of 110 replications each of the two sce-

narios, start the Output Analyzer (it’s probably in the same folder that contains Arena, 

unless you did something weird during your installation). 

 In the Output Analyzer, select  File  >  New  (or  Ctrl 1 N  or   ) to open a new data 

group. This is not a . dat  fi le containing data, but is rather a list of . dat  fi les that you select 

as the ones in which you have current interest; this basically screens out the possibly 

many other . dat  fi les present and, while not required, simplifi es things. You can save this 
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data group fi le (the default fi le name extension is . dgr ) after you populate it with . dat  fi le 

names so that next time you can just open it rather than selecting the . dat  fi les all over 

again; we saved this data group as  Model 06-04.dgr . 

 Use the  Add  button in the data group window to select (open) the fi les  Total 

Cost - Base Case.dat  and  Total Cost - More Resources.dat  to make 

them available for analysis; then do the same for the two  Percent Rejected  

 .dat  fi les. The Output Analyzer can make the comparison we want via  Analyze  > 

 Compare Means .   Display 6-1   fi lls in the information for the Compare Means function 

 Title 

 Scale Display 

  (Base Case) - (More Resources)  
  clear  

 Add 

 Data File A 

 Replication 

  
  Total Cost − Base Case.dat  
  Lumped  

 Add 

 Data File B 

 Replication 

  
  Total Cost − More Resources.dat  
  Lumped  

 Add 

 Data File A 

 Replication 

  
  Percent Rejected − Base Case.dat  
  Lumped  

 Add 

 Data File B 

 Replication 

  
  Percent Rejected − More Resources.dat  
  Lumped  

  Display 6-1.  Using the Output Analyzer’s Compare Means Facility   
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(the graphical part of   Display 6-1   also shows the data group as the upper-left window 

behind the others). Note that, in the Compare Means dialog, we cleared the check box 

for Scale Display; leaving this checked would put the graphical displays for the two 

comparisons on the same scale, which could make sense if the measurement units were 

the same for the two comparisons, but in our case, one is in dollars and the other is in 

percents, so scaling them together would not make sense.  

 We fi rst Add the data fi les, one pair for  Total Cost  and a second pair for  Percent 

Rejected , requiring specifi cation of those from both scenarios (called A and B in the di-

alog box, both Lumped so that all 110 replications for each scenario are “lumped” together 

for our analysis), then maybe fi ll in a Title and accept or change the Confi dence Level for 

the comparison. The option button group for Paired-t Test (the default) vs. Two-Sample-t 

Test refers to an issue of random number allocation and statistical independence, which 

we’ll take up in Section 12.4.1; the Paired-t approach is somewhat more general and will 

be the one to use unless we’ve taken deliberate steps to make the scenarios statistically 

independent (which we didn’t), or if we try to improve precision by allocating the random 

numbers carefully (which we haven’t done here). As noted above, we cleared the check 

box for Scale Display since in this case the units are different for the two comparisons. 

 The results are in   Figure 6-3  . The Output Analyzer does the subtraction of means in the 

direction A – B; since we called the base case A and the more-resources scenario B, and 

more resources tended to increase  Total Cost  but decrease  Percent Rejected , the 

signs of the differences are as expected. To see whether these are statistically signifi cant 

differences (that is, whether these differences are too far away from zero to be reasonably 

explained by random noise), the Output Analyzer gives you 95% confi dence intervals on 

the expected differences; since the intervals both miss zero, we conclude that there are 

  Figure 6-3.  Confi dence Interval and Hypothesis Test on the Expected Difference 

Between Total Costs and Percents Rejected   
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statistically signifi cant differences on both output performance measures, and that increas-

ing resources in this way signifi cantly increases  Total Cost  and signifi cantly decreases 

 Percent Rejected  (the results of the equivalent two-sided hypothesis test for zero-

expected difference are also shown in the lower part of the window). Confi dence intervals 

are really a better way to express all this than are hypothesis tests, since they contain 

the “do-not-reject” or “reject” conclusions from the tests (the interval contains or misses 

zero), but also quantify the magnitude of any statistically signifi cant differences. If you 

did this comparison because you’re considering implementing this change, you now have 

an idea of what the increase in  Total Cost  will be and what the decrease in  Percent 

Rejected  will be if you increase the resources in this way.  

6.5       Evaluating Many Scenarios with the Process Analyzer (PAN) 

  In Section 6.4, we defi ned two different alternative system confi gurations in terms of 

six input parameters (capacity of the  Trunk Line  resource, and the variables  New 

Tech 1 ,  New Tech 2 ,  New Tech 3 ,  New Tech All , and  New Sales ), ran the 

model in both confi gurations, and carried out a statistical analysis to be confi dent that 

we were drawing the correct conclusions about the difference between the two scenarios 

in terms of two particular output performance measures ( Total Cost  and  Percent 

Rejected ). What if you had more (maybe a lot more) than two scenarios that you 

wanted to run and compare? You’d face two issues:

    1.  Managing the practical mechanics of making the model changes for all the dif-

ferent scenarios, which could be tedious and laborious if you have a lot of sce-

narios, and defi ning each one involves a lot of parameter changes in the model. 

And don’t forget about changing the name of any saved output fi les, either by 

editing the model or by changing the fi le names out in the operating system.  

   2.  Evaluating the results in a statistically valid way to sort out which scenarios 

differ signifi cantly from which others relative to which output performance mea-

sures, and which ones might be signifi cantly better than the others, or even the 

best among all of those you considered.    

 Arena comes with another separate application called the  Process Analyzer  (or PAN 

for short) that greatly eases your burden on issue (1) and also provides support for issue 

(2) to help you evaluate your results in a statistically valid way and make sound deci-

sions. PAN operates on Arena program fi les, which normally have . p  as the fi le name 

extension; after you run a model, the . p  fi le will be there, or you can create it from Arena 

without running it by checking your model ( Run  >  Check Model  or the  F4  key or the   

  button). You start PAN as you would any application, for instance by navigating to it 

via the Windows  Start  button (by default it’s in the same place as Arena itself), or from 

within Arena via  Tools  >  Process Analyzer . Either way, PAN will run on its own, in a 

window separate from Arena (if you have Arena running). 

 A  scenario  for PAN is a combination of a program (. p ) fi le that exists somewhere on 

your system, a set of values for input  controls  for that program fi le that you select, a set of 

output  responses  for that program fi le that you also choose, as well as a descriptive Name 
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for the scenario. A PAN  project  is a collection of such scenarios and can be saved in a PAN 

fi le (. pan  extension) for later use. The program (. p ) fi les defi ned for different scenarios 

can in fact be the same program fi le or can result from different Arena model (. doe ) fi les, 

 depending on what you want to run and compare. As we’ll see, you select the controls 

from among your models’ Variables and Resource capacities, and you select the responses 

from your models’ outputs (as produced by Arena) and your own Variables. Once you 

have your scenarios defi ned, PAN will execute the ones you select (you can select all of 

them if you want), with the controls set at the values you defi ne for each scenario and 

deliver the response results in a table together with a record of the control values for each 

scenario. This is equivalent to your going in and editing your model for the control values 

for each scenario and then running them all individually from within Arena; of course, 

doing this via PAN is a lot easier and faster and also supports a valid statistical comparison 

between the results. To make effective use of PAN, you should think ahead as you build 

your model to what input parameters you’ll want to change to defi ne different scenarios, 

and be sure to set them up as Arena Variables (or Resource capacities) in your model so 

that they can be selected to become controls in a PAN scenario. 

 After starting PAN, either create a new PAN project via  File  >  New  (or  Ctrl 1 N  

or   ), or open a previously saved project fi le (. pan  extension) via  File  >  Open  (or 

 Ctrl 1 O  or   ); at present, PAN can have only one project window open at a time, but 

you can have multiple instances of PAN running simultaneously. To add a new scenario 

line to the project, double-click where indicated to bring up the Scenario Properties 

dialog box where you can give the scenario a Name (we chose  Base Case  for this 

scenario) and Tool Tip Text, and associate an existing program (. p ) fi le with this scenario 

(use the  Browse  button to navigate to the . p  fi le you want). The model we’ll use for our 

PAN experiments will be Model 6-5, which is the same as Model 6-4 except that we 

removed the Output File entries  Total Cost.dat  and  Percent Rejected.dat  

in the Statistic data module since PAN will itself keep track of these data and our writing 

them out to our own fi le would only waste time; we’re still making 110 replications for 

each scenario. We checked this model to produce  Model 06-05.p , and we selected 

that for our Program File here. If you want to edit these things later, just right-click in 

the line for the scenario and select Scenario Properties. To select the controls for this 

scenario, right-click in its line (except at the left edge) or in the top Scenario Proper-

ties label, or use the  Insert  >  Control  menu option, and select Insert Control to bring 

up a dialog box containing an expandable tree of possible controls from among the 

Resources, System variables (number and length of replications), and User-Specifi ed 

variables; clicking the plus sign in any tree expands it to allow you to select any entry by 

double-clicking on it, causing it to appear as a Control in the scenario row. For our ex-

periments with this model, we selected six Controls, one from Resources and the other 

fi ve from among the User Specifi ed variables:

    ■  Under Resources, the capacity of  Trunk Line ; select Integer for the Data Type 

in the drop-down list and then click  OK .  
   ■  Under User Specifi ed, each of  New Tech 1 ,  New Tech 2 ,  New Tech 3 ,  New 

Tech All , and  New Sales , selecting Integer for the Data Type in each case.    
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 Once you’ve selected all the controls you want, right-click again in the row or at the 

top and select Insert Response to select your response(s) in the same way; we selected 

two Responses from the User-Specifi ed group,  Total Cost  (selecting two Decimal 

Places) and  Percent Rejected  (one Decimal Place). The values of the controls 

show up as the ones they have in the model as it was defi ned, but (here’s the power of 

PAN) you can change them for execution of this scenario by simply editing their values 

in this scenario row in the PAN project window; for the base-case scenario, we left the 

control values as they were in the original model (26 and the fi ve 0s). The values for the 

responses are blank since we haven’t run the scenario yet.   Figure 6-4   shows the status 

of part of the PAN project window after we defi ned this scenario and saved the project 

as  Experiment 06-05.pan  (we chose “Experiment” since this really is a whole 

experiment going on, which could even be a statistically designed one though it isn’t 

here—see Section 12.6). 

  You could repeat this process for additional scenarios. However, if they are similar to 

one that you’ve already defi ned, you can duplicate it (right-click in its scenario number 

on the left and select Duplicate Scenario(s)), and then just make edits in the duplicated 

scenario. 

 To defi ne a sensible set of scenarios for this model, suppose that you received an 

order from above giving you $1,360/week more to spend on additional resources, but 

that you have to devote the entire $1,360 to just a single kind of resource. To which of 

the six “expandable” resources should you allocate the new money? Given the weekly 

costs of the resources, you could get 13 more trunk lines ($98 each), or four more of 

any one of the additional single-product tech-support people ($320 each), or three of the 

additional all-product tech-support people ($360 each), or four additional salespeople 

($340 each).   Figure 6-5   shows the PAN project fi lled out with the six possible scenarios, 

plus the base-case scenario at the top. 

  To run some or all of the scenarios, select their rows by clicking in the left-most 

column of each row ( Ctrl 1 Click  to extend the selection or  Shift 1 Click  to select a con-

tiguous set of lines). Then select  Run  >  Go  (or the  F5  function key or the    button)—

and then, you may have to wait a little while and watch the Reps column count up and 

  Figure 6-4.  The PAN Project  Experiment 06-05.pan  After Defi ning 

the First (Base-Case) Scenario   
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the Responses columns get populated.   Figure 6-6   shows the results of running all seven 

scenarios; the Responses column gives the average over the 110 replications of each 

scenario. Looking at the  Total Cost  column, it appears that beefi ng up the sales-call 

staff would be best; looking at the  Percent Rejected  column, it appears that adding 

New Tech Alls would be best.  

 While these conclusions are based on more than just one replication of each scenario 

(remember that we set the number of replications in the model fi le to 110 per scenario, 

so this is what PAN runs since we didn’t override it via Num Reps in the System Con-

trols), it would be far better to have some idea of their statistical validity. To investi-

gate this on the  Total Cost  measure, select that column (click in the Responses label 

above the  Total Cost  cell at the top to select this column of results), and then select 

  Figure 6-5.  The PAN Project  Experiment 06-05.pan  After Defi ning All Scenarios   

  Figure 6-6.  Results of Running the PAN Project for All Scenarios   
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 Insert  >  Chart  (or    ) or right-click in this column and select Insert Chart). There are a 

lot of options here, so we’ll just guide you through one of them and let you explore the 

others on your own, with the help of Help. Under Chart Type, select Box and Whisker, 

click Next, make sure  Total Cost  is selected under Use these Responses, and accept 

the defaults in the Next (third) window. In the last (fourth) window, check the Identify 

Best Scenarios box, then select “Smaller is Better” and enter  0  for the Error Tolerance 

(overriding what’s there by default). Then click “Show best scenarios” and note what 

appears in the window below that button; click Finish to get the plot. Finally, repeat all 

of the above for the  Percent Rejected  column to produce a second Box and Whisker 

plot for those values. 

 In the bottom part of the PAN window, you should see something like what’s in   Fig-

ure 6-7  ; you might want to resize the charts to make them bigger, by selecting them and 

dragging the corners around. If you right-click on a chart, select Chart Options, and then 

the Data tab, you can see, for each scenario, numerical results beyond the means that are 

in the table, such as the minimum and maximum across the replications, the half width of 

95% confi dence intervals, and the low and high values that are the bounds of the confi -

dence intervals. In the chart itself, the vertical box plots indicate 95% confi dence intervals 

on expected values for each alternative scenario, and those colored red are determined to 

be signifi cantly better (smaller) than those colored blue (we’ve circled the red boxes so 

you can see what’s what in this crummy monochrome book). More precisely, what this 

means is that the “red” scenarios form a subset of scenarios that is 95% certain to contain 

  Figure 6-7.  Selecting a Subset Containing the Best Alternative Scenario 

(Red Boxes Are Circled)   
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the true best scenario in terms of the true (and unknown) expected value of that response. 

If we’d chosen an Error Tolerance of greater than zero, the “red” subset will contain the 

best scenario or one within the Error Tolerance of the best, with 95% confi dence. Keep in 

mind that these conclusions are based on the number of replications you specifi ed for each 

scenario (in our case, we specifi ed 110 replications for each scenario, but we could have 

specifi ed different numbers of replications for different scenarios); if you want to narrow 

the selected (red) subset, you could increase the number of replications for the scenarios. 

You could also narrow the selected (red) subset by specifying the Error Tolerance to be a 

positive number that represents an amount small enough that you don’t care if the selected 

scenario(s) are actually inferior to the true best one by at most this amount; so a positive 

Error Tolerance may reduce the number of selected scenarios at the risk of being off by a 

little bit. This selection procedure is fi rmly based on sound statistical theory developed by 

Nelson, Swann, Goldsman, and Song (2001).  

 So depending on whether you regard  Total Cost  or  Percent Rejected   as the 

more important response, you now have an indication of which among these six (seven, if 

you include the base case) scenarios would likely be best. It’s hard to think of a  sensible 

way to combine these two responses into one on which to optimize. Wouldn’t it be nice 

if, for instance, we could seek to minimize  Total Cost  while holding  Percent 

Rejected  to no more than something like fi ve? Press on (to Section 6.6), gentle reader. 

6.6       Searching for an Optimal Scenario with OptQuest  3   

   The scenarios evaluated in Section 6.5 were just a few of the myriad of possibilities that 

we might explore in a quest to minimize  Total Cost , subject to the requirement that 

the  Percent Rejected  response turn out to be no more than fi ve. Suppose you’re 

now set free to explore all the possibilities you’d like in terms of the  Trunk Line  

capacity (but you’re contractually obligated to keep at least the 26 you already have, 

and the wiring closet has room for at most 50), as well as  New Tech 1 ,  New Tech 2 , 

 New Tech 3 ,  New Tech All , and  New Sales  (but you have room for at most 15 new 

people in all of the tech-support and sales categories combined). Since you have six 

input control variables to play with, you can think of this as wandering around in part of 

six-dimensional space looking for a six-vector (of non-negative integers) that minimizes 

 Total Cost  while holding  Percent Rejected  to fi ve or less. This results in a lot 

of possibilities (1,356,600, actually), and considering them all exhaustively is not prac-

tical (with the 110 replications per scenario that we’ve been using, it would run around 

the clock for a month on a 2.80 GHz machine). 

 Where do you start? This is a hard question, but a reasonable idea would be the 

best point you know about so far. None of the scenarios in the PAN experiment of   Fig-

ure 6-6   meets the requirement that  Percent Rejected  ≤ 5 (though a couple are 

  3  If you are running the Student version of Arena, you may run into restrictions using OptQuest; if that 

occurs you may be able to access a less restrictive version in your college or university computer lab. Instruc-

tors can request a research license from Rockwell Automation, which will enable OptQuest as well as the full 

commercial version of Arena. However, this license is for academic use only; commercial use of a research 

license is strictly prohibited. 
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close, and we could start with such an infeasible point though we’d need to move away 

from it eventually, of course). However, the more-resources case from Section 6.4 (the 

 Trunk Line  resource has a capacity of 29, and  New Tech 1 ,  New Tech 2 ,  New 
Tech 3 ,  New Tech All , and  New Sales  are all set to 3) does meet the  Percent 
Rejected  ≤ 5 requirement, so we’ll start there, even though its  Total Cost  is on 

the high side compared to other scenarios with which we’ve experimented, and we’ll 

seek to reduce it while obeying the  Percent Rejected  ≤ 5 requirement. 

 But where do you go from here? This is not an easy question to answer either, to 

say the least. A lot of people have been doing research into such topics for many years 

and have developed a variety of methods to address this problem. Arena comes with 

a package called OptQuest®, from OptTek Systems Inc., that uses heuristics known 

as  tabu search  and  scatter search  (and other methods) to move around intelligently in 

the  input-control space and try to converge quickly and reliably to an optimal point. 

OptQuest is, in a way, similar to PAN in that it “takes over” the execution of your Arena 

model; the difference is that rather than relying on you to specify which specifi c scenar-

ios to simulate, OptQuest decides on its own which ones to consider in an iterative fash-

ion that hopefully leads to something close to an optimal combination of input  control 

values. For detailed documentation on how OptQuest works with Arena, see  Help  > 

 Arena Product Manuals  >  OptQuest for Arena User’s Guide . 

 To run OptQuest for Arena, fi rst make active the Arena window for the model of 

interest. We’ll basically use Model 6-5, except that OptQuest requires that a fi nite Run 

Length be specifi ed in  Run  >  Setup  >  Replication Parameters , so we entered 1,000 

hours, which will never be reached since we retain our model-sensitive stopping rule that 

will almost certainly stop the replication well before time 1,000 hours (at or a bit after 

time 10 hours, actually). We called the result Model 6-6. Then select  Tools > OptQuest 
for Arena  to bring up the OptQuest application window, then New Optimization. 

 OptQuest takes a moment to look through your model for potential Controls (in-

cluding capacities of resources and Arena Variables you’ve defi ned) and Responses 

(including the built-in Arena costing outputs, and all outputs you’ve defi ned), and 

presents them in an expandable/contractible tree on the left. The Controls are the 

input parameters that you can choose to allow OptQuest to vary as it searches; in 

mathematical-programming or optimization parlance, these are the  choice variables  

or  decision variables , and we seek a combination that will  optimize  (minimize or 

maximize) an  objective  that will be chosen below from the simulation’s outputs. Start 

by clicking on the word Controls in the tree on the left (or the menu option  View  > 

 Controls ), to bring up a list of all Resources and User Specifi ed variables, and check 

the boxes in the Included column for  Trunk Line ,  New Sales ,  New Tech 1 ,  New 

Tech 2 ,  New Tech 3 , and  New Tech All . In each of these Included Control lines, 

double-click to open a window where you specify the appropriate Lower Bound, Sug-

gested Value (that is, starting values as discussed above), Upper Bound, and maybe 

a brief Description; also check the Type as appropriate, which will be Integer for all 

of our controls. You can then click on the Included column heading and its arrow to 

collect the controls you’ve selected at the top or bottom. Note that, since the total of 

all new staff hired must be no more than 15, certainly each one must be no more than 15, 
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establishing those Upper (High) Bounds.   Figure 6-8   shows the OptQuest window with 

the completed Controls section visible. 

  Next, click on Responses in the tree on the left (or the menu option  View  > 

 Responses ) to select the outputs of interest. Here, simply check the boxes in the  Included 

column for  Total Cost  and  Percent Rejected  as displayed in the Response 

 column (the Category for both of these is User Specifi ed), then maybe click the Included 

header to collect them at the top. The result is in   Figure 6-9  , this time without the tree 

on the left. 

  To specify the constraints, click on Constraints in the tree on the left (or  View  > 

 Constraints ) to bring up that window. Click  Add  at the bottom; then successively click 

each of the fi rst fi ve Controls, then a 1 sign from the calculator pad at the right, and 

fi nally  ,5 15  to specify this constraint in the fi eld at the bottom on the inputs. Next 

maybe add a Name and Description, and then click  OK . Then click  Add  at the bottom 

again, and select  Percent Rejected  under Responses, then  ,5 5  to specify this 

constraint on an output; note that this “constraint” is not really like a constraint in math-

ematical programming, as it’s on a model output (one that’s different from the objective) 

rather than on an input choice or decision variable. The completed Constraints window 

is in   Figure 6-10  . 

  Figure 6-8.  OptQuest Window with Completed Controls   

kel01315_ch06_279-310.indd   298kel01315_ch06_279-310.indd   298 05/12/13   3:27 PM05/12/13   3:27 PM



Statistical Analysis of Output from Terminating Simulations  299

  Figure 6-9.  Completed Responses for OptQuest   

  Figure 6-10.  Completed Constraints for OptQuest   
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  To tell OptQuest what it is you want to optimize, click Objectives in the tree on the left (or 

 View  >  Objectives ), then  Add , then click  Total Cost  under the Responses, and then the 

Minimize radio button (and a Name and Description if you like). The result is in   Figure 6-11  . 

  The Options entry on the tree to the left (or  View  >  Options ) provides several ways to 

control how OptQuest decides to stop searching, a tolerance for regarding two objective 

values as equal, control on the replications per scenario, and a fi le for a complete log of 

what OptQuest considers during its run. After some experimentation on our model’s run 

speed, we decided to allow OptQuest to search through 500 different scenarios (what 

OptQuest calls “simulations”), and then stop, rather than allow OptQuest to decide itself 

when to stop (see the Help menu within OptQuest for more detail). Since we know that 

this model has considerable variation across replications, under Replications per simula-

tion, push the radio button for “Vary the number of replications” and specify a minimum 

of 5 and a maximum of 110 replications. Elsewhere we’ll accept the default options. 

 From the Options window, you could click the  Optimize  button to start OptQuest, 

or alternatively click the  Start Optimization  (  ) button on the toolbar, or select  Run  > 

 Start Optimization  (or the F5 key). This causes OptQuest to simulate your model at the 

starting point you chose, and then decide on its own how best to search through the fea-

sible region of six-dimensional space for a combination of input controls that minimizes 

 Total Cost  while satisfying both constraints. As it does so, you can see its progress 

by selecting Optimization in the tree on the left, to see the best objective value so far, the 

current objective value, and how many “simulations” (scenarios) have been run. You can 

also see the best and current controls, and that the constraints are being satisfi ed during 

the search (or occasionally violated). The graph at the bottom plots the best (smallest for 

us) objective found so far, as a function of how many “simulations” have thus far been 

tried. The fi nal view of this information is in   Figure 6-12  , which displays the best set of 

controls found and the associated objective function. This graph is typical, with large 

improvements (reductions) realized early (the low-hanging-fruit phenomenon), followed 

by harder-fought improvements and eventually a tapering off. As we asked, OptQuest 

evaluated 500 scenarios (0.04% of the 1,356,600 possible), fi nding the best one among 

them as the 377th scenario it considered (and then no improvement for the rest of the 500 

scenarios). The best  Total Cost  was 21317.88, some 15% lower than the starting point 

of 24542.82 we got in Section 6.4; the way to achieve that would be to add three trunk 

lines (up to 29), hire three new sales staffers, and hire three new all-type tech support 

people (so six new people in all—well below the limit of 15). This run took a little under 

5 minutes on a 2.80 GHz machine; another run of about 8.5 hours and 50,000 scenarios 

found a slightly better solution producing a cost of 20691.92 (1% lower) on the 38,070th 

  Figure 6-11.  Completed Objectives for OptQuest   
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scenario, which could be achieved by adding one trunk line, three sales staffers, one all-

type tech-support person, plus one each of tech-types 2 and 3. You can check the log fi le 

OptQuest creates (see the Options window for its name and location on your system) for 

the complete history of its journey through six space. Also, by clicking on Best Solutions 

in the tree on the left, you get a window giving not just the best solutions, but also the 

runners-up, in order, so you can see other good scenarios in case the best one is prob-

lematic for other reasons (for example, offi ce politics). You can save all this to a . opt  fi le, 

to be opened later from within OptQuest, via  File  >  Save  or    (we saved this as the fi le 

Optimum Seeking 06-06.opt).  

 Now OptQuest cannot absolutely guarantee that it’s fi nding the exact optimum in 

every case; after all, this is a challenging problem, not only since there are so many pos-

sibilities to examine, but also since the objective (the simulation-model output perfor-

mance measure to be optimized) cannot even be measured with certainty. However, in 

most cases, OptQuest will do a far better job than we could by just messing around and 

trying things, so in general has considerable value. For background on what OptQuest is 

doing, see Glover, Kelly, and Laguna (1999), for example. 

  Figure 6-12.  Final Optimization Window for OptQuest   
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6.7       Periodic Statistics 

  In all the models we’ve considered so far in this book, the output statistics have been 

reported over the entire run, with the exception of the rejected calls that were counted 

separately for each hour in Models 5-2 and 5-3, and in the models in this chapter. It 

could be interesting, though, to watch the levels of output variables for different time 

periods during the run to see if they behave differently over those different time periods; 

this would be like dividing the animated plots we’ve built into several vertical “stripes,” 

except we’ll quantify the levels of the plotted curves within each stripe to get numerical 

results on such intra-run dynamics. 

 Arena provides  Periodic Statistics  for this, and they apply to Time-Persistent (that is, 

continuous-time) statistics like queue lengths or the values of Variables. You just iden-

tify, in the Statistic data-module rows where the Type is Time-Persistent, what you want 

to watch (as an Expression), and the time period of interest within the runs; then you 

repeat this in additional rows with the same Expression but for different time periods. 

 For instance, in Model 6-2, we wondered about how many customers were waiting 

on hold, for the entire run (including any fl ush-out period at the end), as well as sepa-

rated out for the fi rst 5 hours, and then for the second 5 hours (so roughly the fi rst and 

second halves of the run, except for the possible fl ush-out period after 10 hours of oper-

ation).  Since back-offi ce research operations don’t involve customers actually waiting 

on hold, we want to watch the sum of the lengths of only the queues for processing all 

three types of tech calls, plus processing sales calls (recall that order-status calls wanting 

to talk to a real person are routed to the sales staff and share that queue with the actual 

sales calls). Using the Expression Builder, we found the appropriate Expression for this: 

  NQ(Process Product Type 1 Tech Call.Queue) 1  
NQ(Process Product Type 2 Tech Call.Queue) 1  
NQ(Process Product Type 3 Tech Call.Queue) 1  
NQ(Process Sales Call.Queue)  

   Figure 6-13   shows the pertinent parts of the Statistic data module. We added three 

rows to the bottom of the existing Statistic data module, row 17 for the number of cus-

tomers on hold for the Entire Replication (selection in the Collection Period column), 

and rows 18 and 19 for the same Expression except for, respectively, the fi rst and second 

5 hours (Collection Period column selected to be User Specifi ed, and we then fi lled in 

both Start Times and Durations, with the time Units for each).   Figure 6-14   shows the 

results (in the Category Overview Report under User Specifi ed → Time Persistent), and 

we see that the time-average number of customers on hold in the fi rst 5 hours (6.9517) 

  Figure 6-13. Statistic Data Module    
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is clearly greater than that in the second 5 hours (5.3228); as expected, for the whole 

run this value (5.9062) is between those two 5-hour results (why isn’t it exactly halfway 

between them?).   

6.8       Summary and Forecast 

 You should now have a pretty good sense of what you and your computer need to do 

to use your terminating simulation models effectively to form accurate and precise 

 estimates of expected results, draw valid conclusions about how different alternatives 

(or scenarios) of your model might differ in terms of key output performance measures, 

and to search effi ciently for a model confi guration that’s optimal in some sense. This 

takes you a long way toward becoming an effective user of your models (not just an 

effective modeler, though that’s certainly important too). In Chapter 7, we’ll go through 

some more modeling ideas and then at the end revisit output analysis if your interest is 

in long-run (or steady-state) results, in which case you have to do things a little differ-

ently from what we’ve described in this chapter. Chapter 12 discusses further statistical 

issues in simulation, including how the underlying randomness is generated, how to 

reduce output variability (without just more computing), getting Arena to decide itself 

how much to run to give you acceptably precise results, and a little more on designing 

simulation experiments. 

6.9    Exercises 

    6-1  In Exercise 5-1, statistically compare your results to what we got earlier; do this 

comparison informally by making 95% confi dence intervals based on 50 replications 

from both models and see if they overlap. As performance measures, use the average 

waiting time in queue, average queue length, and server utilization.  

   6-2  Using the model from Exercise 5-2, change the processing time for the second 

pass on Machine 1 to TRIA(6.7, 9.1, 13.6). Run the simulation for 20,000 minutes 

and compare the results with respect to the same three output performance measures. 

Do an “informal” statistical comparison by making 20 replications of both versions of 

the model, forming 95% confi dence intervals, and looking at the relation between the 

 confi dence intervals.  

   6-3  In Exercise 5-3, about how many replications  would  be required to bring the 

half width of a 95% confi dence interval for the expected average cycle time for both 

  Figure 6-14. Category Overview Report    
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trimmers down to one minute? (You don’t need to  do  this, just do something to estimate 

the approximate number of replications that  would  be required.)  

   6-4  For the facility of Exercise 5-4 you’ve been asked to decide how much space 

should be planned for the trucks in queue to unload; address this question (being mind-

ful of statistical issues, and of the fact that the space should be able to accommodate the 

queue  all  the time, not just during “average” times).  

   6-5  In Exercise 5-5, suppose you could hire one more person and that person could be a 

second (identical) operator at any of the four locations. Which one should it be? Use PAN 

with 50 replications per scenario and select the best in terms of lowest average time in 

system. In retrospect, is your choice surprising? How critical is it to get this choice right? 

    Now suppose you could hire up to three more people and allocate them any way 

you want to the four existing operators, including allocating all three of the new people 

to a single operator. What’s the best thing to do? Use OptQuest to search for the optimal 

allocation of this maximum of three more people, with the objective of minimizing the 

average time in system.  

   6-6  In Exercise 4-1, suppose that 7% of arriving customers are classifi ed just after 

their arrival as being frequent fl iers. Run your simulation for fi ve replications (5 days). 

Assume all times are the same as before, and observe statistics on the average time 

in system by customer type (frequent fl iers and non-frequent fl iers) under each of the 

 following scenarios:

     (a)   Assign four of the current agents to serve non-frequent fl iers only and the 

fi fth to serve frequent fl iers only.  

    (b)   Change your model from part (a) so that the frequent-fl ier agent can serve 

regular customers when there are no frequent fl iers waiting in queue.  

    (c)   Change your model so that any agent can serve any customer, but priority is 

always given to frequent fl iers.    

    Which of the three scenarios do you think is “best” for the frequent fl iers? How 

about for the 93% of customers who are non-frequent fl iers? Viewing this as a terminat-

ing simulation, address these comparison questions in a statistically valid way.  

   6-7  In Exercise 5-13, make 30 replications and compute a 95% confi dence interval 

on the expected system or cycle time for both customer types. For the output statistics 

 requested, put a text box inside your  .doe  fi le, or paste in a partial screenshot that provides 

the requested results.  

   6-8  In Exercise 5-14, make 30 replications, and estimate the expected difference be-

tween this and the model of Exercise 5-13 (based on system time by customer). Be sure 

to use an appropriate formal statistical technique. For the output statistics requested, 

put a text box inside your  .doe  fi le, or paste in a partial screenshot that provides the 

requested results. In a text box, briefl y discuss whether (and why) you’re fi nding a 

 statistically signifi cant difference between the means.  
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   6-9  In Exercise 5-15, make 30 replications and estimate the expected difference be-

tween this model and the one in Exercise 5-14 (based on system time by customer), 

using an appropriate formal statistical technique. For the output statistics requested, 

put a text box inside your  .doe  fi le, or paste in a partial screenshot that provides the 

requested results. In a text box, briefl y discuss whether (and why) you’re fi nding a 

 statistically signifi cant difference between the means.  

   6-10  For the inventory system of Model 5-4, set up a PAN comparison to investigate 

the average total cost resulting from each of the following ( s ,  S ) pairs:

 (20, 40)  (20, 60)  (20, 80)  (20, 100) 

   (40, 60)  (40, 80)  (40, 100) 

     (60, 80)  (60, 100) 

       (80, 100) 

     Run 100 replications of each case, and pick the best (lowest-cost) among these in a 

 statistically valid way. Paste a screenshot of your PAN results (with a box/whisker plot 

that shows the select-the-best colorings) into your  .doe  fi le. This comparison is from 

Section 1.5.5 of Law and Kelton (2000).  

   6-11  For the inventory system of Model 5-4, use OptQuest to look for the best 

(total-cost-minimizing) setting for ( s ,  S ). Let  s  run between 1 and 99 (by ones) and let  S  
run between 2 and 100 (by ones); remember that  s  and  S  must be integers and that we 

must have  s  <  S . Make your own judgments about stopping criterion, number of repli-

cations, etc.  

   6-12  In Exercise 6-11, investigate whether taking inventory at the beginning of each 

day is necessarily the best policy by adding the inventory-evaluation interval (currently 

set at one day) to the optimum-seeking variable mix, and allow OptQuest to vary it 

(continuously) between a half day and 5 days, as well as simultaneously allowing  s  and 
 S  to vary as in Exercise 6-11. If you use  Model 05-04.doe  as a base, you’ll need to 

change  Evaluation Interval  from an Expression to a Variable so OptQuest can 

get at it.  

   6-13  Apply OptQuest on all six values of ( s ,  S ) in Exercise 5-20. Let each  s  range be-

tween 1 and 99 (by ones), and let each  S  range between 2 and 100 (by ones); of course, 
 s  and  S  must be integers and for each of the three items in inventory we must have  s  <  S .  

   6-14  Apply OptQuest on all six values of ( s ,  S ) in Exercise 5-21, with the same ranges 

as in Exercise 6-13. Compare your results with those from Exercise 6-13 and explain 

this in terms of the incentives offered by the supplier in this different cost structure.  

   6-15  In Exercise 4-22, suppose you could hire one more person, and that person could 

be assigned either to manual check-in, automated check-in, or security. Where would 

this additional person be best used? As an overall criterion of “goodness” of a system, 

use the average total time in system of all types of passengers combined. Set up a PAN 
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run and make 50 replications of each scenario. Do a screen shot of your fi nal PAN sce-

nario comparison and chart, and paste it into your  .doe  fi le as a graphics image (and then 

re-save your  .doe  fi le, of course).  

   6-16  In Exercise 6-15, suppose you could hire a total of fi ve more people (rather than 

just one more) to be allocated in any way to the existing staff at manual check-in, au-

tomated check-in, or security. You can’t reduce staffi ng anywhere from the levels in 

Exercise 4-22. Using average total time in system of all types of passengers combined, 

what would be the best deployment of these fi ve additional people? Should you even 

use all fi ve of them? Set up an OptQuest run and decide about the stopping criterion and 

numbers of replications.  

   6-17  In Exercise 4-22 (with staffi ng fi xed at the original levels), the airline noticed that 

a lot of the people who opt for the manual check-in really don’t need the extra services 

there and could have used the automated check-in. Instead of the original 35% and 

50% that go to manual and automated, respectively, suppose that through more effective 

“encouragement” from people with red blazers and loud voices, it could be made 10% 

and 75% instead. (There probably are 10% of passengers who genuinely need the extra 

services of manual check-in.) How would this shift in passenger attitudes (or maybe 

bravery) affect average total time in system of passengers? Base your comparison on 

200 replications of the model in each confi guration.  

   6-18  Exercise 2-8 described a change in Model 3-1. Carry out a statistically valid study 

to measure the effect of this change on the average waiting time in queue and on the 

server utilization. Make your own decisions about numbers of replications to arrive at 

meaningful and reasonably precise conclusions.  

   6-19  Recall Models 3-2, 3-3, 3-4, and 3-5 from Chapter 3, comparing specialized serial 

vs. generalized parallel operations in environments of both high-variance and low-vari-

ance (no-variance, actually) service times. It  appeared  in Table 3-1 that the generalized 

parallel arrangement provided better service, though the improvement was much stron-

ger in the high-variance service-time environment. For output performance measures, 

use both time-average work in process (number of applications present anywhere in 

the whole system), and average total time in the system of applications. Make 50 rep-

lications of each of the four cases. You’ll need to make some entries in the Statistic 

data module of each of the four models to get the requested outputs. Write a brief (one 

to two pages) report of your fi ndings, including screen shots of your results from ei-

ther the Arena Output Analyzer, or from PAN (or both). Is what  appeared  to be true in 

Table 3-1 (from just a single run) statistically justifi ed?  

   6-20  Recall Exercise 3-13, which modifi ed Model 3-3 to add 18% onto the individual-task 

times in the generalized integrated-work parallel confi guration of Model 3-3. Make a 

valid statistical comparison to see if the model of Exercise 3-13 differs signifi cantly 

from the original specialized serial confi guration of Model 3-2.  In other words, if you 

had to endure this 18% increase in task-processing times, should you still move from 

the specialized-work serial setup to the generalized-work parallel setup? For output 
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performance measures, use both time-average work in process (number of applications 

present anywhere in the whole system), and average total time in the system of applica-

tions. Make 50 replications of each case. You’ll need to make some entries in the Statistic 

data module to get the requested outputs. Include screen shots of your results from either 

the Arena Output Analyzer, or from PAN (or both).  

   6-21  For the enhanced machine-repair model of Exercise 5-22, do a valid statistical 

analysis to defend your choice of the number of repair technicians to hire to minimize 

total average cost per hour. Make 20 replications, and modify it if necessary.  

   6-22  Use Arena to simulate the news vendor problem of Section 2.7.1. Consider just 

the case  q  5 160, and run for 30 days to get an average daily profi t and 95% confi dence 

interval, as well as the proportion of days in which a loss is incurred. The 30 days are 

independent of each other (that is, nothing carries over from the end of one day to the 

beginning of the next), and are identically distributed to each other. For the output sta-

tistics requested, put a text box inside your  .doe  fi le, or paste in a partial screenshot that 

provides the requested results. HINT: You should probably think outside the proverbial 

box about what the entities should be here.  

   6-23  Generalize your Arena model from Exercise 6-22 to consider all fi ve values of  q  

in Section 2.7.1, in a single Arena run, using the same daily demand realization for each 

value of  q .  

   6-24  In the outpatient clinic of Exercise 4-30, suppose you could add one unit of 

 resource to any one of the fi ve stations (receptionist, nurse, exam room, checkout 

 administrator, or lab technician). Where would be the most useful addition? Look at 

both average patient total time in system, as well as patient throughput. Set up a PAN 

run and make your own decision about the number of replications per scenario.  

   6-25  The outpatient clinic of Exercise 4-30 has received an economic-stimulus capital 

grant of $400,000 to expand service and reduce patients’ average total time in system. They 

can allocate these funds in any way they like to add any number of resources to any of the 

fi ve stations, though they cannot reduce any resources below current levels (one at each 

station, except three exam rooms). The clinic has the following capital-costs estimates for an 

additional unit of resource at each station; also given are the maximum number additional 

resources to each station if the entire $400,000 were allocated to that station:

 Receptionist 

 Nurse 

 Exam Room 

 Lab/X-Ray 

 Check Out 

 $40,000 

 $80,000 

 $200,000 

 $100,000 

 $50,000 

 could add max of 10 

 could add max of 5 

 could add max of 2 

 could add max of 4 

 could add max of 8 

     Remember, the $400,000 is  additional  funding, so should be spent on  additional  re-

sources; funding of the existing resource levels is already budgeted. Physicians are the 

main users of the exam rooms, so they are looking at the fact (results from Exercise 4-30) 
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that the exam rooms are virtually tied (with nurses) for the heaviest utilization and are 

arguing to spend the entire $400,000 on adding two exam rooms. Do you agree? Set up an 

OptQuest run to investigate this, and make your recommendations.  

   6-26  Armed now with the statistical-analysis tools of this chapter, do a better job with 

Exercise 4-25. Stick with 100 replications for each of the two scenarios (with AJ as in 

Exercise 4-23, and without AJ as in Exercise 4-24; forget about the original Model 4-1 

that was included in Exercise 4-25), but expand the output performance measures to the 

mean total time in system of parts sorted according to each of:

     (a)  Part As, regardless of how/where they exit (Shipped, Salvaged, or Scrapped)  

    (b)  Part Bs, regardless of how/where they exit  

    (c)  All parts together, regardless of type (A or B) and how/where they exit  

    (d)  Parts exiting via Shipped, regardless of part type  

    (e)  Parts exiting via Salvaged, regardless of part type  

    (f)  Parts exiting via Scrapped, regardless of part type    

    Modify your models as needed to get all six of these output performance measures. 

In addition to just running both models with this expanded set of output performance 

measures, use the Statistic Data Module, and then the Arena Output Analyzer to do a 

paired  t  test (and confi dence intervals) of the means in the subtraction direction (With 

AJ) – (Without AJ); according to these results, for which output performance measures 

does the presence of AJ make a statistically signifi cant difference on the means? Also, 

use the Process Analyzer (PAN) to run the two scenarios together in a single PAN run 

(you’ll need different  .p  Program Files for each scenario) and make six box-and-whisker 

plots, one for each of the six output performance measure and each plot containing both 

the “with-AJ” and the “without-AJ” results, and use PAN’s selection algorithm (smaller 

values on average total time in system are better, of course) to identify, for each of the 

six responses, whether one is statistically signifi cantly better than the other in terms of 

means. Do your PAN results and your Output Analyzer results agree with each other? 

Supply a brief write-up of your fi ndings, including screen shots, tables, or plots as you 

see fi t to make your points.  

   6-27  In Section 6.6, we chose both the starting point (“Suggested Value” in OptQuest) 

and the number of scenarios (“Simulations” in OptQuest) allowed pretty much arbi-

trarily. Experiment with different starting points and number of scenarios to see how 

sensitive the “optimal” objective-function value (Total Cost) is to variations in these run 

parameters. In   Figure 6-8   the Suggested starting values we used for the six Controls in 

the order listed there were (3, 3, 3, 3, 3, 29); consider this as well as (0, 0, 0, 0, 0, 26) 

and (5, 5, 5, 5, 5, 50). And for the number of scenarios consider both the 500 we used, 

as well as 2,000, so carry out fi ve more OptQuest runs. Report the suggested Control- 

parameter solutions from OptQuest as well as the objective-function values. Comment 

on your fi ndings, especially whether the starting value and number of scenarios has 
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an appreciable effect on the solution OptQuest suggests and corresponding Total Cost 

values.  

   6-28  Exercises 4-31, 4-32, and 4-33 considered three different versions of a  grocery-store 

checkout area. Do a better of job of comparing them, on the basis of average total time 

in system of customers, using the Process Analyzer. Make 50 replications of each of the 

three scenarios, and create a box-and-whisker plot in PAN to identify which scenario(s) 

is (are) best in terms of smallest average total time in system.  

   6-29  Make 25 replications of the race model from Exercise 4-35, and report 95% con-

fi dence intervals on the expected fi rst- and last-place fi nish times. Put a text box in your 

model with these confi dence intervals, and comment briefl y on the differences in their 

half-widths in light of the nature of the probability distribution of the running times that 

you specifi ed in Exercise 4-34.       
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     CHAPTER 7 

 Intermediate Modeling and 
Steady-State Statistical Analysis 

  Many of the essential elements of modeling with Arena were covered in Chapters 3, 

4, and 5, including the basic use of some of the Basic Process and Advanced Process 

panel modules, controlling the fl ow of entities, Resource Schedules and States, Sets, 

Variables, Expressions, Stations, Transfers, and enhancing the animation. In this chap-

ter, we’ll expand on several concepts that allow you to do more detailed modeling. 

As before, we’ll illustrate concepts concretely by means of a fairly elaborate example. 

We’ll fi rst start by introducing a new example as described in Section 7.1; expressing it 

in Arena requires the concept of entity-dependent Sequences, discussed in Section 7.1.1. 

Then in Section 7.1.2, we take up the general issue of how to go about modeling a sys-

tem, the level of detail appropriate for a project, and the need to pay attention to data require-

ments and availability. The data portion required for the model is built in Section 7.1.3 and 

the logical model in Section 7.1.4. In Section 7.1.5, we develop an animation, including 

discussion of importing existing CAD drawings for the layout. We conclude this portion 

with a discussion on verifying that the representation of a model in Arena really does 

what you want, in Section 7.1.6. 

 Continuing our theme of viewing all aspects of simulation projects throughout a 

study, we resume the topic of statistical analysis of the output data in Section 7.2, but 

this time it’s for steady-state simulations, using the model from Section 7.1. 

 By the time you read and digest the material in this chapter, you’ll have a pretty good 

idea of how to model things in considerable detail. You’ll also be in a position to draw 

statistically valid conclusions about the performance of systems as they operate in the 

long run. 

    7.1 Model 7-1: A Small Manufacturing System 

  A layout for our small manufacturing system is shown in   Figure 7-1  . The system to be 

modeled consists of part arrivals, four manufacturing cells, and part departures. Cells 1, 

2, and 4 each have a single machine; Cell 3 has two machines. The two machines at Cell 

3 are not identical; one of these machines is a newer model that can process parts in 80% 

of the time required by the older machine. The system produces three part types, each 

visiting a different sequence of stations. The part steps and process times (in minutes) 

are given in   Table 7-1  . All process times are triangularly distributed; the process times 

given in   Table 7-1   at Cell 3 are for the older (slower) machine.                   

 The interarrival times between successive part arrivals (all types combined) are ex-

ponentially distributed with a mean of 13 minutes; the fi rst part arrives at time 0. The 

distribution by type is 26%, Part 1; 48%, Part 2; and 26%, Part 3. Parts enter from the 
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left, exit at the right, and move only in a clockwise direction through the system. For 

now, we’ll also assume that the time to move between any pair of cells is 2 minutes, re-

gardless of the distance (we’ll fi x this up later). We want to collect statistics on resource 

utilization, time and number in queue, as well as cycle time (time in system, from entry 

to exit) by part type. Initially, we’ll run our simulation for 32 hours. 

  7.1.1 New Arena Concepts 

 Several characteristics of this problem require new Arena concepts. The fi rst charac-

teristic is that there are three part types that follow different process plans through the 

system. In our previous models, we simply sent all entities through the same sequence 

of stations. For this type of system, we need a process plan with an automatic routing 

capability. 

 The second characteristic is that the two machines in Cell 3 are not identical—the 

newer machine can process parts faster than the old machine. Here we need to be able 

to distinguish between these two machines. 

 The third characteristic is the nature of the fl ow of entities through the system. In 

our previous models, the fl ow of entities through the system was accomplished using 

the direct Connect or direct Route option. When you use the Connect option, an entity is 

sent immediately to the next module, according to the connection, with no time advance 

  Figure 7-1.  The Small Manufacturing System Layout   

  Table 7-1.   Part Routings and Process Times  

 Part Type  Cell/Time  Cell/Time  Cell/Time  Cell/Time  Cell/Time 

 1 

  

 1 

 6, 8, 10 

 2 

 5, 8, 10 

 3 

 15, 20, 25 

 4 

 8, 12, 16 

  

  

 2 

  

 1 

 11, 13, 15 

 2 

 4, 6, 8 

 4 

 15, 18, 21 

 2 

 6, 9, 12 

 3 

 27, 33, 39 

 3 

  

 2 

 7, 9, 11 

 1 

 7, 10, 13 

 3 

 18, 23, 28 
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in the simulation. If we used the Connect option in this new model, we would have to 

include a number of Decide modules to direct the parts to the correct next station in the 

sequence followed by Route modules both to model the 2-minute transfer time and to 

enable animation of the part movements. As you might expect, there is an Arena con-

cept,  sequences , that allows easy modeling of the fl ow of entities through the system 

while allowing for the part transfer time and enabling its animation. 

 Many systems are characterized by entities that follow predefi ned but different paths 

through the system. Most manufacturing systems have part or process plans that spec-

ify a list of operations each part type must complete before exiting the system. Many 

service systems have similar types of requirements. For example, a model of passenger 

traffi c in an airport may require different paths through the airport depending on whether 

the passengers check baggage or have only carry-on pieces, as well as whether the pas-

sengers have domestic or international fl ights. 

 Arena can send entities through a system automatically according to a predefi ned 

 sequence  of station visitations. The Sequence data module, on the Advanced Transfer 

panel, allows us to defi ne an ordered list of Stations that can include assignments of 

attributes or variables at each station. To direct an entity to follow this pattern of station 

visitations, we assign the sequence to the entity (using a built-in sequence attribute, 

described next) and use the By Sequence option in the Route module when we transfer 

the entity to its next destination. 

 As the entity makes its way along its sequence, Arena will do all the necessary 

bookkeeping to keep track of where the entity is and where it will go next. This is 

accomplished through the use of three special, automatically defi ned Arena attributes: 

Entity.Station (or M), Entity.Sequence (or NS), and Entity.JobStep (or IS). Each entity 

has these three attributes, with the default values for newly created entities being 0 for 

each. The Entity.Station attribute contains the current station location of the entity or the 

station to which the entity is currently being transferred. The Entity.Sequence attribute 

contains the sequence the entity will follow, if any; you need to assign this to each entity 

that will be transferring via a sequence. The Entity.Jobstep attribute specifi es the entity’s 

position within the sequence, so normally starts at 0 and then is incremented by 1 as the 

entity moves to each new station in its sequence. 

 We fi rst defi ne and name the list of stations to be visited for each type of entity (by 

part type, in our example) using the Sequence data module in the Advanced Transfer 

panel. Then, when we cause a new part to arrive into the system, we associate a specifi c 

Sequence with that entity by assigning the name of the sequence to the entity’s Entity

.Sequence attribute, NS.  1   When the entity is ready to transfer to the next station in its 

sequence, we select the By Sequence option in the Destination Type fi eld of the mod-

ule we’re using to transfer the entity to the next station. At this point during the run, 

Arena fi rst increments the Entity.Jobstep attribute (IS) by 1. Then it retrieves the des-

tination station from the Sequence based on the current values for the Entity.Sequence 

  1  Arena uses M, NS, and IS internally as names for these attributes, but provides the aliases  Entity.Station , 

 Entity.Sequence , and  Entity.Jobstep  in the pull-down list. 
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and Entity.Jobstep attributes. Any optional assignments are made (as defi ned in the Se-

quence) and the entity’s Station attribute (Entity.Station) is set to the destination station. 

Finally, Arena transfers the entity to that station. 

  Typically, an entity will follow a sequence through to completion and will then exit 

the model. However, this is not a requirement. The Entity.Jobstep attribute is incre-

mented only when the entity is transferred using the By Sequence option. You can tem-

porarily suspend transfer via the sequence, transfer the entity directly to another station, 

and then re-enter the sequence later. This might be useful if some of the parts are re-

quired to be reworked at some point in the process. Upon completion of the rework, they 

might re-enter the normal sequence. 

 You can also reassign the sequence attributes at any time. For example, you might 

handle a part failure by assigning a new Entity.Sequence attribute and resetting the 

 Entity.Jobstep attribute to 0. This new Sequence could transfer the part through a series 

of stations in a rework area. You can also back up or jump forward in the sequence by 

decreasing or increasing the Entity.Jobstep attribute. However, caution is advised as you 

must be sure to reset the Entity.Jobstep attribute correctly, remembering that Arena will 

fi rst increment it, then look up the destination station in the sequence. 

 As indicated earlier, attribute and variable assignments can also be made at each step 

in a sequence. For example, you could change the entity picture or assign a process time 

to a user-defi ned attribute. For our small manufacturing model, we’ll use this option to 

defi ne some of our processing times that are part- and station-specifi c. 

   7.1.2 The Modeling Approach 

 The modeling approach to use for a specifi c simulation model will often depend on the 

system’s complexity and the nature of the available data. In simple models, it’s usually 

obvious what modules you’ll require and the order in which you’ll place them. But in 

more complex models, you’ll often need to take a considerable amount of care devel-

oping the proper approach. As you learn more about Arena, you’ll fi nd that there are 

often a number of ways to model a system or a portion of a system. You will often hear 

experienced modelers say that there’s not just a single, correct way to model a system. 

There are, however, plenty of wrong ways if they fail to capture the required system 

detail correctly. 

 The design of complex models is often driven by the data requirements of the model 

and what real data are available. Experienced modelers will often spend a great deal of 

time determining how they’ll enter, store, and use their data, and then let this design 

determine which modeling constructs are required. As the data requirements become 

more demanding, this approach is often the only one that will allow the development of 

an accurate model in a short period of time. This is particularly true of simulation mod-

els of supply-chain systems, warehousing, distribution networks, and service networks. 

For example, a typical warehouse can have hundreds of thousands of uniquely different 

items, called SKUs (Stock-Keeping Units). Each SKU may require data characterizing 

its location in the warehouse, its size, and its weight, as well as reorder or restocking 

data for this SKU. In addition to specifying data for the contents of the warehouse, 

you also have customer order data and information on the types of storage devices or 
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equipment that hold the SKUs. If your model requires the ability to change SKU loca-

tions, storage devices, restocking options, and so forth, during your experimentation, the 

data structure you use is critical. Although the models we’ll develop in this book are not 

that complicated, it’s always advisable to consider your data requirements before you 

start your modeling. 

 For our small manufacturing system, the data structure will, to a limited extent, 

affect our model design. We will use Sequences to control the fl ow of parts through 

the system, and the optional assignment feature in the Sequence data module to enter 

attributes for part process times for all but Cell 1. We’ll use an Expression to defi ne part 

process times for Cell 1. The part transfer time and the 80% factor for the time required 

by the new machine in Cell 3 will exploit the Variables concept. Although we don’t nor-

mally think of Sets as part of our data design, their use can affect the modeling method. 

In this model, we’ll use Sets, combined with a user-defi ned index, to ensure that we 

associate the correct sequence and picture with each part type. 

 First, we’ll enter the data modules as discussed earlier. We’ll then enter the main 

model portion, which will require several new modules. Next, we’ll animate the model 

using a CAD or other drawing as a starting point. Finally, we’ll discuss briefl y the 

concept of model verifi cation. By now you should be fairly familiar with opening and 

fi lling Arena dialog boxes, so we will not dwell on the mundane details of how to enter 

the information in Arena. In the case of modules and concepts that were introduced in 

previous chapters, we’ll only indicate the data that must be entered. To see the “big pic-

ture” of where we’re heading, you may want to peek ahead at   Figure 7-5  , which shows 

the complete model. 

   7.1.3 The Data Modules 

 We start by editing the Sequence data module from the Advanced Transfer panel. 

Double-click to add a new row and enter the name of the fi rst sequence,  Part 1 Pro-
cess Plan . Having entered the sequence name, you next need to enter the process 

Steps, which are lists of Arena stations. For example, the  Part 1 Process Plan  

requires you to enter the following Arena stations:  Cell 1 ,  Cell 2 ,  Cell 3 ,  Cell 

4 , and  Exit System . We have given the Step Names as  Part 1 Step 1  through 

 Part 1 Step 5 . The most common error in entering sequences is to forget to enter 

the last step, which is typically where the entity exits the system. If you forget this 

step, you’ll get an Arena run-time error when the fi rst entity completes its process 

route and Arena is not told where to send it next. As you defi ne the Sequences, re-

member that after you’ve entered a station name once, you can subsequently pick it 

from station drop-down lists elsewhere in your model. You’ll also need to assign attri-

bute values for the part process times for Cells 2, 3, and 4. Recall that we’ll defi ne an 

 Expression for the part process times at Cell 1, so we won’t need to make an attribute 

assignment for process times there. 

   Display 7-1   shows the procedure for Sequence  Part 1 Process Plan , Step 

 Part 1 Step 2 , and Assignment of  Process Time . Using the data in   Table 7-1  , it 

should be fairly straightforward how to enter the remaining sequence steps. Soon we’ll 

show you how to reference these sequences in the model logic.     
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  Next, we’ll defi ne the expression for the part process times at Cell 1, using the Expres-

sion data module in the Advanced Process panel. The expression we want will be called 

 Cell 1 Times , and it will contain the part-process-time distributions for the three parts 

at Cell 1. We could just as easily have entered these in the previous Sequences module, but 

we chose to use an expression so you can see several different ways to assign the process-

ing times. We have three different parts that use Cell 1, so we need an arrayed expression 

with three rows, one for each part type.   Display 7-2   shows the data for this module.   

  Next, we’ll use the Variable data module from the Basic Process panel to defi ne the 

machine-speed factor for Cell 3 and the transfer time. Prior to defi ning our  Factor  

variable, we made the following observation and assumption. The part-process times for 

 Name   Part 1 Process Plan  

 Steps 

 Station Name 

 Step Name 

  
  Cell 2  
  Part 1 Step 2  

 Assignments 

 Assignment Type 

 Attribute Name 

 Value 

  
  Attribute  
  Process Time  
  TRIA(5 ,  8 ,  10)  

   Display 7-1.  The Sequence Data Module 

 Expression 

 Name 

 Rows 

  
  Cell 1 Times  
  3  

 Expression Values 

 Expression Value 

 Expression Value 

 Expression Value 

  
  TRIA(6 ,  8 ,  10)  
  TRIA(11 ,  13 ,  15)  
  TRIA(7 ,  10 ,  13)  

   Display 7-2.  The Expression for Cell 1 Part Process Times 
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Cell 3, entered in the Sequence data module, are for the old machine. We’ll assume that 

the new machine will be referenced as 1 and the old machine will be referenced as 2. 

Thus, the fi rst factor value is 0.8 (for the new machine), and the second factor is 1.0 (for 

the old machine). The transfer-time value (which doesn’t need to be an array) is simply 

entered as 2. This allows us to change this value in a single place at a later time. If we 

thought we might have wanted to change this to a distribution, we would have entered it 

as an Expression instead of a Variable.   Display 7-3   shows the required entries.   

  We’ll use the Set data module from the Basic Process panel to form sets for our 

Cell 3 machines, part pictures, and entity types. The fi rst is a Resource set,  Cell 3 

Machines , containing two members:  Cell 3 New  and  Cell 3 Old . Our Entity Pic-

ture set is named  Part Pictures , and it contains three members:  Picture.Part 

1 ,  Picture.Part 2 , and  Picture.Part 3 . Finally, our Entity Type set is named 

 Entity Types  and contains three members:  Part 1 ,  Part 2 , and  Part 3 . 

 As long as we’re creating sets, let’s add one more for our part sequences. If you 

attempt to use the Set module, you’ll quickly fi nd that the types available are Resource, 

Counter, Tally, Entity Type, and Entity Picture. You resolve this problem by using the 

Advanced Set data module found in the Advanced Process panel. This module lists three 

types: Queue, Storage, and Other. The Other type is a catch-all option that allows you 

to form sets of almost any similar Arena objects. We’ll use this option to enter our set 

named  Part Sequences , which contains three members:  Part 1 Process Plan , 

 Part 2 Process Plan , and  Part 3 Process Plan . 

 Before we start placing logic modules, let’s open the  Run . Setup  dialog box and 

set our Replication Length to 32 hours and our Base Time Units as Minutes. We also 

selected  Edit . Entity Pictures  to open the Entity Picture Placement window, where 

we created three different pictures— Picture.Part 1 ,  Picture.Part 2 , and  

Picture.Part 3 . In our example, we copied blue, red, and green balls; renamed 

them; and placed a text object with 1, 2, and 3, respectively, to denote the three different 

part types. Having defi ned all of the data modules, we’re now ready to place and fi ll out 

the modules for the main model to defi ne the system’s logical characteristics. 

   7.1.4 The Logic Modules 

 The main portion of the model’s operation will consist of logic modules to represent 

part arrivals, cells, and part departures. The part arrivals will be modeled using the four 

 Name 

 Rows 

  Factor  
  2  

 Initial Values 

 Initial Value 

 Initial Value 

  
  0.8  
  1.0  

 Name   Transfer Time  

 Initial Values 

 Initial Value 

  
  2  

   Display 7-3.  The Factor and Transfer Time Variables 
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modules shown in   Figure 7-2  . The Create module uses a  Random(Expo)  distribution 

with a mean of 13 minutes to generate the arriving parts.  

 At this point, we have not yet associated a sequence with each arriving entity. We 

make this association in the Assign module as shown in   Display 7-4  . These assignments 

serve two purposes: they determine which part type has arrived, and they defi ne an 

index,  Part Index , for our sets that will allow us to associate the proper sequence, 

entity type, and picture with each arrival. We fi rst determine the part index, or part 

type, with a general discrete distribution,  DISC . This distribution allows us to generate 

certain values with given probabilities. In our example, these values are the integers 1, 

2, and 3 with percent probabilities 26%, 48%, and 26%, respectively. You enter these 

values in pairs— cumulative  probability (between 0 and 1, not as a percent between 0 

and 100) and value. The cumulative probability for the last value (in our case, 3) should 

be 1.0, so the fi nal expression is  DISC(0.26,1, 0.74,2, 1.0,3) . In general, 

the values need not be integers, but can take on any values, including negative numbers. 

The part index values of 1, 2, and 3 allow us not only to refer to the part type, but in this 

case, they also allow us to index into the previously defi ned set  Part Sequences  so 

that the proper sequence will be associated with the part. To do so, we assign the proper 

sequence to the automatic Arena Entity.Sequence attribute by using the  Part Index  

attribute as an index into the  Part Sequences  set.   

  We also need to associate the proper entity type and picture for the newly arrived 

part. We do this in the last two assignments by using the  Part Index  attribute to 

index into the relevant sets. Recall that we created the  Entity Types  set (consist-

ing of  Part 1 ,  Part 2 , and  Part 3 ). We also defi ned three pictures ( Picture.

  Figure 7-2.  The Part Arrival Modules   

 Name   Assign Part Type and Sequence  

 Assignments 

 Type 

 Attribute Name 

 New Value 

 Type 

 Attribute Name 

 New Value 

 Type 

 Attribute Name 

 New Value 

 Type 

 Attribute Name 

 New Value 

  
  Attribute  
  Part Index  
  DISC( 0.26,1 , 0.74,2 , 1.0,3 )  
  Attribute  
  Entity.Sequence  
  Part Sequences( Part Index )  
  Attribute  
  Entity.Type  
  Entity Types( Part Index )  
  Attribute  
  Entity.Picture  
  Part Pictures( Part Index )  

   Display 7-4.  The Assign Module: Assigning Part Attributes 
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Part  1 ,  Picture.Part 2 , and  Picture.Part 3 ) and grouped them into a 

set called  Part Pictures . You can think of these sets as an arrayed variable (one-

dimensional) with the index being the  Part Index  attribute we just assigned. This is 

true in this case because we have a one-to-one relationship between the part type ( Part 
Index  ) and the sequence, picture, and entity type. An index of 1 implies  Part 1  fol-

lows the fi rst sequence, etc. (Be careful in future models because this may not always be 

true. It is only true in this case because we defi ned our data structure so we would have 

this one-to-one relationship.) 

 In this case, the completed Assign module determines the part type, and then assigns 

the proper sequence, entity type, and picture. Note that it was essential to defi ne the 

value of  Part Index  fi rst in this Assign module, which performs multiple assign-

ments in the order listed, since the value of  Part Index  determined in the fi rst step 

is used in the later assignments within this Assign module. We’re now ready to send our 

part on its way to the fi rst station in its sequence. 

 We’ll accomplish this with the Route module from the Advanced Transfer panel. Be-

fore we do this, we need to tell Arena where our entity, or part, currently resides (its 

current station location). If you’ve been building your own model along with us (and 

paying attention), you might have noticed the attribute named  Entity.Station  on 

the drop-down list in the Assign module that we just completed. (You can go back and 

look now if you like.) You might be tempted to add an assignment that would defi ne the 

current location of our part. Unfortunately if you use this approach, Arena will return an 

error when you try to run your model; instead, we use a Station module as described next. 

 Our completed model will have six stations:  Order Release ,  Cell 1 ,  Cell 2 , 

 Cell 3 ,  Cell 4 , and  Exit System . The last fi ve stations were defi ned when we 

fi lled in the information for our part sequences. The fi rst station,  Order Release , 

will be defi ned when we send the entity through a Station module (Advanced Transfer 

panel), which will defi ne the station and tell Arena that the current entity is at that loca-

tion. Our completed Station module is shown in   Display 7-5  .   

  We’re fi nally ready to send our part to the fi rst station in its sequence with the Route 

module (Advanced Transfer panel). The Route module transfers an entity to a specifi ed 

station, or the next station in the station visitation sequence defi ned for the entity. A 

Route Time to transfer to the next station may be defi ned. In our model, the previously 

defi ned variable  Transfer Time  is entered for the Route Time; see   Display 7-6  . We 

selected the  By Sequence  option as the Destination Type. This causes the Station 

Name fi eld to disappear, and when we run the model, Arena will route the arriving 

entities according to the sequences we defi ned and attached to entities after they were 

created.   

 Name 

 Station Type 

 Station Name 

  Order Release Station  
  Station  
  Order Release  

   Display 7-5.  The Station Module 
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  Now that we have the arriving parts being routed according to their assigned part 

sequences, we need to develop the logic for our four cells. The logic for all four cells 

is essentially the same. A part arrives to the cell (at a station), queues for a machine, is 

processed by the machine, and is sent to its next step in the part sequence. All four of 

these cells can be modeled easily using the Station – Process – Route module sequence 

shown in   Figure 7-3   (for Cell 1).  

 The Station module provides the location to which a part can be sent. In our model, 

we are using sequences for all part transfers, so the part being transferred would get the 

next location from its sequence. The entries for the Station module for Cell 1 are shown 

in   Display 7-7  .   

  A part arriving at the Cell 1 station is sent to the following Process module (using 

a direct connect). For the Expression for the delay time, we’ve entered the previously 

defi ned arrayed expression  Cell 1 Times  using the  Part Index  attribute to ref-

erence the appropriate part-processing time in the arrayed expression. This expression 

will generate a sample from the triangular distribution with the parameters we defi ned 

earlier. The remaining entries are shown in   Display 7-8  .   

 Name 

 Route Time 

 Units 

 Destination Type 

  Start Sequence  
  Transfer Time  
  Minutes  
  By Sequence  

   Display 7-6.  The Route Module   

  Figure 7-3.  Cell 1 Logic Modules   

 Name 

 Station Type 

 Station Name 

  Cell 1 Station  
  Station  
  Cell 1  

   Display 7-7.  The Cell 1 Station Module 
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  Upon completion of the processing at Cell 1, the entity is directed to the Route 

module, described in   Display 7-9  , where it is routed to its next step in the part sequence. 

Except for the Name, this Route module is identical to the Route module we used to 

start our sequence at the Order Release station in   Display 7-6  .   

  The remaining three cells are very similar to Cell 1, so we’ll skip the details. To 

create their logic, we copied the three modules for Cell 1 three times and then edited the 

required data. For each of the new Station and Route modules, we simply changed all 

occurrences of  Cell 1  to  Cell 2 ,  Cell 3 , or  Cell 4 . We made the same edits to 

the three additional Process modules and changed the delay Expression for Cells 2 and 4 

to  Process Time . Recall that in the Sequence module we defi ned the part-processing 

times for Cells 2, 3, and 4 by assigning them to the entity attribute  Process Time . 

When the part was routed to one of these cells, Arena automatically assigned this value 

so it could be used in the module. 

 At this point, you should be aware that we’ve somewhat arbitrarily used an Expres-

sion for the Cell 1 part-processing times, and attribute assignments in the sequences 

for the remaining cells. We actually used this approach to illustrate that there are often 

several different ways to structure data and access them in a simulation model. We could 

just as easily have incorporated the part-processing times at Cell 1 into the sequences, 

along with the rest of the times. We also could have used Expressions for these times at 

Cells 3 and 4. However, it would have been diffi cult to use an Expression for these times 

at Cell 2, because Part 2 visits that cell twice and the processing times are different, as 

shown in   Table 7-1  . Thus, we would have had to include in our model the ability to know 

whether the part was on its fi rst or second visit to Cell 2 and defi ne our expression to 

recognize that. It might be an interesting exercise, but from the modeler’s point of view, 

why not just defi ne these values in the sequences? You should also recognize that this 

 Name 

 Action 

  Cell 1 Process  
  Seize Delay Release  

 Resources 

 Type 

 Resource Name 

 Quantity 

  
  Resource  
  Cell 1 Machine  
  1  

 Delay Type 

 Units 

 Expression 

  Expression  
  Minutes  
  Cell 1 Times( Part Index )  

   Display 7-8.  Cell 1 Process Module 

 Name 

 Route Time 

 Units 

 Destination Type 

  Route from Cell 1  
  Transfer Time  
  Minutes  
  By Sequence  

   Display 7-9.  Cell 1 Route Module 
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sample model is relatively small in terms of the number of cells and parts. In practice, 

it would not be uncommon to have 30 to 50 machines with hundreds of different part 

types. If you undertake a problem of that size, we strongly recommend that you take 

great care in designing the data structure since it may make the difference between a 

success or failure of the simulation project. 

 The Process module for Cell 3 is slightly different because we have two different 

machines, a new one and an old one, that process parts at different rates. If the machines 

were identical, we could have used a single resource and entered a capacity of 2. We 

made note of this earlier and grouped these two machines into a Set called  Cell 3 
Machines . Now we need to use this set at Cell 3.   Display 7-10   shows the data entries 

required to complete the Process module for this cell.   

  In the Resource section, we select  Set  from the drop-down list for our Resource 

Type. This allows us to select from our specifi ed  Cell 3 Machines  set for the Set 

Name fi eld. You can also Seize a Specifi c Member of a set; that member can be speci-

fi ed as an entity attribute. For our selection of Resource Set, we’ve accepted the default 

selection rule, Cyclical, which causes the entity to attempt to select the fi rst available 

resource beginning with the successor of the last resource selected. In our case, Arena 

will try to select our two resources alternately; however, if only one resource is currently 

available, it will be selected. Obviously, these rules are used only if more than one re-

source is available for selection. The Random rule would cause a random (equiprobable) 

selection from among those available, and the Preferred Order rule would select the fi rst 

(lowest-numbered) available resource in the set. Had we selected this option, Arena 

would have always used the new machine, if available, because it’s the fi rst resource 

in the set. The remaining rules would apply only if one or more of our resources had a 

capacity greater than 1. 

 The Save Attribute option allows us to save the index, which is a reference to the 

selected set member, in a user-specifi ed attribute. In our case, we will save this value 

in the Attribute  Machine Index . If the new machine is selected, this attribute will 

be assigned a value of 1, and if the old machine is selected, the attribute will be as-

signed a value of 2. This numbering is based on the order in which we entered our 

resources when we defi ned the set. The Expression for the delay time uses our attribute 

 Name 

 Action 

  Cell 3 Process  
  Seize Delay Release  

 Resources 

 Type 

 Set Name 

 Quantity 

 Save Attribute 

  
  Set  
  Cell 3 Machines  
  1  
  Machine Index  

 Delay Type 

 Units 

 Expression 

  Expression  
  Minutes  
  Process Time * Factor(Machine Index)  

   Display 7-10.  Cell 3 Process Module 
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 Process Time , assigned by the sequence, multiplied by our variable  Factor
(Machine Index) . Recall that our process times are for the old machine and that 

the new machine can process parts in 80% of that time. Although it’s probably obvious 

by now how this expression works, we’ll illustrate it. If the fi rst resource in the set (the 

new machine) is selected,  Machine Index  will be assigned a value of 1 and the 

variable  Factor(Machine Index)  will use this attribute to take on a value of 0.8. 

If the second machine (the old machine) is selected, the  Machine Index  is set to 

2, the  Factor(Machine Index) variable will take on a value of 1, and the origi-

nal process time will be used. Although this method may seem overly complicated for 

this example, it is used to illustrate the tremendous fl exibility that Arena provides. An 

alternate method, which would not require the variable, would have used the following 

logical expression: 

  Process Time * (((Machine Index == 1)*0.8) + (Machine Index == 2))  

 or 

  Process Time * (1 - ((Machine Index == 1)*0.2)).  

 We leave it to you to fi gure out how these expressions work (hint: “a == b” evaluates 

to 1 if a equals b and to 0 otherwise). 

 Having completely defi ned all our data, the part arrival process, and the four cells, 

we’re left only with defi ning the parts’ exit from the system. The two modules that ac-

complish this are shown in   Figure 7-4  .  

 As before, we’ll use the Station module to defi ne the location of our  Exit System  

 Station. The Dispose module is used to destroy the completed part. Our completed 

model (although it is not completely animated) appears in   Figure 7-5  .  

  Figure 7-4.   The Exit System Logic Modules   

  Figure 7-5.  The Completed Model   
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 At this point, we could run our model, but it would be diffi cult to tell if our se-

quences are working properly. So before we start any analysis, we’ll fi rst develop our 

animation to help us determine whether the model is working correctly. Let’s also as-

sume that we’ll have to present this model to higher-level management, so we want to 

develop a somewhat fancier animation. 

   7.1.5 Animation 

 We could develop our animation in the same manner as we did in Chapter 5—create our 

own entity pictures, resource symbols, and background based on the picture that was 

presented in   Figure 7-1  . However, a picture might already exist that refl ects an accurate 

representation of the system. In fact, it might even exist as a CAD fi le somewhere in 

your organization. For instance, the drawing presented in   Figure 7-1   was developed 

using the AutoCAD® package from AutoDesk. Arena supports integration of fi les from 

CAD programs into its workspaces. Files saved in the DXF format defi ned by Auto-

CAD can be imported directly into Arena. Files generated from other CAD or drawing 

programs (for example, Microsoft® Visio®) should transfer into Arena as long as they 

adhere to the AutoCAD standard DXF format. 

 If the original CAD drawing is 2D, you only need to save it in the DXF format 

and then import that fi le directly into Arena. Most CAD objects (polygons, etc.) will 

be represented as the same or similar objects in Arena. If the drawing is 3D, you must 

fi rst convert the fi le to 2D. Colors are lost during this conversion to 2D, but they may 

be added again in AutoCAD or in Arena. This conversion also transforms all objects to 

lines, so the imported drawing can only be manipulated in Arena as individual lines, or 

the lines may be grouped as objects. We’ll assume that you have a DXF fi le and refer 

you to online help (the Importing DXF Files topic) for details on creating the DXF fi le 

or converting a 3D drawing. One word of advice: a converted fi le is imported into Arena 

as white lines so if your current background is white, it may appear that the fi le was not 

imported. Simply change the Window Background Color (    on the Draw toolbar) or 

select all the lines and change the line color (  ). 

 For our small manufacturing system, we started with a 3D drawing and converted 

it to 2D. We then saved the 2D fi le in the DXF format ( Model 07-01.dxf ). A DXF 

fi le is imported into your current model fi le by selecting  File . DXF Import . Select the 

fi le, and when you move your pointer to the model window, it will appear as crosshairs. 

Using the pointer, draw a box to contain the entire drawing to be imported. If the im-

ported drawing is not the correct size, you can select the entire drawing and resize it as 

required. You can now use this drawing as the start of your animation. 

 For our animation, you should delete all the lettering and arrows. Then we’ll move 

the Cell 1 queue animation object from the Process module ( Cell 1 Process ) to its 

approximate position on the drawing. 

 Now position your pointer near the upper-left corner of a machine and drag your 

pointer so the resulting bounding outline encloses the entire drawing. Use the  Copy  

button to copy the drawing of the machine to the clipboard. Now we’ll open the Re-

source Picture Placement window by clicking the  Resource  button (  ) from the An-

imate toolbar. Double-click the idle resource symbol and replace the current picture 
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with a copy of the contents of the clipboard. Delete the base of the machine and draw 

two boxes on top of the representation for the top part of the machine. This is neces-

sary as our drawing consists of all lines, and we want to add a fi ll color to the machine. 

Now delete all the lines from the original copy and fi ll the boxes with your favorite 

color. Copy this new symbol to your library and then copy that symbol to the Busy 

picture. Save your library, exit the resource window, and fi nally place the resource. 

You now have a resource picture that will not change, but we could go back later and 

add more animation effects. 

 For the next step, draw a box the same size as the base of the machine and then delete 

the entire drawing of the machine. Fill this new box with a different color and then place 

the resource symbol on top of this box (you may have to resize the resource symbol to 

be the correct size). Now move the seize point so that it is positioned at about the center 

of our new machine. Now make successive copies of our new resource and the machine 

base, and then change the names. If you follow this procedure, note that you will need 

to fl ip the resources for Cells 3 and 4. 

 To complete this phase of the animation, you need to move and resize the remaining 

queues. Once this is complete, you can run your animation and see your handiwork. 

You won’t see parts moving about the system (there are no routes yet), but you will see 

the parts in the queues and at the machines. If you look closely at one of the machines 

while the animation is running, you’ll notice that the parts sit right on top of the entire 

machine. This display is not what we want. Ideally, the part should sit on top of the base, 

but under the top part of our machine (the resource). Representing this is not a problem. 

Select a resource (you can do this in edit mode or by temporarily pausing the run) and 

use the Bring to Front feature with  Arrange . Bring to Front  or the button on the Ar-

range toolbar (  ). Now when you run the animation, you’ll get the desired effect. We’re 

now ready to animate our part movement. 

 In our previous animations, we basically had only one path through the system so 

adding the routes was fairly straightforward. In our small manufacturing system, there 

are multiple paths through the system, so you must be careful to add routes for each 

travel possibility. For example, a part leaving Cell 2 can go to Cell 1, 3, or 4. The sta-

tions need to be positioned fi rst; add station animation objects using the  Station  button 

on the Animate Transfer toolbar. Next, place the routes. If you somehow neglect to place 

a route, the simulation will still (correctly) send the entity to the correct station with a 

transfer time of 2; however, that entity movement will not appear in your animation. 

Also be aware that routes can be used in both directions. For example, let’s assume that 

you added the route from Cell 1 to Cell 2, but missed the route from 2 to 1. When a Part 2 

completes its processing at Cell 2, Arena looks to route that part to Cell 1, routing from 

2 to 1. If the route were missing, it would look for the route from 1 to 2 and use that. 

Thus, you would see that part moving from the entrance of Cell 2 to the Exit of Cell 1 in 

a counterclockwise direction (an animation mistake for this model). 

 If you run and watch your newly animated model, you should notice that occa-

sionally parts will run over or pass each other. This is due to a combination of the data 

supplied and the manner in which we animated the model. Remember that all part 

transfers were assumed to be 2 minutes regardless of the distance to be traveled. Arena 
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sets the speed of a routed entity based on the transfer time and the physical length of 

the route on the animation. In our model, some of these routes are very short (from 

Cell 1 to Cell 2) and some are very long (from Cell 2 to Cell 1). Thus, the entities 

being transferred will be moving at quite different speeds relative to each other. If this 

was important, we could request or collect better transfer times and incorporate these 

into our model. The easiest way would be to delete the variable  Transfer Time  

and assign these new transfer times to a new attribute in the Sequences module. If 

your transfer times and drawing are accurate, the entities should now all move at the 

same speed. The only potential problem is that a part may enter the main aisle at the 

same time another part is passing by, resulting in one of the parts overlapping the 

other until their paths diverge. This is a more diffi cult problem to resolve, and it may 

not be worth the bother. If the only concern is for purposes of presentation, watch the 

animation and fi nd a long period of time when this does not occur—show only this 

period of time during your presentation. The alternative is to use material-handling 

constructs, which we’ll do in Chapter 8. 

 After adding a little annotation, the fi nal animation should look something like   Fig-

ure 7-6   (this is a view of the system at time 541.28). At this point in your animation, you 

might want to check to see if your model is running correctly or at least the way you 

intended it. We’ll take up this topic in our next section.  

   7.1.6 Verifi cation 

  Verifi cation  is the process of ensuring that the Arena model behaves in the way it was 

intended according to the modeling assumptions made. This is actually very easy com-

pared to model  validation , which is the process of ensuring that the model behaves the 

same as the real system. We’ll discuss both of these aspects in more detail in Chapter 13. 

Here we’ll only briefl y introduce the topic of model verifi cation. 

  Figure 7-6.  The Animated Small Manufacturing System: Model 7-1   
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 Verifi cation deals with both obvious problems as well as the not so obvious. For 

example, if you had tried to run your model and Arena returned an error message that 

indicated that you had neglected to defi ne one of the machine resources at Cell 3, the 

model is obviously not working the way you intended. Actually, we would normally 

call this the process of debugging! However, since we assume that you’ll not make these 

kinds of errors (or, if you do, you can fi gure out yourself how to fi x them), we’ll deal 

with the not-so-obvious problems. 

 Verifi cation is fairly easy when you’re developing small classroom-size problems 

like the ones in this book. When you start developing more realistically sized models, 

you’ll fi nd that it’s a much more diffi cult process, and you may never be 100% sure on 

very, very large models. 

 One easy verifi cation method is to allow only a single entity to enter the system and 

follow that entity to be sure that the model logic and data are correct. You could use the 

 Step  button (  ) found on the Standard toolbar to control the model execution and step 

the entity through the system. For this model, you could set the Max Arrivals fi eld in the 

Create module to 1. To control the entity type, you could replace the discrete distribution 

in the Assign module that determines the part type with the specifi c part type you want 

to observe. This would allow you to check each of the part sequences. Another common 

method is to replace some or all model data with constants. Using deterministic data 

allows you to predict system behavior exactly. 

 If you’re going to use your model to make real decisions, you should also check 

to see how the model behaves under extreme conditions. For example, introduce only 

one part type or increase/decrease the part interarrival or service times. If your model is 

going to have problems, they will most likely show up during these kinds of stressed-out 

runs. Also, try to make effective use of your animation—it can often reveal problems 

when viewed by a person familiar with the operation of the system being modeled. 

 It’s often a good idea, and a good test, to make long runs for different data and 

observe the summary results for potential problems. One skill that can be of great use 

during this process is that of  performance estimation . A long, long time ago, before 

the invention of calculators and certainly before personal computers, engineers carried 

around sticks called  slide rules  (often protected by leather cases and proudly attached to 

engineers’ belts). These were used to calculate the answers to the complicated problems 

given to them by their professors or bosses. These devices achieved this magic feat by 

adding or subtracting logs (not tree logs, but logarithms). Although they worked rather 

well (but not as well, as easily, or as fast as a calculator), they only returned (actually 

you read it off the stick) a sequence of digits, say 3642. It was up to the engineer to fi g-

ure out where to put the decimal point. Therefore, engineers had to become very good 

at developing rough estimates of the answers to problems before they used the sticks. 

For example, if the engineer estimated the answer to be about 400, then the answer was 

364.2. However, if the estimate was about 900, there was a problem. At that point, it 

was necessary to determine if the problem was in the estimation process or the slide-

rule process. We suspect that at this point you’re asking two questions: (1) why the long 

irrelevant story, and (2) did we really ever use such sticks? Well, the answers are: (1) to 

illustrate a point, and (2) two of the authors did! 
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 So how do you use this great performance-estimation skill? You defi ne a set of con-

ditions for the simulation, estimate what will result, make a run, and look at the sum-

mary data to see if you were correct. If you were, feel good and try it for a different set 

of conditions. If you weren’t correct (or at least in the ballpark), fi nd out why not. It 

may be due to bad estimation, a lack of understanding of the system, or a faulty model. 

Sometimes not-so-obvious (but real) results are created by surprising interactions in 

the model. In general, you should thoroughly exercise your simulation models and be 

comfortable with the results before you use them to make decisions. And it’s best to do 

this early in your project—and often. 

 Back in Section 2.8 when we mentioned verifi cation, we suggested that you verify 

your code. Your response could have been, “What code?” Well, there  is  code, and 

we’ll show you a little in Figures   7-7   and   7-8  . But you still might be asking, “Why 

code?” To explain the reason for this code requires a little bit of background (yes, 

another history lesson). The formation of Systems Modeling (the company that orig-

inally developed Arena) and the initial release of the simulation language SIMAN® 

(on which Arena is based and to which you can gain access through Arena) occurred 

in 1982. Personal computers were just starting to hit the market, and SIMAN was 

designed to run on these new types of machines. In fact, SIMAN required only 64 

Kbytes of memory, which was a lot in those days. There was no animation capability 

(Cinema, the accompanying animation tool, was released in 1985), and you created 

models using a text editor, just like using a programming language. A complete model 

required the development of two fi les, a  model fi le  and an  experiment fi le . The model 

fi le, often referred to as the . mod  fi le, contained the model logic. The experiment fi le, 

referred to as the . exp  fi le, defi ned the experimental conditions. It required the user to 

list all stations, attributes, resources, etc., that were used in the model. The creation of 

these fi les required that the user follow a rather exacting syntax for each type of model 

or experiment construct. In other words, you had to start certain statements only in 

column 10; you had to follow certain entries with the required comma, semicolon, or 

colon; all resources and attributes were referenced only by number; and only a limited 

set of key words could be used. (Many of your professors, or maybe their professors, 

learned simulation this way.) 

 Since 1982, SIMAN has been enhanced continually and still provides the basis for 

an Arena simulation model. When you run an Arena simulation, Arena examines each 

option you selected in your modules and the data that you supplied and then creates 

SIMAN . mod  and . exp  fi les. These are the fi les that are used to run your simulations. The 

implication is that all the modules found in the Basic Process, Advanced Process, and 

Advanced Transfer panels are based on the constructs found in the SIMAN simulation 

language. The idea is to provide a simulation tool (Arena) that is easy to use, yet one 

that is still based on the powerful and fl exible SIMAN language. So you see, it is still 

possible, and sometimes even desirable, to look at the SIMAN code. In fact, you can 

even write out and edit these fi les. However, it is only possible to go down (from Arena 

to SIMAN code) and not possible to go back up (from SIMAN code to Arena). As you 

become more profi cient with Arena, you might occasionally want to look at this code to 

be assured that the model is doing exactly what you want it to—verifi cation. 
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 We should point out that you can still create your models in Arena using the base 

SIMAN language. If you build a model using only the modules found in the Blocks 

and Elements panels, you are basically using the SIMAN language. Recall that we used 

several modules from the Blocks panel when we constructed our inventory model in 

Section 5.7. 

 You can view the SIMAN code for our small manufacturing model by using the 

 Run . SIMAN . View  option. Selecting this option will generate both fi les, each in a 

separate window.   Figure 7-7   shows a small portion of the . mod  fi le, the code written out 

for the Process module used at Cell 3. The SIMAN language is rather descriptive, so it 

is possible to follow the general logic. An entity that arrives at this module increments 

some internal counters, enters a queue,  Cell 3 Process.Queue , waits to seize a 

resource from the set  Cell 3 Machines , delays for the process time (adjusted by our 

factor), releases the resource, decrements the internal counters, and exits the module.  

   Figure 7-8   shows a portion of the . exp  fi le that defi nes the Resources and Stations 

used in our model.  

 We won’t go into a detailed explanation of the statements in these fi les; the purpose 

of this exercise is merely to make you aware of their existence. For a more comprehen-

sive explanation, refer to Pegden, Shannon, and Sadowski (1995). 

  Figure 7-7.  SIMAN Model File for the Process Module   

  Figure 7-8.  SIMAN Experiment File for the Process Module   
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 If you’re familiar with SIMAN or you would just like to learn more about how this 

process works, we might suggest that you place a few modules, enter some data, and 

write out the . mod  and . exp  fi les. Then edit the modules by selecting different options 

and write out the new fi les. Look for the differences between the two . mod  fi les. Doing 

so should give you a fair amount of insight as to how this process works. 

     7.2 Statistical Analysis of Output from Steady-State Simulations 

  In Chapter 6, we described the difference between terminating and steady-state simula-

tions and indicated how you can use Arena’s reports, PAN, and the Output Analyzer to 

do statistical analyses in the terminating case. In this section, we’ll show you how to do 

statistical inference on steady-state simulations. 

 Before proceeding, we should encourage you to be  sure  that a steady-state simula-

tion is appropriate for what you want to do. Often people simply  assume  that a long-run, 

steady-state simulation is the thing to do, which might in fact be true. But if the starting 

and stopping conditions are part of the essence of your model, a terminating analysis is 

probably more appropriate; if so, you should just proceed as in Chapter 6. The reason for 

avoiding steady-state simulation is that, as you’re about to see, it’s a  lot  harder to carry 

out anything approaching a valid statistical analysis than in the terminating case if you 

want anything beyond Arena’s standard 95% confi dence intervals on mean performance 

measures; so if you don’t need to get into this, you shouldn’t. 

 One more caution before we wade into this material: As you can imagine, the run 

lengths for steady-state simulations need to be pretty long. Because of this, there are 

more opportunities for Arena to sequence its internal operations a little differently, caus-

ing the random-number stream (see Section 12.1) to be used differently. This doesn’t 

make your model in any sense “wrong” or inaccurate, but it can affect the numerical 

results, especially for models that have a lot of statistical variability inherent in them. So 

if you follow along on your computer and run our models, there’s a chance that you’re 

going to get numerical answers that differ from what we report here. Don’t panic over 

this since it is, in a sense, to be expected. If anything, this just amplifi es the need for 

some kind of statistical analysis of simulation output data since variability can come 

not only from “nature” in the model’s properties, but also from internal computational 

issues. 

 In Section 7.2.1, we’ll discuss determination of model warm-up and run length. 

Section 7.2.2 describes the truncated-replication strategy for analysis, which is by far 

the simplest approach (and, in some ways, the best provided that it’s practical). A dif-

ferent approach called batching is described in Section 7.2.3. A brief summary is given 

in Section 7.2.4, and Section 7.2.5 mentions some other issues in steady-state analysis. 

  7.2.1 Warm-up and Run Length 

 As you might have noticed, our examples have been characterized by a model that’s ini-

tially in an  empty-and-idle  state. This means that the model starts out empty of entities 

and all resources are idle. In a terminating system, this might be the way things actually 

start out, so everything is fi ne. But in a steady-state simulation, initial conditions aren’t 

supposed to matter, and the run is supposed to go on forever. 
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 Actually, though, even in a steady-state simulation, you have to initialize and stop 

the run somehow. And since you’re doing a simulation in the fi rst place, it’s a pretty 

safe bet that you don’t know much about the “typical” system state in steady state or 

how “long” a run is long enough. So you’re probably going to wind up initializing in a 

state that’s pretty weird from the viewpoint of steady state and just trying some (long) 

run lengths. If you’re initializing empty and idle in a simulation where things eventually 

become congested, your output data for some period of time after initialization will tend 

to understate the eventual congestion; that is, your data will be  biased  low. 

 To remedy this, you might try to initialize in a state that’s “better” than empty and idle. 

This would mean placing, at time 0, some number of entities around the model and starting 

things out that way. While it’s possible to do this in your model, it’s pretty inconvenient. 

More problematic is that you’d generally have no idea how many entities to place around 

at time 0; this is, after all, one of the questions the simulation is supposed to answer. 

 Another way of dealing with initialization bias is just to run the model for so long 

that whatever bias may have been there at the beginning is overwhelmed by the amount 

of later data. This can work in some models if the biasing effects of the initial conditions 

wear off quickly. 

 However, what people usually do is go ahead and initialize empty and idle, realiz-

ing that this is most likely quite unrepresentative of steady state, but then let the model 

 warm up  for a while until it appears that the effects of the artifi cial initial conditions 

have worn off. At that time, you can clear the statistical accumulators (but not the sys-

tem state) and start afresh, gathering statistics for analysis from then on. In effect, this  is  

initializing in a state other than empty and idle, but you let the model decide how many 

entities to have around when you start (afresh) to watch your performance measures. 

The run length should still be long, but maybe not as long as you’d need to overwhelm 

the initial bias by sheer arithmetic. 

 It’s very easy to specify an initial Warm-up Period in Arena. Just open the  Run . 
Setup . Replication Parameters  dialog box and fi ll in a value (be sure to verify the Time 

Units). Every replication of your model still runs starting as it did before, but at the end 

of the Warm-up Period, all statistical accumulators are cleared and your reports (and 

any Outputs-type saved data from the Statistic module of results across the replications) 

refl ect only what happened after the warm-up period ends. In this way, you can “decon-

taminate” your data from the biasing initial conditions. 

 The hard part is knowing how long the warm-up period should be. Probably the most 

practical idea is just to make some plots of key outputs from within a run, and eyeball 

when they appear to stabilize. To illustrate this, we took Model 7-1 from Section 7.1 and 

made the following modifi cations, calling the result Model 7-2:

    ■  To establish a single overall output performance measure, we made an entry in 

the Statistic data module to compute the total work in process (WIP) of all three 

parts combined. The Name and Report Label are both  Total WIP , and the 

Type is  Time-Persistent . To enter the Expression we want to track over 

time, we right-clicked in that fi eld and selected Build Expression, clicked down 

the tree via Basic Process Variables → Entity → Number in Process, selected 

 Part 1  as the Entity Type, and got  EntitiesWIP(Part 1)  for the Current 
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Expression, which is part of what we want. Typing a + after that and selecting 

 Part 2  for the Entity Type, another +, then  Type 3  for the Entity Type 

 fi nally gives us  EntitiesWIP(Part 1) + EntitiesWIP(Part 2) 
+  EntitiesWIP(Part 3) , which is the total WIP. This will create an entry 

labeled  Total WIP  in the Category Overview (under User Specifi ed) giving 

the time-average and maximum of the total number of parts in process.  
   ■  However, we also want to track the “history” of the  Total WIP  curve during 

the simulation rather than just getting the post-run summary statistics since we 

want to “eyeball” when this curve appears to have stabilized in order to specify a 

reasonable Warm-up Period. You could place an animated Plot in your model, as 

we’ve done before; however, this will disappear as soon as you hit the  End  but-

ton, and will also be subject to perhaps-large variation, clouding your judgment 

about the stabilization point. We need to save the curve history and make more 

permanent plots, and we also need to plot the curve for several replications to 

mitigate the noise problem. To do so we made a fi le-name entry,  Total WIP 
History.dat , in the Output File fi eld of the  Total WIP  entry in the Statistic 

module, which will save the required information into that fi le. This information 

can be read into the Arena Output Analyzer (see Section 6.4) and plotted after 

the run is complete. Depending on how long your run is and how many replica-

tions you want, this fi le can get pretty big since you’re asking it to hold a lot of 

detailed, within-run information (our run, described below, resulted in a fi le of about 

176 KB). The complete entry in the Statistic module is in   Figure 7-9  .   
   ■  Since we aren’t interested in animation at this point, we accessed the  Run . Run 

Control  option and checked  Batch Run  ( No Animation ) to speed things up. We 

also cleared all the boxes under Statistics Collection in  Run . Setup . Project 
Parameters  to increase speed further. To get a feel for the variation, we specifi ed 

 10  for the Number of Replications in  Run . Setup . Replication Parameters ; 

since we’re now interested in long-run steady-state performance, we increased 

the Replication Length from 32 Hours (1.33 Days) to 5 Days. We freely admit 

that these are pretty much arbitrary settings, and we settled on them after some 

trial and error. For the record, it took less than a second to run all this on a 

2.8-GHz notebook computer.    

 To make a plot of WIP vs. time in the Output Analyzer (see Section 6.4 for basics 

on the Output Analyzer), we created a new data group and added the fi le  Total WIP 
History.dat  to it. We then selected Plot (   or  Graph . Plot ), Added the . dat  fi le 

(selecting All in the Replications fi eld of the Data File dialog box), typed in a Title, and 

changed the Axis Labels; the resulting dialog boxes are shown in   Figure 7-10  .  

  Figure 7-9.  The Completed Total WIP Entry in the Statistic Module   
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   Figure 7-11   shows the resulting plot of WIP across the simulations, with the curves 

for all ten replications superimposed. From this plot, it seems clear that as far as the WIP 

output is concerned, the run length of 5 days (7,200 minutes, in the Base Time Units 

used by the plot) is enough for the model to have settled out, and also it seems fairly 

clear that the model isn’t “exploding” with entities, as would be the case if processing 

couldn’t keep up with arrivals. As for a Warm-up Period, the effect of the empty-and-

idle initial conditions for the fi rst several hundred minutes on WIP is evident at the 

left end of each curve and is reasonably consistent across replications, but it looks like 

things settle down after about 2,000 minutes; rounding up a little to be conservative, 

we’ll select  2  Days (2,880 minutes) as our Warm-up Period.  

 If we’d made the runs (and plot) for a longer time period, or if the model warm-up 

occurred more quickly, it could be diffi cult to see the appropriate Warm-up Period on the 

  Figure 7-10.  The Output Analyzer’s Plot Dialog Box   

  Figure 7-11.  Within-Run WIP Plots for Model 7-2   
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left end of the curves. If so, you could “zoom in” on just the fi rst part of each replication 

via the “Display Time from . . . to . . .” area in the Plot dialog box. 

 In models where you’re interested in multiple output performance measures, you’d 

need to make a plot like   Figure 7-11   for each output. There could be disagreement be-

tween the output measures on warm-up rate, but in Arena you can choose only a single 

Warm-up Period to be used for all output measures, so the safe move is to take the max-

imum of the individual warm-ups as the one to use overall. 

   7.2.2 Truncated Replications 

 If you can identify a warm-up period, and if this period is reasonably short relative to 

the run lengths you plan to make, then things are fairly simple for steady-state statistical 

analysis: just make IID (that’s independent and identically distributed, in case you’ve 

forgotten) replications, as was done for terminating simulations in Chapter 6, except that 

you also specify a Warm-up Period for each replication in  Run . Setup . Replication 
Parameters . With these appropriate warm-up and run-length values specifi ed, you just 

proceed to make independent replications and carry out your statistical analyses as in 

Chapter 6 with warmed-up independent replications so that you’re computing steady-

state rather than terminating quantities. Life is good. 

 This idea applies to comparing or selecting alternatives (Sections 6.4 and 6.5) and 

optimum seeking (Section 6.6), as well as to single-system analysis. However, there 

could be different warm-up and run-length periods needed for different alternatives; 

you don’t really have the opportunity to control this across the different alternatives 

that OptQuest might decide to consider, so you should probably run your model ahead 

of time for a range of possible scenarios and specify the warm-up to be (at least) the 

maximum of those you experienced. 

 For the 5-day replications of Model 7-2, we entered in  Run . Setup . Replication 
Parameters  the 2-Day Warm-up Period we determined in Section 7.3.1 and again asked 

for ten replications of total length 5 days each (including the 2-day Warm-up Period, 

so observed outputs on only the last 3 of the 5 days). Since we no longer need to save 

the within-run history, we deleted the Output File entry in the Statistic data module. We 

called the resulting model Model 7-3 (note our practice of saving successive changes to 

models under different names so we don’t cover up our tracks in case we need to back-

track at some point). The result was a 95% confi dence interval for expected average WIP 

of 16.39 ± 6.51; from Model 7-2 with no warm-up, we got 15.35 ± 4.42, illustrating 

the downward-biasing effect of the initial low-congestion period. To see this difference 

more clearly, since these confi dence intervals are pretty wide, we made 100 replications 

(rather than 10) and got 15.45 ± 1.21 for Model 7-3 and 14.42 ± 0.88 for Model 7-2. 

Note that the confi dence intervals, based on the same number of replications, are wider 

for Model 7-3 than for Model 7-2; this is because each replication of Model 7-3 uses 

data from only the last 3 days whereas each replication of Model 7-2 uses the full 5 days, 

giving it lower variability (at the price of harmful initialization bias, which we feel is a 

desirable trade-off in favor of truncating as in Model 7-3). 

 If more precision is desired in the form of narrower confi dence intervals, you could 

achieve it by simulating “some more.” Now, however, you have a choice as to whether 

to make more replications with this run length and warm-up or keep the same number of 
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replications and extend the run length. (Presumably the original warm-up would still be ad-

equate.) It’s probably simplest to stick with the same run length and just make more replica-

tions, which is the same thing as increasing the statistical sample size. There is something to 

be said, though, for extending the run lengths and keeping the same number of replications; 

the increased precision with this strategy comes not from increasing the “sample size” (sta-

tistically, degrees of freedom) but rather from decreasing the variability of each within-run 

average since it’s being taken over a longer run. Furthermore, by making the runs longer, 

you’re even more sure that you’re running long enough to “get to” steady state. 

 If you can identify an appropriate run length and warm-up period for your model, 

and if the warm-up period is not too long, then the truncated-replication strategy is quite 

appealing. It’s fairly simple, relative to other steady-state analysis strategies, and gives 

you truly independent observations (the results from each truncated replication), which 

is a big advantage in doing statistical analysis. This goes not only for simply making 

confi dence intervals as we’ve done here, but also for comparing alternatives as well as 

other statistical goals, as discussed in Chapter 6. 

   7.2.3 Batching in a Single Run 

 Some models take a long time to warm up to steady state, and since each replication would 

have to pass through this long warm-up phase, the truncated-replication strategy of Sec-

tion 7.2.2 can become ineffi cient. In this case, it might be better to make just one  really  

long run and thus have to “pay” the warm-up only once. We modifi ed Model 7-3 to make 

a single replication of length 50 days including a (single) warm-up of 2 days (we call this 

Model 7-4); this is the same simulation “effort” as making the ten replications of length 5 

days each, and it took about the same amount of computer time. Since we want to plot the 

within-run WIP data, we reinstated a fi le name entry in the Output File fi eld in the Statistic 

data module, calling it  Total WIP History One Long Run.dat  (since it’s a long 

run, we thought it deserved a long fi le name too).   Figure 7-12   plots Total WIP across this 

run. (For now, ignore the thick vertical bars we drew in the plot.)  

  Figure 7-12.  Total WIP Over a Single Run of 50 Days   
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 The diffi culty now is that we have only one “replication” on each performance mea-

sure from which to do our analysis, and it’s not clear how we’re going to compute a 

variance estimate, which is the basic quantity needed to do statistical inference. Viewing 

each individual observation or time-persistent value within a run as a separate “data 

point” would allow us to do the arithmetic to compute a within-run sample variance, but 

doing so is extremely dangerous since the possibly heavy correlation (see Section B.2.4 

in Appendix B) of points within a run will cause this estimate to be severely biased with 

respect to the true variance of an observation. Somehow, we need to take this correlation 

into account or else “manufacture” some kind of “independent observations” from this 

single long run to get a decent estimate of the variance. 

 There are several different ways to proceed with statistical analysis from a single 

long run. One relatively simple idea (that also appears to work about as well as other 

more complicated methods) is to try to manufacture almost-uncorrelated “observa-

tions” by breaking the run into a few large  batches  of many individual points, compute 

the averages of the points within each batch, and treat them as the basic IID obser-

vations on which to do statistical analysis (starting with variance estimation). These 

 batch means  then take the place of the means from within the multiple replications 

in the truncated-replication approach—we’ve replaced the replications by batches. In 

the WIP plot of   Figure 7-12  , the thick vertical dividing lines illustrate the idea; we’d 

take the time-average WIP level between the lines as the basic “data” for statistical 

analysis. To obtain an unbiased variance estimate, we need the batch means to be 

nearly uncorrelated, which is why we need to make the batches big; there will still be 

some heavy correlation of individual points near either side of a batch boundary, but 

these points will be a small minority within their own large batches, which we hope 

will render the batch means nearly uncorrelated. In any case, Arena will try to make 

the batches big enough to look uncorrelated, and will let you know if your run was too 

short for it to manufacture batch means that “look” (in the sense of a statistical test) 

nearly uncorrelated, in which case, you’d have to make your run longer. 

 As we just hinted, Arena automatically attempts to compute 95% confi dence inter-

vals via batch means for the means of all output statistics and gives you the results in 

the Half Width column next to the Average column in the report for each replication. If 

you’re making just one replication, as we’ve been discussing, this is your batch-means 

confi dence interval. On the other hand, if you’ve made more than one replication, you 

see this in the Category by Replication report from a multi-replication run for each 

replication; the Half Width in the Category Overview report is from a multi-replication 

run across replications, as discussed in Sections 6.3 and 7.2.2. We say “attempts to 

compute” since internal checks are done to see if your replication is long enough to 

produce enough data for a valid batch-means confi dence interval on an output statistic; 

if not, you get only a message to this effect, without a half-width value (on the theory 

that a wrong answer is worse than no answer at all) for this statistic. If you’ve specifi ed 

a Warm-up Period, data collected during this period are not used in the confi dence-

interval calculation. To understand how this procedure works, think of Arena as batch-

ing “on the fl y” (that is, observing the output data during your run and throwing them 

into batches as your simulation goes along). 
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 So what does “enough data” mean? There are two levels of checks to be passed, 

the fi rst of which is just to get started. For a Tally statistic, Arena demands a mini-

mum of 320 observations. For a time-persistent statistic, you must have had at least fi ve 

units of simulated time during which there were at least 320 changes in the level of the 

 discrete-change variable. Admittedly, these are somewhat arbitrary values and condi-

tions, but we need to get started somehow, and the more defi nitive statistical test, which 

must also be passed, is done at the end of this procedure. If your run is not long enough 

to meet this fi rst check, Arena reports “(Insuffi cient)” in the Half-Width column for this 

variable. Just making your replication longer should eventually produce enough data to 

meet these getting-started requirements. 

 If you have enough data to get started, Arena then begins batching by forming 20 

batch means for each Tally and time-persistent statistic. For Tally statistics, each batch 

mean will be the average of 16 consecutive observations; for time-persistent statistics, 

each will be the time average over 0.25 base time unit. As your run progresses, you will 

eventually accumulate enough data for another batch of these same “sizes,” which is 

then formed as batch number 21. If you continue your simulation, you’ll get batches 

22, 23, and so on, until you reach 40 batches. At this point, Arena will re-batch these 

40 batches by averaging batches 1 and 2 into a new (and bigger) batch 1, batches 3 and 

4 into a new (bigger) batch 2, etc., so that you’ll then be back to 20 batches, but each 

will be twice as “big.” As your simulation proceeds, Arena will continue to form new 

batches (21, 22, and so on), each of this larger size, until again 40 batches are formed, 

when re-batching back down to 20 is once again performed. Thus, when you’re done, 

you’ll have between 20 and 39 complete batches of some size. Unless you’re really 

lucky, you’ll also have some data left over at the end in a partial batch that won’t be 

used in the confi dence-interval computation. The reason for this re-batching into larger 

batches stems from an analysis by Schmeiser (1982), who demonstrated that there’s 

no advantage to the other option, of continuing to gather more and more batches of a 

fi xed size to reduce the half width, since the larger batches will have inherently lower 

variance, compensating for having fewer of them. On the other hand, having batches 

that are too small, even if you have a lot of them, is dangerous since they’re more likely 

to produce correlated batch means, and thus a biased variance estimate and an invalid 

confi dence interval. 

 The fi nal check is to see if the batches are big enough to support the assumption of 

independence between the batch means. Arena tests for this using a statistical hypothesis 

test due to Fishman (1978). If this test is passed, you’ll get the Half Width for this output 

variable in your report. If not, you’ll get “(Correlated),” indicating that your process is 

evidently too heavily autocorrelated for your run length to produce nearly uncorrelated 

batches; again, lengthening your run should resolve this problem, though—depending 

on the situation, you may have to lengthen it a lot. 

 Returning to Model 7-4, after making the one 50-day replication and deleting the 

fi rst 2 days as a warm-up period, Arena produced in the Category Overview report a 

95% batch-means confi dence interval of 13.64 6 1.38 on expected average WIP. The 

reason this batch-means confi dence interval shows up here in the Category Overview 

report is that we’ve made only a single replication. 
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 In most cases, these automatic batch-means confi dence intervals will be enough for 

you to understand how precise your within-replication averages are, and they’re certainly 

easy (requiring no work at all on your part). But there are a few considerations to bear 

in mind. First, don’t forget that these are relevant only for steady-state simulations; if 

you have a terminating simulation (Chapter 6), you should be making independent rep-

lications and doing your analysis on them, in which case Arena reports cross-replication 

 confi dence-interval half-widths as in Chapter 6, and does no within-replication batching. 

Secondly, you still ought to take a look at the Warm-up Period for your model, as in 

Section 7.2.1, since the automatic batch-means confi dence intervals don’t do anything 

to correct for initialization bias if you don’t specify a Warm-up Period. Finally, you can 

check the value of the automatic batch-means half width as it is computed during your run, 

via the Arena variables THALF(Tally ID) for Tally statistics and DHALF(Dstat ID) for 

time-persistent (a.k.a. Dstat) statistics; one reason to be interested in this is that you could 

use one of these for a critical output measure in the Terminating Condition fi eld of  Run 
. Setup . Replication Parameters  to run your model long enough for it to become small 

(that is, precise) enough to suit you; see Section 12.5 for more on this and related ideas. 

 We should mention that, if you really want, you can decide on your own batch 

sizes, compute and save the batch means, then use them in statistical procedures like 

 confi dence-interval formation and comparison of two alternatives (see Sections 6.3 and 6.4). 

Briefl y, the way this works is that you save your within-run history of observations just as 

we did to make our warm-up-determination plots, read this fi le into the Output Analyzer, 

and use its  Analyze . Batch/Truncate Obs’ns  capability to do the batching and  averaging, 

saving the batch means that you then treat as we did the cross-replication means in Sections 

6.3 and 6.4. When batching, the Output Analyzer performs the same statistical test for un-

correlated batches, and will let you know if the batch size you selected is too small. Some 

reasons to go through this are if you want something other than a 95% confi dence level, if 

you want to make the most effi cient use of your data and minimize waste at the end, or if 

you want to do a statistical comparison between two alternatives based on their steady-state 

performance. However, it’s certainly a lot more work. 

   7.2.4 What To Do? 

 We’ve shown you how to attack the same problem by a couple of different methods 

and hinted that there are a lot more methods out there. So which one should you use? 

As usual, the answer isn’t obvious (we warned you that steady-state output analysis is 

diffi cult). Sometimes there are trade-offs between scientifi c results and conceptual (and 

practical) simplicity, and that’s certainly the case here. 

  In our opinion  (and we don’t want to peddle this as anything more than opinion), we 

might suggest the following list, in decreasing order of appeal:

    1.  Try to get out of doing a steady-state simulation altogether by convincing yourself 

(or your patron) that the appropriate modeling assumptions really entail specifi c 

starting and stopping conditions. Go to Chapter 6 (and don’t come back here).  

   2.  If your model is such that the warm-up is relatively short, probably the simplest 

and most direct approach is truncated replications. This has obvious intuitive 
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appeal, is easy to do (once you’ve made some plots and identifi ed a reasonable 

Warm-up Period), and basically winds up proceeding just like statistical analysis 

for terminating simulations, except for the warm-up. It also allows you to take 

advantage of the more sophisticated analysis capabilities in PAN and OptQuest.  

   3.  If you fi nd that your model warms up slowly, then you might consider batch 

means, with a single warm-up at the beginning of your single really long run. 

You could either accept Arena’s automatic batch-means confi dence intervals or 

handcraft your own. You cannot use the statistical methods in PAN or OptQuest 

with the batch-means approach, however (part of the reason this is last in our 

preference list).    

   7.2.5 Other Methods and Goals for Steady-State Statistical Analysis 

 We’ve described two different strategies (truncated replications and batch means) for 

doing steady-state statistical analysis; both of these methods are available in Arena. 

This has been an area that’s received a lot of attention among researchers, so there are a 

number of other strategies for this diffi cult problem: econometric time-series modeling, 

spectral analysis from electrical engineering, regenerative models from stochastic pro-

cesses, standardized time series, as well as variations on batch means like separating or 

weighting the batches. If you’re interested in exploring these ideas, you might consult 

Chapter 9 of Law and Kelton (2000), a survey paper like Sargent, Kang, and Goldsman 

(1992), or peruse a recent volume of the annual  Proceedings of the Winter Simulation 
Conference  (www.wintersim.org), where there are usually tutorials, surveys, and papers 

covering the latest developments on these subjects. 

       7.3 Summary and Forecast 

 Now you should have a very good set of skills for carrying out fairly detailed modeling 

and have an understanding of (and know what to do about) issues like verifi cation and 

steady-state statistical analysis. In the following chapter, we’ll expand on this to show 

you how to model complicated and realistic material-handling operations. In the chap-

ters beyond, you’ll drill down deeper into Arena’s modeling and analysis capabilities to 

exploit its powerful and fl exible hierarchical structure. 

   7.4 Exercises 

    7-1  In Exercise 4-7 (with a reprocess probability of 8%), is the run long enough to 

generate a batch-means-based confi dence interval for the steady-state expected average 

cycle time? Why or why not?  If not, about how long would the run need to be to pro-

duce such a confi dence interval?  

   7-2  Modify your solution for Exercise 5-2 to include transfer times between part ar-

rival and the fi rst machine, between machines, and between the last Machine 1 and the 

system exit. Assume all part transfer times are UNIF(1.5,3.2). Animate your model to 

show part transfers with the part entity picture changing when it departs from Machine 2. 

Run for 20,000 minutes. To the extent possible, indicate the batch-means-based con-

fi dence intervals on expected steady-state performance measures from this run. Put a 
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text box in your Arena fi le with your batch-means-based confi dence intervals in the 

“plus-or-minus” format. Include only the following three output performance measures: 

Average Cycle Time, time-Average Number in Machine 1 Queue, and time-Average 

Number in Machine 2 Queue (all intended to be in steady-state). Do NOT make mul-

tiple replications, and run ONLY for the specifi ed 20,000 minutes. If your run fails to 

produce a batch-means-based confi dence interval for any of the three steady-state output 

performance measures, briefl y explain in your text box why this failure occurred and 

what would have to be done to remedy it (but do not actually try to remedy it).  

   7-3  Using the model from Exercise 7-2, change the processing time for the second 

pass on Machine 1 to TRIA(6.7, 9.1, 13.6) using Sequences to control the fl ow of parts 

through the system and the assignment of process times at each machine. Run the sim-

ulation for 20,000 minutes. To the extent possible, indicate the batch-means-based con-

fi dence intervals on expected steady-state performance measures from this run.  

   7-4  A part arrives every 10 minutes to a system having three workstations (A, B, and 

C), where each workstation has a single machine; the fi rst part arrives at time 0. There 

are four part types, each with equal probability of arriving. The process plans for the 

four part types are given here. The entries for the process times are the parameters for a 

triangular distribution (in minutes). 

 Part Type 
 Workstation/
Process Time 

 Workstation/
Process Time 

 Workstation/
Process Time 

  

 Part 1 

 A 

 5.5,9.5,13.5 

 C 

 8.5,14.1,19.7 

  

  

  

 Part 2 

 A 

 8.9,13.5,18.1 

 B 

 9,15,21 

 C 

 4.3,8.5,12.7 

  

 Part 3 

 A 

 8.4,12,15.6 

 B 

 5.3,9.5,13.7 

  

  

  

 Part 4 

 B 

 9.3,12.6,16.0 

 C 

 8.6,11.4,14.2 

  

  

  Assume that the transfer time between arrival and the fi rst station, between all sta-

tions, and between the last station and the system exit is 3 minutes. Use the Sequence 

feature to direct the parts through the system and to assign the processing times at each 

station. Use the Sets feature to collect cycle times (total times in system) for each of 

the part types separately. Animate your model (including the part transfers), run the 

simulation for a single replication of length 10,000 minutes, and collect statistics on the 

average part cycle time (report this in a text box in your Arena model fi le).  

   7-5  Modify your solution for Exercise 7-4 to use the Expressions feature for determin-

ing the processing times (rather than assigning them in the Sequence data module). Run 

for a single replication of length 10,000 minutes and compare the results to those from 

Exercise 7-4 in a text box in your Arena model fi le. Are the results different? If so, why?  
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    7-6  Modify your solution for Exercise 7-5 so that all parts follow the same path 

through the system: Workstation A – Workstation B – Workstation C. If a part does 

not require processing at a workstation, it must still wait in queue, but incurs a zero 

processing-time delay. Compare the results to those obtained from Exercises 7-4 and 

7-5 in a text box in your Arena model fi le.  

    7-7  Three types of customers arrive at a small airport: check baggage (30%, that is, 

for each arriving customer there is a 0.30 probability that this is a “check-baggage” cus-

tomer), purchase tickets (15%), and carry-on (55%). The interarrival-time distribution 

for all customers combined is EXPO(1.3); all times are in minutes and the fi rst arrival is 

at time 0. The bag checkers go directly to the check-bag counter to check their bags—

the time for which is distributed TRIA(2, 4, 5)—proceed to X-ray, and then go to the 

gate. The ticket buyers travel directly to the ticket counter to purchase their tickets—the 

time for which is distributed EXPO(7)—proceed to X-ray, and then go to the gate. The 

carry-ons travel directly to the X-ray, then to the gate counter to get a boarding pass—

the time for which is distributed TRIA(1, 1.6, 3). All three counters are staffed all the 

time with one agent each. The X-ray time is EXPO(1). All travel times are EXPO(2), ex-

cept for the carry-on time to the X-ray, which is EXPO(3). Run your model for a single 

replication of length 920 minutes, and collect statistics on resource utilization, queues, 

and system time from entrance to gate for all customers combined. For the output sta-

tistics requested, put a text box inside your Arena fi le, or paste in a partial screenshot 

from Arena or another application that provides the requested results. For “queues” and 

“system time” report both the average and maximum.  

    7-8  Parts arrive at a four-machine system according to an exponential interarrival dis-

tribution with mean 10 minutes. The four machines are all different, and there’s just one 

of each. There are fi ve part types with the arrival percentages and process plans given 

here. The entries for the process times are the parameters for a triangular distribution (in 

minutes). 

 Part 

Type  % 

 Machine/

Process Time 

 Machine/

Process Time 

 Machine/

Process Time 

 Machine/

Process Time 

 1 

  

 12 

  

 1 

 10.5,11.9,13.2 

 2 

 7.1,8.5,9.8 

 3 

 6.7,8.8,10.1 

 4 

 6,8.9,10.3 

 2 

  

 14 

  

 1 

 7.3,8.6,10.1 

 3 

 5.4,7.2,11.3 

 2 

 9.6,11.4,15.3 

  

  

 3 

  

 31 

  

 2 

 8.7,9.9,12 

 4 

 8.6,10.3,12.8 

 1 

 10.3,12.4,14.8 

 3 

 8.4,9.7,11 

 4 

  

 24 

  

 3 

 7.9,9.4,10.9 

 4 

 7.6,8.9,10.3 

 3 

 6.5,8.3,9.7 

 2 

 6.7,7.8,9.4 

 5 

  

 19 

  

 2 

 5.6,7.1,8.8 

 1 

 8.1,9.4,11.7 

 4 

 9.2,10.7,12.8 
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   The transfer time between arrival and the fi rst machine, between all machines, and 

between the last machine and the system exit follows a triangular distribution with pa-

rameters 8, 10, 12 (minutes). Collect system cycle time (total time in system) and ma-

chine utilizations. Animate your model (including part transfers) and run the simulation 

for 10,000 minutes. If the run is long enough, give batch-means-based confi dence inter-

vals on the steady-state expected values of the results.  

   7-9  Modify your solution for Exercise 7-8 to include the travel times that are 

move-specifi c. The travel times are given here as the parameters for a triangular distri-

bution (in minutes). Compare your results. Is this a statistically reliable comparison? 

 From/To  Machine 1  Machine 2  Machine 3  Machine 4  Exit System 

 Enter System  7,11,19  7,11,16  8,12,19     

 Machine 1    9,13,20  10,13,18  7,9,13   

 Machine 2  8,10,15    7,12,18  7,9,12  8,9,14 

 Machine 3    9,13,20    9,14,21  6,8,11 

 Machine 4  11,13,17    10,13,21    6,10,12 

   7-10  Modify your solution to Exercise 4-21 to use sequences to control the fl ow of 

parts through the system. (HINT: Reset the value of Entity.Jobstep or IS.) Compare your 

results with those from Exercise 4-21.  

   7-11  Modify Model 7-1 to account for acquiring a new customer, in addition to the one 

supplying the existing three part types. This new customer will supply two new types of 

parts—call them Type 4 and Type 5. The arrival process is in addition to and indepen-

dent of that for the original three part types and has exponential interarrival times with 

mean 15 minutes; the fi rst arrival is at time 0. When the parts arrive, assign 40% of the 

new parts to be Type 4 and the rest to be Type 5. Here are the process plans and mean 

processing times (in minutes) for the new part types: 

 Part Type 
 Cell/

Mean Proc. Time 
 Cell/

Mean Proc. Time 
 Cell/

Mean Proc. Time 
Cell/

Mean Proc. Time

 4 

  

 1 

 6.1 

 3 

 5.2 

 2 

 1.3 

4

2.4

 5 

  

 2 

 3.5 

 3 

 4.1 

 4 

 3.1 

1

2.0

   While people feel comfortable with these mean processing times, there’s not very 

good information on their distributions, so you’re asked just to assume that the distri-

butions are uniform with the indicated mean but plus or minus 0.2 minute in each case. 

For example, if a mean of 6.1 is shown, assume that the distribution is uniform between 

5.9 and 6.3. Make all necessary changes to the model, including the modules, animation 
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pictures (create new entity pictures for the new part types), and anything else required. 

Be sure that the animation works properly, including the clockwise-only movement of 

all entities and the new part types. 

    (a)  Clearly, adding this new customer is going to clog the system compared to 

what it was. Using the time-average total number of parts in all four queues 

combined, how bad does it get compared to the original system? Just make one 

run of each alternative (you’ll do a better job on statistical analysis in the next 

part of this exercise). Include a text box in your model with your time-average 

total number of parts in all four queues combined, both for this model and for 

the original Model 7-1.  

   (b) In an effort to alleviate the added congestion introduced by the new customer, 

you’ve been given a budget to buy one new machine to be placed either in Cell 

1, 2, or 4 (not in Cell 3). Where would you recommend placing it in terms of 

the time-average total number of parts in all four queues combined? Assume 

that the new machine will work at the same rate as the machine it joins in 

whatever cell. You might want to refer to Section 6.5 and specify your own 

output statistic to use PAN. View this as a terminating simulation and make 

100 replications with the goal to select the best placement of the new machine; 

include for comparison a base-case scenario in which no machines are added 

anywhere.    

   7-12  Modify your solution to Exercise 5-2 to use Sequences to control the fl ow of 

parts through the system. Also add a transfer time between arrival and the fi rst ma-

chine, between both machines, and between the last machine and the system exit that 

follows a triangular distribution with parameters 7, 9, 14 (minutes). View this as a ter-

minating simulation, and make 100 replications of this model as well as the one from 

Exercise 5-2, using PAN to compare the results for average total time in system and the 

average lengths of each queue.  

   7-13  Modify your solution to Exercise 7-12 to account for a 20% increase in process-

ing time when the part returns to the fi rst machine for its last operation. View this as a 

terminating simulation, and make 100 replications of this model as well as the one from 

Exercise 7-12, using PAN to compare the results for the same output performance mea-

sures as in Exercise 7-12.  

   7-14  In Exercise 7-7, suppose that you had the option of adding one agent to the system, 

and could add that agent to any one of the check-bag counter, the gate, the ticket-buying 

counter, or the X-ray station. What’s your recommendation? Set up and run a Process 

Analyzer (PAN) experiment (and also include the base case of no extra agent anywhere, 

so fi ve scenarios in all), using 100 replications of each scenario. As the overall output 

performance metric, use average total time of passengers in the system. Write a brief 

discussion of your fi ndings, including statistical justifi cation of your recommendation.       
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     CHAPTER 8 

 Entity Transfer 

  Up to now, we’ve considered two different cases with regard to how long it takes entities 

to move from one place to another. We’ve had them move from module to module with 

no travel time via Connections. In other models, we’ve moved them by Routing between 

stations with some transit-time delay. In both cases, the entities proceed uninhibited, as 

though they all had their own feet and there was enough room in the transitways for as 

many of them at a time as wanted to be moving. 

 Of course, things aren’t always so nice. There could be a limit on the concurrent 

number of entities in transit, such as a communications system where the entities are 

packets of information and the bandwidth is limited to a certain number of packets in 

transmission at a time. There could also be situations in which something like a forklift 

or a person needs to come pick up an entity and then transport it. There are also different 

kinds of conveyors where entities can be viewed as competing for space on the belt or 

line. We’ll explore some of these modeling ideas and capabilities in this chapter. It is 

often important to model such  entity transfer  accurately since studies have shown that 

delays and ineffi ciencies in operations might be caused more by the need just to move 

things around rather than in actually doing the work. 

 Section 8.1 discusses in more detail the different kinds of entity movement and 

transfers and how they can be modeled. In Section 8.2, we’ll indicate how you can use 

the Arena modeling tools you already have to represent a constraint on the number of 

entities that can be in motion at a time (though all entities still have their own feet). 

Transport devices like forklifts, pushcarts, and (of course) people are taken up in Section 8.3. 

Modeling conveyors of different types is described in Section 8.4. 

 After reading this chapter and considering the examples, you’ll be able to model 

a rich variety of entity movement and transfer that can add validity to your model and 

realism to your animations. 

8.1     Types of Entity Transfers 

  To transfer entities between modules, we initially used the Connect option (Chapter 3) to 

transfer entities directly between modules with no time delay. In Chapter 4, we intro-

duced the concept of a Route that allows you to transfer entities between stations with 

a time delay in the transfer. We fi rst showed how to use Routes for entity transfer to a 

specifi c station; then we generalized this concept in Chapter 7 by using Sequences. 

 Although these types of entity transfers give us the ability to model most situations, 

we sometimes fi nd it necessary to limit or constrain the number of transfers occurring at 

any point in time. For example, in modeling a communications network, the links have 

a limited capacity. Thus, we must have a method to limit the number of simultaneous 

messages that are being transferred by each network link or for the entire network. The 
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solution is rather simple; we think of the network links as resources with a capacity 

equal to the maximum number of simultaneous messages allowed. If the capacity de-

pends on the size of the messages, then we defi ne the resource capacity in terms of this 

size and require each message to seize the required number of units of this resource, 

determined by its size, before it can be transferred. Let’s call this type of entity transfer 

 resource constrained , and we’ll discuss it in more detail in Section 8.2. 

 Using a resource to constrain the number of simultaneous transfers may work fi ne 

for a communications network, but it doesn’t allow us to model accurately an entire 

class or category of entity transfers, generally referred to as  material handling . The 

modeling requirements for different material-handling systems can vary greatly, and the 

number of different types of material-handling devices is enormous. In fact, there is an 

entire handbook devoted to this subject (see Kulwiec, 1985). However, it’s possible to 

divide these devices into two general categories based on their modeling requirements. 

    1.  The fi rst category constrains the number of simultaneous transfers based on the num-

ber of individual material-handling devices available. Material-handling  devices 

that fall into this category are carts, hand trucks, fork trucks, AGVs  (automated 

guided vehicles), people, and so on. However, there is an additional requirement in 

that each of these devices has a physical location. If a transfer is required, we may 

fi rst have to move the device to the location where the requesting entity resides 

before we can perform the actual transfer. From a modeling standpoint, you might 

think of these as  moveable resources , referred to in Arena as  Transporters .  

   2.  The second category constrains the ability to start a transfer based on space avail-

ability. It also requires that we limit the total number of simultaneous transfers 

between two locations, but this limit is typically based on the space require-

ment. Material-handling devices that fall into this category include conveyors, 

overhead trolleys, power-and-free systems, tow lines, and more. An escalator 

is a familiar example of this type of material-handling device. If a transfer is 

required, we fi rst have to obtain the required amount of available or unoccupied 

space on the device, at the location where we are waiting, before we can initiate 

our transfer. These devices require a signifi cantly different modeling capability, 

referred to in Arena as  Conveyors .  

  The Arena Transporter and Conveyor constructs allow us to model almost any type 

of material-handling system easily. However, there are a few material-handling devices 

that have unique requirements that can create a modeling challenge. Gantry or bridge 

cranes are classic examples of such devices. A single crane is easily modeled with the 

transporter constructs. If you have more than one crane on a single track, the method 

used to control how the cranes move is critical to modeling these devices accurately. 

Unfortunately, almost all systems that have multiple cranes are controlled by the crane 

operators who generally reside in the cabs located on the cranes. These operators can see 

and talk to one another, and their decisions are not necessarily predictable. In this case, it 

is easy to model the cranes; the diffi cult part is how to incorporate the human logic that 

prevents the cranes from colliding or gridlocking. 
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 Thus, we’ve defi ned three types of constrained entity transfers: resource constrained, 

transporters, and conveyors. We’ll fi rst briefl y discuss resource-constrained transfers in 

Section 8.2, then introduce transporters and conveyors by using them in our small man-

ufacturing system from Chapter 7 (Model 7-1) in Sections 8.3 and 8.4. 

8.2      Model 8-1: The Small Manufacturing System with Resource-Constrained 

Transfers 

  In our initial model (Model 7-1) of the small manufacturing system, we assumed that 

all transfer times were 2 minutes. If these transfer times depend on the availability of 

 material-handling devices, the actual times may be quite different from each other 

during operation of the system. Because of this, the earlier model might give us rea-

sonable estimates of the maximum potential system capacity; however, it would most 

likely not provide very accurate estimates on the part cycle times. The simplest method 

is to include resource-constrained transfers. So let’s assume that our transfer capacity is 

two, with the same 2-minute transfer time in every case. This means that a maximum of 

two transfers can occur at the same time. If other entities are ready for transfer, they will 

have to wait until one of the ongoing transfers is complete. 

 Using a resource to constrain the number of simultaneous entity transfers is a 

relatively easy addition to a model. We need to defi ne what we think of as a new kind 

of transferring resource, seize one unit of that resource before we initiate our route to 

leave a location, and release the resource when we arrive at the next station or loca-

tion. This is an ordinary Arena resource, but we’re thinking of it differently to model 

the transfers. 

 There are two different ways we could add this logic to our existing model. The most 

obvious (at least to us) is to insert a Seize module from the Advanced Process panel just 

prior to each of the existing Route modules (there are fi ve in the current model). Each 

Seize module would request one unit of the transfer resource; for example,  Transfer . 

We would also need to change the capacity of this new resource to  2  in the Resource 

data module. There is one additional concept that you should consider while making 

these modifi cations: “Should each Seize module have a separate queue?” If you use 

a single  shared queue  (see Section 5.4.5 and Model 5-1) for all of our newly inserted 

Seize modules, then the resource would be allocated based on a FIFO rule. If you spec-

ifi ed a different queue at each Seize module, you would be able to apply priorities to 

the selection process. For example, you might want to give the new arriving entities top 

priority. This would allow the newly arriving parts to be sent to their fi rst operation as 

soon as possible, in the hope that it would allow the processing of the part to start with 

a resulting reduction in the part cycle time. (If you spend much time thinking about this, 

you might conclude that this is faulty logic.) If all priorities are the same, you end up 

with the same FIFO rule as with the shared-queue approach. So it would appear that the 

two approaches are the same. This is not quite true if you plan to show the waiting parts 

in your animation (which we do). By using separate queues (the default) prior to each 

route, we can show the waiting parts easily on our animation. 

 Having seized the transfer resource prior to each part transfer via a route, we now 

need to release that resource once the part arrives at its destination. We accomplish 
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this by inserting a Release module after each Station module in the model. (The sin-

gle exception is  Order Release Station , which is used only to tell Arena the 

location of the newly arrived parts.) In each of these modules, we simply release the 

 Transfer  resource. 

 The second method is to replace the Route modules with Leave modules (from the 

Advanced Transfer panel) and the Station modules with Enter modules (also from the 

Advanced Transfer panel). The Leave module allows us to seize the resource and also to 

route the part in the same module. Similarly, the Enter module allows us to combine the 

features of the Station and Release modules. We’ll choose this second method because 

it allows us to introduce two new modules, and it facilitates the conversion of the model 

to include other transfer features. 

 The Leave module allows you to seize a transferring resource before leaving the 

station. Which resource to seize can be defi ned as a particular resource, a resource set, a 

specifi c member of a set, or a resource based on the evaluation of an expression. You can 

also specify a Priority in the Transfer Out logic that would allow you to control which 

entity would be given the transferring resource if more than one entity was waiting. The 

smaller the number, the higher the priority. For our system, you will only have to select 

the  Seize Resource  option and enter a transferring resource name. We’ll also have 

to enter the additional routing information. 

 Let’s start by replacing the  Start Sequence  Route module with the Leave 

module shown in   Display 8-1  . We’ll use the same module name,  Start Sequence , 

select the Transfer Out logic as  Seize Resource , and enter the Resource Name as 

 Transfer . Finally, we select  Route  as the Connect Type, enter  Transfer Time  

for the Move Time, select  Minutes , and select  By Sequence  as the Station Type. 

We’ve defaulted on the remaining boxes. Note that this gives us our individual queues 

for parts waiting for the  Transfer  resource. Notice also that with the selection of 

the Transfer Out resource logic, a queue ( Start Sequence.Queue ) was added to 

the module when the dialog box was accepted. At this point, you might want to move 

this queue to the proper position on your animation. 

 Now you can replace the remaining four Route modules with Leave modules. With 

the exception of the Name (we used the same name that was on the replaced Route 

module), the data entries are the same as shown in   Display 8-1  . 

 The Enter module allows you to release the transferring resource and provides the 

option of including an unload delay time. Let’s start with the replacement of the  Cell 1 
Station  Station module with an Enter module, as in   Display 8-2  . Delete the existing 

Station module and add the new Enter module. We’ll use the same Name,  Cell 1 
Station , and select  Cell 1  from the drop-down list for the station Name. In the 

logic section, you need only select  Release Resource  for the Transfer In entry and 

select the  Transfer  resource for the Resource Name to be released. 

 Replace the remaining four Station modules with Enter modules (but not the  Order 
Release Station ). As before, the data entries are the same as shown in   Display 8-2  , 

with the exception of the Name (we used the same name that was in the replaced Station 

module).  
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 Provided that you have already moved the new wait queues to the animation, we 

are almost ready to run our model. Before we do that, you should be aware that we 

have not yet defi ned the capacity of our constraining resource, which determines the 

maximum number of parts that could be in transit at one time. Although we have 

defi ned the existence of this resource, Arena defaults to a capacity of 1 for it. You’ll 

need to open the Resource data module (Basic Process panel) and change the capacity 

of the  Transfer  resource to  2 . The resulting model looks identical to Model 7-1 

because our replacements were one-for-one and we used the same names. We used the 

same animation, with the addition of the fi ve new wait queues. The positions of these 

queues are shown in   Figure 8-1  . 

 Name   Start Sequence  

 Logic 

 Transfer Out 

 Resource Name 

  Seize Resource  
  Transfer  

 Connect Type 

 Move Time 

 Units 

 Station Type 

  Route  
  Transfer Time  
  Minutes  
  By Sequence  

  Display 8-1.  The Leave Module for Resources   
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 Name   Cell 1 Station  

 Station Name   Cell 1  

 Logic 

 Transfer In 

 Resource Name 

  Release Resource  
  Transfer  

  Display 8-2.  The Enter Module for Resources   

  Figure 8-1.  The Revised Small Manufacturing System Animation   
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   If you run this model and watch the animation, you’ll quickly observe that there 

is seldom a part waiting for transfer. If you have doubts about the correctness of your 

model, change the capacity of the  Transfer  resource to  1  and watch the animation. If 

you compare the results of this model (with one  Transfer  resource unit) to the results 

of Model 7-1, you’ll see a slight increase in the part total time in system due to time 

spent waiting in a queue for the  Transfer  resource. The difference is between 2 and 

5 minutes, depending on part type. 

  8.3   The Small Manufacturing System with Transporters 

  Let’s now assume that all material transfers are accomplished with some type of Trans-

porter such as carts, hand trucks, or fork trucks (we’ll call them carts). Let’s further 

assume that there are two of these carts, each moving at 50 feet per minute, whether 

loaded or empty. Each cart can transport only one part at a time, and there are 0.25-minute 

load and unload times at the start and end of each transport. We’ll provide the distances 

between stations after we’ve added the carts to our model. 

 There are two types of Arena transporters: free-path and guided.  Free-path trans-
porters  can move freely through the system without encountering delays due to con-

gestion. The time to travel from one point to another depends only on the transporter 

velocity and the distance to be traveled.  Guided transporters  are restricted to moving 

within a predefi ned network. Their travel times depend on the vehicles’ speeds, the net-

work paths they follow, and potential congestion along those paths. The most common 

type of guided vehicle is an  automated guided vehicle  (AGV). The carts for our system 

fall into the free-path category. 

 The transfer of a part with a transporter requires three activities: Request a trans-

porter, Transport the part, and Free the transporter. The key words are Request Trans-

porter, Transport, and Free Transporter. The  Request Transporter  activity, which is 

analogous to seizing a resource, allocates an available transporter to the requesting en-

tity and moves the allocated transporter to the location of the entity, if it’s not already 

there. The  Transport  activity causes the transporter to move the entity to the destination 

station. This is analogous to a route, but in the case of a Transport, the transporter and 

entity move together. The  Free Transporter  activity frees the transporter for the next 

request, much like the action of releasing a resource. 

 If there are multiple transporters in the system, we face two issues regarding their 

assignment to entities. First, we might have the situation during the run where an 

entity requests a transporter and more than one is available. In this case, a  Transporter 
 Selection Rule  dictates which one of the transporter units will fulfi ll the request. In most 

modeled systems, the  Smallest Distance  rule makes sense—allocate the transporter unit 

that’s closest to the requesting entity. Other rules include Preferred Order, Cyclical, 

Random, Specifi c Member, and Largest Distance (though it takes a creative mind to 

imagine a case where it would be sensible). The second issue concerning transporter 

allocation arises when a transporter is freed and there are multiple entities waiting that 

have requested one. In this case, Arena applies a priority, allocating the transporter to the 

waiting entity that has the highest priority (lowest priority number). If there’s a priority 

tie among entities, the transporter will be allocated to the closest waiting entity. 
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 8.3.1  Model 8-2: The Modifi ed Model 8-1 for Transporters 

 To represent the carts in our small manufacturing system model, let’s start by defi ning 

the carts. We do this with the Transporter data module found on the Advanced Transfer 

panel. If you’re building the model along with us, we suggest that you start with a copy 

of Model 8-1, which we just completed. In this case, we need only enter the transporter 

Name, Number of Units, Type (Free Path vs. Guided), the Distance Set to which the trans-

porter will refer when moving and calculating time to move (discussed following), Veloc-

ity and time Units for this velocity, and information on the transporters’ Initial Position 

Status (  Display 8-3  ). We’ll accept the default for the Distance Set name (we’ll return to 

this concept later), time Units, Initial Position of the carts, and the Report Statistics. 

 We need to take care when defi ning the Velocity that we enter a quantity that’s ap-

propriate for the time and distance units we’re using in the model. We defaulted our time 

Units to Per Minute, the same units as for our stated velocity, but we’ll need to make 

sure that our distances are specifi ed in feet. 

 Having defi ned the transporter, we can now develop the picture that represents the 

cart. This is done in almost the same way as it was for an entity or resource. Clicking 

on the  Transporter  button (   ), found on the  Animate Transfer  toolbar, opens the Trans-

porter Picture Placement window. Let’s replace the default picture with a box (we used 

a fi ve-pixel line width) that is white, with a green line when the cart is idle and blue 

line when it’s busy. When the cart is carrying a part, Arena also needs to know where 

on the cart’s busy picture to position the part. This placement is similar to a seize point 

for a resource. In this case, it’s called a  Ride Point  and can be found under the Object 

menu of the Arena Picture Editor window when you’re editing the busy picture. Se-

lecting  Object  .  Ride Point  changes your pointer to crosshairs. Move this pointer to 

the center of the cart and click. The ride point, which appears as ⊗ on the busy cart, 

results in the entity being positioned so its reference point is aligned with this ride point. 

When you’ve fi nished creating your pictures, accept the changes to close the Transporter 

Picture Placement window. Your pointer becomes crosshairs that you should position 

somewhere near your animation and click. This action places the picture of your idle 

cart in the model window. You needn’t worry about where you place the transporter as 

it is only placed in the model window in case you need to re-edit it later. During a run, 

this picture will be hidden, and replicas of it will move across the animation for each 

individual transporter unit. 

 Name 

 Number of Units 

 Velocity 

  Cart  
  2  
  50  

  Display 8-3.  The Transporter Data Module 
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   To request a cart in the model logic, we’ll use the same modules that we did for 

seizing a resource—the Leave modules.   Display 8-4   shows the entries for the  Start 
Sequence  Leave module. The other Leave module entries are identical, except for their 

names. We’ve entered a  0.25 -minute delay to account for the load activity and selected 

the  Request Transporter  option from the lists for the Transfer Out type. The 

Selection Rule entry determines which transporter will be allocated if more than one is 

currently free: Cyclic, Random, Preferred Order, Specifi c Member, Largest Distance, or 

Smallest Distance. The Cyclic rule attempts to cycle through the transporters, thus lev-

eling their utilizations. The Preferred Order rule attempts always to select the available 

transporter with the lowest number. We’ve chosen the  Smallest Distance  rule, 

 Name 

 Delay 

 Units 

  Start Sequence  
  0.25  
  Minutes  

 Logic 

 Transfer Out 

 Transporter Name 

 Selection Rule 

 Save Attribute 

  Request Transporter  
  Cart  
  Smallest Distance  
  Cart #  

 Connect Type 

 Station Type 

  Transport  
  By Sequence  

  Display 8-4.  The Leave Module for Transporters 
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which results in an allocation of the cart closest to the requesting entity. A new Attribute, 

 Cart # , is defi ned and used to save the number of the cart that was allocated (more on 

this later). We also select the  Transport  option for the Connect Type. Note that when 

you make this selection, the Move Time fi eld disappears. The actual move time will be 

calculated from the distance traveled and the transporter velocity. 

 The Leave module performs four activities: allocate a transporter, move the empty 

transporter to the location of the requesting part, delay for the load time, and transport 

the part to its destination. There are alternate ways to model these activities. For exam-

ple, we could have used a Request – Delay – Transport module combination to perform 

the same activities. The Request module (Advanced Transfer panel) performs the fi rst 

two; the Delay module, the load activity; and the Transport module (Advanced Transfer 

panel), the last activity. Although this requires three modules, it does provide you with 

some additional modeling fl exibility. You can specify different travel velocities for both 

moving the empty transporter and transporting the part to its destination location. In 

fact, you could specify the transporting velocity as an expression of an attribute of the 

part; for example, part weight. You could also replace the Delay module with a Process 

module, which could require the availability of an operator or material handler (modeled 

as a resource) to load the part. Finally, you could replace the Request module with an 

Allocate – Move module combination. The Allocate module (Advanced Transfer panel) 

allocates a transporter, while the Move module (Advanced Transfer panel) moves the 

empty transporter to the requesting part location. Again, this would allow you to insert 

additional logic between these two activities if such logic were required to model your 

system accurately. 

 When the part arrives at its next location, it needs to free the cart so it can be used 

by other parts. To free the cart, we’ll use the same modules that we did for releasing 

the resource in the previous model—the Enter modules.   Display 8-5   shows the entries 

for the Enter  Cell 1 Station  module. The other Enter module entries are iden-

tical, except for their names. We’ve entered the unload Delay in minutes and selected 

the  Free Transporter  option for Transfer In. In our model, we also entered the 

Transporter Name,  Cart , and name of the attribute where we saved the transporter 

Unit Number,  Cart # . We could have left both of these last two fi elds empty. Arena 

keeps track of which cart was allocated to the entity and frees that cart. However, if 

you enter the Transporter Name and there is more than one transporter, you also need 

to enter the Unit Number. If you only entered the Transporter Name, Arena would 

always try to free the fi rst transporter. 

 As with the Leave module, the Enter module performs multiple activities: defi ning 

the station, delaying for the unload time, and freeing the transporter. Again there are 

alternate ways to model these functions. We could have used a Station – Delay – Free 

module combination to perform the same activities. The Station module defi nes the 

station; the Delay module, the unload activity; and the Free module (Advanced Transfer 

panel) frees the transporter. Separating these three activities would allow you to insert 

additional model logic, if required for your system. For example, you could replace the 

Delay module with a Process module, which could require the availability of an operator 

or material handler (modeled as a resource) to unload the part. 
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  So far we’ve defi ned the carts, and we’ve changed the model logic to Request, 

Transport, and Free the carts to model the logic required to transfer the parts through 

the system. The actual travel time depends on the transporter velocity, which is 

defi ned with the carts, and the distance of the transfer. When we defi ned the carts 

(  Display 8-3  ), we accepted a default reference to a Distance Set with the (default) 

name  Cart.Distance . We must now provide these distances so that Arena can 

reference them whenever a request or transport occurs. Let’s start by considering only 

the moves from one station to the next station made by the parts as they make their 

way through the system (see Table 7-1). This information is provided in   Table 8-1  . 

These table entries include a pair of stations, or locations, and the distance (in feet) 

between those stations. For example, the fi rst entry is for the move from  Order 
Release  to  Cell 1 , which is a distance of 37 feet. Blank entries in   Table 8-1   are 

for from-to pairs that don’t occur for part movements (see Table 7-1).  

 Name 

 Station Name 

  Cell 1 Station  
  Cell 1  

 Logic  

 Delay 

 Units 

 Transfer In 

 Transporter Name 

 Unit Number 

  0.25  
  Minutes  
  Free Transporter  
  Cart  
  Cart #  

  Display 8-5.  The Enter Module for Transporters 
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 We enter our distances using the Distance data module found on the Advanced 

Transfer panel. The 11 entries are shown in   Display 8-6  . You really only need to type the 

Distance since the fi rst two entries can be selected from the lists. You should also note 

that a direction is implied,  from   Order Release   to   Cell 1  in the case of the fi rst 

row in   Display 8-6  . As was the case with the Route module, we can defi ne the distance 

from  Cell 1  to  Order Release  if the distance or path is different (but no entity 

ever takes that route in this model, so it’s unnecessary). 

 Now let’s take a look at the animation component for these distances. We already 

defi ned the transporter picture, but we need to add our distances to the animation. If you’re 

building this model along with us, now would be a good time to delete all the route paths 

(but leave the stations), before we add our distances. Add your distances by using the 

 Distance  button (  ) found in the  Animate Transfer  toolbar. Click on this button and add 

the distances much as we added the route paths in Model 4-4. When you transport a part, 

the cart (and the part) will follow these lines (or distances) on the animation. When you 

click on the  Distance  button, a dialog box appears that allows us to select From and To sta-

tions, and modify the path characteristics, as in   Display 8-7  . In this case, we specifi ed that 

this distance animation was From the station,  Order Release , To the station  Cell 1 , 

and requested that neither the cart nor the part riding on the cart be rotated or fl ipped as 

they move along the path. These features are not necessary as our pictures are all squares 

and circles and, for easy identifi cation, we placed numbers on the parts (we’ll leave it as 

a challenge to you to fi gure out which numbers go with which part type). 

  Table 8-1.   The Part Transfer Distances  

  To
     Cell 1  Cell 2  Cell 3  Cell 4  Exit System 

  F
ro

m
  

 Order Release   37  74       

 Cell 1    45  92     

 Cell 2  139    55  147   

 Cell 3          45  155 

 Cell 4    92      118 

  Display 8-6.  The Part Transfer Distances   
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   As you add the 11 distances, you might also want to consider activating the  Grid 
 and  Snap to Grid  commands from the  View  toolbar. We suggest that you add these 

distances in the order in which they appear in the spreadsheet for the Distance data 

module. This will avoid confusion and reduce the possibility of missing one. If you 

fi nd that your distances are not where you want them, they are easy to edit. Click on 

the distance line to select it. Pay close attention to the shape of the pointer during this 

process. When you highlight the line, the handles (points) will appear on the line. When 

you move your pointer directly over a point, it will change to crosshairs; click and hold 

to drag the point. If the pointer is still an arrow and you click and hold, all the interior 

points on the line will be moved. If you accidentally do this, don’t forget that you can 

use the  Undo  button. If you fi nd you need additional points, or you have too many, 

simply  double-click on the distance line to open the dialog box and change the number 

of points. When you add or subtract distance-line points, they’re always added or sub-

tracted at the destination-station end of the line. 

 If you ran the model and watched the animation now, you would see the transporter 

moving parts through the system, but once the transporter was freed, it would disappear 

from the animation until it started moving again. This is because we have not told Arena 

where the transporters should be when they are idle. We do this by adding parking 

areas to our animation. Clicking the  Parking  button (   ) from the  Animate Transfer 
 toolbar will open the Parking dialog box shown in   Display 8-8  . Accepting the dialog 

will change your pointer to crosshairs. Position your pointer near the lower left-hand 

corner of a Station on the animation and click. As you move your pointer, you should 

see a bounding outline stretching from the station to your current pointer position. If you 

don’t have this, click again until you’re successful. Now position your pointer where 

you want the transporter to sit when it becomes idle, and click; move your pointer to 

a position where a second idle transporter would sit and double-click. This should exit 

you from the parking area activity and revert your pointer to its normal arrow. If you 

accidentally create too many (or too few) parking areas, you can double-click one of the 

parking areas you added to reopen the Parking Area dialog box. Use the  Points  button 

to edit the number of points or parking areas. We want two because it’s possible to have 

as many as two carts at the same location at the same time. Repeat this action for each 

station in your model. 

  Display 8-7.  The Distance Dialog Box   
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  The fi nal positioning for the Order Release and Cell 1 stations should look some-

thing like   Figure 8-2  . 

 You can run your model and animation at this point, but if you do, very quickly the 

execution will pause and the Arena Error/Warning window will appear. A warning will 

be displayed telling you that a distance between a pair of stations has not been spec-

ifi ed, forcing Arena to assume a distance of 0, and it will recommend that you fi x the 

problem. (Arena makes the rash assumption that you forgot to enter the value.) You can 

close this window and continue the run, but the message will reappear. The problem is 

most likely caused by a cart being freed at the  Exit System ,  Cell 3 , or  Cell 4  

locations when the cart is being requested at the  Order Release  location. Arena 

attempts to transfer the cart to  Order Release  and fails to fi nd a distance; thus, 

we have a problem. In fact, there are more problems than just this. If a cart is freed at 

 Cell 1  or  Cell 2  and is requested at  Order Release , it will travel backward 

rather than clockwise as we desire. To avoid this, we’ll add distances for all possible 

loaded and empty transfers that might occur. 

  Display 8-8.  The Parking Area Dialog Box   

  Figure 8-2.  Place the Distance and Parking Animation Objects   
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   In general, if you have  n  locations, there are  n ( n  – 1) possible distances. You can roughly 

think of this as an  n  by  n  matrix with zeros along the diagonal. This assumes that all moves 

are possible and that the distance between any two locations could depend on the direction 

of travel. For our example, we have six locations, or 30 possible distances (in our model, 

distance  does  depend on direction of travel). If the distances are not direction-dependent, 

you only have half this number of distances. Also, there are often many moves that will 

never occur. In our example, the empty cart may be required to move from the  Exit 
System  location to the  Order Release  location, but never in the opposite direction. 

(Think about it!) The data contained in   Table 8-1   were for  loaded  cart moves only. If we 

enumerate all possible  empty  cart moves and eliminate any duplicates from the fi rst set, we 

have the additional distances given in   Table 8-2  . The shaded entries are from the earlier 

distances in   Table 8-1  . Altogether, there are 25 possible moves. 

 If the number of distances becomes excessive, we suggest that you consider switching 

to guided transporters, which use a network rather than individual pairs of distances. For a 

review of the concepts of guided transporters, we refer you to Chapter 5 of  “Getting Started 

With Arena”  (found via  Help . Arena Product Manuals ) or Chapter 9, “Advanced Man-

ufacturing Features,” of Pegden, Shannon, and Sadowski (1995). You could also search in 

the Arena online Help system for topics related to guided transporters, as well as look at 

the example in  Transporter Guided Transporter with Spurs.doe  in the 

Transporter folder that’s in the Smarts folder, which is in turn in the Arena folder. 

 The fi nal animation will look very similar to our fi rst animation, but when you run 

the model, you’ll see the carts moving around and the parts moving with the carts. 

It’s still possible for one cart to appear on top of another since we’re using free-path 

transporters. However, with only two carts in the system, it should occur much less 

frequently than in the previous model that used unconstrained routes. A view of the 

running animation at approximately time 487 is shown in   Figure 8-3  . 

 8.3.2    Model 8-3: Refi ning the Animation for Transporters 

 If you ran your model (or ours) and watched the animation closely, you might have no-

ticed that the parts had a tendency to disappear while they were waiting to be picked up 

by a cart. This was only temporary as they suddenly reappeared on the cart just before 

it pulled away from the pickup point. If you noticed this, you might have questioned the 

  Table 8-2.   Possible Cart Moves, Including Empty Moves  

   To 

     Order Release  Cell 1  Cell 2  Cell 3  Cell 4  Exit System 

  F
ro

m
            

 Order Release    37  74       

 Cell 1  155    45  92  129   

 Cell 2  118  139    55  147 

 Cell 3  71  92  129    45  155 

 Cell 4  34  55  92  139    118 

 Exit System  100  121  158  37  74   
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correctness of the model. It turns out that the model is accurate, and this disappearing 

act is due only to a fl aw in the animation. When a new part arrives, or a part completes 

its processing at a cell, it enters a request queue to wait its turn to request a cart. Once 

a cart is allocated, the entity is no longer in the request queue during the cart’s travel to 

the entity location. (We don’t need to go into detail about where the entity really is at 

this time.) The simplest way to animate this activity is with the Storage feature, used in 

Models 5-2 and 5-3. An Arena storage is a place for the entity to reside while it’s waiting 

for the transporter to move to its location so that it will show on the animation. Each 

time an entity enters a storage, a storage variable is incremented by 1, and when the 

entity exits the storage, this variable is decremented by 1. This also allows us to obtain 

statistics on the number in the storage. 

 Unfortunately, the storage option is not available with the modules found in the 

Advanced Transfer panel. However, it is available if we use modules from the Blocks 

panel (the spreadsheet view is not available with the modules from the Blocks or Elements 

panels). We’ll briefl y show you how to make the necessary changes to our model. Let’s 

start with Model 8-2 and save it as Model 8-3. The fi rst thing you should do is delete all 

fi ve Leave modules from the model and replace them with the Queue – Request – Delay – 

Transport module combination shown in   Figure 8-4  . (The modules shown in   Figure 8-4   

  Figure 8-3.  The Small Manufacturing System with Transporters   

  Figure 8-4.  The Queue-Request-Delay-Transport Modules: Blocks Panel   
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replace the  Start Sequence  Leave module.) All four of these modules were taken 

from the Blocks panel.  

  Next you’ll need to select the Queue data module (Basic Process panel) and add the 

fi ve queues where parts wait for a cart:  Start Sequence.Queue ,  Route from 
Cell 1.Queue ,  Route from Cell 2.Queue ,  Route from Cell 3.Queue , 

and  Route from Cell 4.Queue . At this point, you might be thinking, “We al-

ready added these queues!” You’re correct, but they were added in the Leave modules 

that we just deleted. Once you’ve completed that task, you’ll need to add ten storages to 

the Storage data module (Advanced Process panel), as shown in   Display 8-9  . 

 As was the case with the missing queues, our attribute  Cart #  had also been  defi ned 

in the deleted Leave modules. So let’s start by adding this attribute to our   Assign 
Part Type and Sequence  Assign module. The additional assignment is shown 

in   Display 8-10  . We’ve used this Assign module only to defi ne the attribute so the value 

assignment has no meaning. We could have also used the Attributes module from the 

Elements panel to add this attribute. 

 Finally, we can edit our four-module combination shown in   Figure 8-4  . We’ll show 

you the data entries for the arriving parts and let you poke through the model to fi gure 

out the entries for the four cells. Let’s start with the Queue data module where we only 

need to enter the queue name, shown in   Display 8-11  . This is the queue in which parts 

will wait until they have been allocated a cart. We could have omitted this queue and 

Arena would have used an internal queue to hold the waiting entities. This would have 

 Type 

 Name 

 Value 

  Attribute  
  Cart #  
  0  

  Display 8-10.  Assign Module to Defi ne the Cart # Attribute 

 Queue ID   Start Sequence.Queue  

  Display 8-11.  Defi ning Start Sequence.Queue: The Queue Data Module   

  Display 8-9.  The Storage Data Module   
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resulted in an accurate model, but we would not have been able to animate the queue or 

review statistics on parts waiting for transfer. 

    The Queue Block module is followed by a Request Block module. This module 

allocates an idle Cart and moves it to the part location. It also allows us to specify a 

storage location, which we can use to animate the part during the time the cart is moved 

to its location. The data for the Storage ID and Entity Location entries can be selected 

from the list in   Display 8-12  . The Transporter Unit entry requires further explanation. 

First, you might have noticed that the box is shaded. This indicates that this is a re-

quired fi eld for this module. There are three different forms that can be used to specify 

the transporter. The fi rst form is  Transporter ID(Number) , where  Transporter ID  is the 

transporter name; in this case,  Cart . The  Number  is the unit number of the transporter 

being requested. In our example, there are two carts, so the unit number would be 1 or 

2. Thus, we are, in effect, requesting a specifi c cart if we use this form. You should also 

be aware that if you omit the  Number , Arena defaults it to 1. The second form is  Trans-
porter ID(TSR) , where  TSR  is the transporter selection rule. For our example, this would 

be the shortest distance rule, SDS (which stands for Smallest Distance to Station). When 

using the Request Block module, you must use the Arena designation for these rules. 

The last form is  Transporter ID(TSR,AttributeID) , where  AttributeID  is the name of the 

 Storage ID 

 Transporter Unit 

 Entity Location 

  Order Release Wait  
  Cart(SDS,Cart #)  
  Order Release  

  Display 8-12.  The Request Block Module 
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attribute where Arena should store the unit number of the transporter selected. In our ex-

ample, this would be the attribute  Cart # . Thus, our entry is  Cart(SDS,Cart #) . 

  When the Cart arrives at the pickup station, the part will exit the Request Block mod-

ule and enter the Delay Block module, as illustrated in   Display 8-13  . We have entered 

the load delay,  0.25 , and a second Storage ID,  Order Release Pickup . We’ll 

discuss why we added this second storage when we modify the animation. 

 Once the part has been loaded onto the Cart, it is sent to the following Transport 

Block module, seen in   Display 8-14  . There we entered the cart to be used,  Cart(Cart #) , 

and the destination,  SEQ  (the shortened Arena name for Sequence). In this example, 

we’ve intentionally kept track of the Cart that was allocated so we could make sure that 

the correct cart was freed upon arrival at the destination station. 

 The remaining modules were fi lled with the same entries as these, except for the 

Entity Location and the Storage ID values (which are specifi c to the location). 

 Now let’s modify our animation. You should fi rst check to see if your wait queues 

have disappeared (ours did). The reason they disappeared is that they were part of the 

Leave modules that we replaced. We had simply moved the queues that came with our 

Leave modules to the proper place on the animation. Had you used the  Queue  button 

(   ) found on the  Animate  toolbar to add your queues, they would still be there. If not, 

go ahead and use the  Queue  button to add the fi ve wait queues. 

  Now we need to add our ten storages. We’ll use the  Storage  button ( ) from the 

 Animate Transfer  toolbar to make these additions. We placed the wait queues so there 

 Duration 

 Storage ID 

  0.25  
  Order Release Pickup  

  Display 8-13.  The Delay Block Module  
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was room between the pickup point and the queue for us to place the pickup storages. We 

need two positions for each pickup, because there might be as many as two carts being 

moved to a location at the same time. We then placed the pickup storage directly over the 

parking position where the cart will sit during its loading. We used only one storage for the 

pickup position, even though it’s possible to have two parts being picked up at the same 

station at the same time. If this were the case, the second cart and part would sit on top of 

the fi rst one. If you want to see exactly how we did this, we suggest you take a look at the 

fi le  Model 08-03.doe . If you run your (or our) simulation, you’ll see the part initially 

in the wait queue. As soon as a cart becomes available and is allocated to the part, the part 

picture will move to the pickup storage and remain there until the cart arrives at the station. 

At that time, the part will appear on the transporter and remain there until the load delay is 

complete. The part will then move off with the cart. 

 There is a simpler way to create an animation where the parts don’t disappear 

during the move and delay activity. This method would use a Store – Request – Delay – 

Unstore – Transport module combination in place of the Leave modules. The Request 

and Transport modules are from the Advanced Transfer panel, while the Store and Un-

store modules are found on the Advanced Process panel. These last two modules allow 

you to increment and decrement storages. If you used this method, you would not ani-

mate the wait queue. All parts would be placed into a single storage while they waited 

for a cart to be allocated, for the cart to be moved to the station, and for the delay for the 

load time. We’ve chosen not to provide the details, but feel free to try it on your own. 

 Transporter Unit 

 Destination 

  Cart(Cart #)  
  SEQ  

  Display 8-14.  The Transport Block Module   

kel01315_ch08_345-378.indd   364kel01315_ch08_345-378.indd   364 17/12/13   2:07 PM17/12/13   2:07 PM



Entity Transfer    365

 Before you run your model, you should use the  Run   . Setup  command and request 

that the transporter statistics be collected (the Project Parameters tab). If you watch 

the animation, you’d rarely see a queue of parts waiting for the carts, so you would not 

expect any major differences between this run and the original run (Model 8-1). The 

carts are in use only about 60% of the time. Again, we caution you against assuming 

there are no differences between these two systems. The run time is relatively short, 

and we may still be in a transient start-up state (if we’re interested in steady-state 

performance), not to mention the effects of statistical variation that can cloud the 

comparison. 

 If we change the cart velocity to 25 (half the original speed) and run the model, 

we’ll see that there is not a huge difference in the results between the runs. If you think 

about this, it actually makes sense. The average distance traveled per cart movement is 

less than 100 feet, and when the carts become busier, they’re less likely to travel empty 

(sometimes called  deadheading ). Remember that if a cart is freed and there are several 

requests, the cart will take the closest part. So the average part movement time is only 

about 2 minutes. Also, there was a load and unload time of 0.25 minute, which remains 

unchanged (remember the slide rule?). We might suggest that you experiment with this 

model by changing the cart velocity, the load and unload times, the transporter selection 

rule, and the number of carts to see how the system performs. Of course, you ought to 

make an appropriate number of replications and perform the correct statistical compar-

isons, as described in Chapter 6. 

 8.4     Conveyors 

  Having incorporated carts into our system for material movement, let’s now replace the 

carts with a conveyor system. We’ll keep the system fairly simple and concentrate on the 

modeling techniques. Let’s assume we want a loop conveyor that will follow the main 

path of the aisle in the same clockwise direction we required for the transporters. There 

will be conveyor entrance and exit points for parts at each of the six locations in the 

system. The conveyor will move at a speed of 20 feet per minute. The travel distances, 

in feet, are given in   Figure 8-5  . We’ll also assume that there is still a requirement for the 

0.25-minute load and unload activity. Let’s further assume that each part is 4 feet per 

side, and we want 6 feet of conveyor space during transit to provide clearance on the 

corners and to avoid any possible damage. 

 Arena conveyors operate on the concept that each entity to be conveyed must wait 

until suffi cient space on the conveyor is available at its location before it can gain 

access to the conveyor. An Arena conveyor consists of cells of equal length that are 

constantly moving. When an entity tries to get on the conveyor, it must wait until a 

defi ned number of unoccupied consecutive cells are available at that point. Again, 

it may help to think in terms of a narrow escalator in an airport, with each step cor-

responding to a cell and different people requiring different numbers of steps. For 

example, a traveler with several bags may require two or three steps, whereas a person 

with no bags may require only one step. When you look at an escalator, the cell size 

is rather obvious. However, if you consider a belt or roller conveyor, the cell size is 

not at all obvious.  
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 To make the conveyor features as fl exible as possible, Arena allows you to defi ne 

the cell size; that is, to divide the conveyor length into a series of consecutive, equal-

sized cells. Each cell can hold no more than one entity. This creates a rather interesting 

dilemma because you would like the cells to be as small as possible to obtain the great-

est modeling accuracy, yet you would also like the cells to be as large as possible to 

obtain the greatest computational effi ciency. Let’s use a simple example to illustrate this 

dilemma. You have a conveyor that is 100 feet long and you want to convey parts that 

are 2 feet long. Because we’ve expressed our lengths in feet, your fi rst response might 

be to set your cell size to 1 foot. This means that your conveyor has 100 cells and each 

part requires two cells for conveyance. We could have just as easily set the cell size at 

2 feet (50 cells), or 1 inch (1,200 cells). With today’s computers, why should we worry 

about whether we have 50 or 1,200 cells? There should be a negligible impact on the 

computation speed of the model, right? However, we’ve seen models that have included 

over 5  miles  of conveyors, and there is certainly a concern about the speed of the model. 

The difference between a cell size of 1 inch or 100 feet would have a signifi cant impact 

on the time to run the model. 

 So why not always make your cells as large as possible? Well, when an entity at-

tempts to gain access to a conveyor, it’s only allowed on the conveyor when the end of 

the previous cell, or the start of the next cell, is lined up with the entity location. In our 

escalator analogy, this corresponds to waiting for the next step to appear at the  load  area. 

Consider the situation where an entity has just arrived at an empty conveyor and tries 

to get on. You have specifi ed a cell size of 100 feet, and the end of the last cell has just 

passed that location, say by 1/2 inch. That entity would have to wait for the end of the 

current cell to arrive, in 99 feet 11 1/2 inches. If you had specifi ed the cell size at 1 inch, 

the wait would only have been for 1/2 inch of conveyor space to pass by. 

  Figure 8-5.  Conveyor Lengths   

 21 ft39 ft24 ft

21 ft 39 ft 24 ft
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 The basic message is that you need to consider the impact of cell size with respect 

to the specifi c application you’re modeling. If the conveyor is not highly utilized, or 

the potential slight delay in timing has no impact on the system’s performance, use a 

large cell size. If any of these are critical to the system performance, use a small cell 

size. There are two constraints to consider when making this decision. The entity size, 

expressed in number of cells, must be an integer so you cannot have an entity requiring 

1.5 cells; you would have to use one or two cells as the entity size. Also, the conveyor 

segments (the length of a conveyor section from one location to another) must consist 

of an integral number of cells. So, if your conveyor were 100 feet long, you could not 

use a cell size of three. 

 Before we start adding conveyors to our model, let’s go over a few more concepts 

that we hope will be helpful when you try to build your own models with conveyors. As 

with Resources and Transporters, Conveyors have several key words: Access, Convey, 

and Exit. To transfer an entity with Arena conveyors, you must fi rst  Access  space on 

the conveyor, then  Convey  the entity to its destination, and fi nally  Exit  the conveyor (to 

free up the space). For representing the physical layout, an Arena conveyor consists of 

a series of segments that are linked together to form the entire conveyor. Each segment 

starts and ends at an Arena station. You can only link these segments to form a line or 

loop conveyor. Thus, a single conveyor cannot have a diverge point that results in a 

conveyor splitting into two or more downstream lines, or a converge point where two or 

more upstream lines join. However, you can defi ne multiple conveyors for these types of 

systems. For example, in a diverging system, you would convey the entity to the diverge 

point, Access space on the appropriate next conveyor, Exit the current conveyor, and 

Convey the entity to its next destination. For our small manufacturing system, we’ll use 

a single loop conveyor. 

 Arena has two types of conveyors:  nonaccumulating  and  accumulating . Both types 

of conveyors travel in only a single direction, and you can’t reverse them. These con-

veyors function very much as their name would imply. Examples of a nonaccumulating 

conveyor would be a bucket or belt conveyor or our escalator. The spacing between 

entities traveling on these types of conveyors never changes, unless one entity exits and 

re-accesses space. Because of this constraint, nonaccumulating conveyors operate in a 

unique manner. When an entity accesses space on this type of conveyor, the entire con-

veyor actually stops moving or is disengaged. When the entity is conveyed, the conveyor 

is re-engaged while the entity travels to its destination. The conveyor is stopped when 

the entity reaches its destination, the entity exits, and the conveyor is then restarted. If 

there is no elapsed time between the Access and Convey, or when the entity reaches its 

destination and then exits, then it’s as if the conveyor was never stopped. However, if 

there is a delay, such as for a load or unload activity of positive duration (which is the 

case in our system), you’ll see the conveyor temporarily stop while the load or unload 

occurs. 

 Accumulating conveyors differ in that they never stop moving. If an entity is stopped 

on an accumulating conveyor, all other entities on that conveyor will continue on their 

way. However, the stopped entity blocks any other entities from arriving at that location 

so that the arriving entities accumulate behind the blocking entity. When the blocking 
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entity exits the conveyor or conveys on its way, the accumulated entities are also free to 

move on to their destinations. However, depending on the spacing requirements speci-

fi ed in the model, they may not all start moving at the same time. You might think of cars 

accumulated or backed up on a freeway. When the cars are stopped, they tend to be fairly 

close together (mostly to prevent some inconsiderate driver from sneaking in ahead of 

them). When the blockage is removed, the cars start moving one at a time to allow for 

more space between them. We’ll describe these data requirements later in this chapter. 

 8.4.1  Model 8-4: The Small Manufacturing System with Nonaccumulating 

Convenyors  

 We’re now ready to incorporate nonaccumulating conveyors into our system. If you’re 

building this model along with us (after all, that was the idea), you might want to con-

sider making another change. After including conveyors and running our model, we’re 

likely to fi nd that the load and unload times are so small relative to the other times that 

it’s hard to see if the conveyor is working properly. (Actually, we’ve already run the 

model and know that this will happen.) Also, you may want to do some experimentation 

to see what impact these activities have on system performance. So we suggest that 

you defi ne two new Variables,  Load Time  and  Unload Time , and set the initial 

values for both to  0.25  minute. Then replace the current constant times with the proper 

variable name; this will allow you to make global changes for these times in one place. 

 Let’s start by taking Model 8-1 and again deleting the route paths. Defi ne the conveyor 

using the Conveyor data module from the Advanced Transfer panel as in   Display 8-15  . 

 Two of these entries, Cell Size and Max Cells Occupied, require some discussion. 

Based on the results from the previous model, it’s fairly clear that there is not a lot of 

traffi c in our system. Also, if there’s a slight delay before a part can Access space on 

the conveyor, the only impact would be to increase the part cycle time slightly. So we 

decided to make the conveyor cells as large as possible. We chose a cell size of 3 feet, 

because this will result in an integer number of cells for each of the conveyor lengths 

(actually, we cheated a little bit on these lengths to make this work). Since we require 

6 feet of space for each part, there is a maximum of two cells occupied by any part. This 

information is required by Arena to ensure that it has suffi cient storage space to keep 

 Name 

 Segment Name 

 Type 

 Velocity 

 Cell Size 

 Max Cells Occupied 

  Loop Conveyor  
  Loop Conveyor.Segment  
  Nonaccumulating  
  20  
  3  
  2  

  Display 8-15.  The Conveyor Module   
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track of an entity when it arrives at the end of the conveyor. Since our conveyor is a loop 

and has no end, it really has no impact for this model. But, in general, you need to enter 

the largest number of cells that any entity can occupy during transit.  

 Incorporating conveyors into the model is similar to including transporters, so we 

won’t go into a lot of detail. We need to change every Leave and Enter module, much 

like we did for transporters. The entries for the  Start Sequence  Leave module are 

shown in   Display 8-16  . We’ve included only the changes that were required starting 

with Model 8-1. You might note that each part requires two cells (with a size of 3 feet 

each) to access the conveyor, and that we’ve used the variable  Load Time  that we 

suggested earlier.  

 Name 

 Delay 

 Units 

  Start Sequence  
  Load Time  
  Minutes  

 Logic 

 Transfer Out 

 Conveyor Name 

 # of Cells 

  Access Conveyor  
  Loop Conveyor  
  2  

 Connect Type   Convey  

  Display 8-16.  The Leave Module for Conveyors   
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  The entries for the  Cell 1 Station  Enter module are shown in   Display 8-17  . 

 We’re now ready to place the conveyor segments on our animation. As was the case 

with the Distances used in our last model, we’ll fi rst need to defi ne the segment data 

required for both the model and animation. We defi ne these segments using the Segment 

data module found on the Advanced Transfer panel.   Display 8-18   shows the fi rst entry 

for the main spreadsheet view of the Segment data module. We arbitrarily started our 

 Loop Conveyor  at the  Order Release  station.   

 Name 

 Station Type 

 Station Name 

  Cell 1 Station  
  Station  
  Cell 1  

 Logic  

 Delay 

 Units 

 Transfer In 

 Conveyor Name 

  Unload Time  
  Minutes  
  Exit Conveyor  
  Loop Conveyor  

  Display 8-17.   The Enter Module for Conveyors   

 Name 

 Beginning Station 

  Loop Conveyor.Segment  
  Order Release  

  Display 8-18.   The Segment Data Module   
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   Display 8-19   shows the spreadsheet data entries for the six segments. Notice that 

the Length is expressed in terms of the actual length, not the number of cells, for that 

segment. These lengths are taken directly from the values provided in   Figure 8-5  . 

 We’re now ready to add our segments to the animation. You’ll fi rst need to move 

each station symbol to the center of the main loop directly in front of where the part 

will enter or exit the conveyor. To add the segments, we use the  Segment  button ( ) 

found on the  Animate Transfer  toolbar. We add segments much like we added distances, 

except in this model, we need to add only six segments. The Segment dialog box from 

 Order Release  to  Cell 1  is shown in   Display 8-20  , where we’ve simply accepted 

the defaults. 

 For this model, you need to place only six segments, as shown in   Figure 8-6  . As 

you’re placing your segments, you may fi nd it necessary to reposition your station sym-

bols to get the segments to stay in the center of the loop (we did!).  

  Display 8-19.  The Segment Data Module   

  Display 8-20.  The Segment Dialog Box   

  Figure 8-6.  The Conveyor Segments   
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  You’re now almost ready to run your animated model. You should fi rst use the 

 Run   . Setup  command and request that the conveyor statistics be collected (the Project 

Parameters tab). If you run the model to completion, you’ll notice that two new statistics 

for the conveyor are included in the report. The fi rst statistic tells us that the conveyor 

was blocked, or stopped, about 17.65% of the time. Although this may initially appear 

to be a large value, you must realize that each time a part leaves or enters a station, it 

has a load or unload delay. During this time, the conveyor is stopped or blocked. If you 

consider the number of moves and the number of parts that have gone through the sys-

tem, this value seems plausible. If you’re still not convinced, the numbers are all there 

for you to approximate what this value should be. 

 The second statistic tells us that the conveyor was utilized only about 6.6% of the 

time. This is not the amount of time that a part was on the conveyor, but the average 

amount of space occupied by parts on the conveyor. This one is easy to check out. You 

can determine the total length (168 feet) of the conveyor using the lengths provided in 

  Figure 8-5  . Knowing that each cell is 3 feet, we can determine the number of cells (56). 

Each part requires two cells, meaning that the conveyor can only hold a maximum of 

28 parts at any point in time. Thus, if we multiply the 28-part conveyor capacity by the 

average utilization (0.066), we know that on the average there were about 1.85 parts on 

the conveyor. If you watch the animation, this would appear to be correct. 

 If you compare the system times for the parts to those from Model 8-1, you’ll fi nd 

that they are slightly higher here. Given the conveyor blocking and speed, this also ap-

pears to be reasonable. 

 If you can’t see the conveyor stop during the load and unload activity (even if you 

set the animation speed factor at its lowest setting), change these variables to 2 or 3 min-

utes. The stopping should be quite obvious with these new, higher values. 

 There are also several alternate ways to change variable values during a simulation. 

If you want to make such changes frequently during a simulation run, you might want to 

consider using the Arena interface for Visual Basic® for Applications (VBA) (see Chap-

ter 10). The second method is to use the Arena command-driven Run Controller. Begin 

running your model, and after it has run for a while (we waited until about time 458), use 

the  Run   . Pause  command or the  Pause  button (  ) on the  Standard  toolbar to suspend 

the execution of the model temporarily. Then use  Run   . Run Control  .  Command  or 

the  Command  button (  ) on the  Run Interaction  toolbar to open the command window. 

This text window will have the current simulation time displayed, followed by “.” as 

a prompt. Arena is ready for you to enter your commands. The pull-down at the top 

provides a list of valid commands, and once you fi nd the one you want you can click 

on the Insert Command button just to the right to put that command after the active 

. prompt; or you can just type the command in yourself (it’s all case-insensitive). 

We used the  SHOW  command to view the current value (0.25) of the variable  Load 
Time  and then the  ASSIGN  command to change that value to 2, and then another SHOW 

command to confi rm our change—see   Figure 8-7  . We then repeated these two steps for 

the Unload Time. Now close this window and use the  Run   . Go  menu option or the 

 Go  button (  ) on the  Standard  toolbar to run the simulation with the new variable values 

from the current time. 
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 If you watch the animation, in a very short period of time, you’ll see that the con-

veyor movement is quite jerky, and it quickly fi lls up with over ten parts. You can stop 

the simulation run at any time to change these values. It’s worth noting that the changes 

you make in the Run Controller are temporary. They aren’t saved in the model, and the 

next time you run your model, it will use the original values for these variables.  

 Although viewing the animation and making these types of changes as the model is 

running are excellent ways to verify your model, you should not change the model con-

ditions during a run when you fi nally are using the model for the purposes of evaluation 

or statistical analysis. This can give you misleading performance values on your results 

and will be essentially impossible to replicate. 

 8.4.2   Model 8-5: The Small Manufacturing System with Accumulating Conveyors 

 Changing our conveyor model so the conveyor is accumulating is easy. We started by 

using the  File . Save As  command to save a copy of Model 8-4 as Model 8-5. We need 

to make only two minor changes in the Conveyor data module. Change the conveyor 

Type to  Accumulating , and enter an Accumulation Length of  4 , as in   Display 8-21  . 

 Type 

 Accumulation Length 

  Accumulating  
  4  

  Display 8-21.  The Accumulating Conveyor Data Module Dialog Box   

  Figure 8-7.  Changing Variables with the Run Controller   
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Adding the Accumulation Length allows the accumulated parts to require only 4 feet of 

space on the conveyor. Note that this value, which applies only when an entity is stopped 

on the conveyor, does not need to be an integer number of cells. When the blockage is 

removed, the parts will automatically re-space to the 6 feet, or two cells, required for 

transit on the conveyor.  

 Having made these changes, run your model and you should note that very little accu-

mulation occurs. You can confi rm this by looking at the conveyor statistics on the summary 

report. The average accumulation is less than 1 foot and the average utilization is less than 

6%. To increase the amount of accumulation, which is a good idea for verifi cation, simply 

change the load and unload times to 4 or 5 minutes. The effect should be quite visible. 

 You can see that these results are similar to those from the nonaccumulating system 

except for the part system times, which are much higher. We strongly suspect that this is 

due to the short run time and the resulting statistical variation for the model. We’ll leave 

it to the interested reader to confi rm (or refute) this suspicion. 

      8.5   Summary and Forecast 

 Entity movement is an important part of most simulation models. This chapter has illus-

trated several of Arena’s facilities for modeling such movement under different circum-

stances to allow for valid modeling. 

 This is our last general “tutorial” chapter on modeling with Arena. We have gone into 

some depth on the detailed lower-level modeling capabilities, as well as correspondingly 

detailed topics like debugging and fi ne-tuned animation. While we’ve mentioned how you 

can access and blend in the SIMAN simulation language, we’ve by no means covered it; 

see Pegden, Shannon, and Sadowski (1995) for the complete treatment of SIMAN. At this 

point, you should be armed with a formidable arsenal of modeling tools to allow you to 

attack many systems, choosing constructs from various levels as appropriate. 

 There are, however, more modeling constructs and, frankly, “tricks” that you might 

fi nd handy. These we take up next in Chapter 9. 

 8.6   Exercises 

    8-1  Change your model for Exercise 7-4 to include fork trucks to transport the parts be-

tween stations. Assume that there are two fork trucks that each travel at 85 feet per minute. 

Loading or unloading a part by the fork truck requires 0.25 minute. The distance between 

stations is given (in feet) here; note that the distances are, in general, directional: 

   To 

     Arrive  WS A  WS B  WS C  Exit System 

  F
ro

m
          

  Arrive       0  100  100  200  300 

  WS A   100      0  150  100  225 

  WS B   100  150      0  100  200 

  WS C   250  100  100      0  100 

  Exit   350  250  225  100      0 
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   Run your simulation for 100,000 minutes (you may want to turn off the animation 

via the  Run   . Run Control   . Batch Run (No Animation)  command after confi rming that 

things are working properly), and record the part cycle times. Assume that fork trucks 

remain at the station where they unloaded the last part if no other request is pending. If 

both fork trucks are available, assume that the closest one is selected.  

   8-2  Change your model for Exercise 7-4 to use nonaccumulating conveyors to 

transfer the parts between stations. Assume that there is a single conveyor that starts 

at the arrive area and continues to the exit area: Arrive – WS A – WS B – WS C – Exit. 

Assume that the distances between all adjacent stations on the conveyor are 100 feet. 

Further assume that the cells of the conveyor are 2 feet and that each part requires 

4 feet of conveyor space. Load and unload times are each 0.25 minute. The conveyor 

speed is 20 feet per minute. Run your simulation for 100,000 minutes and record the 

part cycle times.  

   8-3  Change your model for Exercise 5-2 to use a fork truck (45 feet/minute) for trans-

portation of parts in the system. Assume that the parts arrive at an incoming dock and 

exit at a second dock. Assume that the distance between the incoming dock and Machine 

2 is 200 feet; all other distances are 100 feet. Animate your solution. Run your simula-

tion for 20,000 minutes to observe the average number in the machine queues and the 

average part cycle time.  

   8-4  Using the model from Exercise 8-3, set the number of transporters to four and 

make three runs using transporter selection rules of Smallest Distance, Largest Dis-

tance, and Cyclical. Run your simulation for 20,000 minutes and compare the results 

using average cycle time.  

   8-5  Modify Model 4-3 to include the use of a single truck to transfer parts from the 

two prep areas to the sealer. Assume that the distance between any pair of the three sta-

tions is 100 feet and that the truck travels at a rate of 70 feet per minute. Animate your 

solution.  

   8-6  Modify Model 4-3 to include the use of two conveyors to transfer parts from 

the two prep areas to the sealer. Both conveyors are 100 feet long and are made up 

of 20 cells of 5 feet each. The conveyor velocity is 35 feet per minute. Animate your 

solution.  

   8-7  A prototype of a new airport bag-screening system is currently being designed, as 

in the following fi gure. Bags arrive to the system with interarrival times of EXPO(0.25) 

(all times are in minutes), and are loaded on a load conveyor (75 feet long) and conveyed 

to an initial scan area. At the initial scan area, the bags are dropped into a chute to wait 

for the initial scan, which is of duration TRIA(0.1, 0.25, 0.35). Based on the results of 

the scan, accepted bags (81%) are loaded on an out conveyor (40 feet long) and con-

veyed to exit the system, whereas rejected bags are loaded on a secondary conveyor (20 

feet long) and conveyed to a secondary scan area. At the secondary scan area, the bags 

are dropped into a chute to wait for a visual inspection, which takes TRIA(0.6,1.2,1.4). 

After the inspection, they are sent through a secondary scanner that is 10 feet long. This 
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scan takes 1.2 minutes and only one bag can be in the scanner at a time. At the end of 

the secondary scanner, the bags are examined by another inspector, taking EXPO(0.4). 

Based on the results of this secondary inspection, 10% of the bags are sent to a reject 

area for further inspection, accepted bags are loaded on a third conveyor (20 feet long) 

and conveyed to exit the system. All conveyors are nonaccumulating with a velocity of 

40 feet per minute. Each bag requires one foot of space on each of the conveyors. De-

velop a model of this system and run it for 2,000 minutes. Use a resource-constrained 

route to model the second scanner. 

Visual
inspection

Secondary
scan

Chute

Chute

Initial
scan

Arriving bags

Exit system

Rejected bags

Exit system

       The current design calls for a chute capacity of 20 at the initial scan area and a 

total capacity of 25 at the secondary scan area, not including the bag undergoing the 

visual inspection. What percent of the time would you expect this capacity be exceeded? 

(Work this exercise with infi nite chute capacities, and just watch the percent of time the 

chute capacities contemplated above would be exceeded if they were put into effect.) 

HINT: Add two time-persistent statistics to collect this information using logical expres-

sions that evaluate to zero if the number of bags is less than the capacity, and to one if 

the capacity is exceeded.  

   8-8  Develop a model of a cross-dock system that groups and transfers material for fur-

ther shipment. This facility has fi ve incoming docks and three outgoing docks. Trucks 

arrive at each of the incoming docks with loads of material on pallets. The interarrival 

time is UNIF(30, 60) between truck arrivals on each incoming dock (all times are in 

minutes). Each truck will have a number of pallets drawn from a UNIF(10, 22) distri-

bution (round to the nearest integer) that need to be transferred to one of the outgoing 

docks. Assume an equal probability of any incoming pallet going to any of the three 

outgoing docks. When trucks arrive, an automatic unloading device unloads the pallets 

at the incoming dock. Assume that this requires no time, so the pallets are immediately 

ready for transfer. The pallets are transferred by one of fi ve fork trucks to the outgoing 

docks, which are located on the other side of the building. The distance between any 

incoming dock and any outgoing dock is 80 feet, and the fork trucks travel at 75 feet 

per minute. The time for a fork truck to load a pallet is UNIF(0.3, 0.4) and to unload 

a pallet is UNIF(0.2, 0.4). The performance measure of interest is the average time a 

pallet spends in the system. (HINT: If you place all fork trucks at the outgoing docks for 

their initial position, you don’t have to add distances between the incoming docks.) Set 
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the run length to be 720 minutes and regard this as a terminating simulation. Develop a 

model for each of the following two cases, and animate your models: 

    (a)  Assume the priority is such that you want to transfer the pallets that have been 

waiting the longest. (HINT: Enter the name of the attribute with the arrival time 

in the priority box of the Transfer Out dialog box.)  

   (b)  Because we want to be assured that an incoming truck can always unload, 

modify your model from part ( a ) above so that the pick-up priority is placed on 

the incoming dock with the most pallets. (HINT: Develop an expression using 

NQ for the priority fi eld.)  

    Which of the two options would appear to be “best”? Be sure to justify your con-

clusions with a valid statistical analysis. Furthermore, for each option, study the effect 

of having more fork trucks (up to seven); again, be aware of the gap in credibility that 

results from an inadequate statistical analysis.  

   8-9  A military ground force maintains a forward position and a rear depot 22 miles 

away to supply it. There is a single commodity that is consumed at the forward position 

and resupplied to it from the rear supply depot; the commodity could be anything (am-

munition, fuel, food, etc.). Initially, there are 28 units of supply at the forward position 

(the commodity is in integer-valued units). Demands occur through time at the forward 

position, with inter-demand times being exponentially distributed with mean 1 hour; 

the fi rst demand occurs not at time 0, but after one of these inter-demand times after 

time zero. When a demand occurs at the forward position it is for 1, 2, 3, …, 10 units 

of the commodity with respective probabilities 0.05, 0.07, 0.11, 0.04, 0.14, 0.13, 0.25, 

0.03, 0.13, and 0.05. After the demand occurs, if the forward supply is still more than 

 s , nothing is done about replenishing;  s  is a fi xed parameter of the model, and assume 

that it has a value of 15. However, if the forward supply after the demand occurs is  s  or 

below, a reorder message is sent to the rear supply depot immediately after the time of 

the demand. (By the way, the supply level at the forward position could become nega-

tive, representing a backorder that will be satisfi ed later by future resupply.) The amount 

ordered is 

         

   where  S  is a fi xed constant, equal to 45. The rear depot has a single clerk that pro-

cesses orders in TRIA(30, 45, 90) minutes, and orders form a FIFO queue for this 

clerk. Next, a truck is requested to transport the order to the forward position; there are 

two trucks, each of which can carry only one order at a time regardless of the order’s 

size, and orders form a FIFO queue for a truck. It takes between 10 and 20 minutes 

(uniformly distributed) to load an order onto a truck. The trucks travel at 35 miles per 

hour in each direction. When the truck arrives to the forward position, it takes between 

current 

forward 

supply

total amount of resupply on order 

from previous orders but not yet 

delivered to the forward posisition

S 2                  2(       ) (                                 )
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5 and 10 minutes (uniformly distributed) to unload the truck, then the resupply occurs 

by incrementing the forward supply by the size of this order, and the amount on order 

is decremented by the size of this order. The simulation is to run for 30 round-the-

clock days. Make a plot of the forward supply as a function of time, similar to that of 

Model 5-4, with red versus black curves; also animate truck movements, queues, and 

resources. Get the average of the forward-supply level. Also, collect the percent of 

time that there is nothing physically on hand at the forward supply; that is, when the 

forward-supply level is zero or negative. Make 25 replications, and comment on the 

results. (HINTS: Depending on how you do this, you made need a “fudge” factor con-

sisting of a small delay to break a time tie properly between two simultaneous events 

involved in placing an order. Also, you may want to look at the Separate module in the 

Basic Process panel, which can “clone” an entity.)      
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     CHAPTER 9 

 A Sampler of Further Modeling 
Issues and Techniques 

  In Chapters 4 through 8, we gave you a reasonably comprehensive tour of how to model 

different kinds of systems by means of a sequence of progressively more complicated 

examples. We chose these examples with several goals in mind, including reality and 

importance (in our experience) of the application, illustration of various modeling is-

sues, and indication of how you can get Arena to represent things the way you want—in 

many cases, fairly easily and quickly. Armed with these skills, you’ll be able to build a 

rich variety of valid and effective simulation models. 

 But no reasonable set of digestible examples could possibly fathom all the nooks and 

crannies of the kinds of modeling issues (and, yes, tricks) that people sometimes need 

to consider, much less all of the features of Arena. And don’t worry, we’re not going to 

attempt that in this chapter either. But we would like to point out some of what we con-

sider to be the more important additional modeling issues and techniques (and tricks) 

and tell you how to get Arena to perform them for you. 

 We’ll do this by constructing more examples, but these will be more focused 

toward specifi c modeling techniques and Arena features, so will be smaller in scope. 

In Section 9.1, we’ll refi ne the conveyor models we developed in Chapter 8; in 

Section 9.2, we’ll discuss a few more modeling refi nements to the transporters from 

Chapter 8. In service systems, especially those involving humans standing around in 

line, there is often consideration given to customer  reneging  (in other words, jumping 

out of line at some point); this is taken up in Section 9.3, along with the concept of 

balking. Section 9.4 goes into methods (beyond the queues you’ve already seen) for 

holding entities at some point, as well as batching them together with the possibility 

of taking the batch apart later. In Section 9.5, we’ll discuss how to represent a  tightly 
coupled  system in which entities have to be allocated resources downstream from 

their present position before they can move on; this is called  overlapping resources  

from the entity viewpoint. Finally, Section 9.6 briefl y mentions a few other specifi c 

topics, including guided transporters, parallel queues, and the possibility of complex 

decision logic and looping. 

 This chapter is structured differently from the earlier ones in that the sections are 

not necessarily meant to be read through in sequence. Rather, it is intended to provide a 

sampler of modeling techniques and Arena features that we’ve found useful in a variety 

of applied projects. 

    9.1 Modeling Conveyors Using the Advanced Transfer Panel 

  In this section, we indicate some refi nements to the basic conveyor models described in 

Section 8.4. 
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  9.1.1 Model 9-1: Finite Buffers at Stations 

 In Section 8.4, we introduced you to Arena conveyors. In Section 8.4.1, we devel-

oped Model 8-4 for our small manufacturing system using nonaccumulating con-

veyors as the method for transferring parts within our system. In developing that 

model, we assumed that there was an infi nite buffer in front of each cell for the 

storage of parts waiting to be processed. This assumption allowed us to use the 

conveyor capabilities found in the Enter and Leave modules. We did, however, need 

to add the Conveyor and Segment data modules from the Advanced Transfer panel 

to defi ne our conveyor. 

 Now let’s modify that assumption and assume that there is limited space at 

Cells 1 and 2 for the storage of unprocessed parts. In fact, let’s assume that there is 

room for only one unprocessed part at each cell. For this type of model, we need to 

defi ne what happens to a part that arrives at Cell 1 or 2 and fi nds that there is already 

a part occupying the limited buffer space. Assuming that we could determine a way 

to limit the buffer using the Enter module (it can’t be done), it would be tempting 

simply to let the arriving part wait until the part already in the buffer is moved to the 

machine in that cell. Of course, this could cause a signifi cant logjam at these cells. 

Not only would parts not be able to enter the cell, but parts on their way to other cells 

would queue up behind them, creating yet another problem. It turns out that processed 

parts trying to leave the cell need to access space on the conveyor before they can be 

conveyed to their next destination station. Yes, the space they’re trying to access is the 

same space occupied by the part waiting to enter the cell. This would create what’s 

sometimes called a  deadlock  or  gridlock . 

 So let’s use the following strategy for parts arriving at Cell 1 or 2. If there is not a 

part currently waiting in the buffer for the cell, the arriving part is allowed to enter the 

buffer. Otherwise, the arriving part is conveyed around the loop conveyor back to the 

same point to try a second (or third, or fourth, etc.) time. To do this, we need to alter 

our model so we can better control when the part exits the conveyor. The Advanced 

Transfer panel provides fi ve new modules for conveyors (Access, Convey, Exit, Start, 

and Stop) that allow us to model conveyor activities at a more detailed level. The Exit 

module causes an entity to exit a conveyor, releasing the conveyor cell(s) it occupied. 

This is essentially what happens when you select the Exit Conveyor option in the 

Transfer In dialog box of the Enter module. The Access module causes an entity to re-

quest or access space on a conveyor at a specifi c location, normally its current station 

location. The Convey module is used to convey the entity to its destination once it has 

successfully accessed the required conveyor space. You are essentially requesting that 

Arena Access and Convey an entity when you select the Access Conveyor option in 

the Transfer Out dialog box of the Leave modules. The Start and Stop modules cause 

the conveyor to start and stop its movement, respectively. These two modules can be 

used to develop your own failure logic or generally control when the conveyor is idle 

or running. 

 To develop our new model, we will start with Model 8-4 and replace the Enter and 

Leave modules for Cell 1 with our new modules, as shown in   Figure 9-1  . 
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  In the Enter module we are replacing, we defi ned the station, with the name  Cell 1 , 

and also exited the conveyor. The defi nition of the station is critical because Arena must 

know where to send an entity that is being conveyed to  Cell 1 . Therefore, we started 

our replacement set of modules with a Station module from the Advanced Transfer 

panel with the specifi c purpose of defi ning the entry point to the station  Cell 1 . We 

also could have used our Enter module for this purpose, but we wanted to show you the 

Station module. The Station module simply defi nes the logical entry for entities that are 

transferred to that station. In our case, the only value provided in the dialog box is the 

station name, shown in   Display 9-1  . 

 When an entity, or part, arrives at station  Cell 1 , it must check the status of the wait-

ing queue before it can determine its fate. We cause this to happen by sending the entity 

to the Decide module where we check to see if the number of entities in queue  Cell 1 
Process.Queue  is equal to 0, shown in   Display 9-2  . This is the same queue name used 

in Model 8-4, and it was defi ned in the Process module. If the queue is currently occupied 

by another entity, the arriving entity will take the False branch of our module. 

 In this case, we do not want to exit the conveyor; we instead want to leave the part 

on the loop conveyor and convey it around the loop and back to the same station. We do 

this by sending the entity to the Convey module, in   Display 9-3  , where we convey the 

entity around the loop and back to Cell 1.    

 Name 

 Station Name 

Cell 1 Station
  Cell 1  

  Display 9-1.  The Station Module 

 Name 

 Type 

 If 

 Value 

  Space in Cell 1  
  2-way by Condition  
  Expression  
  NQ(Cell 1 Process.Queue) == 0  

  Display 9-2.  The Decide Module 

  Figure 9-1.  New Model Logic for Cell 1   
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 At this point, you might be thinking, “But the entity is already at station Cell 1!” 

Arena assumes that your intention is to convey the entity and it will send the entity on its 

way. Of course, it also assumes that it is physically possible to convey the entity to the 

specifi ed destination, which is the case. Thus, the Convey module will convey the entity 

on the designated conveyor to the specifi ed destination. If the entity is not already on the 

conveyor, Arena will respond with a terminating error message. 

 If the queue at Cell 1 is unoccupied, the entity will satisfy the condition and be 

sent to the connected Delay module, in   Display 9-4  , where the entity is delayed in the 

 Delay for Cell 1 Unload Time  Delay module for the unload time. It is then 

sent to the Exit module, which removes the entity from the conveyor and releases the 

conveyor cells it occupied, shown in   Display 9-5  . 

 The Entity is sent from the Exit module to the Process module that represents the 

actual machining operation, shown in   Figure 9-1  . Once the part fi nishes its operation, it 

exits the Process module and is sent to the following Access module to get space on the 

conveyor, as shown in   Display 9-6  . 

 The Access module allocates cells on the conveyor so the entity can then be con-

veyed to its next destination; it does not actually convey the entity. Thus, if you do not 

immediately cause the entity to be conveyed, it will cause the entire conveyor to stop 

until the entity is conveyed. 

 Name 

 Delay Time 

 Units 

  Delay for Cell 1 Unload Time  
  Unload Time  
  Minutes  

  Display 9-4.  The Unload-Delay Module 

 Name 

 Conveyor Name 

 Station Name 

  Convey Back to Cell 1  
  Loop Conveyor  
  Cell 1  

  Display 9-3.  The Convey Module 
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   In the event that the required cells were not available, the entity would reside in the 

queue ( Access Conveyor at Cell 1.Queue ) until space was accessible. This 

provides a way for the entity to show up in the animation if it has to wait for available 

conveyor space. 

 Having accessed conveyor space, the entity delays for the  Load Time , then is sent 

to the Convey module where it is conveyed according to its specifi ed sequence. This 

completes the replacement modules for Cell 1 in Model 8-4. 

 You also need to perform the same set of operations for Cell 2. You can simply re-

peat these steps or make a copy of these modules and edit them individually. We chose 

to  replace only the Enter module, retaining the Leave module, for Cell 2, as shown in 

  Figure 9-2  . We’ll assume that by now you’re comfortable making the required changes.  

 Name 

 Conveyor Name 

 # of Cells 

  Exit at Cell 1  
  Loop Conveyor  
  2  

  Display 9-5.  The Exit Module 

 Name 

 Conveyor Name 

 # of Cells 

  Access Conveyor at Cell 1  
  Loop Conveyor  
  2  

  Display 9-6.  The Access Module 
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  When you delete the Enter and Leave modules, you may fi nd that part of your ani-

mation has been deleted too. This is because you received a “free” animated queue with 

the Leave module. When you are editing or changing a model like this, it is frequently 

easier to animate the new features using the constructs from the  Animate  toolbar, so 

when we developed our model, we deleted the added animation features that were pro-

vided by the new modules and animated these new features ourselves. In our model, we 

deleted the queue and the storage for Cell 1. We simply added the new access queue. 

When we ran our new model, we could see parts being blocked from entry to Cell 1 

starting at about time 275. 

   9.1.2 Model 9-2: Parts Stay on Conveyor During Processing 

 Now that you have conquered these new conveyor modules, let’s examine another 

quick problem. Start with the accumulating conveyor model, Model 8-5, presented in 

Section 8.4.2. Assume that we’re trying a new layout that requires that the operations 

at Cell 2 be performed with the part remaining on the conveyor. Specifi cally, parts 

conveyed to Cell 2 do not exit the conveyor, but the part stops at Cell 2, the actual op-

eration is performed while the part sits on the conveyor, and the part is then conveyed 

to its next destination. Since the conveyor is accumulating, other parts on the conveyor 

will continue to move unless they are blocked by the part being operated on at Cell 2. 

 We could implement this new twist by replacing the current Enter and Leave mod-

ules for Cell 2 with a set of modules similar to what we did for Model 9-1. However, 

since the entities arriving at Cell 2 do not exit or access the conveyor, there is a far eas-

ier solution. We’ll modify the Transfer In option on the Enter module by selecting the 

 None  option. In this case, the entity will not exit the conveyor. This will cause the entity 

to reside on the conveyor while the operation defi ned by the server takes place. How-

ever, if this is the only change we make, an error will occur when the entity attempts 

to leave Cell 2. In the Transfer Out dialog box of the Leave module, we had previously 

selected the  Access Conveyor  option that caused the entity to try to access space on 

the conveyor, and since the entity would remain on the conveyor, Arena would become 

confused and terminate with a runtime error. This is easily fi xed by selecting the  None  

option in the Transfer Out dialog box in the Logic section of the Leave module. These 

are the only model changes required. 

 You can test your new model logic by watching the animation. We suggest you 

fast-forward the simulation to about time 700 before you begin to watch the animation. 

At this point in the simulation, the effects of these changes become quite apparent. 

  Figure 9-2.  New Model Logic for Cell 2   
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     9.2 More on Transporters 

  In Chapter 8, we presented the concepts for modeling Arena transporters and conveyors 

using the functionality available in the high-level modules found in the Basic Process 

panel. In Section 9.1, we further expanded that functionality for conveyors by using 

modules from the Advanced Transfer panel to modify and refi ne the models presented in 

Chapter 8. The same types of capabilities also exist for transporters. Although we’re not 

going to develop a complete model using these modules, we’ll provide brief coverage 

of their functions and show the sequence of modules required to model several different 

situations. This should be suffi cient to allow you to use these constructs successfully in 

your own models. Remember that online help is always available. 

 Let’s start with the basic capabilities covered in Section 8.3. The fundamental trans-

porter constructs are available in the Transfer In and Transfer Out section of the Enter 

and Leave modules. Consider the process of requesting a transporter and the subsequent 

transfer of the transporter and entity to its next station or location. The Request and 

Transport modules found in the Advanced Transfer panel also provide this capability. 

 The Request module provides the fi rst part of the Transfer Out section of the Leave 

module and is almost identical to it. You gain the ability to override the default Velocity, 

but you lose the ability to specify a Load Time. However, a Load Time can be included 

by then directing the entity to a Delay module. The Request module actually performs 

two activities: allocation of a transporter to the entity and moving the empty transporter 

to the location of that entity, if the transporter is not already there. The Transport mod-

ule performs the next part of the Transfer Out activity by initiating the transfer of the 

transporter and entity to its next location. Now let’s consider a modeling situation where 

it would be desirable to separate these two functions. Assume that when the transporter 

arrives at the entity location there is a loading operation that requires the assistance of 

an operator. If we want to model the operator explicitly, we’ll need these new modules. 

The module sequence (Request – Process – Transport) required to model this situation 

is shown in   Figure 9-3  . 

 You can also separate the two activities of the Request module by using the Allocate 

and Move modules. The Allocate module allocates a transporter to the entity, but leaves 

the transporter at its current location. The Move module allows the entity that has been 

allocated a transporter to Move the empty transporter anywhere in the model. When 

using the Request module, the transporter is automatically moved to the entity location. 

Consider the situation where the empty transporter must fi rst pick up from a staging area 

a fi xture required to transport the entity. In this case, we need to allocate the transporter, 

send it to the staging area, pick up the fi xture, and fi nally send it to the entity’s location. 

The module sequence (Allocate – Move – Process – Move) required to model these 

activities is shown in   Figure 9-4  . 

  Figure 9-3.  Operator-Assisted Transporter Load   
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   Of course, you could include all kinds of embellishments for this activity. Suppose 

that only a portion of the entities need this fi xture. We could easily include a Decide 

module between them to check for this condition, as shown in   Figure 9-5  . 

 Our two examples using the Allocate and Move modules both resulted in the trans-

porter being moved to the location of the entity. Now let’s assume that whenever your 

transporter is freed, you want it to be roving around the system looking for work. You 

have a predefi ned path that the transporter should follow. This path will be similar to 

a sequence of stations, except it will form a closed loop. Each time the unallocated 

transporter reaches the next station on its path, it will check to see if there is a current 

request from somewhere. If there is no request, the transporter continues on its mindless 

journey. If there is a request, the transporter proceeds immediately to the location of that 

request. 

 To model this, you will create a single entity (let’s call it the loop entity) that  attempts 

to allocate the transporter with a very low priority (high number for the priority). Once 

allocated, the empty transporter is moved to the next station on its path. Upon arrival at 

this station, the transporter is freed so it can respond to any current request. The loop 

entity is directed to the initial Allocate module where it once again tries to allocate the 

transporter. This assumes that any current request for the transporter has a higher pri-

ority than the loop entity. Remember that the default priority is 1, with the lowest value 

having the highest priority. 

 Once a transporter arrives at its destination, it must be freed. The Free module pro-

vides this function. You only need to enter the transporter name in the dialog box, and in 

some cases, the unit number. Two additional modules, Halt and Activate, allow you to 

control the number of active or available transporters. The Halt module causes a single 

transporter unit to become inactive or unavailable to be allocated. The Activate module 

causes an inactive transporter to become active or available. 

    9.3 Entity Reneging 

   9.3.1 Entity Balking and Reneging 

 Entity  balking  occurs when an arriving entity or customer does not join the queue be-

cause there is no room, but goes away or goes someplace else. Entity  reneging  occurs 

when an entity or customer joins a queue on arrival but later decides to jump out and 

  Figure 9-4.  Fixture Required for Entity Transfer   

  Figure 9-5.  Checking for Fixture Requirement   

kel01315_ch09_379-422.indd   386kel01315_ch09_379-422.indd   386 05/12/13   3:21 PM05/12/13   3:21 PM



A Sampler of Further Modeling Issues and Techniques     387

leave, probably regretting not having balked in the fi rst place. Let’s consider the more 

complex case where it’s possible to have both customer balking and customer reneging. 

First, let’s defi ne the various ways that balking and reneging can occur.  

 In most service systems, there is a fi nite system capacity based on the amount of 

waiting space. When all the space is occupied, a customer will not be able to enter the 

system and will be balked. This is the simplest form of entity balking. Unfortunately, 

most systems where balking can occur are much more complicated. Consider a simple 

service line where, theoretically, the queue or waiting-line capacity is infi nite. In most 

cases, there is some fi nite capacity based on space, but a service line could possibly exit 

a building and wind around the block (say the waiting line for World Series or Super 

Bowl tickets). In these cases, there is no concrete capacity limit, but the customers’ de-

cisions to enter the line or balk from the system are based on their own evaluation of the 

situation. Thus, balking point or capacity is often entity-dependent. One customer may 

approach a long service line, decide not to wait, and balk from the system—yet the next 

customer may enter the line. 

 Entity reneging is an even more complicated issue in terms of both modeling and 

representation in software. Each entity or customer entering a line has a different tol-

erance threshold with respect to how long to wait before leaving the line. The decision 

often depends on how much each customer wants the service being provided. Some 

customers won’t renege regardless of the wait time. Others may wait for a period of 

time and then leave the line because they realize that they won’t get served in time to 

meet their needs. Often the customers’ decisions to remain or leave the line are based on 

both the amount of time they have already spent in the line as well as their current place 

in the line. A customer may enter a line and decide to wait for 10 minutes; if he is not 

serviced by that time, he plans to leave the line. However, after 10 minutes have elapsed, 

the customer may choose to stay if he is the next in line for service. 

 Line switching, or  jockeying , is an even more complicated form of reneging that often 

occurs in supermarket checkout lines, fast-food restaurants, and banks that do not em-

ploy a single waiting line. A customer selects the line to enter and later re- evaluates that 

decision based on current line lengths. After all, we invariably enter the  slowest-moving 

line, and if we switch lines, the line we left speeds up and the line we enter slows down. 

We won’t cover the logic for jockeying. 

   9.3.2 Model 9-3: A Service Model with Balking and Reneging 

 Let’s look at balking and reneging in the context of a simple model. Customers arrive 

with EXPO(5) interarrival times at a service system with a single server—service time 

is EXPO(4.25). All times are in minutes. Although the waiting line has an infi nite ca-

pacity, each arriving customer views the current length of the line and compares it to his 

 tolerance  for waiting. If the number in the line is greater than his tolerance, he’ll balk 

away from the system. We’ll represent the customer-balking tolerance by generating a 

sample from a triangular distribution, TRIA(3, 6, 15). Since our generated sample is 

from a continuous distribution, it will not be an integer. We could use one of the Arena 

math functions to convert it to an integer, but we’re only interested if the number in the 

waiting line is greater than the generated tolerance. 
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 There are two ways to model the balking activity. Let’s assume that we create our 

arrivals, generate our tolerance value from the triangular distribution, and assign this 

value to an entity attribute. We could send our arrival to a Decide module and compare 

our sample value to the current number in the waiting line, using the Arena variable NQ. 

If the tolerance is less than or equal to the current number in queue, we balk the arrival 

from the system. Otherwise, we enter the waiting line. An alternative method is to assign 

our tolerance to a variable and also use this same variable for the server queue capacity. 

We then send our arrival directly to the server. If the current number in the queue is 

greater than or equal to the tolerance, which is equal to the queue capacity, the arrival 

will be balked automatically. Using the second method, it’s possible for the queue ca-

pacity to be assigned a value less than the current number in queue. This method works 

because Arena checks only the queue-capacity value when a new entity tries to enter 

the queue. Thus, the current entities remain safely in the queue, regardless of the new 

queue-capacity value. We will use this second method when we develop our model. 

 To represent reneging, assume that arriving customers who decide not to balk are 

willing to wait only a limited period of time before they renege from the queue. We will 

generate this renege tolerance time from an ERLA(15, 2) distribution (Erlang), which 

has a mean of 30, and assign it to an entity attribute in an Assign module. Modeling the 

mechanics of the reneging activity can be a challenge. If we allow the arrival to enter the 

queue and the renege time is reached, we need to be able to fi nd the entity and remove 

it from the queue. At this point in our problem description, you might want to consider 

alternative methods to handle this. For example, we could defi ne a variable that keeps 

track of when the server will next be available. We generate the entity-processing time 

fi rst and assign it to an attribute in an Assign module. We then send our entity to the De-

cide module where we check for balking. If the entity is not balked, we then check (in the 

same Decide module) to see if the entity will begin service before its renege time. If not, 

we renege the entity. Otherwise, we send the entity to an Assign module where we update 

our variable that tells us when the server will become available, then send the entity to 

the queue. This model logic may seem complicated, but can be summarized as follows:

 Define Available Time = Time in the future when server will be available    

Create arrival 
   Assign Service Time 
   Assign the Time in the future the activity would renege, 
        which is equal   to Tolerance Time +  TNOW 
   Assign Balk Limit 

   Decide 
   If Balk Limit > Number in queue 

    Balk entity 
   If Renege Time < Available Time 

    Renege entity 
   Else 

    Assign Available Time = MX(Available Time , TNOW) + Service Time 
   Send entity to queue  

 Note the use of the “maximum” math function, MX. 
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 There is one problem with this logic that can be fi xed easily—our number in queue 

is not accurate because it won’t contain any entities that have not yet reneged. We can 

fi x this by sending our reneged entities to a Delay module where they are delayed by 

the renege time; we also specify a Storage (for example, Renege_Customers). Now we 

change our fi rst Decide statement as follows:

 If Balk Limit > Number in queue + NSTO(Renege_Customers)  

 We have to be careful about our statistics, but this approach will capture the reneging 

process accurately and avoid our having to alter the queue. 

 Let’s add one last caveat before we develop our model. Assume that the actual deci-

sion of whether to renege is based not only on the renege time, but also on the position 

of the customer in the queue. For example, customers may have reached their renege 

tolerance limit, but if they’re now at the front of the waiting line, they may just wait 

for service (that is, renege on reneging). Let’s call this position in the queue where the 

customer will elect to stay, even if the customer renege time has elapsed, the customer 

 stay zone . Thus, if the customer stay zone is 3 and the renege time for the customer has 

expired, the customer will stay in line anyway if they are one of the next three customers 

to be serviced. 

 We’ll generate this position number from a Poisson distribution, POIS(0.75). We’ve 

used the Poisson distribution because it provides a reasonable approximation of this pro-

cess and also returns an integer value. For those of you with no access to Poisson tables 

(you mean you actually sold your statistics book?), it is approximately equivalent to the 

following discrete empirical distribution: DISC(0.472, 0, 0.827, 1, 0.959, 2, 0.993, 3, 

0.999, 4, 1.0, 5). See Appendix C for more detail on this distribution. 

 This new decision process means that the preceding logic is no longer valid. We 

must now place the arriving customer in the waiting line and evaluate the reneging 

after the renege time has elapsed. However, if we actually go ahead and place the cus-

tomer in the queue, there’s no mechanism to detect that the renege time has elapsed. 

To overcome this problem, we’ll make a duplicate of each entity and delay it by the 

renege time. The original entity, which represents the actual customer, will be sent to 

the service queue. After the renege-time delay, we’ll have the duplicate entity check 

the queue position of the original entity. If the customer is no longer in the service 

queue (that is, the customer was served), we’ll just dispose of the duplicate entity. If 

the customer is still in the queue, we’ll check to see if that customer will renege. If 

the current queue position is within the customer stay zone, we’ll just dispose of the 

duplicate entity. Otherwise, we’ll have the duplicate entity remove the original entity 

from the service queue and dispose of both itself and the original entity. This model 

logic is outlined as follows: 
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 Create Arrivals 
    Assign Renege Time = ERLA(15,2)  
    Assign arrival time: Enter System = TNOW 
    Assign Stay Zone Number = POIS(0.75) 
    Assign Balking Tolerance = TRIA(3,6,15) 

   Create Duplicate entity 
    Original entity to server queue 

       If Balk from queue 
          Count balk 
          Dispose 

       Delay for Service Time = EXPO(4.25) 
       Tally system time 
       Dispose 

      Duplicate entity 
       Delay by Renege Time 
       Search queue for position of original entity 
       If No original entity 

          Dispose 
       If Queue position <= Stay Zone Number 

          Dispose 
       Remove original entity from queue and Dispose 

          Count Renege customer 
          Dispose  

 To implement this logic, we obviously need a few new features, such as the ability 

to search a queue and remove an entity from a queue. As you would suspect, Arena 

modules that perform these functions can be found in the Advanced Process and Blocks 

panels. Our completed Arena model (Model 9-3) is shown in   Figure 9-6  . 

 We start our model with a Create module that creates arriving customers, which are 

then sent to the following Assign module where the values we’ll need later are assigned, 

as in   Display 9-7  . 

  Figure 9-6.  The Service Model Logic   
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 Name 

 Type 

 Attribute Name 

 New Value 

  Assign Attributes  
  Attribute  
  Enter System  
  TNOW  

 Type 

 Attribute Name 

 New Value 

  Attribute  
  Renege Time  
  ERLA(15,2)  

 Type 

 Variable Name 

 New Value 

  Variable  
  Server Queue Capacity  
  TRIA(3, 6, 15)  

 Type 

 Attribute Name 

 New Value 

  Attribute  
  Stay Zone  
  POIS(0.75)  

 Type 

 Variable Name 

 New Value 

  Variable  
  Total Customers  
  Total Customers + 1  

 Type 

 Attribute Name 

 New Value 

  Attribute  
  Customer #  
  Total Customers  

  Display 9-7.  The Assign Module 

   We send the new arrivals to a Separate module. This module allows us to make 

duplicates (clones) of the entering entity. The original entity leaves the module by the 

exit point located at the right of the module. The duplicated entities leave the module by 

the exit points below the module. In this case, we only need to enter the name for our 

module, accepting the remaining data as the defaults. 

 The duplicates are exact replicas of the original entity (in terms of attributes and their 

values) and can be created in any quantity. If you make more than one duplicate of an en-

tity, you can regard them as a batch of entities that will all be sent out of the same (bottom) 

exit. Note that if you enter a value  n  for # of duplicates,  n  1 1 entities actually leave the 

module— n  duplicates from the bottom connection point and 1 original from the top. 

 The original entity (customer) is sent to a Queue – Seize module sequence (from the 

Blocks panel) where it tries to enter queue  Server Queue  to wait for the server. To 

implement this method, we need to be able to set the capacity of the queue that precedes 

the Seize to the variable  Server Queue Capacity . We accomplish this by attaching 

the Blocks panel to our model and selecting and placing a Queue module. (Note that when 

you click on the Queue module, there is no associated spreadsheet view; this will be the 

case for any modules from the Blocks or Elements panels.) Before you open the Queue 

dialog box, you might notice that there is a single exit point at the right of the module. 

Now we double-click on the module and enter the label, name, and capacity, as shown in 

  Display 9-8  . After you close the dialog box, you should see a second exit point near the 

lower right-hand corner of the module. This is the exit that the balked entities will take. 
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  The capacity of this queue was entered as the variable  Server Queue Capacity , 
which was set by our arriving customer as his tolerance for not balking, as explained earlier. If 

the current number in queue is less than the current value of  Server Queue  Capacity , 
the customer is allowed to enter the queue. If not, the customer entity is balked to the Record 

module where he increments the balk count and is then sent to a Dispose module, where he 

exits the system (see   Figure 9-6  ). A customer who is allowed to enter the queue waits for the 

resource  Server . 

 We need to follow this Queue module with a Seize module. When you add your 

Seize module, make sure it comes from the Blocks panel and not from the Advanced 

Process panel. The module in the Advanced Process panel automatically comes with a 

queue, and Arena will become quite confused if you attempt to precede a seize construct 

with two queues. We then double-click on the module and make the entries shown in 

  Display 9-9  . 

 When the customer seizes the server, it is sent to the following Process module. This 

Process module uses a  Delay Release  Action, which provides the service delay 

and releases the server resource for the next customer. A serviced customer is sent to a 

Record module where the system time is recorded, to a second Record module where 

the number is counted, and then to the following Dispose module. 

 Label 

 Queue ID 

 Capacity 

  Customer Queue  
  Server Queue  
  Server Queue Capacity  

  Display 9-8.  The Queue Module from the Blocks Panel 
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  The duplicate entity is sent to a Delay module, where it is delayed by the renege 

time that was assigned to the attribute  Renege Time . After the delay, the entity enters 

an Assign module where the value of the attribute  Customer #  is assigned to a new 

variable named  Search # . The attribute  Customer #  contains a unique customer 

number assigned when the customer entered the system. The entity is then sent to the 

following Search module, from the Advanced Process panel. A Search module allows us 

to search a queue to fi nd the  rank , or queue position, of an entity that satisfi es a defi ned 

search condition. A queue rank of 1 means that the entity is at the front of the Queue 

(the next entity to be serviced). In our model, we want to fi nd the original customer who 

created the duplicate entity performing the search. That customer will have the same 

value for its  Customer #  attribute as the variable  Search #  that we just assigned. 

 The Search module (  Display 9-10  ) searches over a defi ned range according to 

a defi ned condition. Typically, the search will be over the entire queue contents, 

from 1 to NQ. (Note that the search can be performed backward by specifying the 

range as NQ to 1.) 

 Label   Seize Server  

 Resource ID 

 Number of Units 

  Server  
  1  

  Display 9-9.  The Seize Module from the Blocks Panel 
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  However, you may search over any range that your model logic requires. If you state 

a range that exceeds the current number in the queue, Arena will terminate with a runtime 

error. Arena will assign to the variable J the rank of the fi rst entity during the search that 

satisfi es the condition and send the entity out the normal exit point (labeled  Found ). If 

the condition contains the math functions MX or MN (maximum or minimum), it will 

search the entire range. If attributes are used in the search condition, they will be inter-

preted as the attribute value of the entity in the search queue. If the queue is empty, or no 

entity  satisfi es the condition, the entity will be sent out the lower exit point (labeled  Not 
Found ). Ordinarily, you’re interested in fi nding the entity rank so you can remove that en-

tity from the queue (Remove module) or make a copy of the entity (Separate module). The 

Search module can also be used to search over entities that have been formed as a tempo-

rary group using a Batch module. In addition, you can search over any Arena expression. 

 For our model, we want to search over the entire queue range, from 1 to NQ, for the 

original entity that has the same  Customer #  value as the duplicated entity initiating 

the search. If the original entity, or customer, is no longer in the queue, the entity will 

exit via the  Not Found  exit point and be sent to the following Dispose module. If the 

original entity is found, its rank in the queue will be saved in the variable J. The entity 

is then sent to the following Decide module. The check at this module is to see if the 

value of J is less than or equal to the value of the attribute  Stay Zone . If this con-

dition is True, it implies that the position of the customer in the queue is good enough 

that he chooses to remain in the line. In this case, we dispose of the duplicate entity 

(see   Figure 9-6  ). If the condition is False, we want to renege the original customer. 

Therefore, we send the duplicate entity to the following Remove module. 

 Name 

 Type 

 Queue Name 

 Starting Value 

 Ending Value 

 Search Condition 

  Search Server Queue  
  Search a Queue  
  Server Queue  
  1  
  NQ  
  Search # == Customer #  

  Display 9-10.  The Search Module 
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  The Remove module allows us to remove an entity from a queue and send it to 

another place in our model. It requires that you identify the entity to be removed by 

entering the queue identifi er and the rank of that entity. If you attempt to remove an 

entity from an undefi ned queue or to remove an entity with a rank that is greater than the 

number of entities in the specifi ed queue, Arena will terminate the run with an error. In 

our model, we want to remove the customer with rank J from queue  Server Queue , 

as shown in   Display 9-11  . 

 If you look at the Remove module, you’ll see two exit points on the right side. The 

entity that entered the Remove module will depart from the upper exit point; in our 

model, it is sent to the same Dispose module we used for the fi rst branch of our Decide 

module. The customer entity removed from the server queue will depart by the lower 

exit point and is sent to a Record module to count the number of customers that renege. 

The entity is then sent to the Dispose module. 

 We set our Replication length to 2,000 minutes. The result of the summary report for 

this model shows that we had 8 balking and 41 reneging customers with 332 serviced 

customers. 

     9.4 Holding and Batching Entities 

  In this section, we’ll take up the common situation where entities need to be held up 

along their way for a variety of reasons. We’ll also discuss how to combine or group 

entities and how to separate them later. 

  9.4.1 Modeling Options 

 As you begin to model more complex systems, you might occasionally want to retain 

or hold entities at a place in the model until some system condition allows these entities 

to progress. You might be thinking that we have already covered this concept, in that 

an entity waiting in a queue for an available resource, transporter, or conveyor space 

allows us to hold that entity until the resource becomes available. Here we’re thinking 

in more general terms; the condition doesn’t have to be based on just the availability of a 

resource, transporter, or conveyor space. The conditions that allow the entity to proceed 

 Name 

 Queue Name 

 Rank of Entity 

  Remove from queue  
  Server Queue  
  J  

  Display 9-11.  The Remove Module 

kel01315_ch09_379-422.indd   395kel01315_ch09_379-422.indd   395 05/12/13   3:21 PM05/12/13   3:21 PM



396     Chapter 9

can be based on any system conditions; for example, time or queue size. There are two 

different methods for releasing held entities. 

 The fi rst method holds the entities in a queue until they receive permission or a 

signal to proceed from another entity in the system. For example, consider a busy 

intersection with a police offi cer directing traffi c. Think of the cars arriving at the 

intersection as entities being held until they are allowed to proceed. Now think of the 

police offi cer as an entity eventually giving the waiting cars a signal to proceed. There 

may be ten cars waiting, but the police offi cer may give only the fi rst six permission 

to proceed. 

 The second method allows the held entities themselves to evaluate the system 

conditions and determine when they should proceed. For example, think of a car 

wanting to turn across traffi c into a driveway from a busy street with oncoming traf-

fi c; unfortunately, there’s neither a traffi c light nor a police offi cer. If the car is the 

entity, it waits until conditions are such that there is no oncoming traffi c within a 

reasonable distance and the driveway is clear for entry. In this case, the entity con-

tinuously evaluates the conditions until it is safe to make the turn. If there’s a second 

car that wants to make the same turn directly behind the fi rst, it waits until it is at the 

front of the line and then performs its own evaluation. We’ll illustrate both methods 

in Model 9-4. 

 There are also situations where you need to form  batches  of items or entities be-

fore they can proceed. Take the simplest case of forming batches of similar or identical 

items. For example, you’re modeling the packing operation at the end of a can line that 

produces beverages. You want to combine or group beverages into six-packs for the 

packing operation. You might also have a secondary operation that combines four six-

packs into a case. In this illustration, the items or entities to be grouped are identical, 

and you would most likely form a  permanent  group (that is, one that you’d never want 

to take apart again later). Thus, six entities enter the grouping process and one entity, the 

six-pack, exits the process. However, if you’re modeling an operation that groups enti-

ties that are later to be separated to continue individually on their way, you would want 

to form a  temporary  group. In the fi rst case, you lose the unique attribute information 

attached to each entity. In the second case, you want each entity departing the operation 

to retain the same attribute information it held when it joined the group. So when you’re 

modeling a grouping operation, you need to decide whether you want to form a tempo-

rary or permanent group. We’ll discuss both options in Model 9-4. 

   9.4.2 Model 9-4: A Batching Process Example 

 Randomly arriving items are combined into batches before being processed. You might 

think of the process as an oven that cures the arriving items in batches. The maximum 

size of the batch that can be sent to the process depends on the design capacity. Let’s 

assume that each item must be placed on a special fi xture for the process, and these fi x-

tures are very expensive. The number of fi xtures determines the process capacity. Let’s 

further assume that these fi xtures are purchased in pairs. Thus, the process can have a 

capacity of two, four, six, eight, etc. In addition, we’ll assume that the process requires 

a minimum batch size of two before it can be started. 
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 Arriving items are sent to a batching area where they wait for the process to become 

available. When the process becomes available, we must determine the batch size to 

process, or cause the process to wait for the arrival of enough additional items to make 

a viable batch. Here’s the decision logic required:

 Process becomes available 
    If Number of waiting items ≥2 and ≤Max Batch 

       Form batch of all items 
       Set Number of waiting items to 0 
       Process batch 

    Else if Number of waiting items > Max Batch 
       Form batch of size Max Batch 
       Decrement Number of waiting items by Max Batch 
       Process batch 

    Else if Number of waiting items < 2 
       Wait for additional items  

 As long as there are items available, the items are processed. However, if there are 

insuffi cient items (, 2) for the next batch, the process is temporarily stopped and re-

quires an additional start-up-time delay before the next batch can be processed. Because 

of this additional start-up delay, we may want to wait for more than two items before 

we restart the process. 

 We want to develop a simulation model that will aid us in designing the parameters 

of this process. There is one design parameter (the process capacity or Max Batch) and 

one logic parameter (restart batch size) of interest. In addition, we would like to limit 

the number of waiting entities to approximately 25. 

 The completed model that we’ll now develop is shown in   Figure 9-7  . You might note 

that there is one new module: Batch from the Basic Process panel. You might also note 

that we don’t have a resource defi ned for the process; it’s not required as the model will 

limit the number of batches in the oven to one. Let’s start with the Variable module and 

 Run  .  Setup  .  Replication Parameters  dialog box and then proceed to the model logic. 

We’ll discuss the Statistic data module later. 

 We use the Variable module to defi ne two parameters: the maximum batch size or 

process capacity,  Max Batch ; and the restart batch size,  Restart . These variables 

are initially set to  10  and  4 , respectively. The  Run  .  Setup  .  Replication Parameters  

dialog box specifi es a replication length of 10,000 (all times are in minutes). 

 Now let’s look at the item arrival process—the Create – Hold modules at the upper 

left of   Figure 9-7  . The Create module is used to generate arrivals with exponential in-

terarrival times. We’ve used a value of 1.1 as the interarrival mean. No other entries 

are required for this module. The arriving items are then sent to the Hold module from 

the Advanced Process panel. The Hold module holds entities until a matching  signal  is 

received from elsewhere in the model. The signal can be based on an expression or an 

attribute value. Different entities can be waiting for different signals, or they can all be 

waiting for the same signal. When a matching signal is received, the Hold module will 

release up to a maximum number of entities based on the Limit (which defaults to in-

fi nity), unless the signal contains additional release limits. This will be explained when 

we cover the Signal module. 
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  In our example, all entities will wait for the same signal, which we have arbitrarily 

specifi ed as Signal 1. We have defaulted the Limit to infi nity since a limit will be 

set in the Signal module. We have also requested an Individual Queue,  Hold for 
Signal.Queue , so we can obtain statistics and plot the number in queue for our 

animation. 

 Now let’s consider the conditions at the start of the simulation. There is nothing 

being processed; therefore, nothing should happen until the arrival of the fourth item, 

based on the initial value of  Restart . As arriving items do not cause a signal to be 

sent, some other mechanism must be put into the model to cause the start of the fi rst 

batching operation and process. 

 This mechanism can be found in the Create – Hold – Delay – Record, etc., sequence 

of modules found toward the center of   Figure 9-7  . The  Create Scan Entity  Cre-

ate module has Max Arrivals set to 1, which results in only a single entity being released 

at time 0. This entity is sent directly to the Hold module that follows. 

 The  Scan for Condition  Hold module, with the type specifi ed as Scan for 

Condition, allows us to hold an entity until the user-defi ned condition is true; at that time, 

the entity is allowed to depart the module. The waiting entities are held in a  user-defi ned 

queue (the default) or in an internal queue. If an entity enters a Hold module that has 

no waiting entities, the condition is checked and the entity is allowed to proceed if the 

condition evaluates to true. If there are other entities waiting, the arriving entity joins the 

queue with its position based on the selected queue-ranking rule, defaulted to FIFO. If 

there are entities waiting, the scan condition is checked as the last operation before any 

discrete-event time advance is triggered anywhere in the model. If the condition is true, 

the fi rst entity in the scan queue will be sent to the next module. Arena will allow that 

entity to continue until it’s time for the next time advance. At this time, the condition 

is checked again. Therefore, it’s possible for all waiting entities to be released from the 

Hold module at the same time, although each entity is completely processed before the 

next entity is allowed to proceed. 

  Figure 9-7.  The Batch Processing Model   
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  For our model, we’ve entered a condition that requires at least four items to be in the 

wait queue preceding our Hold module before the condition is satisfi ed (  Display 9-12  ); 

note that you can use the Arena Expression Builder if you right-click in this fi eld. At that 

time, the entity will be sent to the following  Delay for 8 Minutes  Delay module. 

As you begin to understand our complete model, you should realize that we’ve designed 

it so there will never be more than one entity in the scan queue. 

 Now, at the start of a simulation run, the fi rst arriving item will be created and sent to 

the queue  Hold for Signal.Queue . At the same time, the second Create module 

will cause a single entity to arrive and be placed in the queue  Scan for Condition.
Queue . Nothing happens until the fi rst queue has four items. At that time, the entity is 

released from the second Hold module and is sent to the Delay module where it incurs an 

8-minute delay, accounting for the process restart time. Be aware that during this delay, 

additional items may have arrived. The entity is then sent to a Record module where the 

number of start-ups, counter  Startups , is incremented by 1. The new process batch 

size,  Batch Size , is calculated in the following Assign module, in   Display 9-13  . 

 Recall that, at least for the fi rst entity, we know there are at least four items in the wait 

queue. Thus, our process batch size is either the number in the wait queue or the maxi-

mum batch size if the number waiting is greater than the process capacity. 

 Name 

 Type 

 Variable Name 

 New Value 

  Assign Batch Size  
  Variable  
  Batch Size  
  MN(NQ(Hold for Signal.Queue), Max Batch)  

   Display 9-13.  Assigning the Next Process Batch Size  

 Name 

 Type 

 Condition 

  Scan for Condition  
  Scan for Condition  
  NQ(Hold for Signal.Queue) >= Restart  

  Display 9-12.  The Hold Module (Scan for Condition) 

kel01315_ch09_379-422.indd   399kel01315_ch09_379-422.indd   399 05/12/13   3:21 PM05/12/13   3:21 PM



400     Chapter 9

   Having calculated the next batch size and assigned it to a global variable,  Batch 
Size , we send the entity to a Signal module, seen in   Display 9-14  . This module broad-

casts a signal with a value of 1 across the whole model, which causes the entities in the 

wait queue, up to a maximum  Batch Size , to be released. This entity then enters a 

Record module where the next batch size is tallied, and then the entity is disposed. 

 You can have multiple Signal and multiple Hold modules in your model. In this case, 

a Signal module will send a signal value to each Hold module with the Type specifi ed as 

 Hold for Signal  and release the maximum specifi ed number of entities from all 

Hold modules where the Signal matches. 

 Now the process has undergone a start-up delay, and the fi rst batch of items has 

been released to the  Batch Entities  Batch module following the  Hold for 
Signal  Hold module. The Batch module allows us to accumulate entities that will 

then be formed into a permanent or temporary batch represented by a single entity. In 

our example, we have decided to form a permanent batch. Thus, the unique attribute 

values of the batched entities are lost because they are disposed. The attribute values of 

the resulting representative entity can be specifi ed as the Last, First, Product, or Sum 

of the arriving individual batched entities. If a temporary batch is formed, the entities 

forming the batch are removed from the queue and are held internally to be reinstated 

later using a Separate module. Entities may also be batched based on a match criterion 

value. If you form a permanent batch, you can still use the Separate module to re-create 

the equivalent number of entities later. However, you’ve lost the individual attribute 

values of these entities. 

 Normally, entities arriving at a Batch module will be required to wait until the re-

quired batch size has been assembled. However, in our model, we defi ned the batch size 

to be formed to be exactly equal to the number of items we just released to the module; 

see   Display 9-15  . Thus, our items will never have to wait at this module. 

 The entity that now represents the batch of items is directed to the  Delay for 
Process  Delay module where the process delay occurs. Note that this process delay 

depends on the batch size being processed: 3 minutes plus 0.6 minute for each item 

in the batch. 

 Name 

 Signal Value 

 Limit 

  Signal for Batch Release  
  1  
  Batch Size  

  Display 9-14.  The Signal Module 
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  The processed batch is sent to the following  Wait Queue Less Than 2  Decide 

module, where we check whether there are fewer than two items in the wait queue. If so, 

we must shut down the process and wait for more items to arrive. We do this by sending 

the entity to the previously discussed  Scan for Condition  Hold module to wait 

for enough items to restart the process. If there are at least two waiting items, the entity 

is sent to the  Assign Batch Size  Assign module where we set the next batch size 

to start the next batch processing. 

 Since the preceding few paragraphs were fairly complex, let’s review the logic that 

controls the batching of items to the process. Keep in mind that the arriving entities are 

placed in a Hold queue where they are held until a signal to proceed is received. The 

fi rst process is initiated by the second Create module that creates only one control entity. 

This entity is held in the Scan queue until the fi rst four items have arrived. The value 4 

is the initial value of the Variable  Restart . This control entity causes the fi rst batch to 

be released for processing, and it is then disposed. After that, the last batch to complete 

processing becomes a control entity that determines the next batch size and when to 

allow the batch to proceed for processing. 

 Before we’re ready to run our model, we need to defi ne an output statistic in the Sta-

tistic data module that will allow us to limit the average number of entities waiting in the 

queue  Hold for Signal.Queue . We’ve given it the name  Max Batch Value.  

The expression is  DMAX(Hold for Signal.Queue.NumberInQueue) . The 

function  DMAX  will return the maximum value of an Arena time-persistent statistic. The 

statistic of interest is automatically generated as part of the output report. The name of 

the statistic is the queue name followed by . NumberInQueue . The interested reader 

can fi nd this type of information in the help topic “Statistics (Automatically Generated 

by SIMAN).” 

 At this point, you could try different combinations of the restart value (say between 2 

and 10) and Max Batch Value (say between 4 and 14 in discrete increments of 2) until you 

 Name 

 Batch Size 

  Batch Entities  
  Batch Size  

  Display 9-15.  Forming the Process Batch 
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fi nd the combination that provides the minimum number of start-ups. After all, there are 

only 54 possible combinations. You could also create 54 different models and use PAN. We 

cheated and used OptQuest (see Section 6.6) to vary the variable  Max Batch  from 4 to 

14 in discrete increments of 2. The  Restart  variable was varied from 2 to 10 in  discrete 

increments of 1. The objective was to minimize the number of start-ups with a constraint 

that our  Max Batch Value  statistic not exceed 25. The best solution found was: 

 Max Batch 5 10 

 Restart 5 8 

 Max Batch Value 5 24.9 

 Start-ups 5 30.6 

     9.5 Overlapping Resources 

  In Chapters 4 through 8, we concentrated on building models using the modules avail-

able from the Basic Process, Advanced Process, and Advanced Transfer panels. Even 

though we used these modules in several different models, we still have not exhausted 

all the capabilities. 

 As we developed models in the earlier chapters, we were not only interested in intro-

ducing you to new Arena constructs, but we also tried to cover different modeling tech-

niques that might be useful. We have consistently presented new material in the form of 

examples that require the use of new modeling capabilities. Sometimes the fabrication 

of a good example to illustrate the need for new modeling capabilities is a daunting task. 

We have to admit that the example that we are about to introduce is a bit of a stretch, 

not only in terms of the model description, but also the manner in which we develop the 

model. However, if you bear with us through this model development, we think that you 

will add several handy additions to your toolbox. 

  9.5.1 System Description 

 The system we’ll be modeling is a tightly coupled, three-workstation production system. 

We have used the words “tightly coupled” because of the unique part-arrival process and 

because there is limited space for part buffering between the workstations. 

 We’ll assume an unlimited supply of raw materials that can be delivered to the sys-

tem on demand. When a part enters the fi rst workstation, a request is automatically 

forwarded to an adjoining warehouse for the delivery of a replenishment part. Because 

the warehouse is performing other duties, the replenishment part is not always delivered 

immediately. Rather than model this activity in detail, we’ll assume an exponential de-

livery delay, with mean of 25 (all times are minutes), before the request is acted upon. At 

that point, we’ll assume the part is ready for delivery, with the delivery time following a 

UNIF(10, 15) distribution. To start the simulation, we’ll assume that two parts are ready 

for delivery to the fi rst workstation. 

 Replenishment parts that arrive at the fi rst workstation are held in a buffer until the 

workstation becomes available. A part entering the fi rst workstation immediately re-

quests a setup operator. The setup time is assumed to be EXPO(9). Upon completion of 

the setup, the part is processed by the workstation, lasting TRIA(10, 15, 20). The com-

pleted part is then moved to the buffer between workstations 1 and 2. This buffer space 
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is limited to two parts; if the buffer is full, workstation 1 is blocked until space becomes 

available. We’ll assume that all transfer times between workstations are negligible, or 

occur in 0 time. 

 There are two almost-identical machines at workstation 2. They differ only in the 

time it takes to process a part: The processing times are TRIA(35, 40, 45) for Machine 

2A and TRIA(40, 45, 50) for Machine 2B. A waiting part will be processed by the fi rst 

available machine. If both machines are available, Machine 2A will be chosen. There is no 

setup required at this workstation. A completed part is then transferred to workstation 3. 

However, there is no buffer between workstations 2 and 3. Thus, workstation 3 must be 

available before the transfer can occur. (This really affects the system performance!) If 

Machines 2A and 2B both have completed parts (which are blocking these machines) 

waiting for workstation 3, the part from Machine 2A is transferred fi rst. 

 When a part enters workstation 3, it requires the setup operator (the same operator 

used for setup at workstation 1). The setup time is assumed to be EXPO(9). The pro-

cess time at workstation 3 is TRIA(9, 12, 16). The completed part exits the system at 

this point. 

 We also have failures at each workstation. Workstations 1 and 3 have a mean Up 

Time of 600 minutes with a mean Down Time for repair of 45 minutes. Machines 2A 

and 2B, at workstation 2, have mean Up Times of 500 minutes and mean Down Times 

of 25 minutes. All failure and repair times follow an exponential distribution. One subtle 

but important point is that the Up Time is based only on the time that the machines are 

processing parts, not the elapsed time. 

 Now to complicate the issue even further, let’s assume that we’re interested in the 

percent of time that the machines at each workstation are in different states. This should 

give us a great amount of insight into how to improve the system. For example, if the 

machine at workstation 1 is blocked a lot of the time, we might want to look at increas-

ing the capacity at workstation 2. 

 The possible states for the different machines are as follows: 

      Workstation 1: Processing, Starved, Blocked, Failed, Waiting for setup, and  Setup  

      Machines 2A and 2B: Processing, Starved, Blocked, and Failed  

      Workstation 3: Processing, Starved, Failed, Waiting for setup, and Setup  

  We would also like to keep track of the percent of time the setup operator spends at 

workstations 1 and 3. These states would be: WS 1 Setup, WS 2 Setup, and Idle. 

 These are typical measures used to determine the effectiveness of tightly coupled 

systems. They provide a great deal of information on what are the true system bottle-

necks. Well, as long as we’ve gone this far, why not go all the way! Let’s also assume 

that we’d like to know the percent of time that the parts spend in all possible states. 

Arranging for this is a much more diffi cult problem. First, let’s defi ne the  system  or 

 cycle time  for a part as starting when the delivery is initiated and ending when the part 

completes processing at workstation 3. The possible part states are: Travel to WS 1, 

Wait for WS 1, Wait for setup at WS 1, Setup at WS 1, Process at WS 1, Blocked at 

WS 1, Wait for WS 2, Process at WS 2, Blocked at WS 2, Wait for setup at WS 3, 

Setup at WS 3, and Process at WS 3. As we develop our model, we’ll take care to 
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incorporate the resource states. But, we’ll only consider the part states after we have 

completed the model development. You’ll just have to trust that we might know what 

we’re doing. 

    9.5.2 Model 9-5: A Tightly Coupled Production System 

 In developing our model, we’ll use a variety of different modules. Let’s start with the 

modules for the arrival process and workstation 1, which are shown in   Figure 9-8  . 

 Since you have seen almost all the modules that we’ll be using in this model, we 

won’t provide all the displays. However, we will provide suffi cient information for you to 

re-create the model on your own. Of course, you can always open  Model 09-05.doe  

and follow along. 

 Let’s start with the initial arrivals that provide the fi rst two parts for the system. 

All the remaining arrivals will be based on a request issued when a part enters the 

machine at the fi rst workstation. The single Create module found at the upper left of 

  Figure 9-8   has three entries; a Name, a Batch Size of 2, and Max Arrivals of 2. This 

causes two entities, or parts, to be created at time 0. The Create module then becomes 

inactive—no more entities are created by it for the rest of the simulation. These two 

parts are sent to an Assign module where we make two attribute assignments. We 

assign the value of  TNOW  to the attribute  Enter System  and assign a value gener-

ated from UNIF(10, 15) to the attribute  Route Time . The value assigned to  Enter 
System  is the time the part entered the system, and the  Route Time  is the delivery 

time from the warehouse to the fi rst workstation. Since we are interested in keep-

ing detailed part-status information, we send these parts to a Record module where 

we tally the  Delivery Time  based on the expression  Route Time , which we 

 assigned in the previous Assign module. The part is then sent to the following Station 

module where we defi ne the Station  Warehouse . Next we use the Route module to 

  Figure 9-8.  Part Arrival and Workstation 1   
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route from the station  Warehouse  to the station  WS 1 Station  using the  Route 
Time  we previously assigned. 

  Upon completion of this transfer, the part arrives at the Station module,  Station 
for WS 1 . The following Seize module attempts to seize one unit of resource WS 1. 

We now need to take care of three additional requirements. First, we need to specify the 

resource states and make sure that the statistics are kept correctly. Second, we need to 

make a request for a replenishment part. Finally, we need to have a setup occur before 

the part is processed. 

 Let’s start by defi ning our resources using the Resource data module. We enter six 

resources:  WS 1 ,  WS 2A ,  WS 2B ,  WS 3 ,  Setup Operator , and  Buffer . The fi rst 

fi ve have capacity of 1, and the  Buffer  resource has a capacity of 2. 

 Back in Section 4.2.4, we showed you how to use Frequencies to generate frequency 

statistics on the number in a queue. To get frequency data on our resources, we fi rst need 

to defi ne our StateSets. We do this using the StateSet data module from the Advanced Pro-

cess panel. We entered fi ve StateSets:  WS 1 StateSet ,  WS 2A StateSet ,  WS 2B 
StateSet ,  WS 3 StateSet , and  Setup Operator StateSet . The states for 

the  WS 1 StateSet  are shown in   Display 9-16  . 

 We then entered our two failures ( WS 1_3 Failure  and  WS 2 Failure ) using 

the Failure data module. Now we need to go back to the Resource data module and add 

our StateSets and Failures. When we added our failures, we selected  Ignore  as the 

Failure Rule. 

 Now let’s go back to our model logic in   Figure 9-8  . Having dealt with the entry to 

WS 1, we need to seize the WS 1 resource, shown in   Display 9-17  . 

 Next we need to take care of the part-replenishment and the setup activi-

ties. The part that has just Seized the workstation resource enters the following 

Separate module, which creates a duplicate entity. The duplicate entity is sent to 

the   Warehouse Delay  Delay module, which accounts for the time the part-

replenishment request waits until the next part delivery is initiated, lasting 

 EXPO(25) . We then send this entity to the same set of modules that we used to 

cause the arrival of the first two parts. The original entity exits the Separate module 

to an Assign module where we assign the state of the resource  WS 1  to  Waiting 
for setup , in   Display 9-18  . 

  Display 9-16.  The WS 1 StateSet States   
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 Name 

 Assignments 

    Type 

    Other 

    New Value 

  Assign Wait for Setup at WS 1  
  
  Other  
  STATE( WS 1 )  
  Waiting for Setup  

  Display 9-18.  Resource State Assignment 

 Name 

 Resources 

Type 

 Resource Name 

 Resource State 

  Seize WS 1 Setup  

  Resource  
  Setup Operator  
  WS 1 Setup  

  Display 9-19.  Seizing the Setup Operator 

   It is then directed to the  Seize WS 1 Setup  Seize module where it requests the 

setup operator, in   Display 9-19  . Note that we specify the state of the setup resource as 

 WS 1 Setup . This will allow us to obtain frequency statistics on the  Setup  Operator  

Resource. 

 Name 

 Allocation 

 Resources 

    Type 

    Resource Name 

  Seize WS 1  
  Value Added  

  Resource  
  WS 1  

  Display 9-17.  The WS 1 Seize Module 
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  By now, you may be scratching your head and asking, “What are they doing?” Well, 

we warned you that this problem was a little contorted, and once we fi nish the devel-

opment of workstation 1, we’ll provide a high-level review of the entire sequence of 

events. So let’s continue. 

 In the following  Assign Setup for WS 1  Assign module, we set the  WS 1  

resource to the  Setup  state and then we delay in the following  Delay WS 1 Setup  
Delay block for the setup activity. Upon completion of the setup, we release the  Setup 
Operator  resource, assign the  WS 1  resource state to  Processing , and undergo 

the processing delay. After processing, we assign the  WS 1  resource state to  Blocked . 

At this point, we’re not sure that there is room in the buffer at workstation 2. We now 

enter the  Seize Buffer  Seize module to request buffer space, from the resource 

 Buffer . Once we have the buffer resource, we release the WS 1 resource and depart 

for workstation 2. 

 Now (whee!—we feel like we’re out of breath after running through this logic), 

let’s review the sequence of activities for a part at workstation 1. We start by creat-

ing two parts at time 0; let’s follow only one of them. That part is time stamped with 

its arrival time, and a delivery time is generated and assigned. The delivery time 

is recorded and the part is routed to workstation 1. Upon entering workstation 1, 

it joins the queue to wait for the resource  WS 1 . Having seized the resource, it 

exits the Seize module, where it duplicates the replenishment part, which is sent 

back to where the fi rst part started. The part then assigns the server resource state to 

 Waiting for setup  and queues for the setup operator. Having seized the setup 

operator, setting its state to  Setup , it assigns the  WS 1  resource state to  Setup , 

delays for the setup, releases the setup operator, assigns the  WS 1  resource state 

back to  Processing , and delays for processing. After processing, the part queues 

to seize one unit of the resource  Buffer  (capacity of two), setting the server state 

to  Blocked  during the queueing time. After seizing the buffer resource, it releases 

the  WS 1  resource and exits the workstation 1 area with control of one unit of the 

resource  Buffer . 

 The modules for workstation 2, which has two machines, are shown in   Figure 9-9  .  

  Figure 9-9.  Workstation 2 Modules   
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 Recall that parts arriving at workstation 2 have control of one unit of the buffer 

resource. Thus, as soon as the part seizes one of the two machines, the buffer must be 

released because there is now a free space in front of the workstation. This action is 

accomplished in the following  Release Buffer  Release module. 

 Upon seizing an available machine and releasing the buffer resource, the part en-

ters the  Have WS 2A  Decide module, which is used to determine which machine 

resource has been seized, based on the  WS 2 Resource  attribute value assigned 

in the fi rst Seize module when the resource was allocated to the part. If the part was 

allocated resource  WS 2A , the fi rst resource in the set, this attribute would have been 

assigned a value of 1. We use this logic to determine which machine we have been 

allocated and send the part to logic specifi cally for  WS 2A  or  WS 2B . The middle fi ve 

modules in   Figure 9-9   are for  WS 2A  and the bottom fi ve are for  WS 2B . Since there 

is no setup at workstation 2, the fi rst Assign module assigns the state of the machine 

resource to  Processing  and directs the part to the following Delay module, which 

represents the part processing. The last Assign module assigns the machine resource 

state to  Blocked . 

 The part then attempts to seize control of resource  WS 3  in the following Seize mod-

ule. If the resource is unavailable, the part will wait in queue  Seize WS 3.Queue , 

which we defi ned in the Queue module as being a shared queue between the two Seize 

modules. Now, if there are two waiting parts, one for each machine, we want the part 

from  WS 2A  to be fi rst in line. We accomplish this by selecting the ranking rule to be 

Low Attribute Value based on the value of attribute  WS 2 Resource . This causes 

all entities in the queue to be ranked according to their value for the attribute  WS 2 
 Resource . This ensures that  WS 2A  will receive preference. 

 Once a part has been allocated the  WS 3  resource, it will be transferred to that 

machine in 0 time. The modules we used to model workstation 3 are shown in   Fig-

ure 9-10  . You might notice that these modules look very similar to those used to 

model workstation 1, and they are essentially the same. An entering part (it already 

has been allocated the resource  WS 3 ) fi rst assigns the workstation resource state to 

 Waiting for setup  and then attempts to seize the setup operator. After being 

allocated the setup operator resource, the resource  WS 3  state is set to  Setup , the 

part is delayed for setup, the setup operator is released, the resource WS 3 state is 

set to Processing, and the part is delayed for the process time. Upon completion, the 

WS 3 resource is released, the part cycle time is recorded, and the entity is disposed. 

  Figure 9-10.  Workstation 3 Modules   
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   Now that we’ve completed our model logic, we need to request the frequency sta-

tistics for our workstations and setup operator. We want frequency statistics based on 

the resource states. The required inputs for the Statistic data module to obtain these 

frequencies are shown in   Display 9-20  . 

 Recall that when we were describing our problem, we also wanted to output the 

percent of time that the parts spend in all possible states. Obtaining this information for 

resource states is fairly easy. We simply defi ne the resource states and Arena collects 

and reports this information using the Frequencies feature. Unfortunately, this use of 

Frequencies is valid only for resources. 

 Collecting the same type of information for part or entity status is diffi cult because 

the part states span numerous activities over several resources. This creates a modeling 

problem: What is the best way to obtain this information? Before we show you our ap-

proach, we’ll discuss several alternatives, including their shortcomings. 

 Our fi rst thought was to defi ne a variable that we could change based on the cur-

rent part state. Then we could request frequency statistics on that variable, much as 

we did for the part-storage queue in the rework area of Model 4-2 in Section 4.2.4. 

Of course, this would require us to edit our model to add assignments to this variable 

whenever the part status changed. Although this sounds like a good idea, it falls apart 

when you realize that there can be multiple parts in the system at the same time. It 

would work just fi ne if we limited the number of parts in our system to one. Since this 

was not in the problem description, we decided to consider alternate ways to collect 

this information. 

 Our second idea was to assume that all the required information was already being 

collected (a valid assumption). Given this, we need only assemble this information at the 

end of the run and calculate our desired statistics. Arena automatically calls a wrap-up 

routine at the end of each run. We could write user code (see Section 10.2) that would 

perform this function. One drawback is that it would not give us this information if we 

decided to look at our summary report before the run ended. This looked like it could be 

a lot of work, so we explored other options. 

 For our third approach, we decided to consider adding additional output statistics 

to the Statistic data module. This would not allow you to collect additional statistics; 

however, this does allow you to calculate additional output values on statistics already 

being collected by the model. Since the model is currently collecting all the information 

we need, although not in the correct form, we will use this option to output information 

on part status. First we entered a Replication Length of 50,000 time units in the  Run  . 

 Setup  .  Replication   Parameter  dialog box. 

  Display 9-20.  The Statistic Data Module for Frequency Statistics   
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  If we ran our model at this point, we’d get the results shown in   Figure 9-11  . Let’s 

temporarily focus our attention on the frequency statistics for  WS 1 Resource . 

It tells us that the workstation was processing parts only 50.21% of the time, with 

a large amount of non-productive time spent in the  Waiting for setup  and 

 Setup  states. 

   9.5.3 Model 9-6: Adding Part-Status Statistics 

 Before we continue with our model development, let’s describe what we need to do to 

obtain the desired information on part status. What we want is the percent of time that 

parts spend in each of the previously defi ned part states: Travel to WS 1, Wait for WS 1, 

Wait for Setup at WS 1, Setup at WS 1, Process at WS 1, Blocked at WS 1, Wait for 

WS 2, Process at WS 2, Blocked at WS 2, Wait for Setup at WS 3, Setup at WS 3, and 

Process at WS 3. 

 All the information we need to calculate these values is already contained in our 

summary output. Let’s consider our fi rst part state,  Travel to WS 1 . The average 

delivery time per part was 12.517, tallied for a total of 1,672 parts. The cycle time was 

225.07 for 1,665 parts. You might note that there were still 7 parts (1672–1665) in the 

system when the simulation terminated. We’ll come back to this later. So if we want the 

  Figure 9-11.  The Tightly Coupled System Frequencies Report   
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percent of time an average part spent traveling to workstation 1, we could calculate that 

value with the following expression:

 ((12.517 * 1672) / (225.07 * 1665)) * 100.0  

 or 5.5848%. We can use this approach to calculate all of our values. Basically, we 

compute the total amount of part time spent in each activity, divide it by the total 

amount of part time spent in all activities, and multiply by 100 to obtain the values 

in percentages. Since the last two steps of this calculation are always the same, we 

will fi rst defi ne an expression,  Tot , to represent this value (Expression data mod-

ule). Note that by using an expression, it will be computed only when required. That 

expression is

 TAVG(Cycle Time) *  TNUM(Cycle Time)/100  

 TAVG and TNUM are Arena variables that return the current average of a Tally 

and the total number of Tally observations, respectively. The variable argument is 

the Tally ID. In this case, we have elected to use the Tally name as defi ned in our 

Record module. In cases where Arena defi nes the Tally name (for example, for time-

in-queue tallies), we recommend that you check a module’s drop-down list or Help 

for the exact name. 

 The information required to calculate three of our part states is contained in Tallies: 

 Travel to WS 1 ,  Wait for WS 1 , and  Wait for WS 2 . The expressions 

required to calculate these values are

 TAVG(Delivery Time) * TNUM(Delivery Time)/Tot 
 TAVG(Seize WS 1.Queue.WaitingTime) * 
     TNUM(Seize WS 1.Queue.WaitingTime)/Tot 
 TAVG(Seize WS 2.Queue.WaitingTime) * 
     TNUM(Seize WS 2.Queue.WaitingTime)/Tot  

 The information for the remaining part states is contained in the frequency statistics. 

 As you would expect, Arena also provides variables that will return information 

about frequencies. The Arena variable FRQTIM returns the total amount of time that 

a specifi ed resource was in a specifi ed category, or state. The complete expression for 

this variable is 

 FRQTIM(Frequency ID, Category)

  The Frequency ID argument is the frequency name. The Category argument is the 

category name. Thus, our expression for  Setup at WS 1  becomes 

 FRQTIM(WS 1 Resource, Setup)/Tot 

 where  WS 1 Resource  is the name of our previously defi ned frequency statistic ( defi ned 

in the Statistic data module) and  Setup  is the category name for our setup state for the  WS 
1  resource (defi ned in the StateSet data module). 
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 If we defi ne all our expressions in this manner, the nine remaining expression are

 Wait for Setup at WS 1 FRQTIM(WS 1 Resource, Waiting for Setup)/ 
   Tot 
 Setup at WS 1 FRQTIM(WS 1 Resource, Setup)/Tot 
 Process at WS 1 FRQTIM(WS 1 Resource, Processing)/Tot 
 Blocked at WS 1 FRQTIM(WS 1 Resource, Blocked)/Tot 
 Process at WS 2 FRQTIM(WS 2A Resource, Processing)/Tot +
 FRQTIM(WS 2B Resource, Processing)/Tot 
 Blocked at WS 2 FRQTIM(WS 2A Resource, Blocked)/Tot +  
  FRQTIM(WS 2B Resource, Blocked)/Tot 
 Wait for Setup at WS 3 FRQTIM(WS 3 Resource, Waiting for Setup)/  
   Tot 
 Setup at WS 3 FRQTIM(WS 3 Resource, Setup)/Tot 
 Process at WS 3 FRQTIM(WS 3 Resource, Processing)/Tot  

 You should note that there could be two parts being processed or blocked at worksta-

tion 2. Thus, we have included terms for both the 2A and 2B resources at workstation 2. 

 Now that we have developed a method, and the expressions, to calculate the average 

percent of time our parts spend in each state, we will use the Statistic data module to 

add this information to our summary report. The new statistics that were added to the 

Statistic data module are shown in   Display 9-21  . 

 Before we proceed, let’s address the discrepancy between the number of observa-

tions for our Delivery Time and Cycle Time statistics on our summary report. Because 

of the methods we use to collect our statistics, and the fact that we start our simulation 

with the system empty and idle, this discrepancy will always exist. There are several 

ways to deal with it. One method would be to terminate the arrival of parts to the system 

and let all parts complete processing before we terminate the simulation run. Although 

this would yield statistics on an identical set of parts, in effect we’re adding a shutdown 

period to our simulation. This would mean that we would have potential transient con-

ditions at both the start and end of the simulation, which would affect the results of our 

resource statistics. 

 We could increase our run length until the relative difference between these obser-

vations would become very small, thereby reducing the effect on our results. Although 

this could easily be done for this small textbook problem, it could result in unacceptably 

long run times for a larger problem. If we wanted to be assured that all part-state statis-

tics were based on the same set of parts, we could collect the times each part spends in 

each activity and store these times in entity attributes. When the part exits the system, 

  Display 9-21.  The Summary Statistics for Part States   
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we could then Tally all these times. Although this is possible, it would require that we 

make substantial changes to our model, and we would expect that the increased accu-

racy would not justify these changes.   

 If you step back for a moment, you should realize that the problem of having sum-

mary statistics based on different entity activities is not unique to this problem. It exists 

for almost every steady-state simulation that you might construct. So we recommend 

that in this case you take the same approach that we use for the analysis of steady-state 

simulations. Thus, we would add a Warm-up Period to eliminate the start-up conditions. 

Because our system is tightly coupled, it will not accumulate large queues, and the 

number of parts in the system will tend to remain about the same. Because the ware-

house delay is modeled as exponential, it is possible that there could be no parts in the 

system, although this is highly unlikely. At the other extreme, there can be a maximum 

of only eight parts in the system. Thus, by adding a warm up to our model, we will start 

collecting statistics when the system is already in operation. This will reduce the dif-

ference between the number of observations for our Tallies. For now, let’s just assume 

a Warm-up Period of 500 minutes and edit the  Run  .  Setup  .  Replication Parameters  

dialog box to include that entry. If this were a much larger system that could accumulate 

large queues, you might want to reconsider this decision. 

 If you now run the model, the information shown in   Figure 9-12   will be added to the 

summary report. 

     9.6 A Few Miscellaneous Modeling Issues 

  Our intention in writing this tome was not to attempt to cover all the functions available 

in the Arena simulation system. There are still a few modules in the Basic Process, 

 Advanced Process, and Advanced Transfer panels that we have not discussed. And there 

are many more in the Blocks and Elements panels that we have neglected entirely. How-

ever, in your spare time, we encourage you to attach the panels that you seldom use 

 Output  Value 

 Blocked at WS 1 

 Blocked at WS 2 

 Process at WS 1 

 Process at WS 2 

 Process at WS 3 

 Setup at WS 1 

 Setup at WS 3 

 Travel to WS 1 

 Wait for Setup at WS 1 

 Wait for Setup at WS 3 

 Wait for WS 1 

 Wait for WS 2 

 0.3881 

 5.4040 

 6.6783 

 18.7632 

 5.4595 

 4.0051 

 4.0136 

 5.5551 

 1.5395 

 1.3023 

 36.5635 

 10.3425 

  Figure 9-12.  The Appended Summary Report 
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and place some modules. Using the Help features will give you a good idea of what we 

have omitted. In most cases, we suspect that you’ll never need these additional features. 

Before we close this chapter, we’d like to point out and briefl y discuss a few features we 

have not covered. We don’t feel that these topics require an in-depth understanding—

only an awareness. 

  9.6.1 Guided Transporters 

 An entire set of features has been designed for use with guided transporters. These 

features are useful not only for modeling automated guided vehicle (AGV) systems, but 

also for warehousing systems and material-handling systems that use the concept of a 

moving cart, tote, jig, fi xture, etc. Interestingly, they’re also great for representing many 

amusement-park rides. Because this topic would easily fi ll an additional chapter or two, 

we’ve chosen not to present it in this book. However, you can fi nd a complete discussion 

of these features in Chapter 9 of Pegden, Shannon, and Sadowski (1995). 

   9.6.2 Parallel Queues 

 There are also two very specialized modules from the Blocks panel, QPick and PickQ, 

that are seldom used; but if you need them, they can make your modeling task much 

easier. The QPick module can be used to represent a process where you want to pick 

the next entity for processing or movement from two or more different queues based on 

some decision rule. Basically, the QPick module would sit between a set of detached 

Queue modules and a module that allocates some type of scarce resource (for example, 

Allocate, Request, Access, or Seize modules). Let’s say that you have three different 

streams of entities converging at a point where they attempt to seize the same resource. 

Furthermore, assume that you want to keep the entities from each stream separate from 

each other. The modules required for this part of your model are shown in   Figure 9-13  . 

Each entity stream would end by sending the entity to its Detached queue (more on a 

Detached queue shortly). The link between the QPick and Queue modules is by module 

Labels. When the resource becomes available, it will basically ask the QPick module to 

determine from which queue to select the next entity to be allocated the resource. Also 

note that you must use the Seize module from the Blocks panel for this to work, not the 

Seize module from the Advanced Process panel. When using modules from the Blocks 

panel, Arena does not automatically defi ne queues, resources, etc. Thus, you may have 

  Figure 9-13.  Using a QPick Module   
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to place the corresponding modules from the Basic Process or Elements panels to defi ne 

these objects. 

 The PickQ module can be used to represent a process where you have a single ar-

rival stream, and you will use some decision rule to pick between two or more queues 

in which to place the entity. Let’s assume that you have a stream of arriving entities 

that are to be loaded onto one of two available conveyors. The modules required for 

this part of your model are shown in   Figure 9-14   (the Access modules are from the 

Advanced Transfer panel). Note that you can’t specify internal queues for the Access 

modules, and the decision as to which conveyor the entity is directed to is based on 

characteristics of the queue, not the conveyors. The PickQ module can be used to direct 

entities to Access, Seize, Allocate, Request, or Queue modules, or any module that is 

preceded by a queue. 

  Now let’s address the issue of a Detached queue. If you use the Queue module 

from the Blocks panel, you’re given the option of defi ning the queue as being De-

tached. This means that the queue is not directly linked to a downstream module. 

Such a queue can be indirectly linked, as was the case with the QPick module, or 

there might be no obvious link. For example, you may want to use a set of entities 

whose attribute values hold information that you might want to access and change 

over the course of a simulation. If this is all you want to do, it might be easier to use a 

Variable defi ned as a matrix, or perhaps an external database. The advantage of using 

a queue is that you can also change the ranking of the entities in the queue. You can 

access or change any entity attribute values using Arena variables. You can also use 

the Search, Copy, Insert, Pickup, and Remove modules from the Blocks panel (or the 

Search, Remove, Pickup and Dropoff modules from the Advanced Process panel) to 

interact with the entities in the queue. Note that if queue ranking is important, Arena 

only ranks an entity that enters the queue. Thus if you change an entity attribute that 

is used to rank the queue, you must remove the entity from the queue and then place 

it back into the queue. 

   9.6.3 Decision Logic 

 There are situations where you may require complex decision logic based on current 

system conditions. Arena provides several modules in the Blocks panel that might 

prove useful. The fi rst is a set for the development of if-then-else logic. The If, ElseIf, 

  Figure 9-14.  Using a PickQ Module   
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Else, and EndIf modules can be used to develop such logic. We will not explain these 

modules in detail here, but we encourage you to use Help if you implement logic with 

them. Although these modules will allow you to develop powerful logic, you need to 

be careful to ensure that your logic is working correctly. These modules are designed 

to work only when all of the modules between an If and its matching EndIf (including 

any ElseIf or Else modules inside) are graphically connected in Arena. This allows 

you to use many of Arena’s modules inside If/EndIf logic, such as Assign, Seize, and 

Delay, but precludes use of those that don’t permit graphical connections, such as 

Route, Convey, and Transport. There is also a set of modules to implement do-while 

logic: the While and EndWhile modules. The same warnings given previously also 

apply for these modules.  

 If you really need to implement this type of logic, there are several options. The 

easiest is to use the Label and Next Label options to connect your modules rather 

than direct graphical connections. Although this works, it doesn’t show the fl ow of 

logic. An alternative is to write your logic as an external SIMAN . mod  fi le and use 

the Include module from the Blocks panel to include this logic in your module. Un-

fortunately, this option is not available for use with the Student version software. The 

safest and most frequently used option is to use a combination of Decide and Branch 

modules to implement your logic. This always works, although the logic may not be 

very elegant. 

       9.7 Exercises 

    9-1  Packages arrive with interarrival times distributed as EXPO(0.47) minutes to 

an unloading facility. There are fi ve different types of packages, each equally likely 

to arrive, and each with its own unload station (see following fi gure). The unloading 

stations are located around a loop conveyor that has room for only two packages in 

the queue at each unload station. Arriving packages enter an infi nite-capacity queue to 

wait for space on the loop conveyor, and 2 feet of conveyor space is required per pack-

age. Upon entering the loop conveyor, the package is conveyed to its unload station. If 

there is room in the queue at its unload station, the package is automatically diverted 

to the queue, which takes no time. The package then waits for a dedicated unloader 

(dedicated to this unload station, not to this package) to be unloaded, which takes time 

distributed as EXPO(2) minutes. If a package arrives at its station and fi nds the queue 

full, it is automatically conveyed around the loop and tries the next time. Each station 

is located 10 feet from the next, and the conveyor speed is 12 feet per minute. Animate 

your model. 

    (a)  Run the simulation for 500 minutes, collecting statistics on the time in system 

(all package types together, not separated out by package type), and the num-

ber of packages in queue at the package-arrival station.  

   (b)  Which will have more impact on average time in system: increasing the 

conveyor speed to 15 feet per minute or increasing each unloading-queue 

capacity to 4?    
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   9-2  A merging conveyor system has a main conveyor consisting of three segments, 

and two spur conveyors, as depicted in the following fi gure. Separate streams of pack-

ages arrive at the input end of each of the three conveyors, with interarrival times 

 distributed as EXPO(0.76) minutes. Incoming packages queue to wait for space on the 

conveyor. Packages arriving at the input end of the main conveyor are conveyed directly 

to the system exit. Packages arriving at the two spur lines are conveyed to the main con-

veyor, where they wait for space. Once space is available, they exit the spur line and are 

conveyed to the system exit. All conveyor segments are 20 feet (the main conveyor has 

three such segments) and all three conveyors are accumulating and move at 15 feet per 

minute. Each package requires 2 feet of space on a conveyor. When packages reach the 

exit-system point, there is an unload time of 0.2 minute, during which time the package 

retains it space on the main conveyor. 

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

Arriving
packages Unload 1 Unload 2

Unload 3Unload 4Unload 5

10 ft 10 ft
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10 ft 10 ft

10 ft 10 ft
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Spur 1 conveyor

Main conveyor

Spur 2 conveyor
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system
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   Develop a model and animation of this system and run it for 300 minutes, observing 

statistics on conveyor status (such as number of packages conveying and accumulated 

on each segment) as well as times in system for packages.  

   9-3  A small automated power-and-free assembly system consists of six worksta-

tions. (A power-and-free system could represent things like tow chains and hook 

lines.) Parts are placed on pallets that move through the system and stop at each 

workstation for an operation. There are 12 pallets in the system. A blank part is 

placed on an empty pallet as part of the operation at workstation 1. The unit (part 

and pallet) is then moved progressively through the system until all the operations 

are completed. The fi nal assembled part is removed from the pallet at workstation 6 

as part of the operation there. The power-and-free system moves at 4 feet per minute. 

Each pallet requires 2 feet of space. The distance between adjacent workstations is 

10 feet, except that workstation 6 (the fi nal assembly operation) and workstation 1 

(the beginning assembly operation) are 20 feet apart. The following fi gure indicates 

how the workstations are arranged. The operation times at each workstation are 

WEIB(3.2, 4.2) minutes. 

Workstation 1 Workstation 2 Workstation 3

Workstation 4Workstation 5Workstation 6

   Develop a simulation and animation of this system and run it for 1,500 minutes, 

 observing statistics on the production per hour. (HINT: Model the power-and-free sys-

tem as an accumulating conveyor. At the start of your simulation, load the empty pallets 

at workstation 6. These pallets become a permanent part of the system.) Look at the 

effect on hourly production of the number of pallets. Would more (or fewer) than 12 

pallets be preferable? Is there something like an optimal number of pallets? Be sure to 

back up your statements with a valid statistical analysis.  

   9-4  A small production system has parts arriving with interarrival times distributed as 

TRIA(6, 13, 19) minutes. All parts enter at the dock area, are transported to workstation 1, 

then to workstation 2, then to workstation 3, and fi nally back to the dock, as indicated 

in the fi gure that follows. All part transportation is provided by two carts that each move 
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at 60 feet per minute. The distances from the dock to each of workstations 1 and 3 are 

50 feet, and the distances between each pair of workstations are also 50 feet. Parts are 

unloaded from the cart at workstations 1 and 3 for processing, but parts get processed 

on the cart at workstation 2. Processing times are 8 + WEIB(4.4, 4.48) minutes, UNIF(8, 

11) minutes, and TRIA(8, 11, 17) minutes for workstations 1, 2, and 3, respectively. 

Assume that all load and unload times are negligible. 

Workstation 1

Workstation 2

Workstation 3

Workstation 1

Workstation 2

Workstation 3

Workstation 1

Workstation 2

Workstation 3

Dock

   Develop a simulation and animation of this system and run it for 10,000 minutes, 

observing statistics on cart and workstation utilizations, as well as part cycle times.  

   9-5  A special-order shop receives orders arriving with interarrival times distributed as 

EXPO(30)—all times are in minutes. The number of parts in each order is a UNIF(3, 9) 

random variable (truncated to the next smallest integer). Upon receiving the order, the 

parts are immediately pulled from inventory and sent to the prep area (this transfer 

takes 0 time), where they undergo an individual prep operation, the time for which is 

distributed as TRIA(2, 3, 4). After the prep operation, the parts are transferred (this 

transfer takes 4 minutes) to a staging area to wait for the fi nal order authorization. The 

fi nal order authorization takes an amount of time distributed as UNIF(170, 230), after 

which the parts are released to be processed, which requires an amount of time distrib-

uted as TRIA(3, 4, 6). After processing, the parts are assembled into a batch and sent 

to the packer (0 transfer time) to be packed, which takes an amount of time distributed 

as TRIA(8, 10, 14) for the batch. The packed parts exit the system. During the order- 

authorization process, 4% of the orders are canceled. These parts are removed from the 

staging queue and sent back to inventory (0 transfer time). Develop a simulation model 

for this system and run it for 20,000 minutes with a warm-up of 500 minutes. Observe 

statistics on the number of canceled orders, the number of canceled parts, the time in 

system for shipped orders, and resource utilizations. Also, use Frequencies to deter-

mine the number of racks required to hold the parts in the staging area (each rack can 

hold 25 parts). (HINTS: Use Hold/Signal for order authorization and Search/Remove 

to cancel orders.)  
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   9-6  A food-processing system starts by processing a 25-pound batch of raw of prod-

uct, which requires 1.05 + WEIB(0.982, 5.03) minutes. Assume an infi nite supply 

of raw product. As soon as a batch has completed processing, it is removed from 

the processor and placed in a separator where it is divided into 1-pound units. The 

separation process requires 0.051 minute per pound. Note that this is not a “batch 

process,” but rather in each 0.05 time unit a 1-pound unit is completed. These 1-pound 

units are sent to one of the three wrapping machines. Each wrapping machine has its 

own queue, with the unit being sent to the shortest queue. The wrappers are identical 

machines, except for the processing times. The wrapping times are constants of 0.20, 

0.22, and 0.25 minute for wrappers 1, 2, and 3, respectively. The wrapped products are 

grouped, by wrapper, into batches of six for fi nal packaging. Once a group of six items 

is available, that group is sent to a packer that packs the product, which takes 0.18 1 

WEIB(0.24, 4.79) minutes. These packages exit the system. Assume all transfer times 

are negligible. 

    (a)  Develop a simulation and animation of this system and run it for 1,000 min-

utes, observing statistics on resource utilizations, queues, and the total number 

of packages shipped.  

   (b)  Modify your model to include wrapper failures with the following characteris-

tics for all wrappers: EXPO(20) for uptimes and EXPO(1) for repair times.  

   (c)  Add a quality check to your model from part (b). Every half hour, a scan is 

made, starting with the fi rst wrapper queue, for products that are more than 4 

minutes old; that is, that exited the processor more than 4 minutes ago. Any 

such items are removed from the queue and disposed. It takes 3 seconds to fi nd 

and remove each item. Keep track of the number of units removed.    

   9-7  A small automated system in a bakery produces loaves of bread. The dough- 

making machine ejects a portion of dough every UNIF(0.5, 1.0) minute. This portion of 

dough enters a hopper to wait for space in the oven. The portions will be ejected from 

the hopper in groups of four and placed on the oven-load area to wait for space on the 

oven conveyor. There is room for only one group of portions at the oven-load area. The 

oven conveyor has ten buckets, each 1 foot long, and moves at 0.34 feet per minute. 

    (a)  Develop your model using the Hold (Scan for Condition), Signal, and Hold 

(Wait for Signal) modules for your logic to control the group of portions. Run 

it for 3,000 minutes and observe statistics on the number of portions in the 

hopper, oven utilization, and the loaf output per hour.  

   (b)  Modify your model from part (a) by replacing the Hold (Scan for Condition) 

module with logic developed based on the Decide module.    

   9-8  Customers arrive, with interarrival times distributed as EXPO(5)—all times 

are in minutes—at a small service center that has two servers, each with a separate 

queue. The service times are EXPO(9.8) and EXPO(9.4) for Servers 1 and 2, respec-

tively. Arriving customers join the shortest queue. Customer line switching occurs 

kel01315_ch09_379-422.indd   420kel01315_ch09_379-422.indd   420 05/12/13   3:21 PM05/12/13   3:21 PM



A Sampler of Further Modeling Issues and Techniques     421

whenever the difference between the queue lengths is 3 minutes or more. At that 

time, the last customer in the longer queue moves to the end of the shorter queue. 

No additional movement, or line switching, in that direction occurs for at least the 

next 30 seconds. Develop a model and animation of this system and run it for 10,000 

minutes. Observe statistics on the number of line switches, resource utilization, and 

queue lengths.  

   9-9  A small cross-docking system has three incoming docks and four outgoing 

docks. Trucks arrive at each of the three incoming docks with interarrival times distrib-

uted as UNIF(35, 55)—all times are in minutes. Each arriving truck contains UNIF(14, 

30) pallets (truncated to the next smaller integer), which we can assume are unloaded 

in 0 time. Each pallet has an equal probability of going to any of the four outgoing 

docks. Transportation across the dock is provided by three fork trucks that each travel 

at 60 feet per minute. Assume that the distance between any incoming dock and any 

outgoing dock is 50 feet. Also assume that the distance between adjacent incoming 

docks (and adjacent outgoing docks) is 15 feet. 

    (a)  Develop a model in which the fork trucks remain where they drop off their last 

load if there are no new requests pending.  

   (b)  Modify your model so that free fork trucks are all sent to the middle (Dock 2) 

incoming dock to wait for their next load.  

   (c)  Modify your model so that each fork truck is assigned a different home incom-

ing dock and moves to that dock when there are no additional requests pending.  

    Compare the results of these three systems, using the pallet system time as the pri-

mary performance measure. Be sure to back up your comparison with a proper statisti-

cal analysis.  

   9-10  Develop a model and animation of a Ferris-wheel ride at a small, tacky county 

fair. Agitated customers (mostly small, over-sugared kids who don’t know any better) 

arrive at the ride with interarrival times distributed as EXPO(3) minutes and enter the 

main queue. When the previous ride has fi nished and the fi rst customer is ready to get 

off, the next fi ve customers (or fewer if there are not fi ve in the main queue) are let 

into the ride area. As a customer gets off the Ferris wheel, the new customer gets on. 

Note that there can be more current riders than new customers, or more new customers 

than current riders. It requires UNIF(0.05, 0.15) minute to unload a current rider and 

UNIF(0.1, 0.2) to load a new rider. The Ferris wheel has only fi ve single seats spaced 

about 10 feet apart. The wheel rotates at a velocity of 19 feet per minute. Each customer 

gets fi ve revolutions on the wheel, and no new riders are allowed to board until the ride 

is complete. Riders who get off the wheel run to the exit, which takes 2 minutes. We’re 

are not sure if they want to get away or to be fi rst in line at the next tacky ride. (HINTS: 

Use a conveyor to represent the Ferris wheel itself. Use Wait/Signal to implement the 

loading and unloading rules.) By the way, the Ferris wheel was developed by the Pitts-

burgh bridge engineer G. W. G. Ferris, who died in 1896 at the age of 37; its German 

name is  Riesenrad , which translates roughly as “giant wheel.”      
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    CHAPTER 10 

 Arena Integration and 
Customization 

  In this chapter, we introduce the topics of integrating Arena models with other applica-

tions and building customized Arena modules. We will illustrate these concepts with a 

very simple model of a call center (much simpler than the one introduced in Chapter 5). 

 Our fi rst topic, in Section 10.1, presents a model in which we read scheduled arrival 

times from an external fi le and then write performance data to a fi le. This will illus-

trate several ways to incorporate both numeric and string data from outside sources into 

an Arena model. In Section 10.2, we introduce two Microsoft ®  Windows ®  operating 

system technologies that Arena exploits for integrating directly with other programs— 

ActiveX ® Automation and Visual Basic ®  for Applications (VBA)—and we describe how 

VBA has been incorporated into Arena. We present this material with the assumption 

that either you are familiar with VBA programming or you will access other sources to 

become so; our treatment of this topic focuses on what Arena provides to put VBA to 

use. Then in Section 10.3, we show you how these technologies can be used to create a 

custom user interface. Section 10.4 continues on the topic of VBA, enhancing the call 

center model to record individual call data and to chart the call durations in Microsoft ®  

Excel. Section 10.5 discusses Arena Template building. We close this chapter in Sec-

tion 10.6 with an overview of how you can animate your modeling efforts in the new 

Arena Visual Designer tool. When you fi nish this chapter, you should have an idea of 

the types of features you can employ to integrate Arena with other desktop applications 

and a few ways to create custom Arena interfaces. 

    10.1 Model 10-1: Reading and Writing Data Files 

  We’ll start with a simple (trivial, in fact) model of a call center. Then we’ll enhance 

that model in several interesting ways. Our call center has a single arrival stream of 

randomly generated calls and a single agent processing calls, after which the calls are 

disposed. The call center manager has estimated that the calls come in an average of 1.1 

minutes apart according to an exponential distribution and that the call durations tend 

to be around 0.75 minute with a range of 0.3 to 1.1 minutes. To model the system, we 

use a single Create module, a single Process module, and a single Dispose module as 

shown in   Figure 10-1  .   

  Figure 10-1.  Simple Call Center Model   
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 The data for the three modules are shown in   Display 10-1   and the Replication 

 Parameters should be set in  Run  .  Setup  .  Replication Parameters  as illustrated in 

  Display 10-2  . After creating this model, we can run and view the results. 

 Although the call center model is quite simple, we have a few opportunities to make 

it more realistic. The call center manager has just informed us that she has some histor-

ical call-arrival times for a typical day. Let’s use that record of the actual calls received 

over a period of time to generate entities into our model instead of creating entities 

based on sampling from a probability distribution. We might take this approach as part 

of the validation of our model. If the results of a simulation run that’s driven by the 

recorded arrivals from the actual system closely correspond to the actual system per-

formance over that period of time, then we have greater faith in the correctness of our 

model logic. Or we might use this logic because we want to perform runs based on a 

specifi c pattern of arrivals, such as a fi xed but irregular schedule of trucks arriving to 

loading docks at a distribution center. 

 (Create module)   

    Name   Create Call  

    Entity Type   Arrival Entity  

    Type   Random (Expo)  

    Value   1.1  

    Units   Minutes  

 (Process module)   

    Name   Handle The Call  

    Action   Seize Delay Release  

    Type   Resource  

    Resource Name   Agent  

    Delay Type   Triangular  

    Units   Minutes  

    Minimum   0.3  

    Value   0.75  

    Maximum   1.1  

 (Dispose module)   

    Name   Terminate Call  

  Display 10-1.  The Create, Process, and Dispose Modules 

 Replication Length   8  

 Time Units   Hours  

  Display 10-2.  Replication Parameters 
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 We’ll start in Section 10.1.1 with the easy case of reading our arrival data from a 

text fi le. Then in Section 10.1.2, we’ll look at reading similar data from other sources.  

  10.1.1 Model 10-2: Reading Entity Arrivals from a Text File 

 To make this modifi cation to the call center model, we’ll need a fi le containing the ar-

rival times over the period to be studied, and we’ll need to replace the entity-creation 

model logic to use the data in this fi le. To simplify the required logic, we’ll structure 

the data fi le to be an ASCII text fi le containing values that correspond to simulation 

times, assuming our run starts at time 0 minute. The fi rst few values of this fi le ( Model 
10-02 Input.txt ) are shown in   Figure 10-2  . Since we have the luxury of being 

textbook authors rather than real-life problem solvers, we’ll skip over the details of how 

this ASCII text fi le was created. In practice, you’ll probably fi nd that the information you 

can obtain isn’t quite so conveniently stored, but with creative application of spreadsheet 

or database software, you usually can export the raw data points into simulation-ready 

values in a text fi le. 

 We need to decide how to use the historical data stored in the text fi le. We are faced 

with two issues: the mechanics of transferring data from the fi le into the model, and then 

how to use the values to generate entities at the appropriate times. We’ll fi rst look at the 

logic required to create entities at the appropriate times, covering the details of reading 

the data when we reach that part of the model logic. 

 Thus far, our approach for creating entities has been to use a Create module, which 

makes a new entity every so often throughout the run based on the interarrival time. We 

saw in our hand simulation (remember the pain of Chapter 2?) that at each entity cre-

ation, the “current arriving” entity is sent into the model and the “next arriving” entity 

is placed on the calendar to arrive at the appropriate future time. The data in the Time 

Between Arrivals section of the dialog box determine how far into the future the next 

arriving entity is to be scheduled; most often, this involves sampling from a probability 

distribution. 

 To establish the call arrivals from our data fi le, however, we can’t formulate a simple 

expression for the time between arrivals. Instead, we’ll use a control entity that mimics 

the “current arriving” and “next arriving” entity logic directly in our model, as shown 

in   Figure 10-3  . The fi rst four modules shown there replace the Create module from our 

original call center model.   

 The Create module will generate just a single entity, as shown in   Display 10-3  . For 

this Create module, Arena will create a single entity at the beginning of each replication, 

then will “turn off” the entity creation stream, since it reached the number of entity cre-

ations specifi ed in the Max Arrivals fi eld (namely,  1 ). 

 1.038457 

 2.374120 

 4.749443 

 9.899661 

 10.525897 

 17.098860 

  Figure 10-2.  Call-Time Data for Revised Call Center Model 
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 The created entity enters the ReadWrite module, per   Display 10-4  , where it reads the 

next value from the data fi le and assigns this value to the  Call Start Time  entity at-

tribute. The ReadWrite module, which can be found on the Advanced Process panel, reads 

one or more values from a source external to Arena and assigns these values to model vari-

ables or attributes. The Arena File Name,  Arrivals File , is used as a  model  identifi er 

for the fi le. It shouldn’t be confused with the actual name of the fi le on your hard disk (or 

wherever the fi le is stored), which we’ll defi ne later in the File data module.   

 After the entity reads the value from the data fi le, it moves to the Delay module 

(  Display 10-5  ) to wait until time  Call Start Time , so that the actual entity repre-

senting the call will arrive at the model logic at the appropriate time. Because the values 

in the data fi le represent the absolute number of minutes from the beginning of the run 

for each call rather than the interarrival times, the Delay Time is specifi ed as  Call 
Start Time – TNOW  so that the entity will delay until the time stored in the  Call 
Start Time  attribute.   

  Figure 10-3.  Logic for Generating Entities from a File   

 Name   Create Control Entity to Read Data  

 Entity Type   Arrival Entity  

 Type   Constant  

 Value   1  

 Units   Minutes  

 Max Arrivals   1  

  Display 10-3.  The Modifi ed Create Module 
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 When the control entity completes the delay, it’s time to create the actual call entity 

and dispatch it to the system logic. The Separate module from the Basic Process panel 

works nicely for this need, shown in   Display 10-6  . It sends the control entity (the mod-

ule exit point labeled Original) back to the ReadWrite module to obtain the next call 

time from the data fi le and creates one duplicate of itself that’s sent into the model logic 

 Name   Read Next Arrival Time  

 Type   Read from File  

 Arena File Name   Arrivals File  

 Assignments   

   Type   Attribute  

   Attribute Name   Call Start Time  

  Display 10-4.  The ReadWrite Module 

 Name   Delay Until Actual Call Time  

 Delay Time   Call Start Time — TNOW  

 Units   Minutes  

  Display 10-5.  The Delay Module 
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via the exit point labeled Duplicate (as previously shown in   Figure 10-3  ). This duplicate 

entity represents the arrival of a new call, which will move through the rest of the model 

logic to process the call. 

 Our fi nal change to the model is to specify the required information about the data 

fi le. To do so, we edit the File data module found in the Advanced Process panel, as in 

  Display 10-7  . When we typed  Arrivals File  as the Arena File Name in the Read-

Write module, Arena automatically created a corresponding entry in the File data mod-

ule. To complete the required information, we enter  Model 10-02 Input.txt  as 

the Operating System File Name. This tells Arena to access  Model 10-02 Input.
txt , stored wherever the model fi le is located, whenever a ReadWrite module refer-

ences the Arena  Arrivals File . (You could give a full path for the fi le, such as 

 C:\My Documents\Cool Stuff\Model 10-02 Input.txt , but if you 

would decide to send the model and data fi le to someone else, they’d have to have the 

same folder structure. Depending on your taste in folder names, this might or might 

not be a good idea.) We left the other options at their default values, including the fi le 

type as  Free Format , which indicates that the  Model 10-02 Input.txt  fi le 

 Name   Separate into Duplicate Entity 
for Call Arrival  

  Display 10-6.  The Separate Module 

 Name   Arrivals File  

 Operating System File Name   Model 10-02 Input.txt  

  Display 10-7.  The File Data Module 
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contains text values. We also retained the default end-of-fi le action as  Dispose  so that 

the control entity will be disposed of after it reads the last value in the fi le, effectively 

terminating the arrival stream of entities to the model.  

 Using the data values in   Figure 10-2   to step through the logic for the fi rst two calls, 

our control entity will fi rst read a value of 1.038 into its  Call Start Time  attri-

bute after it’s created at simulation time 0 (the start of the replication). It will delay for 

1.038 – 0 time units, leaving the Delay module at time 1.038. It creates a duplicate at 

that time, sending it to the Process module to begin the actual processing of a call. The 

control entity returns to the ReadWrite module, reading a value of 2.374 from the data 

fi le and overwriting its  Call Start Time  attribute with this value. The control en-

tity proceeds to the Delay module, where it delays for 2.374 – 1.038 = 1.336 time units, 

which causes Arena to place the control entity on the event calendar with an event time 

that’s 1.336 time units into the future (or an actual event time of 2.374). When it’s the 

control entity’s turn to be processed again, at simulation time 2.374, Arena will remove 

it from the event calendar and send it to the Separate module, where it will spawn a 

call entity with  Call Start Time  attribute value 2.374, representing the second 

call to enter the system. This will continue until all of the values in  Model 10-02 
Input.txt  have been read by the control entity. 

 The simulation run will terminate under one of two conditions. If the run’s ending 

time specifi ed in the Run Setup dialog box occurs before all of the calls listed in the 

data fi le have been created, Arena will end the run at that time; under no conditions can 

a model run for longer than is defi ned. On the other hand, our model may terminate 

earlier than the specifi ed run length if all of the calls listed in the data fi le have been 

created and have completed processing, leaving the event calendar empty. (Remember 

that the control entity is disposed after it reads the last data value.) If Arena encounters a 

condition where there are no additional entities on the event calendar and no additional 

other time-based controls to process, it will terminate the run after the last entity leaves 

the model. 

   10.1.2 Model 10-3 and Model 10-4: Reading and Writing Access and Excel Files 

 What if instead of a text fi le the call-arrival data were in a Microsoft ®  Access database 

or Microsoft ®  Excel spreadsheet fi le? We’ll explore how both of those can be handled 

easily.  

 Let’s assume fi rst that you were provided an Access database containing the call-

arrival information, with a table named ArrivalTimes to store the data. The fi rst few val-

ues of this fi le ( Model 10-03 Input.mdb ) are shown in   Figure 10-4  . 

 Starting with  Model 10-02.doe  that we created in the last section, we only 

have to make a few small changes to read from the database. The model logic that we 

crafted to read and use those data to control entity creation is still useful. We need only 

to change some details about where we get the data. 

 This time we will start by describing the new data fi le. To do so, we’ll edit the exist-

ing File data module found in the Advanced Process panel, as in   Display 10-8  . We can 

leave the Arena File Name set as  Arrivals File . Recall that this is the name used 

inside model logic (in this case, the ReadWrite module) to specify this fi le—there is no 
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reason to change this. But we do need to change the Operating System File Name to 

 Model 10-03 Input.mdb .  1    We’ll leave most of the other options at their default 

values, including the end-of-fi le action as  Dispose  so that the control entity will be 

disposed of after it reads the last value in the fi le as before.   

 You will notice that the Access Type fi eld has a drop-down list of choices; this time, 

we’ll choose  Microsoft Access (*.mdb) . When you make this selection, you 

may see a difference in the display of fi elds or columns because database fi les require 

different information from text fi les. Specifi cally, you should see a new column labeled 

Recordsets above a button that initially says 0 rows. Clicking that button loads the Re-

cordsets Editor as in   Display 10-9  . 

 As you read from a database, you are reading a set of records from a table or range. 

A single database may have many different sets of records. Arena identifi es each set by 

  Figure 10-4.  Call-Time Data in Access 2010 Table   

  1  When using fi les with the extension  .mdb  (the default for Access fi les), be careful not to name the fi le 

the same as your model. Arena automatically stores its output in a fi le named  ModelName.mdb  and will be 

unhappy to see any fi le structure there except its own. 

 Name   Arrivals File  

 Access Type   Microsoft Access (*.mdb)  

 Operating System File Name   Model 10-03 Input.mdb  

  Display 10-8.  The File Data Module 
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defi ning a Recordset Name. Each Recordset Name must be linked to a table in the data-

base. You could select any valid symbol name for the Recordset Name, but for simplic-

ity, we will type in the same as the table name,  ArrivalTimes . Click the  Add/Update  

button to complete the defi nition of the Recordset. Under Table Name, if you click on 

the arrow, you’ll see a drop-down list of all tables currently defi ned in the database. In 

this case, select the only one defi ned— ArrivalTimes , as shown in   Display 10-9  . If 

you would like to view some sample data from a Recordset, fi rst highlight the Recordset 

in the left column, then click on the  View  button. When you are done, click  Close  to 

close the viewer. Finally click  OK  to exit the Recordset Editor.  

 You may wonder why we changed the fi le properties before we changed the Read-

Write module. If you open the ReadWrite module now (as in   Display 10-10  ), you will 

see that it looks a bit different. Essentially, it tailors itself to collect the information 

required for the fi le type being read. In this case, it recognizes that we are reading from 

a database and that we need to identify the Recordset; we’ll select  ArrivalTimes  

from the drop-down list. If you want to control the record read in each iteration, enter 

an optional expression in the Record Number fi eld. However, we’ll leave it blank so it 

reads the records sequentially by default, starting with the fi rst record. Note that we do 

not have to change the Arena File Name or the Assignments. Click  OK  and we are done. 

 That’s it! Save your newly created model, or look for the  Model 10-03.doe  fi le, 

which should be located in the Book Examples folder of your Arena installation. We’re 

now ready to run the model and have it read its data from the Access fi le instead of the 

text fi le. 

 If you stayed with us through the fi rst part of this section, we have good news for 

you. You already know most of what’s needed to read Excel worksheet fi les. You may 

notice that the rows and columns of an Excel spreadsheet closely resemble the rows 

 Recordset Name   ArrivalTimes  

 Table Name   ArrivalTimes  

  Display 10-9.  The Recordsets Editor 
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 Recordset ID   ArrivalTimes  

  Display 10-10.  The ReadWrite Module 

and columns of a database table. Excel is not a relational database management system, 

but with a few caveats, we can treat an Excel worksheet much like we treat an Access 

database fi le. 

 In Excel, a rectangular named range—a set of cells (rows and columns)—is the 

equivalent of the rows and columns of an Access table. If we want to treat it like a da-

tabase (which we do here), the named range must refer to a rectangular set of at least 

two cells. You can create an Excel named range by highlighting a set of cells and then 

select  Formulas  .  Name Manager  .  New , and type a name. For example, if you high-

light cells A3 through C9 and follow the previous procedure, naming your workbook 

selection  MyRange , you would have three columns and seven rows that look much 

like an Access table. If you look at the drop-down list in the name box (typically, in the 

 upper-left region of the menu bar), you’ll fi nd all of the names of cell ranges that you 

have defi ned. Again, this is equivalent to all of the tables in an Access database.   

 Let’s resume with  Model 10-03.doe , which we just created, and modify it to 

read from Excel instead of Access. The sample data fi le provided,  Model 10-03 
Input.xls , is illustrated in   Figure 10-5  . You can see that the range  ArrivalTimes  

is highlighted both in the name box and in the worksheet itself. Again, we’ll start by 

describing the new data fi le in the existing File data module, as in   Display 10-11  . We 

can leave nearly everything set as it was for Access except the File Name and Access 

Type. Change the Operating System File Name to  Model 10-03 Input.xls . On 

the Access Type drop-down list, choose  Microsoft Excel (*.xls) . 

 Let’s again click the  Recordsets  button to load the Recordsets Editor. We still have a 

Recordset named  ArrivalTimes  defi ned, but since we chose a new fi le, the link has 
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been deleted. Select the previously defi ned Recordset on the left, and let’s restore the 

link. The drop-down list under Named Range will show you all of the named ranges de-

fi ned in that fi le. As luck would have it (okay, we planned ahead), the Excel spreadsheet 

has a named range just like the table we used previously. Select  ArrivalTimes  and 

click  Add/Update  to record the change. If you would like to view some sample data from 

a Recordset, fi rst highlight the Recordset in the left column, then click the  View  button 

to see something similar to   Display 10-12  . When you are done, click the  Close  button to 

close the viewer. Finally, click  OK  to exit the Recordset Editor.  

 Since we have already revised the Read/Write module to read from ArrivalTimes 

Recordset, no additional changes are required. We are now ready to run the model, this 

time reading the data from the Excel fi le. 

 Now that you know how to read Access and Excel fi les, we are ready to write to 

them as well. There is basically one change necessary to write instead of read data. 

In the Type operand of the ReadWrite module, choose  Write to File  instead of 

 Read from File . Everything else works just as described in the read information 

earlier. Of course, there is almost always a catch. When you are writing to Access 

or Excel fi les, a skeleton fi le must exist. ActiveX ®  Data Objects (ADO), which is a 

  Figure 10-5.  Call-Time Data in Excel 2010 Worksheet   

 Name   Arrivals File  

 Access Type   Microsoft Excel (*.xls)  

 Operating System File Name   Model 10-03 Input.xls  

  Display 10-11.  The File Data Module 
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Microsoft technology that provides high-performance data access to a variety of data 

stores, gets its fi le structure and formatting information from the fi le. Specifi cally, the 

table or named range must already exist. An additional constraint for Excel fi les is 

that if the range is not formatted as numeric with some initial data, then all of the data 

will be written as strings. The simple solution is to put some formatted sample data in 

the range before writing. For more detailed information, look in the Arena help topic 

“Excel: Read/Write Limitations Using ADO.” 

 We’ll make one fi nal enhancement to our call center model to allow us to record the 

processing times in the same Excel fi le from which we read the Arrival times, but in a 

new worksheet. We have a new data fi le called  Model 10-04 Call Data.xls,  

which contains the same information as  Model 10-03 Input.xls , but also con-

tains a new range called  ProcessTimes  that was defi ned in a new worksheet called 

 OutputData . The  ProcessTimes  range has been formatted as numeric and has a 

zero in the fi rst cell. Just to illustrate the possibility, we have also added the skeleton of 

a plot to our new worksheet. Although it is empty now, when the data are written to the 

worksheet, they will be picked up automatically and displayed in the plot.   

 First, we need to change the File data module to specify the new fi le name and use 

the Recordsets Editor to specify that we have a second range in that fi le. With these 

changes, the module should look like   Display 10-13  . 

 We need to adjust our logic so that after call processing is complete, we can write 

the elapsed processing time to the fi le. Add a ReadWrite module immediately before the 

call termination as shown in   Figure 10-6  .   

 We want to write to the same fi le,  Model 10-04 Call Data.xls , that we read 

from in the previous ReadWrite module. But this time, we’ll specify  ProcessTimes  

 Recordset Name   ArrivalTimes  

 Named Range   ArrivalTimes  

  Display 10-12.  The Recordsets Editor 
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for the Recordset ID. The value we want to write is a calculated expression, so we need 

to specify Type of  Other . In the Other fi eld, we will enter our expression for process-

ing time, which subtracts Call Start Time from the current time ( TNOW ) as shown in 

  Display 10-14  . 

 We are now ready to run. This model will read the same data as before, but now, as 

each call is completed, its processing time will be written to the OutputData worksheet. 

When the run is complete, the worksheet will look something like   Figure 10-7  . 

 Recordset Name   ArrivalTimes  

 Named Range   ArrivalTimes  

 Recordset Name   ProcessTimes  

 Named Range   ProcessTimes  

  Display 10-13.  The Files Module and Recordsets Editor 

  Figure 10-6.  Logic for Writing Process Time Data   
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 Name   Write Processing Time  

 Type   Write to File  

 Arena File Name   Arrivals File  

 Recordset ID   ProcessTimes  

 Assignments    

 Type   Other  

 Attribute Name   TNOW  -  Call Start Time  

  Display 10-14.  Writing Process Time in the ReadWrite Module 

   10.1.3 Advanced Reading and Writing 

 Although life would be easy if data always came in a single form, that’s seldom the 

case. Instead, we often receive data that are not tailored to our use. In a simple case, it 

could be a text fi le with excess data in it. For example, what if our data fi le looked like 

  Figure 10-8  ?  

 These values certainly look a bit odd as the fi rst two lines look like they each contain 

a word and two numbers. The third line looks like it contains a word and a single number. 

But in fact, it is the same fi le that was presented in   Figure 10-2  , except that it contains a 

description in columns 1 through 8. To read this type of fi le, you would use a formatted 

read. A simple way to do this is to modify the File module for the model we created in 

Section 10.1.1. In the File data module, select an Access Type of  Sequential File . 

For the Structure, we’ll type in a FORTRAN or C-style format describing that we’ll skip 

past the fi rst eight columns and then read our data; see   Display 10-15  .   

 By the way, what could you do if your data were not in the fi rst columns of the 

table? If you have the luxury of changing the fi le, the obvious choice would be to 

defi ne the range or table so that it encompasses exactly the data you need to read. For 

kel01315_ch10_423-478.indd   436kel01315_ch10_423-478.indd   436 05/12/13   3:20 PM05/12/13   3:20 PM



Arena Integration and Customization     437

  Figure 10-7.  Process-Time Output Data with Plot   

 Part 1  1.038 

 Part 27 2.374 

 Part 5194.749 

 Part 67 9.899 

 Part 72 10.52 

 Part 16217.09 ...  

 Figure 10-8.  More Call-Time Data for Revised Call Center Model 

  Display 10-15.  File Module for Formatted Data   

example, if you had a spreadsheet with a named range defi ned as columns A through C, 

but your data were only in column C, the best approach would be to defi ne a new range 

of only column C. Unfortunately, in many cases, it’s not possible to change the fi le; 

in those cases, the best choice may be simply to read and discard the extraneous data. 

You can do this by defi ning a throwaway variable and reading the extraneous data into 
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that. To continue our example, you could defi ne a variable called  JunkValue  and 

populate the Read module as shown in   Display 10-16   to bypass the fi rst two columns 

of the range.   

 Don’t despair if your data are in a more complicated Excel or Access fi le than 

we’ve described, if the data require more sophisticated data access techniques, or if 

the data are from another package. Microsoft has a solution to help—ADO, and the 

good news is that you have used it already. The Excel and Access interfaces used in 

the example were implemented using ADO, and Arena did most of the work to make 

 Name   Read Next Arrival Time  

 Type   Read from File  

 Arena File Name   Arrivals File  

 Assignments    

 Type   Variable  

 Attribute Name   JunkValue  

 Assignments    

 Type   Variable  

 Attribute Name   JunkValue  

 Assignments    

 Type   Attribute  

 Attribute Name   Call Start Time  

  Display 10-16.  The ReadWrite Module to Skip Extraneous Data 
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it easy to do common tasks. However, if you happen to encounter something a little 

more complex, the effort to learn a little ADO can pay off big dividends. We won’t 

delve into complex ADO, but we’ll show you a couple of examples just to whet your 

appetite. 

 If you specify an Access Type of  Active Data Objects (ADO) in the File 

data module, a new fi eld (Connection String) will appear. The connection string is used 

to customize the ADO interface by presenting information such as the provider, fi le 

name, and any other tidbits required to complete the connection. Let’s say that you want 

to ignore the built-in support for Excel and customize your own, perhaps because you 

want to support column headings. You could enter the connection string specifi ed in 

  Display 10-17  . Or if you want to use the driver for SQL Server to connect to a database 

 BizBikes  in Microsoft SQL Server  RSI-Joe , you might use a connection string like 

the one in   Display 10-18  . In both cases, these strings would be entered as one continu-

ous string in the Connection String fi eld of the File data module. 

 It’s important for you to know that fi le input/output (I/O) may affect execution speed 

and can be slow compared to other processing tasks. In many cases, it may not matter if 

access is slow, because the amount of time spent reading or writing data is often trivial 

compared to the time required to execute the rest of the model. But I/O speed may be 

important with very high volumes of data. In such cases, you might want to specify the 

data to be in the fastest or smallest form possible. Although ADO generally competes 

well on ease of use and fl exibility, it often has problems with execution speed. The 

winner of the speed and fi le-size competition is often binary fi les. Binary fi les store the 

data in machine-readable form that the average person cannot easily decipher. For that 

reason, it is a poor choice if people will interact directly with the data. But for passing 

data between programs on the same platform, it can generate fi les that are very small 

and fast to read and write. For large or frequently accessed fi les, this could be an import-

ant consideration. Most computer languages support reading and writing binary fi les. 

You can even use Arena for a one-time conversion of fi les into binary forms that are then 

later reused frequently during runs for experimentation.  

 Provider=Microsoft.JET.OLEDB.4.0; 

 Data Source=C:\Documents\Book1.xls; 

 Extended Properties=””Excel 8.0; HDR=Yes;”” 

  Display 10-17.  Excel with Headings Using ADO 

 Driver={SQL Server}; 

 Server=RSI-Joe; 

 Database=BizBikes; 

 Uid=BizWareUser; 

 pwd=MyPassword  

 Display 10-18.  SQL Commands Using ADO 
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 To experiment with this option, in the File data module, select an Access Type of 

 Sequential  and a Structure of  Unformatted . 

   10.1.4 Model 10-5: Reading in String Data 

 String information can be assigned and read to both attributes and variables within 

Arena. Prior to this feature being implemented, all data had to be converted to an en-

tirely numeric format in order to be used. With the implementation of the string data 

type, reading in alphanumeric stock-keeping unit (SKU) values, as in a simulation in-

volving inventories, is much simpler. 

 To highlight how the string data type is used, we’ll take a break from the call center 

model to look at a simple routing model. 

 In   Figure 10-9  , the logic for a very simple traffi c-routing model is shown; see ex-

ample  Model 10-05.doe . Truck/entities are created, they pass through the station 

module  Beginning Location  to assign an initial location, and then they proceed 

to the ReadWrite module  Read in Destination Information  to read their 

destination information from the fi le  Model 10-05 Input.xls ; afterwards, they 

are routed to their destination. 

 To defi ne an attribute with a string data type, go to the Basic Process panel and select 

the Attributes Data Module. Double-click to add new attributes or select those you wish 

to edit. In   Display 10-19  , the attribute  MyDestination  is defi ned with a Data Type 

of  String .   

  Figure 10-9.  Logic for a Traffic-Routing Model   

kel01315_ch10_423-478.indd   440kel01315_ch10_423-478.indd   440 05/12/13   3:20 PM05/12/13   3:20 PM



Arena Integration and Customization     441

 The value of this string attribute  MyDestination  is assigned via the ReadWrite 

module  Read in Destination Information , as shown in   Display 10-20  .   

 The string attribute is then referenced twice in the Route module  Route to 
 Destination , as shown in   Display 10-21  . First, it is used to compute the Route Time 

in a Boolean function that evaluates the attribute’s value in order to assign the route time 

(the values 0.5, 0.75, 0.8, and 1.0 are travel times to the corresponding stations). Second, 

the Destination Type is defi ned as an expression using the string data type because the 

attribute must be parsed by the built-in Arena EVAL function to determine its construct 

information. This parsing is basically fi nding out whether the value of that attribute 

matches with an Element within Arena like a Station or Resource name. 

 For more information on strings, refer to the Arena help topic “Strings in Arena.” 

 Attributes   

   Name   MyDestination  

   Data Type   String  

  Display 10-19.  Defi ne the Attribute MyDestination as a String Attribute via the 

Basic Process Panel 

  Display 10-20.  ReadWrite Module to Read in Value of the String Attribute MyDestination   
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   10.1.5 Direct Read of Variables and Expressions 

 In addition to being able to read in data record by record as shown in the prior section, 

a new feature within Arena allows you the ability to read in Variable or Expression 

data directly by linking them to Recordsets that are linked to Named Ranges in Excel. 

Variable data can be read in using this method at three different File Read Times during 

the model run, Pre-Check, BeginSimulation, or BeginReplication. Pre-Check indicates 

that the data defi ned should be assigned to the variable as the model is compiled; the 

BeginSimulation and BeginReplication options are pretty much self-explanatory and 

indicate that the variable data will be read in at those times during the simulation run. 

With Expressions, only the Pre-Check option is available because Expressions must 

be defi ned as the model is compiled and cannot be updated once the model run begins. 

 In Model 10-5a.doe, an arrayed Variable v_Time is used to defi ne the times asso-

ciated with the different destinations in the Route module, Route to Destination. 

  Display 10-22   defi nes how the variable V_Time is linked to the Recordset TimetoRoute.  

 For more information on using the direct read feature, refer to Arena help associated 

with either the Variable or Expression modules. 

     10.2 VBA in Arena 

  In this section, we introduce you to the concepts surrounding VBA, which is embedded 

in Arena. You can use this technology to write custom code that augments your Arena 

model logic. Sections 10.3 and 10.4 provide a few illustrations of how Arena and VBA 

work together. 

  10.2.1 Overview of ActiveX Automation and VBA 

 Arena exploits two Microsoft Windows technologies that are designed to enhance the 

integration of desktop applications. The fi rst, ActiveX ®  Automation, allows applications 

 Name   Route to Destination  

 RouteTime   MyDestination== “Oakland”)*0.5+  

     MyDestination== “Downtown”)*0.75+ 

      MyDestination== “South Side”)*  

      0.8+(MyDestination== “North Side”)*1.0  

 Units   Hours  

 Destination Type   Expression  

 Expression   EVAL(MyDestination)  

  Display 10-21.  Route Module Using the String Attribute MyDestination 

  Display 10-22.  Variable v_Time Array Values Defi ned Using the Direct Read Method   
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to control each other and themselves via a programming interface. It’s a “hidden” 

framework provided by Windows, accessible through a programming language (such 

as Visual Basic ® ) that has been designed to use the ActiveX capabilities. In fact, if 

you’ve created a macro in Excel, you’ve utilized this technology, whether you realized 

it or not. Excel macros are stored as VBA code that uses an ActiveX interface to cause 

the Excel application to do things such as format cells, change formulas, or create 

charts. 

 The types of actions that an application supports are defi ned by what’s called an 

 object model . The designers of the application (for example, the developers of Excel or 

Arena) built this object model to provide an interface so that programming languages 

can cause the application to do what a user normally would do interactively with a 

mouse and keyboard. The object model includes the following:

      a list of application  objects  that can be controlled (for example, Excel worksheet, 

chart, cell);  
     the  properties  of these objects that can be examined or modifi ed (for example, 

the name of a worksheet, the title of a chart, the value of a cell); and  
     the  methods  (or actions) that can be performed on the objects or that they can 

perform (for example, delete a worksheet, create a chart, merge cells).    

 When you install an application that contains an object model, its setup process 

registers the object model with the Windows operating system (that is, adds it to the list 

of object models that are available on your computer). Then, if you use a programming 

language and want to utilize the application’s functionality, you can establish a refer-

ence to its object model and program its objects directly. We’ll see how this works when 

we write VBA code in Arena to send data to Microsoft Excel. Many desktop applica-

tions can be automated (that is, controlled by another application), including Microsoft 

Offi ce, AutoCAD ® , and Visio ® . To create the program that controls the application, you 

can use programming languages like C11, Visual Basic, or Java. 

 The second technology exploited by Arena for application integration embeds a 

programming language (VBA) directly in Arena to allow you to write code that auto-

mates other applications without having to purchase or install a separate programming 

language. VBA is the same language that works with Microsoft Offi ce, AutoCAD, and 

Arena. It’s also the same engine behind Visual Basic. When you install Arena, you also 

receive this full Visual Basic programming environment, accessed via  Tools  .  Macro  . 

 Show Visual Basic Editor . 

 These two technologies work together to allow Arena to integrate with other pro-

grams that support ActiveX Automation. You can write Visual Basic that automates 

other programs, such as Excel, AutoCAD, or Visio, directly in Arena (via the Visual 

Basic Editor). In our enhancement to the call center model, we’ll create a new Excel 

worksheet, populate it with data during the simulation run, and automatically chart the 

data, all without “touching” Excel directly. You also can write VBA code to automate 

Arena, such as to add animation variables, get the values of simulation output statistics, 

or change the values of module operands. 
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 When you write Visual Basic code using VBA in Arena, your code is stored with the 

Arena model (. doe ) fi le, just as VBA macros in Excel are stored in the spreadsheet (. xls ) 

fi les. You have at your disposal the full arsenal of VBA features, including: 

      Visual Basic programming constructs, such as Sub, Function, Class, If, Elseif, 

Endif, While, Wend, Do, On Error, and Select Case;  
     UserForms (often referred to as dialog boxes) with an assortment of fancy 

 controls like toggle buttons, scroll bars, input boxes, command buttons, and the 

ever-popular spin buttons;  
     code-debugging tools like watches, breakpoints, and various step options; and  
     comprehensive help.  

  To open the  Visual Basic Editor  in Arena, select  Tools  .  Macro  .  Show Visual 
Basic Editor , or click the corresponding button on the Integration toolbar (  ). This 

opens a separate window that hosts all of the VBA code, forms, debugging interface, and 

access to VBA help, as illustrated in   Figure 10-10  .  

 This window is a “child window” of the Arena window, so that if you quit from 

Arena, the Visual Basic Editor window will automatically follow its parent by clos-

ing as well. (If only all children were so well behaved.) Furthermore, changes in the 

Arena window, such as opening a new model, are refl ected in the information provided 

in the Visual Basic Editor window. This relationship refl ects the architecture of VBA 

integrated into host applications such as Arena—the VBA code is owned by the parent 

document and cannot be accessed except through the host application. 

   10.2.2 Built-In Arena VBA Events 

 The Project panel at the left side of the Visual Basic Editor window shows a list of 

open models, each containing a list of  Arena Objects  that starts with a single entry 

called  ThisDocument . The ThisDocument object gives the VBA project access to vari-

ous events within the Arena model. To add code for an event procedure, you select the 

 ModelLogic  object in the Visual Basic Editor, and choose the desired event (for example, 

 RunBegin ) in the procedure list on the right. 

  Figure 10-10.  Visual Basic Editor Window   
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 Arena’s built-in VBA events fall into three broad categories. (The actual function 

names all are preceded by  ModelLogic_ , such as  ModelLogic_DocumentOpen .) 

      Pre-run events (for example,  DocumentOpen ,  DocumentSave )  
     Arena-initiated run events (for example,  RunBegin ,  RunBeginSimulation , 

 RunEndReplication )  
     Model/user-initiated run events (for example,  UserFunction ,  VBA_Block_

Fire ,  OnKeystroke )  

  The events displayed in the procedure list provide the complete set of locations 

where your VBA code can be activated. So one of the fi rst decisions you face is which 

event(s) you’ll use so that your code can be called at the proper time to do whatever 

you desire. The pre-run events such as  DocumentOpen  and  DocumentSave  pro-

vide opportunities for VBA code to be executed under certain user-initiated actions (for 

 example, opening and saving a model). However, most of the support for VBA events 

in Arena centers around the simulation run. Whenever you start a run (for example, by 

selecting  Run  .  Go ), a sequence of Arena actions and VBA events occurs (  Figure 10-11  ). 

 Arena automatically calls each of these events (listed in bold in   Figure 10-11  ) as the 

run begins, is performed, and terminates. If you have not written VBA code for an event, 

then no special actions will take place; Arena will behave as if the event didn’t exist.  

 (That’s what’s been happening all along.) However, if you open the Visual Basic Editor 

and type VBA code in one or more of these events, then Arena will execute that code 

during the run, as we’ll see in the next two sections of this chapter. 

   Figure 10-11   also points out an important aspect of the timing of these calls, re-

garding the type of data that are available to your VBA code. While you’re editing the 

Arena model, the simulation variables, counters, statistics, etc., are defi ned as part of 

the model’s structure via the information you’ve provided in modules, but they haven’t 

  Figure 10-11.  Simulation-Run VBA Events   

1. RunBegin

2. Arena checks and initializes the model

3. RunBeginSimulation

4. RunBeginReplication

Module data available

5. Arena runs replication
    OnKeystroke,
    UserFunction, etc.

6. RunEndReplication

7. RunEndSimulation

8. Arena terminates the simulation run

9. RunEnd

Simulation run data
available

Module data available
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yet been created for use in the simulation run (for example, there’s no average value of a 

number-in-queue yet, no state for a resource). So when the model’s in this  edit state , you 

can only work with the values of module operands (the fi elds in module dialog boxes 

and spreadsheet cells). In Model 10-6, we will utilize this approach to modify values in 

the Max Arrivals fi eld of two Create modules. 

 When you start a run, Arena checks and initializes the model, translating the in-

formation you’ve supplied in the modules into the format required for performing the 

simulation and placing the model in a  run state . During the run, the values of variables, 

resource states, statistics, etc., can be examined and changed through Arena’s run con-

troller and through VBA code. This use of VBA is illustrated in Model 10-7, which 

sends the values of run statistics to Microsoft Excel. At the end of the run, Arena de-

stroys this information and returns the model to an edit state. 

 Returning to Arena’s built-in events, we’ll briefl y describe each of the steps shown 

in   Figure 10-11  . Note that the items in   Figure 10-11   that are listed in bold correspond 

to VBA events available in Arena; the phrases shown in italics simply describe notable 

steps in Arena’s run processing.  

    1.   ModelLogic_RunBegin  is called. 

     At this point, VBA code can make changes to the structural data of the 

model—that is, the values in module operands—and have the changes be 

included in the simulation run because the updated information will be part of 

the initialization and check of the model. You might use this event to query for 

inputs that will overwrite what’s stored in modules (for example, a probability at 

a Decide module or update the capacity of a resource or perhaps even add logic 

based on user input). This event’s use is illustrated later in Model 10-6.  

   2.  Arena checks the model and initializes the simulation to a run state. 

     This process takes place behind the scenes, with Arena verifying that your 

model is ready to run and compiling the model, which may include the updates 

made during the  RunBegin  event. After the model is checked and initialized in 

this step, Arena ignores what’s contained in the modules, working instead with 

the simulation runtime data that change dynamically once the run has started. At 

this point, all variables have been assigned their initial values (for example, the 

numbers you typed in the Variable spreadsheet or updated during the  RunBegin  

event), but no entities have yet entered the model.  

   3.   ModelLogic_RunBeginSimulation  is called. 

     Here, Arena gives you the chance to insert VBA code that will be executed 

only once at the beginning of the simulation run. (Of course, if Arena detected 

errors in your model in Step 2, this event won’t be called; you fi rst have to fi x 

your mistakes to allow proper initialization of the model.) When the VBA code 

in  RunBeginSimulation  is being executed, Arena holds off on starting the 

simulation run. So at this point, you can safely load lots of data from outside 

sources like Excel, Access, or Oracle ® ; display a UserForm to ask whomever’s 

running your model for some sage advice, such as how many shifts they want to run 

in today’s simulation; or set up the headers in an Excel fi le that will be storing some 

detailed simulation results (as we’ll see in Model 10-7). Often this code will end up 
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assigning values to variables in the Arena model, though it also could create entities, 

alter resource capacities, or dozens of other things that you’ll fi nd if you delve into 

the depths of the Arena object model. After your  RunBeginSimulation  VBA 

code is fi nished doing its work, Arena moves to the next step.  

   4.   ModelLogic_RunBeginReplication  is called. 

     For each replication that you’ve defi ned for this run, Arena will call 

 RunBeginReplication  at the beginning of the replication (that is, before any 

entities have entered the model). The types of things you might do here are similar 

to those described for  RunBeginSimulation —except that whatever you 

defi ne in  RunBeginReplication  will be repeated at the beginning of each 

replication. We’ll see in Model 10-7 how these two events can be used together.  

   5.  Arena runs the simulation. 

     Next, the model run is performed. In this step, entities are created and 

disposed, resources are seized and released, etc.; basically all that stuff you’ve 

learned in your suffering through the previous chapters of this book is put to 

work. During the run, Arena provides a number of opportunities for you to 

activate VBA code, such as the following.    

    ModelLogic_UserFunction —called whenever the UF variable is 

referenced in Arena logic. This event might be used to perform complex 

calculations for a process delay or decision criterion.  
      ModelLogic_VBA_Block_Fire —called when an entity passes 

through a VBA module (from the Blocks panel) in model logic. This 

event is used in Model 10-7 to write detailed information to Excel as 

each entity departs the model.  
      ModelLogic_OnKeystroke —called whenever the user strikes a key 

during the simulation run. For example, your VBA code might display a 

UserForm with summary model status whenever the “1” key is pressed.  
      ModelLogic_OnClearStatistics —called whenever statistics are 

cleared, such as when simulation time reaches the value entered for the warm-

up period in the Run Setup dialog box. You might write VBA code here to 

set certain model variables or to send an entity into the model to activate 

specialized logic that augments the standard Arena statistics initialization.    

   6.   ModelLogic_RunEndReplication  is called if the simulation reaches the 

end of a replication. 
     This event typically stores VBA code that either writes some summary infor-

mation to an external fi le, increments some global variables, or both. Note that 

it’s only called when the run reaches the end of a replication; if the run is stopped 

for some other cause (such as the user clicking the  End  button on the Run tool-

bar), then this event is not executed.  

   7.   ModelLogic_RunEndSimulation  is called. 
     Regardless of how Arena ended the run, the VBA code in this event will be 

executed. When  RunEndSimulation  is called, the runtime simulation data 

are still available, so fi nal statistics values, resource states, etc., can be accessed 
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by the VBA code here.  RunEndSimulation  typically contains logic to write 

custom statistics to fi les, spreadsheets, or databases, as well as “clean-up” code 

to close fi les or display end-of-run messages.  

   8.  Arena terminates the simulation run. 
     This is the counterpart to Step 2. Arena clears all of the runtime simulation 

data and returns the model to an edit state.  

   9.   ModelLogic_RunEnd  is called. 
     Finally, the  RunEnd  VBA event is called, providing a balance to the  RunBegin  

event in Step 1. The VBA code in this event cannot access any information from 

the run that was just performed (because nasty old Step 8 took it all away), but all 

other VBA functions are available. If you wanted, you might display a UserForm in 

 RunEnd  that asks whether the user wants to run the simulation again, so that we’d 

be sent automatically back to Step 1 to start the process over again!  

    10.2.3 Arena’s Object Model 

 After you’ve decided where to locate your code, you’ll probably need to access in-

formation from Arena. The object model (also referred to as a  type library ) provides 

the list of objects and their properties and methods that are available to your code. All 

of the information that your code needs from Arena and all of the actions your code 

causes Arena to perform will be carried out by utilizing elements from the Arena object 

model. 

 An  object  is an item that you can control from your code. Its characteristics, referred 

to as  properties , can be examined in VBA, and many of the properties also can be changed 

by your code. Examples of object properties include line colors for rectangles, polylines, 

etc.; positions ( x  and  y ); and identifi ers for animation objects such as stations and queues. 

Most objects also have  methods  that you can invoke to cause an action to be performed; 

for example, activating a window or creating a new polygon. Also, most object types are 

grouped into  collections , which are simply one or more objects of the same type (usu-

ally). There’s a collection of modules in the Arena object library, for instance, that holds 

all of the module instances (which are objects of type Module) in a submodel window. 

 If you’d like to explore the object library, VBA provides a handy browser, opened 

by selecting  View  .  Object Browser  in the Visual Basic Editor window or pressing the 

 F2  key. This allows you to navigate through object libraries, exploring objects and their 

properties and methods.   Figure 10-12   shows the browser’s display of the StatusVariables 

collection object and its Create method in the Arena object library.  

 Arena’s object model contains the following categories of objects. 

       Model-window objects —all of the items that can be placed in an Arena model 

window or viewed via its spreadsheet. Modules, connections, lines, polygons, 

text, the animation objects, and interaction-related objects such as named views 

fi t into this category.  
      SIMAN object —the special object type that provides access to information 

about the running simulation, such as variable values, resource capacities, queue 

lengths, and the current simulation time.  
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      Structural objects —the objects that are used to access general Arena functions, 

such as the application, module defi nition, and panel objects.  

  When you write code that mimics what normally would be performed interactively 

(that is, via the mouse and keyboard), you’ll be working mostly with objects that fall 

into the model-window category. These objects also constitute the majority of the ob-

jects that you’ll see if you browse the object library, because Arena has a large number 

of objects that you can work with in a model. 

 For example, the code in   Figure 10-13   adds ten animation variables to the model 

containing this VBA code. The fi rst object variable referenced in the code is named 

  Figure 10-12.  The VBA Object Browser   

 Sub CreateTenStatusVariables()   

Dim oModel As Arena.Model  

Dim i As Integer  

Dim nX As Long  

Set oModel = ThisDocument.Model  

‘ Add the status variables to the Arena model.  

nX = 0   ‘ Start position x at 0  

For i = 1 To 10  

    ‘ Add a status variable to the model window  

    oModel.StatusVariables.Create nX, 0, _  

    nX + 400, 150, “WIP(“ & i & ”)”, “**.*”, False, _  

    RGB(0, 0, 255), RGB(0, 255, 255), RGB(0, 0, 0), “Arial”  

‘ Move over 500 world units for next position  

nX = nX + 500  

Next i  

End Sub  

 Figure 10-13.  Sample Code to Create Ten Status Variables 
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 oModel . It’s declared as type  Arena.Model , which defi nes it as coming from the 

 Arena  object-model-type library and being of type  Model . (We use the lowercase “o” 

as a variable-name prefi x as a way of indicating that it’s an object variable as opposed to 

an integer or other data type.) We set the  oModel  variable to point to the model window 

that contains the VBA code by using a special object provided by Arena’s object model, 

called  ThisDocument , and getting its  Model  property. Then, within our loop, we add 

a new animation variable by using the  Create  method of the  StatusVariables  

collection, which is followed by a number of parameters that establish the variable iden-

tifi ers as  WIP(1)  through  WIP(10) —formed by concatenating the string  “WIP ( “   

with the loop index variable,  i , and closing with  ” )  ”  to complete the name—and their 

positions, sizes, and text characteristics.  

 The second major area of content in the object library falls under the main object 

type,  SIMAN . This object, which is contained in a Model object, provides access to all of 

the information about a running simulation model. Using the properties of the SIMAN 

object, your VBA code can fi nd out almost anything about the simulation. If you click 

on the SIMAN object in the browser, you’ll see that there’s an extensive list of functions 

at your disposal. 

   Figure 10-14   shows a snippet of code that displays a message querying the user 

for a variable value (using the  InputBox  function from Visual Basic, which is dis-

played below the code), then assigning a new value to the  Mean Cycle Time  

model variable. The answer supplied to the  InputBox  is stored in a local string 

variable,  sNewValue . Then the  oSIMAN  variable is set to point to the SIMAN ob-

ject contained in  ThisDocument.Model . (SIMAN is the simulation engine that 

runs Arena models.) Any information we want to get from the running simulation or 

change in the run will be accessed by using this  oSIMAN  variable. The fi nal two lines 

 Dim oSIMAN As Arena.SIMAN  

Dim nVarIndex As Long  

Dim sNewValue As String  

  

‘ Prompt for a new value  

sNewValue = InputBox(“Enter the new average cycle time:”)  

  

‘ Assign their answer to the Mean Cycle Time variable  

Set oSIMAN = ThisDocument.Model.SIMAN  

nVarIndex = oSIMAN.SymbolNumber(“Mean Cycle Time”)  

oSIMAN.VariableArrayValue(nVarIndex) = sNewValue   

 

 Figure 10-14.  Code to Assign New Variable Value During Run 
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of code assign the value to the variable. We fi rst use the  SymbolNumber  function 

to convert the name of the variable to the internal index used by the SIMAN engine. 

Finally, the  VariableArrayValue  property is changed to whatever was typed in 

the  InputBox . 

 Because of the natures of these two categories of objects, they typically are used in 

different sections of code. The model-window objects most often are incorporated in 

code that’s either hosted outside of Arena or in utility VBA functions to do things like 

lay out tables of variables (as in   Figure 10-13  ) or automatically build an Arena model 

(as in the Visio interface that’s distributed with Arena). 

 The SIMAN object, on the other hand, is active only during the simulation run. It’s 

typically used in the built-in events described in Section 10.2.2. If you write any code 

that uses the SIMAN object, it must be executed while the model is in a run state (that 

is, between the  RunBegin  and  RunEnd  events). The properties and methods that are 

made available through the SIMAN object provide access to all of the variables and sta-

tistics related to your running model (for example, number in queue, average tally value, 

current simulation time) as well as a few modeling actions to create entities and send 

them into the model. The SIMAN object does not provide any modeling capabilities or 

simulation data beyond what’s available in an Arena model. This automation interface is 

simply an alternate way to get at or change the information in your model. We’ll see how 

this can be useful in Section 10.4 when we send data from the Arena model to Excel.  

   10.2.4 Arena’s Macro Recorder 

 As you can see from Sections 10.2.1 through 10.2.3, VBA provides signifi cant power 

and fl exibility, but also can be somewhat diffi cult to learn. Many products that support 

VBA also provide a macro recording capability to give you a jump start. A  macro  is a 

series of VBA commands or instructions stored in a Visual Basic module that can be 

run whenever you need to perform a task. The  macro recorder  is a tool that makes it 

easy to generate macros by recording the commands associated with actual tasks. In this 

 section, we’ll explore how to use macros to help us build VBA solutions. 

 Let’s say that we want to write some code to place some modules. While we could 

certainly explore the Arena object model described in Section 10.2.3, we’ll instead gen-

erate some sample code that we can customize. We’ll start by turning on macro record-

ing by selecting  Tools  .  Macro  .  Record Macro  or by selecting the  Start/Pause/Resume  

button (  ) on the Record Macro toolbar. This brings up the Record Macro dialog box 

where we give our macro a meaningful name and a description. Complete the Macro 

name and Description in this dialog box as illustrated in   Display 10-23  . (Note that VBA 

macro names cannot contain spaces.) 

 As soon as you select  OK , the macro begins to record (more on that in a moment), 

and the Record Macro toolbar changes to (  ) to indicate that a macro recording 

session is in progress. The  Start/Pause/Resume  button is pressed in to indicate that you 

are currently recording your actions. Pressing the button again pauses the recording, but 

does not end the session; simply press the button again to resume. When you are record-

ing or pausing a session, the  End  button is available (an indication that a macro is being 

recorded) and may be pressed at any time to stop the recording.   

kel01315_ch10_423-478.indd   451kel01315_ch10_423-478.indd   451 05/12/13   3:20 PM05/12/13   3:20 PM



452     Chapter 10

 Once you activate the macro recording, be sure to perform only those steps that you 

want to record. The actions defi ned in the Arena object model may be recorded, but 

some actions, like the module dialog box entries, are not. If you want to change module 

data, you must do so using the spreadsheet interface. Because we want to explore how 

to place a module and set its operands, that is exactly what we’ll do next. Select a Create 

module from the Basic Process panel and place it in the model window. Then use the 

spreadsheet interface to set the Name, Entity Type, and Value as shown in   Figure 10-15  . 

 Press the  End  button on the Macro Record toolbar to stop the recording and automati-

cally store the generated code in the VBA module named  PlaceCreateModule . Load 

the Visual Basic Editor ( Tools  .  Macro  .  Show Visual Basic Editor ) and then  double-click 

on ThisDocument to see the code we just generated, as shown in   Figure 10-16  . It is a sub-

routine with the name we gave our macro, followed by the description we entered. The next 

line does the actual work of placing the module at the specifi ed  x  and  y  coordinates. The 

 Name   MyCreation  

 Entity Type   JustMyType  

 Value   1.5  

  Figure 10-15.  Setting Create Parameters During Macro Recording 

  Display 10-23.  Starting to Record a Macro   
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next three lines set the operands we changed in the spreadsheet interface. And fi nally, the 

very last line closes the subroutine and ends the macro.  

 Let’s close the Visual Basic Editor and return to our model to try our new code. 

 Select  Tools  .  Macro  .  Run Macro  to open the Run Arena Macro dialog box (pictured 

in   Display 10-24  ), which provides a list of all of the macros we have defi ned (only one so 

far) and gives us some options to run. Select the  Run  button. Although it may appear that 

nothing happened, in fact, it placed a new Create module at the exact  x / y  coordinates of 

the old one, just as we told it to do. If you drag aside the module on the top, you’ll see our 

original module hiding directly beneath. A closer look shows that the parameters of the 

new module are still at their default values. Can that be right? We told it to place a Create 

module and it did. So far, so good. But let’s look again at the code in   Figure 10-16  . 

 Most VBA commands work on the currently selected object ( Model.ActiveView
.Selection ). In our case, the module we created was still active, and its tag is 

  object.11 . To set the operand of the module we just created, each of the next three 

lines executes an  smFindTag  on “ object.11 .” So the macro seems to have re-

corded correctly exactly what we did. But let’s walk through what happens when we 

run the macro. The fi rst line places a new Create module exactly where we placed the 

  Figure 10-16.  Code Generated During Macro Recording   

  Display 10-24.  Running the PlaceCreateModule Macro   
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original—we’ve already seen that work. The second line fi nds  object.11 , the  orig-
inal  object, and sets its operand. The macro works as designed, but not as intended. If 

we went back to the model, deleted both modules, and ran our macro again, what would 

you expect to happen? We’d get an error because we’d be looking for an object that 

didn’t exist. 

 The macro we just created is obviously not too useful to execute, so you might 

wonder where its value lies. While there are some applications where you can record a 

macro and then use it repeatedly without changes, in most cases, this will not be true. 

Typically, the value is in looking at the code that was generated. Although the macro 

above was trivial, it provides a lot of good information. We can see how to place a   mod-

ule and what parameters are required. We know how to fi nd an object using its tag. We 

know how to set the operands in a module, and we know the names of the three specifi c 

operands we wanted to change. In short, that simple macro gave us a big jump start to 

writing some real code.  

 The primary value of the macro recorder is to make it easier to learn and prototype 

VBA model extensions. Once you see how it’s done, you can use those same techniques 

to solve other problems. There is no limit to the number of macros you can create, and 

you can mix and match techniques from several different ones as needed. In short, the 

macro-recording capability, used in combination with the other techniques you learn in 

this chapter, can be a powerful addition to your “bag of tricks.” 

     10.3 Model 10-6: Presenting Arrival Choices to the User 

  In Section 10.1, we exploited Arena features to integrate data into a model. Next, we’ll 

turn our attention to how we can interact with someone who’s running an Arena model. 

 In Model 10-6, we’ll set up a mechanism for when the model runs that allows a 

choice to be made to use either call arrivals generated from a random process (as in the 

original Model 10-1) or from a fi le (as in Model 10-2). At the beginning of a run, we’ll 

display a  UserForm  (VBA’s term for a dialog box) providing the options, as shown in 

  Figure 10-17  . 

 The user selects the desired option by clicking on the appropriate option button, then 

clicks  OK  to allow the simulation run to commence. We’ll write VBA code to make the 

required changes to the model so that only one of the call arrival types actually sends en-

tities into the model. And then at the end of this section, we have a surprise for you that 

  Figure 10-17.  Visual Basic UserForm   
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will add a bit of pizzazz to the model with a quick bit of VBA code. Don’t peek ahead, 

though—you’ll have to make your way through the “fun with forms” material fi rst! 

  10.3.1 Modifying the Creation Logic 

 First, we need to set up the model so that it can generate entities from either the random 

arrival process of Model 10-1 or the input fi le of Model 10-2. To do so, we’ll place both 

sets of logic in the same model, connecting to the Process module that’s the beginning 

of the call logic, as in   Figure 10-18  .   

 If we’re using the random-process-arrivals logic, then we’ll set the Max Arrivals fi eld in 

its Create module to  Infinite  (as was the case in Model 10-1) and the Max  Arrivals in the 

fi le logic’s Create module to  0 , indicating that no entities should enter the model there. In the 

other case, for arrivals from the fi le, we’ll set the Max Arrivals of the  random-process-arrivals 

Create module to  0  and the value in the Create module for the fi le logic to  1 . (Remember that 

its logic creates only a single entity.)   Display 10-25   shows the Create module for turning off 

entities at the random-process-arrival Create module. 

  Figure 10-18.  Call-Creation Logic for Model 10-6   

 Max Arrivals   0  

  Display 10-25.  Create Module with Max Arrivals of 0 
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 To verify that the model works properly, you can edit the Create modules to set their 

Max Arrivals values, then run the simulation and watch the counters next to the two 

Create modules. After we add the VBA code at the beginning of the run, we won’t need 

to worry about the Max Arrivals fi elds; the proper values will be fi lled in by VBA, based 

on the user’s selection for the type of arrivals. Arena will generate a warning for the 

Create module that is not in use based on the user’s selection. This is done to make sure 

that you don’t want to create entities from the Create module. To disable the warning 

message, go to Run . Setup . Run Control and make sure that “Pause After Warnings” 

is not checked.  

 Before continuing, we’re going to make two additional model changes that will be 

exploited by the VBA code to fi nd the proper Create modules. Though you probably 

didn’t realize it, each object in an Arena model window has an associated  tag . This tag 

isn’t shown anywhere when the objects are displayed; it is only accessible through the 

Properties dialog box, which you open by right-clicking on the object and selecting the 

Properties option, as shown in   Figure 10-19   for the Create Arrivals module. 

 Arena assigns these tags as you add objects, using a format “Object. nnn ,” where 

 nnn  is an integer that increases as each new object is placed in the model (for example, 

Object.283). We’ll change the tag for the Create module that uses the random process 

to  Create from random process  as shown in   Figure 10-19  , and we’ll change 

the tag of the fi le-arrivals Create module to  Create from file . Right-click on each 

Create module and select the Properties option from the menu; then type the appropriate 

tags. Later, when our VBA code needs to fi nd these particular modules, we’ll use a Find 

method to search for a matching tag value, which we’ll know is unique since we’re the 

ones who assigned them to these modules. 

   10.3.2 Designing the VBA UserForm 

 Now that the model is designed to trigger either type of call creation, we’ll redirect our 

attention to VBA to give the modeler a choice each time a simulation run begins. We’ll 

fi rst draw the form that will be presented when the run is started, and then we’ll write 

some VBA code to act on the selection made in the form. 

  Figure 10-19.  Changing the Module Tag via the Properties Dialog Box   
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 To add a UserForm (which we’ll refer to as a  form ), open the Visual Basic Editor and 

select the  Insert  .  UserForm  menu option. This adds a new object to our VBA project 

and opens a window in which you can draw the form, lay out controls (the things with 

which a user can interact), add pictures and labels, and so on. We’ll skip over the details 

of how forms are designed in VBA; the VBA help topic under the Microsoft Forms 

Design Reference topic can aid your understanding of the basic concepts, toolbars, and 

features of Microsoft Forms.   

 For the VBA code to access the form, it needs to have a name. We’ll call it 

 frmArrivalTypeSelection  by typing in the Name fi eld of the Properties box, as 

in   Figure 10-20  . 

 To design the form’s contents, drag controls from the Control Toolbox onto the form. 

Drag a label onto the form and type its Caption fi eld (in the Properties box) to match the 

descriptive text in   Figure 10-21   ( Call entities can …). Next, drag an option but-

ton onto the form below the label. Change its Name to  optFromRandomProcess , 

its Caption to  Random interarrival-time process , and its Value to  True  so 

that it is the default selection. Then add another option button named  optFromFile , 

with  Arrival times from a file  as its caption and a default value of  False . 

The fi nal control is the command button at the bottom of the form. Name it  cmdOK  with 

  Figure 10-20.  UserForm in VBA Project   

  Figure 10-21.  UserForm Layout   
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a caption of  OK , and set its Default property to  True  so that the Enter key will act like 

the command button has been clicked. 

 This UserForm is now part of the Arena model; when you save the model fi le, the 

form will be saved with it. However, it’s not of much help to us until VBA knows what 

to do with the form. We’ll tackle that effort next.   

   10.3.3 Displaying the Form and Setting Model Data 

 We want the VBA code for this model to turn on and off the two Create module arrivals, 

based on which type of calls the user actually wants to run through the simulation. For 

these changes to work, we need to set the Max Arrivals fi elds in the two Create modules 

before the run begins. By doing so, the values will be compiled into the model just as 

though the modules had been edited by typing values in the module dialog boxes. If 

you recall the steps outlined in Section 10.2, the  RunBegin  event gives us the perfect 

opportunity to make these changes. It’s called at the beginning of every simulation run 

before the model is checked, so the changes to the module data made by our VBA code 

will be included in the run. 

 Of course, we’ll need to display the form to the user, who will select which type 

of arrival is desired. We’ll do that by inserting a single line of code in the  RunBegin  

event. You can get to the  RunBegin  event by double-clicking on  ThisDocument  in 

the Project box, then selecting  ModelLogic  in the left drop-down list and  RunBegin  

in the list on the right, as shown in   Figure 10-22  . 

 The code to display the form, shown in   Figure 10-23  , can be read by starting at the 

right and reading toward the beginning—we’re going to “Show” the object (in this case, 

a UserForm) named  frmArrivalTypeSelection .  

 This line of code will display the form and pass program control to it whenever the 

simulation run begins. After the Show event is executed, VBA is suspended until the 

user takes some action that initiates a VBA event for the form. Also, Arena is paused 

until the VBA code returns from the  RunBegin  event, allowing time for the user to 

  Figure 10-22.  Adding the ModelLogic_RunBegin Event to the VBA Project   
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decide what to do and for VBA to complete its  RunBegin  work. So if you were to run 

the model at this point, Arena’s VBA would immediately display the form and wait for 

someone to tell it to go away so that the run could start. We haven’t written any code to 

do that yet, so it may appear that you’re stuck. Luckily, the VBA forms have a close box 

(the small button at the top right of the dialog box) that you can click to make the form 

go away and let Arena start its run. 

 The next time we want VBA code to intervene, though, is after the user has made 

the arrival-type selection and clicked the  OK  button. While the form is displayed, the 

user can change his mind as often as he wants by clicking the option buttons. But when 

he has given his fi nal answer and clicked  OK , we want our VBA code to be able to set 

the appropriate values in the Create modules, have the form disappear, and have the run 

begin. 

 VBA UserForms have predefi ned events similar to those in Arena. We’ll insert our code 

in the event that’s tied to the user’s clicking on the  cmdOK  button in our UserForm. Open 

the form design window by double-clicking on the  frmArrivalTypeSelection  entry 

in the Project box, then double-click on  OK . The Visual Basic Editor automatically opens 

the code window that’s associated with the UserForm and inserts the beginning and ending 

statements for the  cmdOK_Click( )  event, as shown in   Figure 10-24  . 

 In this event, we’ll write all of the code to take action on the user selection. Our code 

will need to do the following:

      Locate each of the two Create modules  
     Set the Max Arrivals fi eld value in each Create module  
     Add the code for the fun surprise (and you thought we forgot!)  
     Close the UserForm    

 It’s helpful to understand that in the Arena object model, usually code is designed to 

mimic the actions you would take interactively with a mouse and keyboard. So if you 

think about the steps you’d be taking to modify the Create modules, your fi rst action 

would be to fi nd and open a Create module and edit its fi elds, and then you would repeat 

these steps for the second Create module. 

 Option Explicit  

Private Sub  ModelLogic_RunBegin ()  

    ‘ Display the UserForm to ask for the type of arrivals   

    frmArrivalTypeSelection.Show  

  

    Exit Sub  

End Sub  

 Figure 10-23.  ModelLogic_RunBegin Code to Display Form 

 Private Sub  cmdOK_Click () 

 End Sub  

 Figure 10-24.  UserForm cmdOK_Click Event 
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 To describe the code for the  cmdOK_Click  event, we’re fi rst going to present 

smaller sections of code in   Figures 10-25  ,   10-26  , and   10-29   so that you can refer to 

the lines of VBA code more easily as you read the narration.   Figure 10-30   repeats all 

the code in the complete  cmdOK_Click  procedure, so that you can see how it all fi ts 

together.   

 We’ll start with code to locate each of the two Create modules so that we can 

assign the Max Arrivals fi elds to the appropriate values. We’ll use the tag values that 

we assigned in Section 10.3.1 to fi nd the Create modules from our VBA code, as in 

  Figure 10-25  . (We included the  Dim  statements for the variables used in this sec-

tion of code, although it’s usual—but not required—to place all variable declarations 

at the top of the function, as we do in the complete code listing of   Figure 10-26  .) 

The line that sets the  nCreateRandomProcessIndex  variable tells VBA 

to  Find  in the collection of  Modules  contained in the  oArrivalsModel  the 

item whose tag value is  Create from random process . (The  smFindTag  

constant dictates to  Find  based on matching tags instead of module names.) Simi-

larly, the   nCreateFileIndex  variable fi nds the Create module for creating from 

a fi le. After each index is evaluated, it is used to point the corresponding variable 

(  oCreateRandomProcessModule  or  oCreateFileModule ) to the Create 

     Dim nCreateRandomProcessIndex As Long  

    Dim oCreateRandomProcessModule As Arena.Module  

    Dim nCreateFileIndex As Long  

    Dim oCreateFileModule As Arena.Module  

    Dim oModel As Arena.Model  

    Set oModel = ThisDocument.Model  

      

   ‘ Find the two Create modules  

    nCreateRandomProcessIndex = _  

        oModel.Modules.Find(smFindTag, _  

        “Create from random process”)  

    If nCreateRandomProcessIndex = 0 Then  

        MsgBox “No module with tag ‘Create from random process’”  

        frmArrivalTypeSelection.Hide  

        Exit Sub  

    End If  

    Set oCreateRandomProcessModule = _  

        oModel.Modules(nCreateRandomProcessIndex)  

      

    nCreateFileIndex = _  

         oModel.Modules.Find(smFindTag, “Create from file”)  

    If nCreateFileIndex = 0 Then  

        MsgBox “No module with tag ‘Create from file’”  

        frmArrivalTypeSelection.Hide  

        Exit Sub  

    End If  

    Set oCreateFileModule = oModel.Modules(nCreateFileIndex)  

 Figure 10-25.  Locating the Create Modules via Tags from VBA 
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module. The  If  statements that test whether the returned index values equal zero are 

there to provide a message if no module has the needed tag value (for example, if the 

Create module had been deleted).  

 At this point, we have two variables pointing to the Create modules, so we simply 

need to check the option buttons in the UserForm to fi nd out what the user selected and 

make the assignments to the Max Arrivals fi elds. To retrieve the setting of an option 

button, the VBA code tests the  Value  property, seen in   Figure 10-26  . If the button 

named  optFromRandomProcess  was selected when  OK  was clicked, its  Value  

is  True . In this case, we want to allow the Create module for random processes to 

generate entities (that is, set its MaxArrivals value to  Infinite ) and turn off the other 

Create module for creating entities from a fi le. Otherwise, we want to set the random-

process-arrivals Create module to a maximum of  0  and the from-fi le Create module to 

a maximum of  1  (so that our control entity enters the model to read arrival times from 

the fi le). To modify the value of a fi eld (also referred to as an  operand ) in a module, the 

 Data  method is used in the VBA code. 

 If you’re paying close attention (as we’re sure you must be), you may have noticed 

that “Max Arrivals” doesn’t appear anywhere in this code. Instead, the fi eld in the Create 

module that defi nes the maximum number of arrivals is called “Max Batches.” In Arena 

modules, the text that appears in the module’s dialog box is called the  prompt , and it 

may or may not match the underlying  name  of the operand in the module’s defi nition. 

The Data method of a module object in VBA requires this operand name. To fi nd it, you 

look up the module in a text fi le that’s installed with Arena (that is, wherever the Arena 

program fi le is located on your hard disk). In this case, the Create module came from 

the Basic Process panel, so we open the fi le named  BasicProcess.txt  and fi nd the 

Create module, which is conveniently located at the top of the fi le. Looking down the list 

of prompts in   Figure 10-27  , we see that the operand whose prompt is “Max Arrivals” has 

an operand name of  Max Batches  (don’t ask us why), so we entered  Max Batches  

as the argument for the Data method.  

 As a refresher, let’s review how we got here. Someone started a simulation run, 

perhaps by clicking the  Go  button on the Run toolbar. Arena called the VBA event, 

 ModelLogic_RunBegin , where our code called the Show method for the  

  frmArrivalTypeSelection  form. Whoever started the run then had the opportu-

nity to select the type of arrivals to be used for this run by clicking the option buttons. 

 ‘ Set the Max Arrivals fields  

    If optFromRandomProcess.value = True Then  

        oCreateRandomProcessModule.Data(“Max Batches”) = “Infinite”  

        oCreateFileModule.Data(“Max Batches”) = “0”  

    Else  

        oCreateRandomProcessModule.Data(“Max Batches”) = “0”  

        oCreateFileModule.Data(“Max Batches”) = “1”  

    End If  

 Figure 10-26. Updating the Create Modules with the User Selection 
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(VBA’s forms take care of permitting only one option button to be selected, by the way.) 

While the form was displayed, the Arena run was suspended, patiently waiting for our 

VBA code to fi nish its work. 

 Eventually (we hope), someone clicked the  OK  command button on the form, which 

caused VBA to call the  cmdOK_Click  event in the  frmArrivalTypeSelection  

code window. This code opened the Create and Direct Arrivals submodel, found the 

two Create modules, and entered the appropriate values into the Max Arrivals fi elds. 

And remember that all of this took place in  RunBegin , which is called prior to the 

model being checked and compiled, so our changes to the module data  will  apply for 

the run. We needed to place our code there, rather than in  RunBeginSimulation  

or  RunBeginReplication , because those two events are called after the modules 

have been compiled and the run initialized, where we can access the runtime data only 

through the SIMAN part of the model object. (Now might be a good time to page back 

to   Figure 10-11   for a refresher on the order of Arena VBA events.) 

 And now, the moment you’ve been waiting for—the surprise! To close out our work 

at the beginning of the simulation run, we’ll add some drama to our project (or waken the 

sleepy modeler) by playing some stirring music via a sound fi le placed in the model window. 

For this addition, we need to insert the sound fi le into the Arena model, give it a unique tag so 

that our code can fi nd it, and then write the VBA code to cause the sound to play. 

 To place the fi le in the model, return to the Arena model window. Then open your 

fi le browser (for example, Explorer or Microsoft ®  Outlook ® ), locate the sound fi le, and 

drag it into the Arena model, as illustrated in   Figure 10-28  .  

 The sound object in the Arena model is an embedded fi le containing a copy of the 

fi le we originally had on our disk. This fi le also could have been placed in the Arena 

model using the Windows clipboard or via the  Edit  .  Insert New Object  menu option 

in Arena. The object itself is just like a sound fi le stored on your disk; double-click on it 

to play its inspiring melody. To provide the sound object with a unique tag, right-click 

on its icon in the Arena model window, select Properties from the menu, and enter 

  Mission Possible  for the Tag value. 

 Module:  Create   

Operands Contained in Dialog ‘Create’:  

Operand Name                  Prompt  

Name                          Name  

Entity Type                   Entity Type  

Interarrival Type             Type  

Schedule                      Schedule Name  

Value                         Value  

Expression                    Expression  

Units                         Units  

Batch Size                    Entities per Arrival  

Max Batches                   Max Arrivals  

First Creation                First Creation  

 Figure 10-27.  BasicProcess.txt Listing of Operands 

kel01315_ch10_423-478.indd   462kel01315_ch10_423-478.indd   462 05/12/13   3:20 PM05/12/13   3:20 PM



Arena Integration and Customization     463

 Finally, return to the Visual Basic Editor window to insert the code that will activate 

the sound fi le at the beginning of the run, shown in   Figure 10-29  . We once again use the 

 Find  method, this time from within the  Embeddeds  collection of the  Model  object, 

to search for the desired object. If we fi nd the object with tag  Mission Possible , 

then we activate it (in the case of a sound fi le, playing the sound) using the  Do  method 

of the collection item at the appropriate index. 

 After you’ve run the simulation a few times, you may fi nd that you have a compel-

ling need to disable the sound fi le. If so, feel free to turn off your computer speakers. Or 

you can comment out the offensive lines of code by placing the statement,  If 0 , before 

the fi rst line (where we retrieve the value of  nSoundFileIndex ) and the statement, 

 End If , after the fi nal line (the  Do  method). Later, if you want to restore the excite-

ment to your model, you can simply change the  0  to a  1  in the  If  statement, a handy 

trick for code that you’re not sure you always want to utilize. 

 Now that we’ve completed all of our work, including the surprise, our last step is to 

close the UserForm and exit the Click method of the  OK  button, so that Arena can begin 

the simulation run. These lines of code are at the bottom of   Figure 10-30  , which lists the 

complete code for the  cmdOK_Click  event. 

 After the form is hidden and the  cmdOK_Click  procedure is exited, VBA code 

control returns to the  ModelLogic_RunBegin  subroutine after the call to the  Show  

event for the form. Back in   Figure 10-23  , we saw that  RunBegin  simply exits the 

  Figure 10-28.  Dragging and Dropping a File into Arena   

     Dim nSoundFileIndex As Long  

      

    ‘ Play the sound file  

    nSoundFileIndex = _  

         oModel.Embeddeds.Find(smFindTag, “Mission Possible”)  

    If nSoundFileIndex > 0 Then _  

         oModel.Embeddeds.Item(nSoundFileIndex).Do 

  Figure 10-29.  Code to Play Sound File 
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 Private Sub  cmdOK_Click ()  

    ‘ Set the Max Arrivals field in each of the Create modules  

    ‘ based on the selection in the UserForm  

    Dim nCreateRandomProcessIndex As Long  

    Dim oCreateRandomProcessModule As Arena.Module  

    Dim nCreateFileIndex As Long  

    Dim oCreateFileModule As Arena.Module  

    Dim oModel As Arena.Model  

    Dim nSoundFileIndex As Long  

    Set oModel = ThisDocument.Model        

    ‘ Find the two Create modules  

    nCreateRandomProcessIndex = _  

         oModel.Modules.Find(smFindTag, _  

          “Create from random process”)  

    If nCreateRandomProcessIndex = 0 Then  

        MsgBox “No module with tag ‘Create from random process’”  

         frmArrivalTypeSelection.Hide  

         Exit Sub  

    End If  

    Set oCreateRandomProcessModule = _  

         oModel.Modules(nCreateRandomProcessIndex)    

    nCreateFileIndex = _  

         oModel.Modules.Find(smFindTag, “Create from file”)  

    If nCreateFileIndex = 0 Then  

         MsgBox “No module with tag ‘Create from file’”  

        frmArrivalTypeSelection.Hide  

        Exit Sub  

    End If  

    Set oCreateFileModule = oModel.Modules(nCreateFileIndex)    

    ‘ Set the Max Arrivals fields  

    If optFromRandomProcess.value = True Then  

        oCreateRandomProcessModule.Data(“Max Batches”) = “Infinite”  

        oCreateFileModule.Data(“Max Batches”) = “0”  

    Else  

        oCreateRandomProcessModule.Data(“Max Batches”) = “0”  

        oCreateFileModule.Data(“Max Batches”) = “1”  

    End If        

    ‘ Play the sound file  

    nSoundFileIndex = _  

        oModel.Embeddeds.Find(smFindTag, “Mission Possible”)  

    If nSoundFileIndex > 0 Then _  

        oModel.Embeddeds.Item(nSoundFileIndex).Do        

    ‘ Hide the UserForm to allow the run to begin  

    frmArrivalTypeSelection.Hide  

    Exit Sub  

End Sub 

  Figure 10-30.  Complete cmdOK_Click Event VBA Code 
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subroutine. At this point, Arena checks the model, initializes the simulation run, and 

begins the fi rst replication, all while entertaining you with the inspiring music of our 

embedded sound fi le.   

     10.4 Model 10-7: Recording and Charting Model Results in Microsoft Excel 

  We’ve already seen in Section 10.1.2 how we can write data to an existing worksheet 

and even take advantage of existing plots. In this section, we’ll learn how to use VBA 

in Arena to take more complete control, including creating the worksheet, formatting 

the data, and creating the chart. We’ll see how to use VBA to record information about 

each departing call in an Excel spreadsheet. Our objective will be to create an Excel fi le 

that lists three pieces of data for each completed call: the call start time, end time, and 

duration. We also want to chart the call durations to look for any interesting trends, such 

as groups of very short or very long calls.   Figure 10-31   shows a sample of the model’s 

results. 

 To build the logic necessary to create the spreadsheet and chart the results, we’ll 

need to perform three tasks. First, we need to write the VBA code necessary to create the 

Excel fi le. We’ll open the fi le at the beginning of the simulation run and will write new 

headers on the data worksheet so we can examine results for each 8-hour day. (Work-

sheets are the tabbed pages within an Excel fi le.) Second, we need to modify the model 

logic and write the necessary VBA code so that each time a sales call is completed its 

  Figure 10-31.  Microsoft Excel 2010 Results   
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entity “fi res” a VBA event to write the pertinent values to the worksheet. Finally, we’ll 

write the VBA code to create a chart of the call durations at the end of each replication 

and to save the fi le at the end of the simulation run.  

 The following sections describing these steps only highlight the concepts and list 

the corresponding code. If you’re interested in developing a deeper understanding of 

these materials, explore Arena’s help related to VBA and the Arena object model, and 

examine the SMARTs library models related to these topics. We also recommend any of 

the numerous books related to developing Excel solutions with VBA for reading about 

automating Excel. And there are many other resources at your disposal for learning 

Visual Basic, including a variety of books, CD tutorials, training courses, and websites. 

  10.4.1 Setting Up Excel at the Beginning of the Run 

 To store the call data during the run, we’ll fi rst create the Excel fi le, just as if we had 

run Excel and started a new fi le. At the start of each new day (that is, replication), we 

also want to write headers for the data columns. To do this, we’ll use two of Arena’s 

built-in VBA events:  RunBeginSimulation  and  RunBeginReplication . In 

  RunBeginSimulation , we’ll place the start-up code to run Excel and create the new 

workbook (that is, fi le). And as you might expect,  RunBeginReplication  is where 

we’ll write the headers, since we need a new set for each day (replication) of the run. 

   Figures 10-32  ,   10-34  , and   10-35   list the VBA code for Model 10-7. To view this 

code in the Arena model, open the  Model 10-07.doe  fi le, which is Model 10-2 

plus the VBA code described in this section. Select  Tools  .  Macro  .  Show Visual 
Basic Editor , and double-click on the ThisDocument item in the Visual Basic project 

toolbar. Note that when the corresponding functions for the built-in events are created 

in the code window, the  ModelLogic_  prefi x is added. We’ll leave the prefi x off for 

simplicity in our discussions, as Arena’s VBA event list does. 

 The global declarations section, shown in   Figure 10-32  , consisting of the lines that 

are outside any procedure (that is, before the line defi ning the procedure   ModelLogic_
RunBeginSimulation ), defi nes variables that are global to all procedures via a series 

of  Dim  statements (Visual Basic’s variable declaration syntax, short for “dimension”). 

Also, we included the  Option Explicit  statement to tell VBA that all variables must 

be declared (that is, with  Dim  statements); we recommend using this option to prevent 

hard-to-fi nd coding errors due to mistyped variable names. 

 We declare a global variable  oSIMAN  that will be set in  RunBeginSimulation  

to point to the model’s SIMAN data object and will be used in the remaining procedures 

 Option Explicit  

‘ Global variables  

Dim oSIMAN As Arena.SIMAN, nArrivalTimeAttrIndex As Long  

Dim nNextRow As Long, nColumnA As Long, nColumnB As Long, nColumnC As Long  

‘ Global Excel variables  

Dim oExcelApp As Excel.Application, oWorkbook As Excel.Workbook, _  

    oWorksheet As Excel.Worksheet 

  Figure 10-32.  VBA Global-Variable Declarations for Model 10-7 
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to obtain values from the running simulation. The variable type  Arena.SIMAN  es-

tablishes that the  oSIMAN  variable is a SIMAN object variable from the Arena object 

library. The other variables in the fi rst two  Dim  statements are used to keep track of 

other values that are needed in more than one of the procedures. We’ll describe them as 

we examine the code that uses them.  

 The remaining global variables—whose data types begin with  Excel. —are de-

clared to be object variables from the Excel object library. Because Excel is an external 

application (as opposed to Arena, which is the application hosting our VBA code), a  ref-
erence  to the Excel library must be established by clicking on the Microsoft Excel Object 

Library entry in the References dialog box of the Visual Basic Editor window, which is 

opened via  Tools  >  References , as shown in   Figure 10-33  . This reference will allow you 

to use ActiveX Automation calls to control Excel. Note that it also requires that Excel 

be installed on the computer that’s running this model. If you don’t have Excel, you’ll 

be able to open and edit this model, but you won’t be able to perform simulation runs. 

 Examining the  RunBeginSimulation  code in   Figure 10-34  , we fi rst set the 

 oSIMAN  variable equal to some interesting series of characters containing dots. When 

you’re reading code that exploits objects, it’s often helpful to read the object part from 

right to left, using the dots as separators between items. For example, the statement  Set 
oSIMAN = ThisDocument.Model.SIMAN  can be thought of as something like, 

“Set the  oSIMAN  variable to point to the  SIMAN  property of the  Model  object con-

tained in  ThisDocument .” Without delving too deeply into the details of the Arena 

object model or Visual Basic, let’s just say that  ThisDocument  refers to the Arena 

model containing this  RunBeginSimulation  code;  Model  is its main object, pro-

viding access to the items contained in the model; and  SIMAN  is an object that’s part 

of the model and you can use it to query or modify the model’s runtime data (such as 

resource states, variable values, and entity attributes).   

  Figure 10-33.  Tools > References Dialog Box from VBA   
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 After we’ve established the  oSIMAN  variable to point to the SIMAN run data, we 

use it to store the index value of the  Call Start Time  attribute in one of our VBA 

global variables— nArrivalTimeAttrIndex —so that it can be used throughout 

the run to retrieve the individual attribute values from entities as they depart the model. 

The  SymbolNumber  function from Arena’s object model is used to convert the name 

of some model element, such as an attribute, to its Arena runtime index (an integer be-

tween 1 and the number of those elements contained in the model). We use this for our 

attribute named  Call Start Time  and store the attribute index in our VBA global 

variable so that we require Arena to perform this calculation only once. The code that 

is executed during the run (in the  VBA_Block_1_Fire event , which we’ll cover 

shortly) will pass this index to the  EntityAttribute  property function to retrieve 

the actual value of the attribute. 

 Next, we start Excel using the  CreateObject  ActiveX Automation call and make 

it visible by setting the application’s  Visible  property to  True . Then we create a new 

Excel fi le (also referred to as a  workbook ) by automating Excel with the   oExcelApp.
Workbooks.Add  method; you can think of this as “ Add  a new item to the   Workbooks  

collection of the  oExcelApp  application.” The  oWorkbook  variable will store a 

pointer to the newly created Excel workbook; we’ll save the workbook to a fi le at the 

end of the simulation run. The remaining lines of code in   RunBeginSimulation  set 

our  oWorksheet  variable to point to the worksheet in the newly created Excel work-

book and establish some of its characteristics. If you will be working with Excel, we 

suggest that you explore its macro-recording capabilities. You often can create a macro 

in Excel and paste its code into Arena, with minor modifi cations; this is much quicker 

 Private Sub  ModelLogic_RunBeginSimulation ()  

    ‘ Set the global SIMAN variable  

    Set oSIMAN = ThisDocument.Model.SIMAN  

      

    ‘ Set global variable to store Arrival Time attribute index  

    nArrivalTimeAttrIndex= oSIMAN.SymbolNumber(“Call Start Time”)  

      

    ‘ Start Excel and create a new spreadsheet  

    Set oExcelApp = CreateObject(“Excel.Application”)  

    oExcelApp.Visible = True  

    oExcelApp.SheetsInNewWorkbook = 1  

    Set oWorkbook = oExcelApp.Workbooks.Add  

    Set oWorksheet = oWorkbook.ActiveSheet  

    With oWorksheet  

        .Name = “Call Data”  

        .Rows(1).Select  

        oExcelApp.Selection.Font.Bold = True  

        oExcelApp.Selection.Font.Color = RGB(255, 0, 0)  

        .Rows(2).Select  

        oExcelApp.Selection.Font.Bold = True  

        oExcelApp.Selection.Font.Color = RGB(0, 0, 255)  

    End With  

End Sub 

  Figure 10-34.  RunBeginSimulation VBA Code for Model 10-7 
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than trying to dig through the Excel object model on your own for just the right code 

magic to perform some task.  

 While the  RunBeginSimulation  event is called only once at the beginning of the 

run,  RunBeginReplication  is called by Arena at the beginning of each replication. 

Its code for Model 10-7 is listed in   Figure 10-35  . We use this event to write the column 

headers for our new day’s data. To fi gure out the columns into which we’ll write data, 

we use the current replication number (retrieved from the SIMAN part of Arena’s object 

model via the  oSIMAN  global variable we initialized in   RunBeginSimulation ) and 

do the proper calculation to get to the three columns we want. (Refer to   Figure 10-31   to 

see how the columns are laid out, with three data columns and then a blank one for each 

replication, which represents a day’s worth of calls.) 

 The lines of code between the  With oWorksheet  and  End With  statements 

utilize the Excel object model to assign values to various cells in the worksheet and to 

format them to match the design shown in   Figure 10-31  . We’ll leave it to you to explore 

the details of Excel automation via Excel’s help. Our fi nal statement sets the global 

 nNextRow  variable to start with a value of 3; this value will be used to determine the 

row to which each call’s results are to be written during the run. 

   10.4.2 Storing Individual Call Data Using the VBA Module 

 Our next task requires both changing the model logic and writing some VBA code. 

Let’s fi rst make the model modifi cation. Just before a call is fi nished (that is, prior to 

leaving the model via the Dispose module), it should trigger VBA code to write its 

 Private Sub  ModelLogic_RunBeginReplication ()  

    Dim nReplicationNum As Long, i As Integer  

    ‘ Set variables for the columns to which data is to be written  

    nReplicationNum = oSIMAN.RunCurrentReplication  

    nColumnA = (4 * (nReplicationNum - 1)) + 1  

    nColumnB = nColumnA + 1  

    nColumnC = nColumnA + 2  

      

    ‘ Write header row for this day’s call data and  

    ‘  set nNextRow to 3 to start writing data in third row  

    With oWorksheet  

        .Activate  

        .Cells(1, nColumnA).value = “Day ” & nReplicationNum  

        .Cells(2, nColumnA).value = “Start Time”  

        .Cells(2, nColumnB).value = “End Time”  

        .Cells(2, nColumnC).value = “Duration”  

        For i = 0 To 2  

            .Columns(nColumnA + i).Select  

            oExcelApp.Selection.Columns.AutoFit  

            oExcelApp.Selection.NumberFormat = “0.00”  

        Next i  

    End With  

    nNextRow = 3  

End Sub  

 Figure 10-35.  RunBeginReplication VBA Code 

kel01315_ch10_423-478.indd   469kel01315_ch10_423-478.indd   469 05/12/13   3:20 PM05/12/13   3:20 PM



470     Chapter 10

statistics—call start time, call completion time, and call duration—to the next row in the 

Excel worksheet. The triggering of the VBA code in this case isn’t as predictable as the 

fi rst two events we examined, which are defi ned to be called at the beginning of the run 

and at the beginning of each replication. Instead, the dynamics of the simulation model 

will dictate when the VBA code should be executed. Arena provides a VBA module on 

the Blocks panel for just this purpose. When you place this module, Arena will fi re the 

VBA code that you’ve written for the VBA module instead of including some predefi ned 

logic in the module itself.   Figure 10-36   shows the modifi ed call center model logic using 

an instance of the VBA module, inserted just before disposing the sales call entity.  

 When you place a VBA module, Arena assigns it a unique value that’s used to associ-

ate a particular VBA module with its code in the Visual Basic project; these numbers are 

integers starting at a value of 1 and increasing by one with each newly placed VBA mod-

ule. To edit the code for a VBA module, you return to the Visual Basic Editor and select 

the appropriate item from the object list in the code window for the   ThisDocument  

project entry, as shown in   Figure 10-37  . 

 The event associated with our VBA module is named  VBA_Block_1_Fire() , 

where the  1  matches the Arena-provided number of the VBA module. Its code is shown 

in   Figure 10-38  . 

 When a call entity completes its processing and enters the VBA module, the 

code in the  VBA_Block_1_Fire  event is invoked. The fi rst two lines of the pro-

cedure retrieve information from the running simulation (via the  oSIMAN  variable 

  Figure 10-36.  VBA Module   

  Figure 10-37.  Visual Basic Editor Selection of VBA Module 1 Event   
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that we set in  RunBeginSimulation ). First, we store the value of the active en-

tity’s attribute with index value  nArrivalTimeAttrIndex  in a local variable 

  dCreateTime . The  nArrivalTimeAttrIndex  global variable was declared out-

side of all of the procedures (so is available to all of them), and its value was assigned in 

  RunBeginSimulation  to be the index of the attribute named  Call Start Time  

(using the  SymbolNumber  function). Next, we store the current simulation time in a 

local variable  dCurrentTime . These values are used to store information about this 

entity in the spreadsheet, using the  nNextRow  variable to determine the row, which we 

then increment. After this code is executed for a particular entity, the entity returns to the 

model and enters the Dispose module, where it is destroyed.   

   10.4.3 Charting the Results and Cleaning up at the End of the Run 

 Our fi nal task is to create charts of the call durations for each replication and to save the 

spreadsheet fi le at the end of the simulation run. While we could do all of the charting at 

the end of the run since the data will exist on the data worksheet, we’ll instead place the 

code in  RunEndReplication  to build the charts as the run proceeds. 

 After the fi nal entity has been processed at the end of each replication, Arena calls 

the VBA  RunEndReplication  procedure. In our model, we’ll chart the data con-

tained in the Duration column of the worksheet for the replication (day) just completed, 

showing a line graph of the call lengths over that replication. We’ll skip discussion of the 

charting code. If you’re interested in exploring Excel’s charting features, we recommend 

browsing the online help and using the macro recorder to try different charting options. 

 Finally, at the end of the simulation run, the  RunEndSimulation  procedure is 

called; ours will simply save the Excel workbook to fi le  Model 10-07.xls  in the 

same folder as the model (by using  ThisDocument.Model.Path ), leaving Excel 

running.   Figure 10-39   shows the code for these two routines. 

 When you run this model, you’ll see a copy of Excel appear on your desktop at the be-

ginning of the run, followed by a series of numbers being added to the worksheet as call 

entities depart the model. Finally, the charts will be created at the end of each replication. 

 Private Sub  VBA_Block_1_Fire ()  

    ‘ Retrieve create time and current time from SIMAN object data  

    Dim dCreateTime As Double, dCurrentTime As Double  

    dCreateTime = oSIMAN.EntityAttribute(oSIMAN.ActiveEntity, nArrivalTimeAttrIndex)  

    dCurrentTime = oSIMAN.RunCurrentTime  

      

    ‘ Write the values to the spreadsheet  

    With oWorksheet  

        .Cells(nNextRow, nColumnA).value = dCreateTime  

        .Cells(nNextRow, nColumnB).value = dCurrentTime  

        .Cells(nNextRow, nColumnC).value = dCurrentTime - dCreateTime  

    End With     

   

    ‘ Increment the row variable  

    nNextRow = nNextRow + 1  

End Sub 

  Figure 10-38.  VBA_Block_1_Fire Code 
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 As you might expect, Arena’s integration with other applications isn’t limited to 

writing data to Excel and creating charts. If you’ve installed an application that can 

be automated, the VBA interface in Arena will allow you to do whatever is possible 

through the external application’s object model, such as creating a chart in an Excel 

spreadsheet or cataloging run data in an Oracle ®  database.  

     10.5 Arena Template Building Capabilities 

  The Arena Professional Edition software includes the ability to create customized mod-

ules that are contained within user-defi ned templates. Templates may be developed to 

address a wide range of needs. Some might be conceived for use by a large targeted 

market, such as the Arena Packaging Template. Others might be more like a utility, such 

as the simple example presented in this chapter. 

 The most ambitious Arena templates are those that are developed for a commercial 

market, typically targeted at a particular industry, such as high-speed production or cus-

tomer-relationship contact centers. There are two main advantages of industry-focused 

templates. First, the template can use terminology that is appropriate for the industry, 

 Private Sub  ModelLogic_RunEndReplication ()  

    ‘ Chart today’s sales call data on a separate chart sheet  

    oWorkbook.Sheets(“Call Data”).Select  

    oWorksheet.Range(oWorksheet.Cells(3, nColumnC), _  

        oWorksheet.Cells(nNextRow, nColumnC)).Select  

    oExcelApp.Charts.Add  

    ‘ Format the chart  

    With oExcelApp.ActiveChart  

        .ChartType = xlLineMarkers  

        .SetSourceData Source:=oWorksheet.Range(oWorksheet.Cells(3, _  

            nColumnC), oWorksheet.Cells(nNextRow, nColumnC)),   

            PlotBy:=xlColumns  

        .SeriesCollection(1).XValues = “”  

        .Location Where:=xlLocationAsNewSheet, _  

            Name:= “Day ” & oSIMAN.RunCurrentReplication & “ Calls”  

        .HasTitle = True              ‘ Title and Y axis  

        .HasAxis(xlValue) = True  

        .HasAxis(xlCategory) = False  ‘ No X axis or Legend  

        .HasLegend = False  

        .ChartTitle.Characters.Text = “Call Times”  

        .Axes(xlValue).MaximumScale = 60  

        .Axes(xlValue).HasTitle = True  

        .Axes(xlValue).AxisTitle.Characters.Text = “minutes”  

    End With  

End Sub  

Private Sub  ModelLogic_RunEndSimulation ()  

    ‘ Save the spreadsheet   

    oExcelApp.DisplayAlerts = False            ‘ Don’t prompt to overwrite  

    oWorkbook.SaveAs ThisDocument.Model.Path & “Model 10-07.xls”  

End Sub 

  Figure 10-39.  VBA Code for End of Replication and End of Run 
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minimizing the abstraction needed for a modeler to translate a system into the software. 

More importantly, through Arena’s hierarchy, a template can be built that is fully cus-

tomized to represent accurately the elements of systems in the industry. The designer 

of the template has the capabilities at hand to mimic exactly the behavior of equipment, 

people, parts, components, etc., providing whatever spectrum of options is appropriate 

for the variations of these system elements. Furthermore, through the ActiveX Automa-

tion technology supported by Arena, wizards and other utilities can be created that work 

in cooperation with a particular template for generating specialized graphs and reports, 

loading data directly from external databases, etc. 

 Many of the templates that are developed using Arena aid modelers in representing 

a particular system, facility, or process. While they may not be “commercial grade,” 

these templates have many of the same goals as the industry templates and provide 

many of the same benefi ts. Here, though, the focus might be narrower than a commer-

cial template. For example, a template might be built for use in analyzing truck-loading 

schemes or for representing dispatching rules of incoming calls to technicians. These 

 application-focused templates benefi t from Arena’s hierarchical structure in the same 

ways as industry-focused templates: the interface presented to a modeler can be cus-

tomized to be very familiar (both in terms of graphical animation and the terminology 

presented to the user); and the elements of the target application environment can be 

represented accurately. In some cases, a modeler might build these templates just for 

his or her own individual use, if the same type of problem is likely to be modeled re-

peatedly. In other cases, templates might be created for use among modelers in a com-

mon group, and application templates can be shared among different modeling groups 

throughout an enterprise. Template building, while useful, is not undertaken easily and 

requires a thorough understanding of Arena modeling constructs. For more information 

on how to create customized templates, please refer to the Arena Help. 

    10.6 Arena Visual Designer 

  Since the advent of computerized simulation, there has been a desire to visualize results 

via charts, plots, and various other animation constructs. In recent years, 3D animation 

is also expected for some types of simulation. 3D animation in many cases helps to sell 

ideas and concepts more easily. Whether good or bad, while the data may be in your 

favor, sometimes the people to whom you are trying to sell your idea may be unable 

truly to understand without some pretty pictures. 

 Arena’s Visual Designer tool allows users to create both 3D animation and Dashboard 

animation; this section provides a general overview of this application. The Visual De-

signer tool is a .NET application created to interface with the Arena/SIMAN simulation 

engine, and eventually the Arena interface with which you are currently familiar will be 

merged into this environment so that both logic and animation constructs will be accessi-

ble within the same application. 

  10.6.1 Overview of Visual Designer 

 Arena’s Visual Designer is used to create Dashboards and 3D animation. Dashboards 

are display windows that allow you to organize and present statistical as well as other 
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information regarding a project. 3D animation is simply a three-dimensional rendering 

of the system you are modeling in Arena. 

 To get started with Visual Designer, you must fi rst have an Arena model. Once a 

model is ready for animation, select  Tools > Arena Visual Designer  or click on    in 

the Standard Toolbar. 

 As Visual Designer starts, it will detect whether any animation fi le is currently as-

sociated with the model and if not, you will be prompted to select whether you want to 

create both a 3D and Dashboard project, or if you wish to begin with just a Dashboard 

or 3D project (  Figure 10-40  ). Note that the Visual Designer fi les have a separate fi le 

extension, . a23 ; animation information created in Visual Designer is not stored in the 

. doe  fi le. When you create animation for an Arena model, you must remember to include 

the . doe  fi le, the . a23  fi le, and any other fi les necessary to run the model when you share 

your model with others.     

 Once the Visual Designer application is open (  Figure 10-41  ), you will fi nd that the 

interface either opens to a 3D Scene or a Dashboard window. There are four primary 

Tool Windows that are available immediately: the Project Explorer, Properties, Editor 

Explorer, and Toolbox. The Project Explorer is the tool window that provides a hierar-

chical listing of the Visual Designer project. The Properties window lists the properties 

of any objects that are selected in the project and those object properties that are avail-

able for editing can be updated via the Properties window. The Editor Explorer lists the 

objects that are actually part of either the Dashboard or the 3D Scene. Saving the best 

for last, the Toolbox is the tool window that allows you to drag and drop objects into the 

Dashboard or 3D Scene. The tools available for use in the Toolbox are context-sensitive 

Figure 10-40 New Project Selection Dialog
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so only those tools appropriate for a Dashboard or 3D Scene will appear, depending 

upon what type of animation you are creating.     

   10.6.2 Dashboards 

 From the Visual Designer Project Explorer you can select the Dashboard folder and 

begin adding Dashboards by right-clicking and inserting additional Dashboards. Once a 

Dashboard is visible, use the Toolbox to split the screen either horizontally or vertically 

to organize the view into however many containers you wish to make available for an-

imation purposes. Keep in mind that you can add more Dashboards, so avoid trying to 

place all animation in one Dashboard for the sake of the end users. Once you have the 

containers defi ned, simply by dragging controls from the Toolbox you can manipulate 

and change the Dashboard.   Figure 10-42   shows how a Dashboard has been broken into 

three containers, two of which have been fi lled with a Bar Chart and a Pie Chart, and the 

third has been left empty. The controls added to the Dashboard can be customized using 

the Properties tool window to link to the data you wish to animate. 

 For more information on Dashboards, look to the Visual Designer Help.     

   10.6.3 3D Scenes 

 The 3D Scene window can be selected via the Project Explorer tool or by clicking on 

the Scene Tab within the main editing window. Once the Scene is visible, you can begin 

animating by dragging items from the Toolbox or you can use the Editor Explorer to fi nd 

those objects that are available for animation within the existing Arena model. From the 

 View > Tool  Window menu, you can also add the Thumbnails tool window, which allows 

you to browse for animation objects on your computer. Arena’s Visual Designer comes 

Figure 10-41 Visual Designer Scene Window
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with some basic 3D animation, but you can use other 3D animation; the key issue is 

that you should check Visual Designer Help to make sure that the images are supported. 

Currently . x , . 3ds , and . skp , as well as . bmp  and . jpg  formats are supported, but with each 

update of the software more may be added. 

 Objects that are placed in the Scene can be updated via the Properties tool window 

or adjusted using Visual Designer’s Helper Object.   Figure 10-43   shows the beginning 

Figure 10-42 Visual Designer Dashboard Window

Figure 10-43 Scene Window with 3D objects

kel01315_ch10_423-478.indd   476kel01315_ch10_423-478.indd   476 05/12/13   3:20 PM05/12/13   3:20 PM



Arena Integration and Customization     477

of a 3D Scene, with objects having been dragged from both the Thumbnails tool as well 

as the Editor Explorer. 

 To fi nd out more about creating 3D Scenes, review the Visual Designer Help.     

       10.7 Summary and Forecast 

 In this chapter, we have examined a number of topics that are part of a theme of custom-

izing different aspects of Arena modeling and integrating Arena with other applications. 

We took a whirlwind tour of VBA, saw how Arena and Microsoft Offi ce can work 

together to read in numeric or string data, and learned about Arena’s template capabili-

ties as well as its 3D animation capabilities. The material in this chapter represents the 

tip of the iceberg, with the intent of tickling your imagination for what’s possible and 

arming you with enough fundamental knowledge of the features to go off and explore 

on your own. 

 If you choose to continue, you’ll fi nd that Chapter 11 takes on the topic of modeling 

continuous-change processes, such as the fl ow of liquid or bulk materials. Then we turn 

our attention to some important topics that underlie and support good simulation studies 

in Chapters 12 and 13. 

   10.8 Exercises 

    10-1  Starting with Model 10-1, modify the logic to store the time between arrivals and 

the processing time (excluding any waiting time) in attributes. Then use the ReadWrite 

module from the Advanced Process panel to write this pair of attributes to an Excel or 

Access fi le (or a text fi le if you don’t have either of these applications installed).  

   10-2  Start with Model 10-2 and use the data fi le you generated in Exercise 10-1 to 

specify both call-arrival logic and call-handling time. Note that since the data are time 

between arrivals rather than absolute arrival time, slightly different logic will be re-

quired. How do your results compare to those in Exercise 10-1?  

   10-3  Build a simple, single-server queueing model with entity interarrival times of 

EXPO(0.25) minutes. Using the ReadWrite module, prompt and query at the beginning 

of the simulation run for the server’s process time mean (give a default value of 0.2 min-

utes). Use this value to establish a uniform distribution on [ a ,  b ] where  a  is 10% below 

the entered mean and  b  is 10% above the entered mean. Run the simulation until 300 

entities have departed the model.  

   10-4  Create the model described in Exercise 10-3, replacing the ReadWrite modules 

with a VBA form that’s displayed at the beginning of the simulation run.  

   10-5  Using the single-server model from Exercise 10-4, add logic to play a sound or 

display a message whenever the number of entities in the service queue exceeds some 

threshold value. Allow the modeler to establish this threshold in the form that’s dis-

played at the beginning of the run.  

   10-6  Present a VBA form at the end of the simulation run, reporting the average and 

maximum queue lengths for the product queues in Model 10-1. If you have a charting 
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program (for example, Excel) installed on your computer, also draw a bar graph of the 

average values.  

   10-7  Create a model that writes 1,000 records to a fi le. Each record will include the 

record number and ten random samples, each between 0 and 100,000. In  Run  >  Setup  
>  Reports , disable the normal model output by selecting  SIMAN Summary Report  

as the default output and select  Disable generation of report database . 

Enable  Run  >  Run Control  >  Batch Run (No Animation)  so that we can execute as fast as 

possible. Repeat this experiment using a text fi le, a binary fi le, an Excel fi le, an Access 

fi le, an XML fi le, and no fi le (just generate and discard the random samples). Compare 

the execution time and the fi le sizes for each trial. If you have a fast machine, repeat with 

10,000 and 100,000 records.  
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     CHAPTER 11 

 Continuous and Combined 
Discrete/Continuous Models 

  So far, whether you realized it or not, all of our modeling has been focused on discrete 

systems—that is, processes in which changes to the state of the system occur at isolated 

points in time called  events . In Arena, these event times are managed by the event cal-

endar, with entities moving through the fl owcharted process to defi ne when changes in 

the system state will occur and what changes should take place (for example, a resource 

is released). In Chapter 2, our hand simulation accounted for all of these transitions, 

defi ning all of the events that could change the system and their exact occurrence times. 

These discrete-event models can capture many types of systems, from service processes 

(such as the call center in Chapter 5) to manufacturing systems (such as the small man-

ufacturing system in Chapter 7). 

 In other cases, though, the state of the system might change continuously over time. 

Consider a brewery, where various ingredients (hops, barley, water) are mixed, heated, 

stored, and transferred in pipes among tanks. In this system, the process of emptying a 

tank involves a fl ow of product. To model the volume of beer in the tank, you’d want to 

be able to represent its rate of change over time and allow this rate to produce a smooth, 

continuous fl ow of lager into the target receptacle (preferably one that’s destined for 

your next social gathering). The level of the tank at some future time can be calcu-

lated by applying the rate of change to the starting level; simple arithmetic is all that’s 

needed, assuming that no intervening event occurs, such as a power outage, technical 

malfunction, or large sampling from a passing tour group. You may want to capture 

these discrete events that interact with this continuous process, such as closing a valve 

to interrupt the emptying process and set the rate of change of the tank’s level to zero. 

 More complex processes may involve rates of change that depend on other contin-

uous processes, in which case the future level value can’t be calculated so simply. In 

these cases, integration algorithms are used to determine the levels based on the rela-

tionship between the continuous processes. The temperature of water in an aquarium 

is an example of this type of system. It changes continuously over time, depending on 

factors such as the heat from sunlight, the change in temperature of the room in which 

it is displayed, and the cycling on and off of a heater. These elements—heat from the 

sun, room temperature, and warmth generated by the heater—also change continuously. 

To capture these processes accurately in a simulation model, specialized continuous- 

modeling  approaches are used that allow these relationships to be defi ned as mathemat-

ical equations that are incorporated in the integration algorithm. 

 In this chapter, we’ll turn our attention to these processes in which the state of the 

system can change continuously over time. In Section 11.1, we discuss the nature of 

continuous processes and introduce Arena’s terminology and constructs for modeling the 
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continuous aspects of these systems via a simple model. We barge forward into the inter-

face between continuous processes and discrete model logic in Section 11.2 and present 

a model of a coal-loading operation to illustrate how this works in Arena. More complex 

continuous systems, where the rate of change can depend on other aspects of the process, 

are discussed in Section 11.3 and are explored via a soaking-pit furnace model. 

 To give credit where it is due, much of the discussion of continuous and combined 

discrete/continuous modeling concepts in Section 11.3, including the soaking-pit fur-

nace example, is based on materials from Pegden, Shannon, and Sadowski (1995). Some 

of this chapter’s exercises also came from this source. 

 After you’ve digested the material in this chapter, you should understand how sim-

ulation models of continuous processes differ from those of discrete models. And once 

you’ve successfully completed working through this material, we hope you have an 

appetite for putting these powerful modeling approaches to work! 

    11.1 Modeling Simple Discrete/Continuous Systems 

  When modeling a continuous-change process, the two primary elements of interest are 

the value that’s changing and its rate of change over time. Arena provides two types of 

variables called  levels  and  rates  to represent these values. For each pair (a level and a 

rate), Arena applies the defi ned rate of change to approximate a continuous change in the 

value of the level. The discrete-event portion of the model (that is, the modules you’re 

used to using to model a process) also can assign new values to levels and rates. 

 In this section, we introduce a small example, Model 11-1, that illustrates how 

Arena’s continuous and combined discrete/continuous modeling features work. 

  11.1.1 Model 11-1: A Simple Continuous System 

 Let’s look at a simple continuous process where some liquid product—carpet cleaning 

liquid—is being poured into a tank at a fi xed rate of 10 volume units per minute. We’ll 

build into our model a single level (called  Tank Volume ) and its corresponding rate 

(called  Tank Input Rate  and having an initial value of  10 ), and we’ll add an ani-

mation plot  1    of the value of the  Tank Volume ,   Figure 11-1  . We also need a Continuous 

module, which establishes some of the settings required for continuous models.         

 1  For plots like this that display levels, we left DrawMode at PointToPoint rather than changing it to Stairs 

to show changes as a continuous line rather than discrete steps.

 Figure 11-1.  Simple Continuous Model
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    Display 11-1   shows the entries for defi ning the level variable,  Tank Volume , in 

the Levels module from the Elements panel. We’ll match each level in the model with its 

corresponding rate variable by assigning them unique numbers ( 1 , in this case). Arena 

will match a rate and level by these numbers to know which rate value should be applied 

to change the value of a level variable during the run. These numbers must be assigned 

so there’s a one-to-one correspondence between levels and rates. 

 The  Tank Input Rate  is defi ned in the Rates module from the Elements panel, 

shown in   Display 11-2  . It is given number  1  to match it with the Tank Volume level and 

is assigned an initial value of  10  so that the rate of change of the Tank Volume is 10 

volume units per base time unit (which we’ll establish as minutes in the  Run  .  Setup  . 

 Replication Parameters  dialog box). 

 As you can see from the plot in   Figure 11-1  , the value of the Tank Volume 

(a continuous level) changes smoothly over time. And, in the absence of any 

 discrete-event logic to change the value of the level or rate, the Tank Volume would 

continue to rise at this constant rate—10 volume units per time unit—until the end 

of the simulation run. 

 When a model contains a continuous component, Arena must augment the discrete 

time advance that’s driven by the event calendar with logic to track the change in con-

tinuous variables over time. While Arena can’t truly advance time continuously, it can 

approximate a continuous change in level values by making a series of small steps be-

tween the usual discrete events. At each of these continuous-update times, Arena calcu-

lates new values for the level variables based on their rates of change. To do so, Arena 

integrates the rate values to determine the corresponding new values of the levels. 

 Number 

 Name 

  1  
  Tank Volume  

  Display 11-1.  Levels Module Defi ning Tank Volume 
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  The Continuous module from the Elements panel establishes settings that are needed 

to confi gure Arena’s continuous calculations.   Display 11-3   shows the Continuous mod-

ule for Model 11-1. In the case of simple, constant-rate models, only a few of these 

fi elds are pertinent. The Number of Dif. Equations defi nes how many differential equa-

tions are to be evaluated for this model. In constant-rate systems, each level/rate pair 

should be counted among the differential equations so that Arena will calculate new 

values via the continuous time updates. For Model 11-1, we leave this fi eld at its default 

value (blank), which will set the number of these equations equal to the number of level/

rate pairs defi ned by the Levels and Rates modules (in our case, one). We don’t have any 

state equations (which we’ll tell you about in Section 11.3), so we default that fi eld. The 

Minimum Step Size and Maximum Step Size fi elds dictate to Arena how often it should 

update the continuous calculations. For this model, we’ll leave them at their defaults of 

1.0 minute. (Note that the units are from the Base Time Units selection in the  Run  . 

 Setup  dialog box.) You can see the effect of the step size on the time required to run the 

simulation by changing both to something smaller (for example, 0.001); it takes Arena 

much longer to perform the same run, because it is calculating the continuous-variable 

updates more often. We also accept the default for the Save Point Interval, which relates 

to continuous-statistics calculations; we’re not using those yet. In the Method fi eld, we 

leave the default, Euler, which is the appropriate integration algorithm to be used when 

the rates remain constant between continuous-time updates, as in our model. And fi nally, 

we’ll ask Arena to generate a Warning message if any crossing threshold tolerances are 

violated; we’ll see more about this in Model 11-2, as described in Section 11.1.2. 

 Number 

 Name 

 Initial Values 

  1  
  Tank Input Rate  
  10  

  Display 11-2.  Rates Module Defi ning Tank Input Rate 
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    11.1.2 Model 11-2: Interfacing Continuous and Discrete Logic 

 In this carpet-cleaning-liquid model, what if we wanted to cause the amount of liquid 

in the tank to fi ll to a threshold and then empty at a constant rate (for example, roughly 

representing the life of new puppy owners)? Here, we need to interface discrete, process 

logic with the continuous model. 

 Let’s use a very simplistic approach to illustrate the idea. We’ll keep the initial  Tank 
Input Rate  value at  10 , so that the volume changes at a rate of 10 volume units per 

minute. We’ll add model logic to create an entity at the beginning of the run, delay for 

10 minutes to let the volume reach 100, and then assign the  Tank Input Rate  to 

 –10 . This will change the calculation of the  Tank Volume  to  decrease  at a rate of 

10 volume units per minute, emptying the tank. After making the assignment, our entity 

delays again for 10 minutes to allow the tank to empty, then assigns the  Tank Input 
Rate  back to  +10  to start the refi lling process. (This version of the model is  Model 
11-02a.doe .) 

   Figure 11-2   shows the logic and a plot of the  Tank Volume .  2    This works fi ne, as 

long as we can calculate the delay times required until the tank would fi ll or empty—that 

is, there aren’t any other events infl uencing the volume in the tank (the level) or the fi ll/

empty rate.     

 2  If you build and run this model, you’ll see that the plot fi nishes at a blinding pace. To see the plot build 

more slowly, open the  Run  >  Setup  >  Run Speed  dialog box and check the option to Update Simulation Time 

Every 0.1 time unit.

 Minimum Step Size 

 Maximum Step Size 

 Method 

 Cross Severity 

  1.0  
  1.0  
  Euler  
  Warning  

  Display 11-3.  Continuous Module for Model 11-1 
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 If we’re concerned about other events that might affect the level or rate of fl ow, we 

can model the process by “watching” the level of the tank in place of the fi xed-time de-

lays. For this approach, we’ll use the Detect module from the Blocks panel. The Detect 

module provides a point at which an entity is created in the discrete-event portion of 

the model, analogous to a Create module. The timing of the entity creations is dictated 

by watching for the value of a continuous-level variable to cross a threshold value, in 

contrast to the Create module’s predefi ned series of time-based arrivals. Whenever the 

specifi ed threshold is crossed, Arena creates an entity, which proceeds out of the Detect 

module into the fl owchart logic with which you are so intimately familiar. 

 In our carpet-cleaning-liquid model, we want to do something whenever the tank 

fi lls (that is, the  Tank Volume  reaches 100 in the positive direction) and whenever it 

empties (that is, reaches 0 going down). The model logic in   Figure 11-3   generates this 

sequence of events during the run and, not coincidentally, results in the same plot of the 

 Tank Volume  as   Figure 11-2  . (It’s named  Model 11-02b.doe .) 

  Figure 11-2.  Control Loop to Empty and Refi ll Tank   

  Figure 11-3.  Fill and Empty Logic Using Detect Modules   
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   The Detect module at the top of   Figure 11-3   is watching for the  Tank Volume  

continuous level to pass a value of 100 going in the positive direction, seen in 

  Display 11-4  . 

 During the simulation run, whenever Arena detects this event, an entity is created 

and dispatched from the Detect module to the Assign module, where it begins emptying 

the tank by setting the  Tank Input Rate  value to  –10 , shown in   Display 11-5  . The 

entity is then disposed. 

 The second set of logic starts with a Detect module that’s watching for the  Tank 
Volume  to pass 0 in the negative direction. Its entities are created whenever the tank 

empties. Then they assign the  Tank Input Rate  a value of  10  to begin fi lling the 

tank again and fi nally are disposed. Throughout the simulation run, Arena will create 

entities at the Detect modules whenever the tank fi lls or empties, resulting in a repeating 

pattern of fi lling and emptying approximately every 10 minutes. 

 Returning to the Detect module in   Display 11-4  , there was an additional fi eld, the 

Crossing Tolerance, which we defi ned to be  0.0 . This quantity defi nes an acceptable 

error range for Arena’s determination of the crossing value. We mentioned earlier that 

Arena can’t truly advance time continuously; instead, it carves time into small steps, 

whose size is defi ned in the Continuous module. Because the continuous-value calcu-

lations are performed only at these steps in time, there’s the potential that Arena could 

miss the exact time at which a value crossed a threshold defi ned in a Detect module. 

 Crossing Variable 

 Crossing Direction 

 Threshold Value 

 Crossing Tolerance 

  Tank Volume  
  Positive  
  100  
  0.0  

  Display 11-4.  Detect Module Watching for Full Tank 
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  Since we are using the Euler integration method, Arena can calculate within numer-

ical round-off accuracy the exact time of the event being detected. So, in theory, there is 

no reason for error, and you should accept none. Notice that we said  within numerical 
round-off accuracy . When you specify a Minimum Step Size of  0.0  or a Crossing Tol-

erance of  0.0 , Arena actually uses a very small number internally. Although behind the 

scenes there is a very small overshoot, from our perspective this captures most events 

dead on. For this reason, these are generally the best settings to use with the Euler inte-

gration method. 

 In some cases, particularly RKF or other integration methods, you need to enter 

these parameters carefully. Consider a Detect module that is looking at the value of a 

level to cross a threshold of 100 in the positive direction with a tolerance of 0.1.   Figure 11-4   

illustrates a case where the level changed from a value of 99.7, which is less than the 

threshold of 100, at one continuous-time update (time 3.31) to a value of 100.6, which 

exceeds the threshold plus the tolerance, at the next time update (time 3.32). 

 In such a case, where Arena was unable to perform the required continuous calcula-

tions at the accuracy you specifi ed, you can defi ne how you want the model to behave 

via the Cross Severity fi eld in the Continuous module. The default option is Warning, 

in which case Arena will display a warning message telling you that a Detect module 

exceeded the crossing tolerance, but will allow you to continue the run. You can choose 

Fatal (which fortunately describes how the Arena run should be treated, not the mod-

eler!) to tell Arena to generate an error message and end the run if a crossing threshold 

is passed. Or if you want to ignore these types of errors, choose No, and Arena will just 

continue running the model as if you had a very large tolerance for error. 

 Name 

 Assignments 

    Type 

    Other 

    New Value 

  Assign Rate to Minus 10  
  
  Other  
  Tank Input Rate  
  −10  

  Display 11-5.  Assign Module Changing Tank Input Rate 
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  This discussion can help us determine what values to establish for the two primary 

continuous-system settings—the step size in the Continuous module and the crossing 

threshold(s) in the Detect module(s). To decide on a value for the step size, you’ll be 

trading off accuracy of your model with run speed. As you decrease the step size, you 

typically will generate more accurate results, because Arena will be recalculating the 

continuous-change variables more often. However, the simulation run will take lon-

ger as you decrease the step size due to the increased frequency of calculations being 

performed. 

 After you’ve selected a value for the step size, you can calculate the tolerance that 

you’ll need to supply to Arena for your Detect modules. Referring to   Figure 11-4  , we 

can identify a useful relationship among the continuous-time step size (the distance 

along the time axis between calculations), the rate of change of the level value (the 

slope of the line), and the tolerance value (the distance between values of the level). 

If we take the maximum absolute rate that will be encountered during the run (as-

suming that we know this quantity) and multiply it by the maximum time-step size, 

the result is the maximum change that can occur in the level’s value in any single 

time-step. 

 For example, if our maximum rate of change is 100 volume units per hour and our 

step size is 0.01 hours, then the level can’t change by more than 1 volume unit between 

Arena’s calculations of the continuous variables. So if we’ve set our step size at 0.01, 

then we can enter a value of 1 in the Detect modules that are watching that level and 

avoid missing any crossings. 

     11.2 A Coal-Loading Operation 

  In this section, we’ll build a somewhat larger (and we hope more interesting) model of 

a combined discrete/continuous system—a coal-loading operation along the banks of a 

lazy river. 

  Figure 11-4.  Relationship Between Crossing Tolerance and Time Updates   
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   11.2.1 System Description 

 At this coal-loading facility, coal is loaded from a main storage yard down chutes into 

barges at the facility’s four docks. The rate at which coal can be discharged from the 

storage area is fi xed at 2,400 tons per hour, but it can be split into as many as four par-

allel chutes for fi lling barges at the docks, shown in   Figure 11-5  . 

 When a tugboat arrives at the loading facility, it waits until one of the four docks 

is available. Then, a dock crew ties the tugboat and its barges to the dock and sets up 

for loading, taking TRIA(2, 5, 10) minutes. The total amount of coal required to fi ll the 

barges varies based on the number of barges and their sizes. (The tugboat and its barges 

will be treated as a single unit in this model.)   Table 11-1   lists the distributions of tonnage 

requirements for traffi c at this site. 

 After the fi lling operation is fi nished, the dock crew unties the tugboat and its barges 

and the tug chugs away, freeing the dock. This process takes TRIA(3, 4.5, 7.5) minutes, 

depending on how much the tug and dock crews chat. The loading facility operates 

24 hours a day, but the arrival of the tugboats varies throughout the day as shown in 

  Table 11-2  . For the purposes of this analysis, we’ll assume that the dock crew is suffi -

ciently staffed to handle all demand. 

 In evaluating this operation, we’re interested in the tugboats that can’t begin loading 

immediately. Whenever all of the facility’s docks are occupied, tugs and their barges 

will be waiting upriver at tie-downs. We’d like to know something about the number of 

tugs waiting for a dock, as well as how long it takes to process tugs through the facility. 

  Figure 11-5.  Coal-Loading Facility   
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  Table 11-1.   Distribution of Barge Capacities  

 Capacity (tons)  Percentage 

 300 

 400 

 450 

 500 

 550 

 600 

 650 

 700 

 800 

 1000 

 12 

 3 

 13 

 7 

 8 

 12 

 24 

 3 

 11 

 7 

  Table 11-2.   Tugboat Arrivals  

 Time Period 
 Average Number of 

Arriving Tugboats per Hour 

 12:00  am  2 2:00  am  

 2:00  am  2 6:00  am  

 6:00  am  2 8:00  am  

 8:00  am  2 12:00  pm  

 12:00  pm  2 1:00  pm  

 1:00  pm  2 3:00  pm  

 3:00  pm  2 4:00  pm  

 4:00  pm  2 6:00  pm  

 6:00  pm  2 8:00  pm  

 8:00  pm  2 9:00  pm  

 9:00  pm  2 10:00  pm  

 10:00  pm  2 12:00  am  

 0.50 

 1.00 

 2.00 

 3.50 

 1.75 

 2.75 

 4.00 

 5.00 

 4.50 

 2.50 

 1.00 

 0.50 

     11.2.2 Modeling Approach 

 If you recall our earlier discussion of simulation concepts (Section 2.3.7), we said that 

events occur at an instant of simulated time and cause changes in the system state (for 

example, attributes, variables, statistics). And earlier in this chapter, we described con-

tinuous processes as those that change the state of the system continuously over time. 

Using these as a basis for analyzing our coal-loading operation, we can categorize its 

activities as follows: 

    ■   Tugboat Arrival:   Discrete event  initiating logic to model demand for loading.  
   ■   Preparation for Coal Loading:   Discrete event  for a tugboat entering a dock.  
   ■   Beginning of Loading:   Discrete event  beginning the loading of the tugboat’s 

barges and changing the distribution of the coal among the docks.  
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   ■   Coal Loading :  Continuous process  during which coal fl ows from the storage 

area into one or more docked barges. Note that the rate of coal being delivered 

to a particular dock may change due to the occurrence of other discrete events 

(beginning of loading, barges full).  
   ■   Barges Full:   Discrete event  occurring when a tugboat’s barges have been 

fi lled. The timing of this event for each individual entity is dictated by its 

Beginning of Loading event and the duration of the Coal Loading continuous 

operation, as well as intervening events caused by the arrival and departure of 

other tugs.  
   ■   Tugboat Departure:   Discrete event  terminating the tugboat’s processing in the 

simulation model.  

  We already know how to model the discrete events (and you should, too, if you’ve 

been paying attention to the earlier chapters) using familiar concepts such as entities, 

resources, queues, variables, and so on. And in fact, it almost feels like we could 

model the whole thing using what we’ve already learned. The logic might look some-

thing like: 

    ■  Create arriving tugboat  
   ■  Queue for and seize a dock  
   ■  Assign capacity requirement for tugboat (tons)  
   ■  Delay for docking and coal-loading preparation  
   ■  Delay to fi ll barges  
   ■  Delay for untying and leaving dock  
   ■  Release dock  
   ■  Dispose tugboat entity  

  So why is this model here in the continuous chapter when it appears that we can do 

everything with the concepts and modules we’ve already covered? Let’s take a closer 

look at the sequence of delays required to model the fi lling operations to see if anything 

interesting will crop up to make this problem fi t here. 

 The fi rst step in loading a tugboat’s barges was described as requiring a work crew 

(which we’ve conveniently assumed away as a constraint for this model) and taking 

TRIA(2, 5, 10) minutes. It seems like a Delay module should work just fi ne—just hold 

the tugboat entity in the model until the proper amount of simulated time (something 

between 2 and 10 minutes) elapses. 

 Next, the tugboat’s barges are fi lled with coal. We know the capacity requirements 

in tons (see   Table 11-1  ), and we were told that the coal comes out of the storage area at 

a rate of 2,400 tons per hour. That should be easy, too—just divide the capacity (tons) 

by the rate (tons/hr) and we’ll have the loading time in hours, which we could enter in a 

Delay module. For example, if a tugboat requires 600 tons, it should take 600/2,400 or 

0.25 hours (15 minutes) to complete the loading. 

 Finally, we’re told that the tugboat is untied and chugs away, taking TRIA(3, 4.5, 

7.5) minutes. This clearly is another Delay module before the tugboat entity releases the 

Dock resource and departs the system. 
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 But wait, there was another twist to the tale. We said that while the rate of coal 

coming out of the storage area is fi xed at 2,400 tons/hour, it’s then split evenly among 

whichever docks are occupied by barges being loaded. This complicates our second 

delay calculation. When a tugboat has fi nished its fi rst delay and is ready for loading, we 

can’t be sure how long the loading operation will take. If it’s the only tug in the docks, 

then it will start with a loading rate of the full 2,400 tons/hour. But, if other tugboats 

arrive while this one’s being loaded, the rate coming in will be decreased: fi rst to 1,200 

tons/hour (2,400 split evenly into two streams), then to 800 tons/hour (when three are 

being loaded), and possibly all the way down to 600 tons/hour if all four docks become 

busy before our fi rst tugboat is fi lled to capacity. 

 Each of these occurrences is a discrete event (the beginning of the loading event in 

the previous list), so we could try to capture the logic necessary to adjust delay times for 

tugboats in the docks when new tugs arrive. However, this might become a little com-

plicated, requiring some creative use of Arena’s advanced discrete-event capabilities. 

(Give it a try for a nice little challenge.) 

 Instead, we can capture the fl ow of coal being split into multiple streams and fi lling 

the barges using the continuous modeling features of Arena. We’ll still have all of the 

discrete-event parts of the model, but where we get to the thorny issue of how long a 

tugboat stays in dock for the actual loading operation, we’ll interface our discrete model 

with continuous calculations performed by Arena. 

   11.2.3 Model 11-3: Coal Loading with Continuous Approach 

 From our classifi cation of the system’s activities as discrete or continuous in Section 

11.2.2, we concluded that the only portion to be modeled as a continuous process is 

the actual loading of coal into the barges from the storage area. Everything else in the 

model will be represented as discrete processes, some of which will interface with the 

continuous portion of the system. 

 We’ll fi rst defi ne the continuous-change levels and rates for our system in the Levels 

and Rates modules. Because we have four similar processes—fi lling operations at each 

of the four docks—in this system, we’ll use arrays for the levels and rates, so that our 

model can index into the array based on the dock number assigned to a tugboat for its 

fi lling operation.   Display 11-6   shows the entries for the Levels module, where we add a 

single level named  Barge Level . We defi ne four level variables, numbered 1 though 

4, by establishing a starting Number of  1  and a 1-D Array Index of  4 . They’ll be named 

 Barge Level(1)  through  Barge Level(4) . During the simulation run, these 

will be treated independently; we use an array simply for the convenience of indexing 

when we make assignments in model logic. 

 Number 

 Name 

 1-D Array Index 

  1  
  Barge Level  
  4  

  Display 11-6.  Levels Module Defi ning Four Barge Levels 
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   The Rates module contains similar entries, as shown in   Display 11-7  . These will also 

be numbered as rates 1 through 4 to match the  Barge Level  variables and will be 

referenced in the model as  Barge Rate(1)  through  Barge Rate(4) . 

 We’ll also add a Continuous module to establish the settings for the run’s continu-

ous calculations, shown in   Display 11-8  . Since we are still using the Euler integration 

method, we set the Minimum Step Size to  0.0 , and when we get to Crossing Tolerance, 

we’ll leave that at  0.0  as well. We’ll set Maximum Step Size to  100  (any large number 

will do) and leave the remaining fi elds at their default values so that Arena will perform 

continuous-update calculations for all of our level variables and will generate a warning 

if any detect-crossing-thresholds are violated. 

 The fi rst few activities in the model will get the tugboats and their barges into a dock 

and begin fi lling the barges, seen in   Figure 11-6  . 

 The Create module generates entities of entity type  Empty Barge  according 

to an arrival schedule named  Barge Traffic Schedule , in   Display 11-9  . The 

 created entity will represent a tugboat and its barges, which are viewed as a single point 

of demand for loading. A Schedule module also is added to defi ne the arrival pattern 

 described in   Table 11-2  . 

 The barge entity next enters a Process module,   Display 11-10  , where it attempts to 

seize one of the docks. We’ll model the docks as individual resources ( Dock 1 ,  Dock 2 , 

 Dock 3 ,  Dock 4 ), formed into a set called  Docks . In this process, we use the  Seize 
Delay  action so that the tugboat seizes a dock, but doesn’t yet release it. It needs to 

hold the dock resource until after its barges have been fi lled and it has cleared the dock. 

We also store the index of the individual dock assigned to the arriving barge to an 

 attribute named  Dock Number . After seizing a dock, the tugboat delays in the Process 

module for the tie-down operation, which takes TRIA(2, 5, 10) minutes. 

 Number 

 Name 

 1-D Array Index 

  1  
  Barge Rate  
  4  

  Display 11-7.  Rates Module Defi ning Four Barge Rates 

 Minimum Step Size 

 Maximum Step Size 

  0.0  
  100  

  Display 11-8.  Continuous Module 

  Figure 11-6.  Barge Arrival Logic   
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     After the tugboat entity has seized a dock and delayed for its tie-down time, it enters 

an Assign module to initiate the fl ow of coal into the barges. Remember that the actual 

rate of coal coming into a barge at a dock will depend on how many other docks are 

currently loading coal. Whenever the number of active docks (that is, with barges being 

loaded) changes, the 2,400 tons/hour of coal leaving the storage area needs to be ad-

justed to maintain an even distribution among those docks. We’ll use a global variable, 

 Filling Docks , to keep track of the number of docks that are loading. Then, when-

ever a new barge begins loading or reaches capacity, we’ll adjust the loading rates in the 

active docks to be  2400/Filling Docks  to keep our even distribution of coal. 

 In the Assign module,   Display 11-11  , the tugboat fi rst increments the number of docks 

that are currently being fi lled ( Filling Docks ) by one. It then sets the rate of fl ow of 

coal fl owing into its dock by assigning a new value to the rate variable at this dock,  Barge 
Rate(Dock Number) . And, so that we can later collect statistics on fi lling times, we’ll 

assign the current simulation time to a global variable,  Beginning Fill Time(Dock 
Number) . Later in the model, when a full barge departs, we’ll record the time that the 

barge spent in dock .  Finally, the tugboat determines its size by taking a sample from a 

discrete probability distribution using the values provided in   Table 11-1  . This quantity is 

assigned to a variable,  Barge Capacity(Dock Number) , which we’ll use as the 

threshold value for a Detect module that’s watching for full tugboats at each dock. We 

also opened the Variable module on the Basic Process panel and defi ned the  Beginning 
Fill Time  and  Barge Capacity  variables, each with four rows. 

 Name 

 Entity Type 

 Time Between Arrivals 

    Type 

    Schedule Name 

  Create Arriving Barge  
  Empty Barge  
  
  Schedule  
  Barge Traffic Schedule  

  Display 11-9.  Create Module for Arriving Empty Barges 

 Name 

 Action 

 Resources 

    Type 

    Set Name 

    Save Attribute 

 Delay Type 

 Units 

 Minimum 

 Value (Most Likely) 

 Maximum 

  Seize Dock and Prepare for Filling  
  Seize Delay  
  
  Set  
  Docks  
  Dock Number  
  Triangular  
  Minutes  
  2  
  5  
  10  

  Display 11-10.  Process Module for Entering a Dock 
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 Name   Begin Filling Barge  

 Assignments 

    Type 

    Variable Name 

    New Value 

  
  Variable  
  Filling Docks  
  Filling Docks + 1  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Barge Rate(Dock Number)  
  2400/Filling Docks  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Beginning Fill Time(Dock Number)  
  TNOW  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Barge Capacity(Dock Number)  
  DISC( 0.12,300, 0.15,400, 
 0.28,450, 0.35,500, 0.43,550, 
 0.55,600, 0.79,650, 0.82,700, 
 0.93,800, 1.00,1000 )  

  Display 11-11.  Assign Module to Begin Filling Barge 

  After beginning the proper fl ow of coal into the dock that the arriving tugboat en-

tered, we next need to adjust the fl ow rate into any other docks that are currently loading 

barges. For example, if there were two occupied docks loading barges at the time of 

a new arrival, they each would have been receiving a fl ow of 1,200 tons/hour. When 

the new tugboat arrives and begins being fi lled, the fl ow to each of the three occupied 

docks needs to be changed to 800 tons/hour (the total of 2,400 tons/hour divided equally 

among the three docks). 

 To adjust the rates, we’ll use an Assign module that changes the fi ll rate of barges in 

docks that are currently fi lling (that is, have a  Barge Rate  greater than 0) to be our 

new rate for all of the fi lling docks,  2400/Filling Docks . 

 The Assign module,  Change Filling Rate On Barge Arrival , uses an 

expression to assign a new value to each of the four  Barge Rate  variables, seen in   Dis-

play 11-12  . These expressions multiply two quantities together to assign a new  Barge 
Rate . If a particular barge (for example, the barge at Dock 1) is currently being fi lled, 

its  Barge Rate  will be positive (that is,  Barge Rate(1)>0  will evaluate to 1). 

This will result in its  Barge Rate  being assigned a value of  1 * (2400/Filling 
Docks) , adjusting its rate based on the new number of docks that are fi lling. On the 

other hand, if a dock does not hold a fi lling barge, then its  Barge Rate  will be 0, and 

the expression  Barge Rate(1)>0  will evaluate to 0. This results in an assignment of 

 0 * (2400/Filling Docks) , which keeps the  Barge Rate  at 0. 
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  After making these assignments, we then can dispose of the tugboat entity, since all 

of the required information has been assigned to variables. The logic that we’re about to 

describe will take care of the remainder of the tugboat’s activities. 

 At this point in the logic, the arriving tugboat has completed its docking (that is, 

seized a dock, delayed for the tie-up time) and has adjusted the continuous-level vari-

ables to represent proper distribution of the fl ow of coal loading into the docks. Now, 

the tugboat simply needs to wait until its barges are full and then perform the departure 

activities (untying from and releasing the dock). 

 To determine when the barges are full, we will use a Detect module, watching for the 

continuous  Barge Level  values at each dock to exceed their corresponding  Barge 
Capacity  values. This will create an entity when a barge is full, essentially replacing 

the arriving barge entity that we disposed of earlier.   Figure 11-7   shows the logic for 

initiating these full-barge entities into the model. 

 The Detect module,   Display 11-13  , looks at all four of the continuous-level variables 

by defi ning a station range from 1 to 4. For a Detect module with a station range, Arena 

watches the values of the Crossing Variables (in this case, all four of the indexed  Barge 
Level  variables) throughout the simulation run. As is the case with the Search module, 

the Arena index variable,  J , is used to indicate places in the module where the range 

 Name 

  

  Change Filling Rate on  
  Barge Arrival  

 Assignments 

    Type 

    Other 

    New Value 

  

  
  Other  
  Barge Rate(1)  
  (Barge Rate(1)>0)  * 
   (2400/Filling Docks)  

 Assignments 

    Type 

    Other 

    New Value 

  

  
  Other  
  Barge Rate(2)  
  (Barge Rate(2)>0)  * 
   (2400/Filling Docks)  

 Assignments 

    Type 

    Other 

    New Value 

  

  
  Other  
  Barge Rate(3)  
  (Barge Rate(3)>0)  * 
   (2400/Filling Docks)  

 Assignments 

    Type 

    Other 

    New Value 

  

  
  Other  
  Barge Rate(4)  
  (Barge Rate(4)>0)  * 
   (2400/Filling Docks)  

  Display 11-12.  Adjust Rate to Filling Dock 
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values should be used. In this Detect module, we want Arena to watch all four  Barge 
Level  variables vs. all four  Barge Capacity  values. Whenever one of the barge 

levels passes its Threshold Value (the value of the  Barge Capacity  variable with a 

corresponding index) in the Crossing Direction (positive), an entity is created and leaves 

the Detect module. Arena also assigns the index that was detected (for example,  2  if 

 Barge Level(2)  passed  Barge Capacity(2)  in the positive direction) to the 

special attribute, Entity.Station, of the newly created entity. This attribute is one of those 

that is provided automatically by Arena for each entity (see Section 7.1.1). It is used in 

continuous modeling with the Detect module to allow the convenience of watching a 

number of level variables with a single module, as in our example. Since we are still 

using the Euler integration method, we will use a Crossing Tolerance of  0 .  

 We also add a Stations module from the Elements panel to defi ne four stations. 

Though they aren’t directly used in the model for station transfers, they are required to 

allow the Detect module to search across the station range. 

 When an entity is created by this Detect module, it enters the Assign module shown in 

  Display 11-14  . Here we assign the entity’s type to  Full Barge , which will be used later 

in the model so that we can send the arriving barges and these full barges to the appropriate 

dispose logic. Then we use the  Entity.Station  attribute, which was initialized by 

Arena at the Detect module, to assign the  Dock Number  attribute a value of 1 through 4 

for indexing into our arrayed variables. The next assignment terminates the fl ow of coal to 

this dock, setting the rate of fl ow,  Barge Rate(Dock Number) , to  0 . Then we reset 

the  Barge Level  variable for this dock to  0 . We also set the  Barge Capacity(Dock 
Number)  variable to  0 . Finally, we decrease the number of  Filling Docks  by one so 

that the rate adjustment calculations won’t include this dock. 

 Beginning Station Range 

 Ending Station Range 

 Crossing Variable 

 Crossing Direction 

 Threshold Value 

 Crossing Tolerance 

  1  
  4  
  Barge Level(J)  
  Positive  
  Barge Capacity(J)  
  0  

  Display 11-13.  Detect Module for Full Barges 

  Figure 11-7.  Detect Logic for Full Barges   
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 Name   Assign Dock Number and Stop 
 Filling  

 Assignments 

    Type 

    Attribute Name 

    New Value 

  
  Attribute  
  Entity.Type  
  Full Barge  

 Assignments 

    Type 

    Attribute Name 

    New Value 

  
  Attribute  
  Dock Number  
  Entity.Station  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Barge Rate(Dock Number)  
  0  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Barge Level(Dock Number)  
  0  

 Assignments 

    Type 

    Other 

    New Value 

  
  Other  
  Barge Capacity(Dock Number)  
  0  

 Assignments 

    Type 

    Variable Name 

    New Value 

  
  Variable  
  Filling Docks  
  Filling Docks - 1  

  Display 11-14.  Assignments for Full Barge 

   At this point in the model, we have an entity that was created by the Detect module 

because the fi lling operation fi nished at one of the docks. In the Assign module, we stopped 

the fl ow of coal to that dock. Now, we need to adjust the fl ow to the other docks, if any are 

fi lling barges, to distribute the 2,400 tons per hour evenly among them. First, we’ll use a 

Decide module, shown in   Display 11-15  , to check whether any docks are fi lling barges. 

 Name 

 Type 

 If 

 Named 

 Is 

 Value 

  Any Barges Still Filling?  
  2-way by Condition  
  Variable  
  Filling Docks  
 > 
  0  

  Display 11-15.  Decide Module Checking Whether Any Barges Are Filling 
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   If there are some docks occupied by barges being fi lled, then we need to adjust 

their fi lling rates. We’ll connect the True exit point of the Decide module to a copy 

of the module named  Change Filling Rate on Barge Arrival  (name it 

 Change Filling Rate on Barge Departure , keeping all other operands 

the same). If there are no occupied docks with fi lling in process, then the entity 

will leave via the False exit point of the Decide module. We’ll connect this to the 

logic shown in   Figure 11-8  , which takes care of disposing the full-barge entity. (The 

connection from the Decide module’s False exit point is the bottom-most line in the 

fi gure.) 

 To remove a full barge from the model, we need to collect statistics on how long 

it took to fi ll the barge, delay for the time to untie the barges and leave the dock, and 

dispose the entity. 

 The three modules that remove a full barge from the system start with the Record 

module,  Record Barge Fill Time , seen in   Display 11-16  . This is used to tally 

how long it took to perform just the fi lling operation, not including the time required 

to tie up the tugboat or to untie it. Recall that when an arriving, empty barge began its 

fi lling operation (see   Figure 11-6  ), it assigned the beginning time of the fi lling operation 

to a variable named  Beginning Fill Time  with the appropriate  Dock Number  
index (  Display 11-11  ). To determine how long it took to fi ll the tugboat’s barges, we’ll 

subtract that beginning time from the time of departure of the tugboat, which is the cur-

rent simulation time ( TNOW ) when the entity reaches the Record module. We’ll name the 

Tally statistic  Barge Fill Time  so that we can view its results on the User-Specifi ed 

area of the Arena reports. 

 Name 

 Type 

 Value 

 Tally Name 

  Record Barge Fill Time  
  Expression  
  TNOW – Beginning Fill Time(Dock Number)  
  Barge Fill Time  

  Display 11-16.  Record Module for Barge Fill Time 

  Figure 11-8.  Dispose Barge Entities   
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   Next, the entity representing the full barge delays for the time required to untie it 

from the dock and releases the dock. A Process module is used for these operations, as 

in   Display 11-17  . After this process is completed, our processing is done, so we destroy 

the barge at the Dispose module  Dispose Barge Entity . 

 To complete the model, we’ll establish the run parameters for our analysis. Since 

this operation runs 24 hours a day, 7 days a week, it seems clear that we’ll need to ana-

lyze it as a non-terminating system. So we’ll need to establish an appropriate warm-up 

time, run length, and number of replications. After performing some pilot runs, we 

decided that a Warm-Up Period of 5 days brings us to steady state (see Section 7.2.1). 

We’ll add to that 200 days of simulated time for each replication (for an overall replica-

tion length of 205 days), and we’ll perform 15 replications for our analysis. We select 

Hours as our Base Time Units to match the time units we used for the continuous rate 

variables (an important item to remember!). These  Run  >  Setup  settings are shown in 

  Display 11-18  . 

 The animation for this model is fairly simple, as shown in   Figure 11-9  . We added a 

plot for each of the docks showing the value of the  Barge Capacity  variable and the 

 Barge Level  variable on the same axis. This gives us a visual display of when barges 

began and ended fi lling operations, not including the time to tie and untie the tugboats 

at the docks. We also plotted the number of barges waiting for docks. 

 Name 

 Action 

 Resources 

    Type 

    Set Name 

    Selection Rule 

    Set Index 

 Delay Type 

 Units 

 Minimum 

 Value (Most Likely) 

 Maximum 

  Clear and Release Dock  
  Delay Release  
  
  Set  
  Docks  
  Specific Member  
  Dock Number  
  Triangular  
  Minutes  
  3  
  4.5  
  7.5  

  Display 11-17.  Process Module to Untie Tug and Release Dock 

 Number of Replications 

 Warm-up Period, Time Units 

 Replication Length, Time Units 

 Hours Per Day 

 Base Time Units 

  15  
  5, Days  
  205, Days  
  24  
  Hours  

  Display 11-18.  Replication Parameters for Model 11-3 
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   To perform the simulation run, we checked the option for  Batch Run (No Animation)  
under  Run  >  Run Control  to perform the run as fast as possible. After our 15 replications 

have completed, Arena’s Category Overview report provides summary statistics across 

the replications. 

 The Queue section of the report shows that the average waiting time for a dock (in the 

queue named  Seize Dock and Prepare for Filling.Queue ) was about 0.4 

hours (24 minutes), and the maximum observed value across all of the replications was 

about 7 hours. (Our 15 replications resulted in a half width of 0.01 for the mean, so we 

should feel good about the precision of the average predicted in this analysis.) The Number 

Waiting statistic for the queue reports that there was about one tugboat waiting for a dock, 

on average, with a maximum of 30 waiting at some stressful point during our replications. 

 In the User Specifi ed section of the Category Overview report, we fi nd the additional 

Tally statistic that we added to the model using a Record module. The average barge fi ll 

time was about 0.62 hours (just under 40 minutes), the shortest recorded fi ll time was 

0.125 hours (7.5 minutes), and the longest was 1.6 hours. For a sanity check, let’s think 

through these numbers to see if they make sense (always a good idea). The shortest 

fi ll time we would expect for this system would be a 300-ton barge (our smallest size) 

receiving the total 2,400 tons/hour rate for its complete fi lling time. This would result 

  Figure 11-9.  Plots for Model 11-3   
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in a fi ll time of 300/2,400 5 0.125 hours, which matches our minimum observed value 

(so we must have had a small barge that was fi lled all by itself at some point). Look-

ing at the maximum, if a 1,000-ton barge was fi lled at the lowest fi ll rate of 600 tons/

hour (2,400 divided among the four docks), its fi ll time would have been 1,000/600 or 

1.67 hours. Our observed maximum of 1.6 hours is less than the longest possible (but 

fairly close), so again, our results seem reasonable. 

   11.2.4 Model 11-4: Coal Loading with Flow Process 

 Let’s now look at using the Flow Process template, which facilitates modeling 

bulk material-holding areas, sensor detection, control logic, and continuous and 

semi-continuous fl ow between those holding areas. Does this sound familiar? Well, in 

fact, this template provides an easier, more straightforward way of modeling systems 

like the coal operations we just modeled. In this section, we’ll start with a brief intro-

duction to the Flow Process template and then show how these modules can be used 

in our coal model. 

 Flow Process has seven modules that all follow the paradigm of tanks and regu-

lators, but it may be useful to think of these in the broadest possible sense. The Tank 

module represents a holding area where material is stored and defi nes the regulators 

that control fl ow into and out of that holding area. A regulator is a monitored input/

output from the tank over which the maximum fl ow rate can be adjusted by the 

Regulate module. The Flow module creates a temporary fl ow connection into and/

or out of a tank, or between two tanks. The entity-based fl ow logic of this module is 

ideal for representing batch processing operations. The Sensor module is somewhat 

similar to the Detect module discussed in Section 11.1.2; it allows you to sense and 

act on changes in the tank level. And fi nally the last three modules allow you to treat 

regulators in a way similar to resources—that is, seizing, releasing, and grouping 

into a set. 

 A related feature is a Level object of type Flow, which provides an easy-to-use 

mechanism for animating pipes, conveyors, and other devices that carry fl ow. The level 

provides an animation indicator of both direction and relative rate of fl ow. 

 You might think that the constructs just introduced are similar to and somewhat 

redundant to other Arena constructs. To some extent, you would be right. But the con-

tinuous constructs discussed earlier in this chapter were designed to handle complex 

systems and can introduce unneeded complexity in common batch-processing systems. 

Not only does Flow Process allow easier modeling of these systems, but it is also more 

effi cient (that is, it can execute faster), more accurate, and provides some sophisticated 

capabilities. 

 In Section 11.2.2 when we fi rst described this coal-loading model, it appeared sim-

ple to model with discrete concepts. Then, as we got into more detail on the continuous 

aspects, the logic got a little more complex. This time we will follow the same basic 

procedure that we did in the earlier model, except that with the Flow Process approach, 

it will be a linear process description without the need for most of the data modules. We 

will model the coal-storage area as a tank (remember, a tank is just a holding area). We 

will consider each of the barge docks to be a regulator; that is, a regulated output from 

kel01315_ch11_479-518.indd   501kel01315_ch11_479-518.indd   501 05/12/13   3:19 PM05/12/13   3:19 PM



502     Chapter 11

the coal inventory. A barge can be represented by an entity that steps through the process 

sequentially (as shown in   Figure 11-10  ). We will use these basic steps: 

     ■  Create arriving barge  
   ■  Seize a dock (Seize Regulator module)  
   ■  Delay for docking and coal-loading preparation  
   ■  Prepare for fi lling (Assign and Regulate modules)  
   ■  Fill barge (Flow module)  
   ■  Cleanup from fi lling (Assign and Regulate modules)  
   ■  Delay for untying and leaving dock  
   ■  Release dock (Release Regulator module)  
   ■  Dispose barge entity  

  We start by representing the Main Coal Storage with a Tank module from the Flow 

Process template, shown in   Figure 11-11  . For now we will give it 10,000 units of ca-

pacity and specify that it is full (later we will deal with replenishment). We will also 

  Figure 11-10.  Coal Model Logic Using Flow Process   

  Figure 11-11.  Tank Module Representing Coal Storage   
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specify that it has one regulator for each of the four barge docks. Separately, we create 

a new set containing all four of these regulators by using the Regulator Set data module 

from Flow Process.   

 The Create module is identical to what was used previously. Instead of the Process 

module that we used to seize the dock and delay for the preparation time, this time we 

will use two modules: a Seize Regulator from Flow Process (  Figure 11-12  ) and a Delay 

from Advanced Process. 

 The assignments that we must make to prepare for fi lling are similar to what we did be-

fore, but are less complex because a single entity represents each barge, so we can use at-

tributes instead of variable arrays, where appropriate. The Assign that we previously used 

to change fi lling rates is replaced by a Regulate module from Flow Process (  Figure 11-13  ). 

 Most of the “magic” occurs in the Flow module from Flow Process. We use this to ac-

tually move the coal onto the barge. Here (shown in   Figure 11-14  ) we specify that we want 

to Remove material from the Regulator Set named  Barge Loading Docks  using the 

dock specifi ed in the attribute  Dock Number . We will stop transferring when we have 

transferred the quantity of material specifi ed in the attribute named  Barge Capacity . 

  Figure 11-12.  Seize Regulator Module Representing a Dock   

  Figure 11-13.  Regulate Module to Set Maximum Loading Rates   
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   This simple application barely scratches the surface of the Flow module capabili-

ties. Flow can transfer into, out of, or between tanks, and it automatically handles the 

cases of either tank becoming full, empty, or situations in which the fl ow is otherwise 

restricted. It also handles priority allocation between regulators contending for the same 

tank capacity. Options in the dialog allow for terminating the fl ow based on a signal 

or elapsed time. And Flow gracefully handles a fl ow that is abnormally terminated for 

any reason. But while all this is happening, on the outside, Flow behaves like a simple 

delay—an entity enters the Flow and waits there until the specifi ed transfer is completed 

or terminated, then the entity exits to the next module. 

 After the material transfer in the Flow module is complete, we again use the Assign 

and Regulate modules to clean up after the transfer. (Note that the Regulate modules are 

not routinely necessary with Flow, but in this case, we are adjusting the maximum fl ow 

rates on all regulators each time any transfer is started or stopped.) Since the Flow Process 

modules assume that material is being moved from one location to another, we need to add 

some sort of replenishment logic to ensure that we do not run out of coal. We will take the 

simplest approach by adding an entry to  Assignments After Loading  to assign 

 TankLevel(Main Coal Storage)  to  10000 , essentially refi lling the pile after 

each barge is serviced. The rest of the model is similar to our previous one, again using 

the Delay and Release Regulator modules instead of the Process module we used before. 

 If you run the completed model  Model 11-04.doe , you will fi nd that the results 

are similar to the results of  Model 11-03.doe . Although  Model 11-04.doe  has 

  Figure 11-14.  Flow Module to Transfer Coal to Barge   
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no animation, it has many good opportunities for animation. If you look in the \Users\

Public\Public Documents\Rockwell Software\Arena\Examples\FlowProcess subfolder, 

you will fi nd a model named  Coal Loading.doe . This is the same problem and 

approach discussed in  Model 11-04.doe , with some embellishments. The major 

change to the model (that will affect the results) is that we no longer assume that the coal 

inventory is infi nite. Instead, we have periodic deliveries by train to replenish the inven-

tory. We also have a fi xed maximum inventory amount that can limit deliveries, and of 

course, if the pile ever empties, it will limit shipments. Another change is that we model 

the barge movement in the immediate vicinity. The rest of the changes are cosmetic, in-

cluding animation of the trains and barges, animation of coal transfers using fl ow levels, 

and some “fun” animation including passenger trains and an occasional water skier. 

     11.3 Continuous State-Change Systems 

  In Sections 11.1 and 11.2, we examined continuous processes in which the rate of 

change of the continuous variables (for example, liquid in a tank, coal in a barge) was 

constant or changed at discrete points in time. Many physical systems fall into this 

category, particularly where some bulk or liquid product is being manufactured or trans-

ferred among containers. Arena is well equipped (and now, so are you) to analyze these 

processes accurately using the features we’ve presented thus far. 

 We’ll now turn our attention to slightly more complex continuous processes, where 

the rate values also change continuously over time. Many types of processes fall into 

this category, particularly when physical activities involving temperature or chemical 

reactions take place. Other cases, such as studies of large populations (for example, for 

spread of disease), also call for the type of modeling approach we’ll discuss here. 

 To introduce you to the new concepts required to model these processes, we’ll use 

a simple example from the metals industry, where we need to model the temperature of 

a furnace and of the ingots being heated inside. We’ll examine the conceptual approach 

required to capture this process, and we’ll discuss the algorithms used by Arena to sim-

ulate these types of systems. When you’ve learned this material, you should be armed 

with enough knowledge to identify the appropriate approach for simulating continuous 

systems and to employ Arena to do the job successfully. 

  11.3.1 Model 11-5: A Soaking-Pit Furnace 

 This system contains a soaking-pit furnace, where steel ingots are heated so they can be 

rolled in the next stage of the process (Ashour and Bindingnavle, 1973). Ingots arrive 

to this process approximately every 2.25 hours on average, following an exponential 

distribution for interarrival times. The furnace itself has space for at most nine ingots, 

which can be loaded and unloaded independently. If the furnace is full when a new ingot 

arrives, the ingot is held in a storage area until a space becomes available in the furnace. 

Each ingot is heated by the furnace to a temperature of 2,200°F, and then is removed 

and departs the system. 

 When an ingot is loaded into the furnace, its temperature is uniformly distributed be-

tween 300 and 500°F. Because it is cooler than the temperature of the furnace, it reduces 

the furnace temperature. For the purposes of our example, we’ll assume that this change 
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takes place immediately and equals the difference between the furnace temperature at 

the time the ingot is inserted and the ingot temperature, divided by the current number 

of ingots in the furnace. 

 The heating process in the furnace causes the temperature to change by twice the 

difference between 2,600 and the current furnace temperature. The rate of change of 

an ingot’s temperature while it’s in the furnace is 0.15 times the difference between the 

furnace temperature and the ingot temperature. 

 For our study, we’d like to predict how many ingots are waiting to be loaded into the 

furnace and the range of the furnace temperature as it varies with ingots being loaded 

and removed. 

   11.3.2 Modeling Continuously Changing Rates 

 To model the furnace process, we’ll use many of the concepts and constructs that were 

appropriate for capturing the coal-loading operation in Section 11.2. The elements 

that change continuously over time—the level variables for this model—are the fur-

nace temperature and the individual temperatures of the ingots in the furnace. We’ll 

defi ne one level for the overall furnace temperature and nine additional level variables 

representing the temperature of the ingots in the nine furnace positions (correspond-

ing to its capacity of nine ingots). These levels are analogous to the level variables we 

established in the coal-loading operation to monitor the amount of coal loaded into a 

tugboat’s barges. 

 Where things become interesting is when we look at the rates for this process—

how the temperature changes over time in the furnace and for heating the ingots. 

Previously, our rates held constant values over time, though we could introduce in-

stantaneous changes in the rates by assigning new values to them (for example, im-

mediately dividing the fl ow of coal differently among the four docks when a barge 

began or fi nished its fi lling operation). In the furnace system, though, the rate at 

which the furnace reheats to its target temperature of 2,600 depends on its current 

temperature. Similarly, the rate at which an ingot is heated depends on both the tem-

perature of the furnace and the ingot temperature. What complicates the determina-

tion of any of the rates or temperatures at a point in time is that they’re all changing 

continuously over time. 

 Systems such as these are modeled using  differential equations , which are mathe-

matical equations that involve the derivative (rate of change) of one or more variables. 

If we denote the value of some system variable (for example, a temperature) as  x , then 

its derivative is denoted by  dx / dt  and defi nes its rate of change with respect to time.  3    In 

Arena, a level defi nes a system variable,  x , and a rate defi nes its derivative,  dx / dt . When 

we can’t directly defi ne a quantity’s value over time, we use this continuous-modeling 

approach to calculate it indirectly via a differential equation. 

  The models that we’ve seen thus far in this chapter used simple differential equa-

tions, where the derivative (or rate) was a numerical value that changed only at discrete 

  3  Hopefully, this looks somewhat familiar from your extensive background in mathematics. If not, we’ll 

try to keep things simple and will count on your initiative to fi nd a good math text for a deeper explanation 

of how this all works. 
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points in time (via model assignments). You might recall that when we added Continuous 

modules to our model, we saw a fi eld called Number of Dif. Equations (for example, 

Section 11.1.1). We were fortunate enough to be able to defer much discussion of that 

item, because Arena’s default is to calculate an equation for each level/rate pair that are 

defi ned in the model. Now we’ll discover a bit more about what it really means. 

 For the furnace example, we need to solve a differential equation for each of our ten 

continuous variables. If we denote as  F  the temperature of the furnace, then its rate of 

change follows the differential equation: 

    dF/dt  5 2.0 3 (2600 2  F ).   

  Each of the ingots in the furnace changes temperature according to the equation: 

    dP   
j
    /  dt  5 0.15 3 ( F  2  P

   j
  )   

 where  P
   j
   is the temperature of the ingot currently occupying the  j th position in the fur-

nace. Nine such equations will be needed to defi ne the ingot temperatures completely. 

   11.3.3 Arena’s Approach for Solving Differential Equations 

 Except for certain special classes of problems, differential equations are diffi cult to 

solve mathematically. Because of this, special numerical techniques have been devel-

oped to approximate the values of the continuous variables over time. (Note that these 

approaches generally apply only to systems of fi rst-order differential equations—in 

other words, those involving the continuous variable or its rate but no higher-order 

derivatives. Higher-order differential equations must be converted to a series of 

fi rst-order equations.) 

 Arena uses these techniques to calculate the value of a continuous-change variable 

at a new point in time based on its previous value, the change in time, and its estimation 

of the rate of change over that time step.   Figure 11-15   illustrates how this works, where 

the curve is plotting the value of the continuous variable (level) over time, and the dotted 

line indicates the approximated rate over the time step. 

 Figure 11-15.  Numerical Approximation for Continuous-Change Variables
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      The actual duration of the time step between calculations, D t , depends on the 

integration approach selected. Arena provides two built-in methods for numerically 

integrating continuous systems. The Euler method is a simple approach that works 

well for continuous processes where the rate of change remains constant between time 

steps. We utilized this approach for the previous models in this chapter. It uses a fi xed 

time step defi ned by the Maximum Step Size fi eld of the Continuous module. 

 For other continuous processes, in which one or more rates change continuously 

over time, Arena provides a more advanced set of algorithms under the RKF (for 

Runge-Kutta-Fehlberg) selection in the Continuous module. These approaches for solv-

ing differential equations use a variable step size, which is automatically adjusted each 

time Arena recalculates the continuous values. When the rate is close to linear, a larger 

step size (closer to the maximum) can yield good accuracy. However, when the rate is 

non-linear, smaller step sizes are necessary to provide the same quality of estimates 

(though at the penalty of more frequent calculations, which can cause slower runs). 

 In the Continuous module, to provide to Arena all the required information for this 

RKF approach, you supply two error values—the relative and absolute error quantities 

that are acceptable for each step in the integration. Using these quantities, Arena will de-

termine whether a time-step size is acceptable by calculating the total error as (absolute 

error) + (value of the continuous variable) 3 (relative error). 

 We’ve mentioned that when the rate changes continuously, we develop differential 

equations that Arena calculates at each continuous time step. To add these to an Arena 

model, it’s necessary to use one of Arena’s interfaces to user-written routines (in C, C11, 

VBA, etc.). The equations are coded in a special, built-in routine called  ModelLogic_
UserContinuousEquations  in VBA or  cstate  in C/C11. Because we presented 

the VBA interface in Chapter 10, we’ll use VBA to code the equations for the furnace and 

ingot temperature changes. 

   11.3.4 Building the Model 

 To capture the activities of the ingots moving through the furnace, we’ll have both dis-

crete and continuous portions in our model, just as in the coal-loading operation model 

of Section 11.2. The continuous portion of the model,   Figure 11-16  , includes a Contin-

uous module; individual Level variables for the furnace temperature and for each ingot 

position in the furnace; Rate variables to model the rate of temperature change for ingots 

and the furnace; and a new module, CStats, which we’ll use to collect a statistic on the 

furnace temperature.   

 The Continuous module,   Display 11-19  , defi nes the parameters for the continuous 

portion of our model. We have ten differential equations, one for each of the nine ingot 

  Figure 11-16.  Continuous-Related Modules   
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temperatures plus one for the furnace temperature. Because our rates change continuously 

over time, we select the  RKF  integration Method with a Minimum Step Size of  0.01 , 

a Maximum Step Size of  0.1 , and values of  0.00001  for the Absolute and Relative 

Errors. We’ll also use a Save Point Interval of  0.1 , which establishes the maximum time 

that can elapse before continuous statistics (CStats) are recorded. 

   In the Levels module, we’ll call the continuous Level variables representing the tem-

perature of the ingots in the furnace  Ingot Temperature  and will establish  9  of them 

(one for each furnace position), shown in   Display 11-20  . They’ll have  9  corresponding 

 Number of Dif. Equations 

 Minimum Step Size 

 Maximum Step Size 

 Save Point Interval 

 Method 

 Absolute Error 

 Relative Error 

 Severity 

 Cross Severity 

  10  
  0.01  
  0.1  
  0.1  
  RKF  
  0.00001  
  0.00001  
  Warning  
  Warning  

  Display 11-19.  Continuous Module for Soaking-Pit Model 

 Levels 

    Number 

    Name 

    1-D Array Index 

  1  
  Ingot Temperature  
  9  

    Number 

    Name 

    10  
  Furnace Temperature  

  Display 11-20.  Levels Module Entry Defi ning Ingot Temperature Levels 
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Rate variables called  Ingot Heating Rate , so that  Ingot Heating Rate(1)  

will be the rate of change of  Ingot Temperature(1) ,  etc. 

 For the overall furnace temperature, we’ll defi ne Level number  10  to be called 

  Furnace Temperature  and Rate number  10  to be called  Furnace  Heating 
Rate .   Display 11-21   shows the main dialog box for the Rates module, as well as its entry 

for the  Ingot Heating Rate . 

 The CStats module from the Elements panel defi nes time-persistent statistics to be 

collected on continuous variables. We’ll Add a single statistic on the furnace tempera-

ture, in   Display 11-22  . The SIMAN Expression is the Level variable on which we want 

to collect statistics, namely  Furnace Temperature . We defi ne the Name to be 

 Temperature of Furnace , which will appear as the label of our statistic on 

Arena’s user-defi ned report. In the Report Database Classifi cation section, we specify 

 “Continuous”  for the Data Type,  “User Specified”  for the report Category, 

and  “Furnace Temperature”  for the Identifi er on the report. Arena will list the 

average, half-width, minimum, and maximum values for the  Furnace Temperature  
on the user-specifi ed report. (The double-quotes around each of these report database 

classifi cation entries are required by Arena in this module.) 

  Because we’re confi dent that you’re quite adept at modeling discrete processes in 

Arena by now, we’ll move through the process fl ow rather quickly so that we can get to 

 Rates 

    Number 

    Name 

    1-D Array Index 

  
  1  
  Ingot Heating Rate  
  9  

    Number 

    Name 

  10  
  Furnace Heating Rate  

  Display 11-21.  Rates Module Entry Defi ning Heating Rates 
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the hot stuff—capturing the temperatures of all of these items accurately.   Figure 11-17   

shows the discrete process fl ow for creating the ingot entities. To generate ingots into 

the system, the Create module creates an entity randomly (exponential interarrival dis-

tribution) with a mean of 2.25 hours. The entity seizes one of the nine positions in the 

furnace via a set of resources, storing the selected position in an attribute named  Ingot 
Number . Then it moves to the  Set Ingot and Furnace Temperatures 
Assign  module, where it increments a variable named  Number in Furnace  

by one; assigns the level variable  Ingot Temperature(Ingot Number)  to a 

sample from a  UNIF(300,500)  distribution; and assigns the Furnace Temperature to 

its new value,  Furnace Temperature -(Furnace Temperature - Ingot 
Temperature(Ingot Number))/ Number In Furnace . 

 SIMAN Expression 

 Name 

 Data Type 

 Category 

 Identifi er 

  Furnace Temperature  
  Temperature of Furnace  
  “Continuous”  
  “User Specified”  
  “Furnace Temperature”  

  Display 11-22.  CStats Module Collecting Furnace Temperature Statistic 

  Figure 11-17.  Ingot Creation Logic   
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   At this point, the ingots are ready to be heated. We use a Hold module,  Wait for 
Ingot to Heat , keeping the entity in a queue to wait for a signal that matches its 

 Ingot Number  attribute (which has a value between 1 and 9 defi ning its position 

in the furnace). This signal will be sent by an entity created at a Detect module that 

watches for the value of the ingot temperature to cross the target temperature (2,200°F); 

we’ll cover this logic shortly. 

 After the ingot has been heated, it leaves the Hold module and enters the  Assign 
Ingot Temperature to 0 for Removal  module, where it decreases the 

 Number in Furnace  variable by one and sets the  Ingot Temperature
(Ingot Number)  level value to 0 (indicating that the position is now empty). The 

ingot then releases the resource it previously had seized and is disposed. 

   Figure 11-18   shows the logic for detecting the ingots heating to 2,200°F. The 

Detect module watches the nine crossing (level) variables using the expression 

 Ingot Temperature(J)  for the station range  1  to  9 . (The Stations module 

defines the nine stations.) Its threshold is  2200  degrees and crossing direction is 

 Positive , using a crossing tolerance of  5 . When an ingot has reached its target 

temperature, the  Assign Ingot Number  module assigns the  Ingot Number  

attribute equal to the value of the  Entity.Station  attribute (which the Detect 

module automatically assigns, based on which  Ingot Temperature  level 

exceeded the threshold). The entity then sends a signal code equal to the  Ingot 
Number , indicating that its position in the furnace has been cleared, and the entity 

finally is disposed. 

   11.3.5 Defi ning the Differential Equations Using VBA 

 We have completed the portion of the model that deals with the ingots—getting them 

into the system, loading them into the furnace, and removing them when they’ve reached 

the target temperature. Now we’ll complete the model by defi ning the differential equa-

tions that will dictate the rates of change of the ingot and furnace temperatures. 

 In the Visual Basic Editor, the VBA code is typed in the  ModelLogic_
UserContinuousEquations  subroutine, shown in   Figure 11-19  . First, we set the 

 oSIMAN  variable to point to the SIMAN data, which will give us access to the rate 

and level variables. Next, we store the value of the  Furnace Temperature  level 

variable (which is level number 10) in the VBA variable,  dFurnaceTemp , using a call 

to the  LevelValue  function in the Arena object library. The For loop cycles through 

for values of  nIngotNum  from 1 through 9. It calls the  RateValue  function to set 

the values of the nine rate variables (that change the ingot temperatures) equal to 15% 

  Figure 11-18.  Logic to Remove Ingots from Furnace   
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of the difference between the current furnace temperature and the individual ingot’s 

temperature. This corresponds to the formula,  dP   
j
   / dt  5 0.15 3 ( F  –  P   j  ), presented in 

Section 11.3.2. Finally, we update the rate of change of the furnace temperature—rate 

value number 10—by taking twice the difference between 2,600 and the current furnace 

temperature ( dFurnaceTemp ), representing the previously described formula,  dF / dt  5 

2.0 3 (2,600 2  F ).  

 Whenever you have differential equations, you’ll use this approach. Formulate the 

equations in terms of levels and rates, and then create the code to implement the formu-

las in VBA or C/C11. During the simulation run, the routine will be called many times, 

updating the values of the level and rate variables as the continuous integration steps 

are performed. The settings in the Continuous module for the minimum and maximum 

step size for the RKF algorithm determine how frequently these updates are performed. 

With smaller values for these step sizes, the continuous variables are calculated more 

often, which can result in greater accuracy. However, as you might guess, this accuracy 

comes at the expense of longer run times since the VBA code must be executed at each 

of the time steps. 

 With regard to run times, when you run this model, you may notice that it takes a 

long time to run. Part of this is due to the nature of continuous problems in general. In 

addition, interpreted VBA code is much slower than compiled C11 code. As mentioned, 

the VBA code must be executed at every time advance, and time advances are short to 

keep good accuracy—the combination puts a heavy load on interpreted code. When run 

time becomes an issue, you will fi nd it will improve dramatically when these algorithms 

are coded in C11. 

 In examining the results for ten replications of 5,100 hours each (with 100 hours of 

warm-up time), we can see on the Queue section of the Category Overview report that 

the average waiting time for cold ingots that couldn’t be loaded into the furnace was 0.3 

hours, and the maximum waiting time was 11.3 hours. Also, on average, there were 0.15 

cold ingots waiting, though at some point during the run there were as many as nine in 

the queue (from the Maximum Value column of the Number Waiting table). We fi nd 

the statistic on the furnace temperature on the User Specifi ed section of the Category 

 Private Sub ModelLogic_UserContinuousEquations() 
     Dim dFurnaceTemp As Double 
     Dim nIngotNum As Long 
     Dim oSIMAN As Arena.SIMAN 

       Set oSIMAN = ThisDocument.Model.SIMAN 

     ’ Set heating rate for each ingot 
     dFurnaceTemp = oSIMAN.LevelValue(10) 
     For nIngotNum = 1 To 9 
         oSIMAN.RateValue(nIngotNum) = _ 
           0.15 * (dFurnaceTemp - oSIMAN.LevelValue(nIngotNum)) 
     Next nIngotNum 
     ’ Set heating rate for furnace 
     oSIMAN.RateValue(10) = 2 * (2600 2 dFurnaceTemp) 
 End Sub 

  Figure 11-19.  Differential Equations Coded in VBA 
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Overview report. There, the Continuous table lists our CStat information, which shows 

that the average furnace temperature was 2,514°F, the minimum was 301°F, and the 

maximum was 2,600°F. 

       11.4 Summary and Forecast 

 This chapter concludes the modeling topics of this book. We examined Arena’s frame-

work for modeling continuous-change systems. We also put together the discrete mod-

eling concepts of our earlier chapters with continuous modeling, illustrating how these 

concepts are applied together in two examples. Further, we built a model based on Flow 

Process constructs that blend these constructs. 

 When you are preparing to analyze a system in which fl uids or other bulk materials 

are being produced or handled, the continuous-modeling and Flow Process approaches 

should be considered. Some systems may be modeled using both continuous and dis-

crete concepts, due to the nature of the material being modeled. Arena’s structure is 

designed to model any combination of discrete and continuous processes, using Flow 

Process modules or the Detect module and assignments of continuous rate and level 

variables illustrated in this chapter. 

 The remaining two chapters are not directly about modeling, but discuss important 

topics that are critical for performing good simulation studies. Chapter 12 rounds out 

our treatment of the probabilistic underpinnings and statistical issues in simulation, 

which we began in Section 2.6, Section 4.6, Chapter 6, and Section 7.2. Then in 

Chapter 13, we’ll provide you with some sage observations and advice about how to 

conduct simulation studies, including modeling, design, analysis, and (gasp!) dealing 

with people. 

   11.5 Exercises 

    11-1  Build a discrete-event model that changes the value of the volume in a tank 

as  described for Model 11-2b using a maximum step size of 0.01 minutes. Record 

time-persistent statistics on the volume in the tank, and compare the average reported 

volume for an 800-hour run with the results from the continuous model (11-2b). Also 

compare the computing time required to perform the simulation run for the discrete 

case vs. the continuous approach. (Note: For this comparison, clear the Update Sim-

ulation Time Every option in  Run  .  Setup  .  Run Speed  from Model 11-2b, and run 

both models in batch mode. To show computing time, select SIMAN Summary Report 

under  Run  .  Setup  .  Reports .)  

   11-2  The owner of a franchise of gas stations is interested in determining how large the 

storage tank should be at a new station. Four gas pumps, all dispensing the same grade 

of fuel, will be installed to service customers. Cars arrive according to an exponential 

distribution with a mean of 0.8 minute. (We’ll assume that this is uniform throughout 

the station’s hours of operation.) Their time at the pump (from start to fi nish) follows a 

triangular distribution with parameters 2, 2.8, and 4 minutes. The cars require varying 

amounts of fuel, distributed according to a triangular distribution with parameters 4, 7.5, 

and 15 gallons. 
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   Refi ll trucks arrive according to a uniform distribution with a minimum interarrival 

time of 6.75 hours and a maximum of 8.25 hours. They carry enough fuel to refi ll the 

storage tank and do so at a rate of 300 gallons per minute. 

   If the storage tank empties before a refi ll truck arrives, the pumps are closed until 

the storage tank contains 100 gallons (from its next refi ll). For purposes of this analysis, 

assume that cars that are in-process when the tank empties can complete their service 

and that waiting cars will stay at the station until the pumps reopen. However, any cars 

that arrive while the pumps are closed will drive by to fi nd another place to fi ll up. 

   Determine (to the nearest 100 gallons) the tank capacity that will result in fewer than 

0.1% of cars balking due to closed pumps.  

   11-3  An earnest analyst for Grace Enterprises, the owner of the coal-loading operation 

described in Model 11-3, has become concerned that assuming that coal will always be 

available to load into the barges might not be realistic. She would like to refi ne the esti-

mates of loading times and numbers of waiting barges by incorporating into her model 

the delivery of coal by train to the storage yard. 

   Trains are scheduled to arrive every 8 hours throughout the day and night, and 

they’re usually on time. Each train carries 12,000 tons of coal, which is unloaded into 

the storage yard at a rate of 7,500 tons per hour. The storage yard can hold 17,000 tons 

of coal; for purposes of this analysis, cancel a train’s delivery if the yard is full at the 

train’s scheduled arrival time. 

   Modify Model 11-3 to incorporate the availability of coal in the storage yard so that 

barges will wait at the dock until coal is available for loading. Compare the average and 

maximum number of barges waiting and the loading time of barges with the results from 

Model 11-3.  

   11-4  O’Hare Candy Company, maker of tasty sweets, is preparing to install a new lico-

rice production facility and needs to determine the rates at which equipment should run. 

In particular, they are interested in the cutting/wrapping machines, as they are prone to 

frequent breakdowns. 

   At this facility, there are three identical parallel lines fed by a single kitchen pro-

ducing continuous strands of licorice. Each line is fed licorice at a rate of 1,374 kg/

hour and has its own dedicated cut/wrap machine (modeled as a single process). The 

wrappers cut the licorice into individual pieces and wrap them at a rate of 1,500 kg/

hour. These machines experience breakdowns of various forms. Analysis of break-

down data from similar equipment has concluded that the frequency is approximately 

one breakdown per hour with a high degree of variability that can best be represented 

by an exponential distribution. The time to repair a breakdown varies quite a bit as 

well; it can be modeled by a triangular distribution with parameters 3.75, 4.5, and 

8.25 minutes. 

   It is very costly to shut down the kitchen, so surge tables will be located in front 

of each machine. The current design calls for a surge table capacity of 1,000 kg. If the 

amount of product exceeds this capacity, then the rate at which the kitchen is feeding 

product to that machine is reduced to 900 kg/hour until less than 700 kg of licorice is 

on the table. 
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   For the analysis of this system, begin the simulation with all three surge tables full. 

Analyze the system to evaluate whether the planned surge table capacities are suffi cient 

and whether the system will be able to produce licorice at the required rates.  

   11-5  Hope Bottling Company operates a bottling plant, handling many types of prod-

ucts. They are interested in analyzing the effective capacity of an orange juice bottling 

line as part of their plans for future business expansion. 

   At this facility, trucks deliver bulk orange juice (2,000 gallons per truckload) that is 

pumped into a surge tank feeding a bottling operation. The trucks arrive at an average 

rate of 1.75 trucks per hour during the fi rst 8 hours of each day and an average of one 

truck per hour during the remainder of each day. Upon arrival, they wait in line for a 

single dock to unload their juice; after unloading, they undock and depart the system. 

The docking and undocking time for a truck is uniformly distributed between 1 and 

2 minutes. During the unloading operation, the juice is pumped from the truck into the 

surge tank at a rate of 200 gallons per minute. The juice is pumped from the surge tank 

to the bottling operation at a rate of 48 gallons per minute. 

   If the level of juice in the surge tank reaches the tank’s capacity of 10,000 gallons, 

the truck-unloading operation is suspended until the level drops by 500 gallons. When 

the surge tank empties, bottling is stopped until the next truck arrives and begins unload-

ing juice into the surge tank. 

   The packaging operation (which runs 24 hours per day, 7 days per week) bottles 

the orange juice into 1-gallon containers and then combines these into boxes of 12. The 

boxes are then grouped into sets of four and placed on a pallet for shipping. Hence, each 

48 gallons of juice that are processed through the operation will generate a pallet for ship-

ping, resulting in a maximum production rate of the bottling operation of one pallet every 

minute. However, the actual production rate may be less than this due to starvation when 

the surge tank is empty. The bottling operation runs without any operational failures. 

   Predict the average turnaround time of trucks (that is, from arrival at the facility 

to departure) and the number of pallets that will be produced per week. Also look at 

whether increasing the surge tank capacity to a 20,000-gallon tank would noticeably 

increase production or decrease the time for trucks to unload.  

   11-6  For the soaking-pit furnace problem (Model 11-5), use the model to evaluate the 

performance improvement resulting from preheating arriving ingots so that their tem-

perature is uniformly distributed between 600 and 700°F. Assume that the ingots wait-

ing in the cold bank (that is, ones that could not immediately be loaded into the furnace 

on arrival) have a temperature of 600°F.  

   11-7  Simulate the population dynamics involving the growth and decay of an infec-

tious, but easily curable disease. The disease occurs within a single population, and 

recovery from the disease results in immunity. The population consists of the follow-

ing three groups: (1) those who are well, but susceptible; (2) those who are sick; and 

(3) those who are cured and therefore immune. Although the system’s state actually changes 

discretely, we will assume that we can approximate the system with continuous-change variables 

describing the size of each group. 
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   We will use the state variables named Well, Sick, and Cured to denote each group’s 

current size. Initially, the Well population size is 1,000, the Sick population is 10, and 

the Cured is 0. The following system of differential equations governs the infection rate, 

where  d/dt  indicates the rate of change of the population size. 

      d/dt  (Well) 5 20.0005 3 Well 3 Sick  

 d/dt  (Sick) 5 0.0005 3 Well 3 Sick 2 0.07 3 Sick  

 d/dt  (Cured) 5 0.07 3 Sick   

   Assuming that these formulas are based on days, how long will it take until the 

size of the Well group decreases to 2% of its original size? Include a plot of the three 

populations.  

   11-8  The  Lanchester combat equations , developed by the British mathematician Fred-

erick W. Lanchester during World War I to analyze the new phenomenon of aerial war-

fare, consider the levels  x ( t ) and  y ( t ) of two opposing forces at time  t , and how these 

levels are depleted. The  modern  Lanchester equations are 

      dx / dt  5 2 a y ( t )   
dy / dt  5 2 b x ( t )   

   where  a  and  b  are positive  attrition  coeffi cients. These state that the rate of depletion 

of each force is proportional to the size of the other force. For  a  5  b  5 0.01 and initial 

force levels  x (0) 5 1000 and  y (0) 5 500, create an Arena model that will run until one 

side or the other is completely depleted, that is, until  x ( t ) 5 0 or  y ( t ) 5 0, whichever 

comes fi rst. At what time does this happen? Include a plot of both force levels, as well 

as Variable animations of them, and a Variable animation of the current time. Use Base 

Time Units of Hours. Note that analytical solutions to these differential equations can 

be developed, making simulation unnecessary. (Thanks to Professor Tom Lucas of the 

Naval Postgraduate School for motivating this and the next three Exercises, as well as 

for the numerical values of the constants and starting boundary conditions.)  

   11-9  The  ancient Lanchester combat equations  have the same defi nition of  x ( t ) and  y ( t ) 
as in Exercise 11-8, but instead model the rate of depletion of each side to be propor-

tional to the  product  of the current level of both sides: 

    dx / dt  5  2   a x ( t )  y ( t ) 
    dy / dt  5  2   b x ( t )  y ( t ) 

   where  a  and  b  are again positive attrition coeffi cients (but have different units and interpre-

tations than the  a  and  b  in Exercise 11-8). For  a  5  b  5 0.001 and initial force levels  x (0) 5 

60 and  y (0) 5 30, create an Arena model that will run until time 500 hours (use Base Time 

Units of Hours). Include the same animation elements as in Exercise 11-8.  As in Exercise 

11-8, analytical solutions can be developed here, obviating the need to simulate.  

   11-10  In Exercise 11-8, suppose that both sides receive random-sized re-enforcements 

that increase their numbers, and that these re-enforcements arrive at random times. 

Re-enforcements to  x ( t ) arrive with interarrival times that have an exponential distribu-

tion with mean 8 hours, and the fi rst re-enforcement arrives not at time 0, but after one of 
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these interarrival times. The size of the re-enforcement to  x ( t ) has a Poisson distribution 

with mean 20. Similarly,  y ( t ) is re-enforced at interarrival times exponentially distrib-

uted with mean 4 hours (the fi rst re-enforcement arrives after one of these interarrival 

times past time 0), and with re-enforcement sizes distributed as Poisson random with 

mean 30. Run the model until one side or the other is completely depleted, with the 

same animation elements as in Exercise 11-8. Do ten replications and make entries in 

the Statistic data module that will produce an estimate of the probability that  x  wins (that 

is,  y ( t ) is depleted to zero fi rst), the expected duration of the fi ght, and the expected fi nal 

value of  x ( t )  2   y ( t ), which could be positive or negative. Depending on the probability 

distributions involved, this model does require simulation, since no analytical solution 

is available, unlike in Exercise 11-8.  

   11-11  Modify your ancient Lanchester model in Exercise 11-9 so that both sides receive 

re-enforcements as described in Exercise 11-10. The parameters of the re-enforcements, 

however, are different here: the mean times between  x  and  y  re-enforcements are re-

spectively 5 and 4 hours, and the mean sizes of the re-enforcements to both sides is 5. 

As in Exercise 11-10, do ten replications and make entries in the Statistic data module 

that will produce an estimate of the probability that  x  wins (defi ned here as  x (500) . 

 y (500)) and the expected fi nal value of  x ( t )  2   y ( t ), which could be positive or negative. 

Depending on the probability distributions involved, this model  does  require simulation, 

since no analytical solution is available, unlike in Exercise 11-9.      
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     CHAPTER 12 

 Further Statistical Issues 

  One of the points we’ve tried to make consistently in this book is that a good simulation 

study involves more than building a good model (though good models are certainly im-

portant too). In a simulation with stochastic (random) input, you’re going to get random 

output as well. Thus, it’s critical to understand how simulations generate this randomness 

in the input and what you can do about the resulting randomness in the output. We’ve 

already blended some of these statistical issues in with our tour through model building 

and analysis, specifi cally in Section 2.6, Section 4.6, Chapter 6, and Section 7.2. Part of 

the point of those sections is that Arena can help you deal with these issues, but you must 

be aware that they exist. 

 This chapter discusses additional statistical issues related to both the input and out-

put sides of a simulation. Random-number generators, the source of all randomness in 

simulations, are discussed in Section 12.1. Then in Section 12.2, we’ll talk about how 

to generate observations on whatever input distributions you decided to use as part of 

your modeling. Section 12.3 discusses specifying and generating from a particular, yet 

important type of random input, a nonstationary Poisson process (which, by the way, 

was introduced in Model 5-2). Ways to reduce output variance (other than just simulat-

ing some more) are described in Section 12.4. The idea of sequential sampling—that 

is, deciding on the fl y how much simulation-generated data you need—is the subject of 

Section 12.5. The chapter concludes in Section 12.6 with brief mention of the possibil-

ity of using experimental design in simulation. By the time you reach the end of this 

chapter, you should have a thorough understanding of statistical issues in simulation and 

know how Arena can help you deal with them. 

 Obviously, this chapter is a heavy user of foundational material in probability and 

statistics. We’ve provided a refresher on these subjects in Appendix B of the book, 

which you might want to look at before going on. In addition, Appendix C contains a 

listing of all the probability distributions supported by Arena. 

    12.1 Random-Number Generation 

  Hidden deep down in the engine room of any stochastic simulation is a  random-number 
generator  (RNG) quietly churning away. The sole purpose of such a machine is to pro-

duce a fl ow of numbers that are observations (also known as  draws ,  samples , or  reali-
zations ) from a continuous uniform distribution between 0 and 1 (see Appendix C) and 

are independent of each other. In simulation, these are called  random numbers . This is 

certainly not the only probability distribution from which you’ll want to draw observa-

tions to drive your simulations (see Section 4.6), but as we’ll discuss in Sections 12.2 

and 12.3, generating observations from all other distributions and random processes 

starts with random numbers. 
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 Any method for generating random numbers on a computer is just some kind of 

recursive algorithm that can repeat the same sequence of “random” numbers again 

and again. For this reason, these are often called  pseudorandom -number genera-

tors. Some people have worried philosophically that such methods are fundamen-

tally fl awed since part of what it means to be random is to be unpredictable. This 

might make for an interesting after-dinner debate, but at a practical level, the issue 

is really not very important. Modern and carefully constructed RNGs generally 

succeed at producing a fl ow of numbers that appear to be truly random, passing 

various statistical tests for both uniformity and independence, as well as satisfying 

theoretically derived criteria for being “good.” Also, it’s quite helpful in simulation 

to be able to regenerate a specifi c sequence of random numbers; this is an obvious 

aid in debugging (not to mention grading homework), but is also useful statisti-

cally, as we’ll describe in Section 12.4. 

 Unfortunately, there seems to be a common perception that any seemingly non-

sensical method will, just because it looks weird, generate “random” numbers. 

Indeed, some extremely poor methods have been provided and used, possibly re-

sulting in invalid simulation results. Designing and implementing RNGs is actually 

quite subtle, and there has been a lot of research on these topics. In part because 

computers have become so fast, there continues to be work on developing new and 

better RNGs that can satisfy the voracious appetite that modern simulations can 

have for random numbers. 

 So exactly how do RNGs work? Historically, the most common form (and the 

type still built into a lot of simulation software, but not Arena  .  .  . more on this 

issue follows) is called a  linear congruential generator  (LCG). An LCG generates 

a sequence  Z  
1
 ,  Z  

2
 ,  Z  

3
 , . . . of integers via the recursion 

    Z   
i
    5  ( aZ   

i21
    1 c )   mod  m    

 where  m ,  a , and  c  are constants for the generator that must be chosen carefully, 

based on both theoretical and empirical grounds, to produce a good fl ow of ran-

dom numbers. The “mod  m ” operation means to divide by  m  and then return the 

 remainder  of this division to the left-hand side as the next  Z   
i
   (for instance, 422 mod 

63 is 44). As with any recursion, an LCG must be initialized, so there is also a  seed  

 Z  
0
  specifi ed for the generator. This sequence of  Z   

i
  ’s will be composed of integers, 

which is certainly not what we want for a continuous distribution between 0 and 

1. However, since the  Z   
i
  ’s are remainders of division of other integers by  m , they’ll 

all be between 0 and  m  2 1, so the fi nal step is to defi ne  U   
i
    5 Z   

i
    /m , which will be 

between 0 and 1. The sequence  U  
1
 ,  U  

2
 ,  U  

3
 , . . . are the (pseudo-)random numbers 

returned for use in the simulation. 

 As a tiny example (nobody should ever actually  use  this generator), take  m  5 63, 

 a  5 22,  c  5 4, and  Z  
0
  5 19. The recursion generating the  Z   

i
  ’s is thus  Z   

i
   5 (22  Z   

i
 
21

  1 4) 

mod 63.   Table 12-1   traces this generator through the fi rst 70 generated random num-

bers, and you can check some of the arithmetic. (We used a spreadsheet to generate 

kel01315_ch12_519-548.indd   520kel01315_ch12_519-548.indd   520 06/12/13   9:44 AM06/12/13   9:44 AM



Further Statistical Issues     521

this table.) At fi rst blush, scanning down through the  U   
i
   column gives the impression 

that these look like pretty good random numbers—they’re certainly all between 0 

and 1 (as they’re guaranteed to be by construction), they appear to be spread fairly 

uniformly over the interval [0, 1], and they are evidently pretty well mixed up (inde-

pendent). The sample mean of the  U   
i
  ’s is 0.4984 and the sample standard deviation is 

0.2867, which are close to what we’d expect from a true uniform [0, 1] distribution (1/2 

and (1/12) 1/2   5 0.2887, respectively).  

 But there are a couple of things to notice here. First, as you read down through the 

 Z   
i
  ’s, you’ll see that  Z  

63
  5 19, which is the same as the seed  Z  

0
 . Then, note that  Z  

64
  5 44 5 

 Z  
1
 ,  Z  

65
  5 27 5  Z  

2
 , and so on. The  Z   

i
  ’s are repeating themselves in the same order, and 

  Table 12-1.   Tracing an LCG’s Arithmetic  

 i  22Z  
i
 −1  1 4  Z  

i
    U  

i
      i   22Z  

i
 −1  1 4  Z  

i
    U  

i
     i   22Z  

i
 −1 1 4  Z  

i
    U  

i
   

 0    19    24  1060  52  0.8254  48  400  22  0.3492 

 1  422  44  0.6984  25  1148  14  0.2222  49  488  47  0.7460 

 2  972  27  0.4286  26  312  60  0.9524  50  1038  30  0.4762 

 3  598  31  0.4921  27  1324  1  0.0159  51  664  34  0.5397 

 4  686  56  0.8889  28  26  26  0.4127  52  752  59  0.9365 

 5  1236  39  0.6190  29  576  9  0.1429  53  1302  42  0.6667 

 6  862  43  0.6825  30  202  13  0.2063  54  928  46  0.7302 

 7  950  5  0.0794  31  290  38  0.6032  55  1016  8  0.1270 

 8  114  51  0.8095  32  840  21  0.3333  56  180  54  0.8571 

 9  1126  55  0.8730  33  466  25  0.3968  57  1192  58  0.9206 

 10  1214  17  0.2698  34  554  50  0.7937  58  1280  20  0.3175 

 11  378  0  0.0000  35  1104  33  0.5238  59  444  3  0.0476 

 12  4  4  0.0635  36  730  37  0.5873  60  70  7  0.1111 

 13  92  29  0.4603  37  818  62  0.9841  61  158  32  0.5079 

 14  642  12  0.1905  38  1368  45  0.7143  62  708  15  0.2381 

 15  268  16  0.2540  39  994  49  0.7778  63  334  19  0.3016 

 16  356  41  0.6508  40  1082  11  0.1746  64  422  44  0.6984 

 17  906  24  0.3810  41  246  57  0.9048  65  972  27  0.4286 

 18  532  28  0.4444  42  1258  61  0.9683  66  598  31  0.4921 

 19  620  53  0.8413  43  1346  23  0.3651  67  686  56  0.8889 

 20  1170  36  0.5714  44  510  6  0.0952  68  1236  39  0.6190 

 21  796  40  0.6349  45  136  10  0.1587  69  862  43  0.6825 

 22  884  2  0.0317  46  224  35  0.5556  70  950  5  0.0794 

 23  48  48  0.7619  47  774  18  0.2857         
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this whole cycle will itself repeat forever. Since the  U   
i
  ’s are just the  Z   

i
  ’s divided by 63, 

the random numbers will also repeat themselves. This  cycling  of an LCG will happen 

as soon as it hits a previously generated  Z   
i
  , since each number in the sequence depends 

only on its predecessor, via the fi xed recursive formula. And it is inevitable that the LCG 

will cycle since there are, after all, only  m  possibilities for the remainder of division by 

 m ; in other words, the cycle length will be at most  m . In our little example, the cycle 

length actually achieved its maximum,  m  5 63, but had the parameters  a  and  c  been 

chosen differently, the cycle length could have been shorter. (Try changing  a  to 6 but 

leave everything else the same.) We weren’t just lucky (or persistent) in our choice since 

there’s a fully developed theory on how to make parameter-value choices for LCGs to 

achieve full, or at least long, cycle lengths. Real LCGs, unlike our little example, typ-

ically take  m  to be at least 2 31  2 1 5 2,147,483,647 (about 2.1 billion) and choose the 

other parameters to achieve full or nearly full cycle length. Though we can remember 

when 2.1 billion was still a lot, such a cycle length is not as impressive as it once was, 

given today’s computing power. Indeed, using just a garden-variety PC, we can exhaust 

all of the 2.1 billion possible random numbers from such LCGs in a matter of minutes 

or at most a few hours, depending on what we do with the random numbers after we 

generate them. While choosing  m  even bigger in LCGs is possible, people have instead 

developed altogether different kinds of generators with truly enormous cycle lengths, 

and Arena uses one of these (more on this follows). 

 The other thing to realize about the  U   
i
  ’s in   Table 12-1   is that they might not be quite 

as “random” as you’d like, as indicated by the two graphs in   Figure 12-1  . The left graph 

simply plots the random numbers in order of their generation, and you’ll notice a certain 

regularity. This is perhaps not so upsetting since we know that the generator will cycle 

and repeat exactly the same pattern. The pattern for a real generator (with a higher value 

of  m ), will not be so apparent since there are far more random numbers possible and 

since, in many applications, you’ll generally be using only a small part of a complete 

cycle. 

 But the right graph in   Figure 12-1   might be more unsettling. This graph plots the 

pairs ( U   
i
   , U   

i
 
11

 ) over the complete cycle, which is of natural interest if you’re using 

the random numbers in pairs in the simulation (such as generating an interarrival time 

  Figure 12-1.  Plots for an LCG   
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followed up immediately by a random part-type assignment). As you can see, it has an 

eerie pattern to it that will, in fact, be present for any LCG (as shown in the colorfully 

named paper, “Random Numbers Fall Mainly in the Planes” by Marsaglia, 1968). A 

truly random generator should instead have dots haphazardly scattered uniformly over 

the unit square, rather than being compulsively arranged and leaving comparatively 

large gaps where no pairs are possible. And this  lattice  structure gets even worse if you 

make (or imagine) such a plot in higher dimensions (triples, quadruples, etc., of succes-

sive random numbers). These kinds of considerations should drive home the point that 

“designing” good RNGs is not a simple matter, and you should thus be careful when 

encountering some mysterious undocumented RNG.  

 The RNG originally in Arena, starting in the early 1980s with SIMAN, was an LCG 

with  m  5 2 31  2 1,  a  5 7 5  5 16,807, and  c  5 0; the cycle length of it is  m  2 1 5 2.1 billion. 

In its day, this generator was acceptable since it had been well tested and in fact deliv-

ered a respectable fl ow of random numbers. However, because computers have gotten 

much faster, it became apparent that this cycle length was no longer adequate and that 

this old generator actually ran the risk of “lapping” itself around the entire cycle within 

a few hours or maybe even minutes of simulating (which could obviously do serious 

damage to the validity of your results). 

 So a new RNG has been installed in Arena (and is in the version of Arena that is used 

with this book), based on research by L’Ecuyer (1996, 1999) and L’Ecuyer, Simard, 

Chen, and Kelton (2002). While it uses some of the same ideas as LCGs (particularly 

the modulo-division operation), it differs in that (1) it involves two separate component 

generators that are then combined, and (2) the recursion to get the next values looks 

back beyond just the single preceding value. This kind of generator is called a  combined 
multiple recursive generator  (CMRG). First it starts up the two separate recursions, 

which you can think of as operating in parallel at the same time: 

    A   
n
   5 (1403580  A   

n
 
22

  2 810728  A   
n
 
23

 ) mod 4294967087   

B   
n
   5 (527612  B   

n
 
21

  2 1370589  B   
n
 
23

 ) mod 4294944443   

 Then it combines these two values at the  n th step as follows: 

    Z   
n
   5 ( A   

n
   2  B   

n
  ) mod 4294967087   

 Finally, this RNG delivers the  n th random number  U   
n
   as either 

    Z   
n
   / 4294967088, if  Z   

n
   . 0,   

 or 

   4294967087 / 4294967088, if  Z   
n
   5 0.   

 To get the two recursions going, the generator must defi ne a six-vector of seeds, com-

posed of the fi rst three  A   
n
  ’s and the fi rst three  B   

n
  ’s. 

 The rather scary constants involved in this generator have been carefully chosen, 

based on the papers cited, to ensure two very desirable properties. First, the statisti-

cal properties of the random numbers produced are extremely strong; we get good 
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distribution of the generated points, like the right-hand plot in   Figure 12-1  , but up 

through a 45-dimensional cube rather than just the two dimensions of   Figure 12-1  . Sec-

ond, while this generator will cycle (like LCGs), the length of this cycle is a stunning 

3.1 3 10 57 , rather than the 2.1 3 10 9  for the old generator. And the running speed on a 

per-random-number basis of the new generator is only slightly slower than the old one. 

 Let’s put into perspective the difference between the old and new cycle lengths. If 

the old generator can be exhausted in about 7 minutes (which it can on a 2.8-GHz PC if 

we just generate the random numbers and throw them away), the new generator would 

keep this machine busy for about 1.97 3 10 40   millennia . Now we know you’re thinking 

“sure, but in 1982 they thought 2.1 billion was a lot and it would last forever”—but even 

under Moore’s “law” (which observes that computers double in speed about every year 

and a half), it will be something like 216 years before a typical computer will be able to 

exhaust this new generator in a year of nonstop computing. So we’re good for a while, 

but we admit, not forever. 

 It turns out to be quite useful to be able to separate the cycle of a generator into ad-

jacent non-overlapping  streams  of random numbers, which we can effectively think of 

as being separate “faucets” delivering different streams of random numbers. To defi ne a 

stream, we need to specify the seed vector (six numbers in the Arena generator) and take 

care that successive streams’ seed vectors are “spaced apart” around the cycle so that the 

streams are long. The Arena generator has facility for splitting the cycle of 3.1 3 10 57  

random numbers into 1.8 310 19  separate streams, each of length 1.7 3 10 38 . Each stream 

is further subdivided into 2.3 3 10 15  substreams of length 7.6 3 10 22  apiece. Our weary 

2 GHz PC would take about 478 million years to exhaust one of the substreams; under 

Moore’s law, in 35 years, it will take a month to exhaust a substream—but 134 billion 

millennia to exhaust a stream. 

 You can specify which stream is used whenever you ask for an observation from a 

distribution in Arena by appending the stream number to the distribution’s parameters; 

for instance, to generate an exponential observation with mean 6.7 from stream 4, use 

 EXPO ( 6.7 ,  4 ). If you don’t specify a stream number, Arena defaults it to 10. (Since 

Arena does some of its own random-number generation, for instance in generating non-

stationary arrival patterns and in a “chance”-type Decide module, it uses stream 10 

for that, so you should avoid using stream 10 if you’re specifying your own streams.) 

The idea of using separate streams of random numbers for individual purposes in a 

simulation (for instance, stream 1 for interarrival times between parts, stream 2 for part 

types, stream 3 for processing times, etc.) comes in quite handy for variance reduction, 

discussed in Section 12.4. Arena does not actually store all the seed vectors, but rather 

uses a fast on-the-fl y method to compute them when you reference the corresponding 

stream; for this reason, you should probably use the streams in order 1, 2, 3, etc., (but 

skip 10) so that Arena does not have to compute a bunch of seed vectors for intervening 

streams that you’re not going to use. 

 Finally, if you’re making multiple replications of your model (see Chapter 6 and 

Section 7.2.2), Arena will automatically move to the beginning of the next substream 

within all the streams you’re using (even if you’re just using the default stream 10) for 

the next replication. As we’ll see in Section 12.4, this is important for synchronizing 
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random-number use across variations of a model to improve the precision of your com-

parisons between alternatives. 

 While we feel that Arena’s current RNG is extremely good, you can choose to use 

the old one (though we don’t recommend it) if you really need to for some legacy rea-

son. To do so, you need only place a Seeds module from the Elements panel into your 

model; you will need to edit this module to avoid a run-time error, but it doesn’t matter 

what seed you specify for what stream (as long as you identify a stream you’re not 

using) since its mere presence tells Arena to use the old generator. Online help gives you 

further information about what this Seeds module does for the old generator. If you want 

to use the new generator (which we strongly recommend), just make sure you don’t have 

a Seeds module present in your model. 

    12.2 Generating Random Variates 

  In Section 4.6, we discussed how you can select appropriate probability distributions to 

represent random input for your model. Now that you know how to generate random 

numbers—that is, samples from a uniform distribution between 0 and 1—you need to 

transform them somehow into draws from the input probability distributions you want 

for your model. In simulation, people often refer to such draws as  variates  from the 

distribution. 

 The precise method for generating variates from a distribution will, of course, de-

pend on the form of the distribution and the numerical values you estimated or specifi ed 

its parameters to be, but there are some general ideas that apply across most distribu-

tions. Because implementation is a bit different for discrete and continuous random 

variables, we’ll consider them separately. 

  12.2.1 Discrete 

 Let’s start by considering discrete random variables (see Section B.2.2 in Appendix B). 

To take a simple concrete example, suppose you want to generate a discrete random 

variate  X  having possible values 22, 0, and 3 with probability mass function (PMF) 

given by 

              0.1  for x 5 22

p(x) 5 P(X 5 x) 5 u 0.5  for x 5 0

           0.4  for x 5 3   

 Since the probabilities in a PMF have to add up to 1, we can divide the unit interval [0, 1] 

into subintervals with widths equal to the individual values given by the PMF, in this case, 

[0, 0.1), [0.1, 0.6), and [0.6, 1]. If we generate a random number  U , it will be distributed 

uniformly over the whole interval [0, 1], so it will fall in the fi rst subinterval with proba-

bility 0.1 2 0 5 0.1, in the second with probability 0.6 2 0.1 5 0.5, and in the third sub-

interval with probability 1 2 0.6 5 0.4. Thus, we would set  X  to its fi rst value, 22, if  U  

falls in the fi rst subinterval, which will happen with probability 0.1 5  p (22), as desired. 

Similarly, we set  X  to 0 if  U  falls in the second subinterval (probability 0.5), and set  X  to 3 

if  U  falls in the third subinterval (probability 0.4). This process, which is pretty obviously 

correct for generating  X  with the desired distribution, is depicted in   Figure 12-2  .  
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 Another way of looking at this algorithm is that it  inverts , in a sense, the cumulative 

distribution function (CDF) of  X ,  F ( x ) 5  P ( X  #  x ), as illustrated in   Figure 12-3  . First, 

generate a random number  U , then plot it on the vertical axis, then read across (left or 

right) until you “hit” one of the jumps in the CDF, and fi nally read down and return  X  

as whatever  x   
i
   (5 22, 0, or 3 in our example) you hit. In the example shown,  U  falls be-

tween 0.6 and 1, resulting in a returned variate  X  5 3. This is clearly the same algorithm 

as described previously and shown in   Figure 12-2  , but sets things up for generating 

continuous random variates, as follows. 

 This method, looking at it in either of the preceding ways, clearly generalizes to 

any discrete distribution with a fi nite number of possible  x   
i
  ’s. In fact, it can also be used 

even if the number of  x   
i
  ’s is infi nite. In either case, the real work boils down to some 

kind of search to fi nd the subinterval of [0, 1] in which a random number  U  falls, then 

returning  X  as the appropriate  x   
i
  . If the number of  x   

i
  ’s is large, this search can become 

slow, in which case there are altogether different approaches to variate generation. We 

won’t cover these ideas here.  

  Figure 12-2.  Generating a Discrete Random Variate   

0.16.00.0 0.1

0.1 0.5 0.4

X =   2 X = 0 X = 3

U:

  Figure 12-3.  Generating a Discrete Random Variate via Inversion of the CDF   
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3
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 Arena has built in the Poisson distribution, as well as any user-defi ned fi nite-range 

discrete distribution (see Appendix C). In both cases, the preceding algorithm is used to 

generate the variates. 

   12.2.2 Continuous 

 Now let’s consider generation of variates from a continuous probability distribution 

(Section B.2.3 in Appendix B). In this case, we can’t think in terms of the probability of 

getting (exactly) a particular value returned since this probability will always be zero. 

Instead, we need to think in terms of the returned  X  being  between  two values. As a spe-

cifi c example, take the exponential distribution with mean  b  5 5, which has probability 

density function (PDF) 

   f(x) 5
 u (1/5)e2x/5    for x . 0

              0       for x # 0   

 and CDF 

   
F(x) 5

 u 1 2 e2x/5   for x . 0

               0      for x # 0   

 To generate a variate  X  from this distribution, start (as usual) by generating a random 

number  U . Then set  U  equal to the CDF (evaluated at the unknown  X ) and solve for  X  in 

terms of the (now known) value of  U : 

      U     5 1 2  e  2 X /5       (ignore the probability-zero event that  U  5 0)   

e  2 X /5    5 1 2  U   

2 X /5 5 ln (1 2  U )    (ln is the natural logarithm; that is, base  e )   

X      5 25 ln (1 2  U )   

 (Obviously, replacing the 5 with any value of  b  . 0 gives you the general form for 

generating an exponential variate.) This solution for  X  in terms of  U  is called the  inverse 
CDF  of  U , written  X  5  F 21  ( U ) {5 25 ln (1 2  U ) in our example}, since this transfor-

mation “undoes” to  U  what  F  does to  X . 

 The inverse CDF algorithm for this example is shown in   Figure 12-4  . (Note the 

similarity to the discrete case in   Figure 12-3  .) First generate a random number  U , plot 

it on the vertical axis, then read across and down to get  X , which is clearly the solution 

to the equation  U  5  F ( X ). 

 To see why this algorithm is correct, we need to demonstrate that the returned variate 

 X  will fall to the left of any fi xed value  x  
0
  with probability equal to  F ( x  

0
 ), for this is pre-

cisely what it means for the CDF of  X  to be  F . From   Figure 12-4  , you see that, since  F  is 

an increasing function, we’ll happen to get  X  #  x  
0
  if and only if we happen to draw a  U  

that is #  F ( x  
0
 );   Figure 12-4   depicts this as happening for this value of  U . Thus, the events 

“ X  #  x  
0
 ” and “ U  #  F ( x  

0
 )” are equivalent, so they must have the same probability. But 
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since  U  is uniformly distributed on [0, 1], it will be #  F ( x  
0
 ) with probability  F ( x  

0
 ) itself, 

since  F ( x  
0
 ) is between 0 and 1. Thus,  P (returned variate  X  is #  x  

0
 ) 5  F ( x  

0
 ), as desired.  

 Though you may think we’re all wet, there’s actually an intuitive appeal to this 

 algorithm. What we want is for the returned  X ’s to follow the density function  f ( x ), so 

we want a lot of  X ’s where  f ( x ) is high and not very many where  f ( x ) is low (see Section 

B.2.3 in Appendix B). Now the CDF  F ( x ) is the (indefi nite) integral of the PDF  f ( x ); in 

other words,  f ( x ) is the derivative (slope function) of  F ( x ). Thus, where  f ( x ) is high, the 

slope of  F ( x ) will be steep; where  f ( x ) is low,  F ( x ) will be increasing only slowly (that 

is, with shallow slope). In our exponential example,  f ( x ) starts out at its highest point at 

 x  5 0 (see the Exponential entry in Appendix C) and then declines; thus,  F ( x ) increases 

steeply just to the right of 0, and then its slope fl attens out as we move to the right, which 

is where  f ( x ) becomes smaller. Now, put yourself in   Figure 12-4   and stand just to the left 

of the vertical axis. Pick up a garden hose that will spray  U ’s uniformly toward the right, 

and turn it on. As your  U ’s hit the  F ( x ) curve, they will drip through it down to the hori-

zontal axis, landing to defi ne your returned  X ’s. Your uniformly sprayed  U ’s will be more 

likely to hit the  F ( x ) curve where it rises steeply (in this exponential case, early in its 

ascent) since it’s a bigger target from where you’re standing. Just a few of your  U ’s (the 

really high ones) will hit  F ( x ) out on its upper-right portion. Thus, if you look at where 

your  X  drips landed, they will be more dense on the left part (where  f ( x ) is tall and  F ( x ) is 

rising steeply), and will be sparser on the right part (where  f ( x ) is low and  F ( x ) is rising 

shallowly). This is what we want for this distribution. 

 The inverse CDF idea works, in principle, for any continuous distribution. But, de-

pending on the particular distribution, implementing it may not be easy. Some distribu-

tions, unlike the exponential example, have no closed-form formula for the CDF  F ( x ), so 

that a simple formula for generating the  X ’s is not possible (a notable example of this is 

the normal distribution). In many such cases, though, numerical methods can be used to 

approximate the solution of  U  5  F ( X ) for  X  to a very high degree of accuracy (with error 

less than computer round-off error). There are also completely different approaches to 

generating variates that are sometimes used; we won’t go into these here. 

  Figure 12-4.  Generating a Continuous Random Variate via Inversion of the CDF   

0.0

0.5

1.0

0 5 10 15 20
x

F (x )

U

X x0

F(x
0
)

kel01315_ch12_519-548.indd   528kel01315_ch12_519-548.indd   528 06/12/13   9:44 AM06/12/13   9:44 AM



Further Statistical Issues     529

 Most of the continuous distributions supported by Arena (see Appendix C) use the 

inverse CDF method for variate generation, in some cases by highly accurate numerical 

approximation. A few of the distributions, though, use other methods if they are partic-

ularly attractive in that case; refer to online help under the topic “Distributions” to see 

exactly what Arena does to generate samples from each continuous distribution. 

     12.3 Nonstationary Poisson Processes 

  A lot of systems have some kind of externally originating events affecting them, like 

customers arriving, calls coming in, cars approaching an intersection, or accidents oc-

curring in a plant. Often, it’s appropriate to model this kind of  event process  as being 

random with some continuous probability distribution for inter-event times, implying 

some discrete distribution for the number of events occurring in a fi xed interval of time. 

If the process governing the event occurrences is stationary over the time frame of the 

simulation, you can just decide on the right inter-event-time distribution and generate the 

events during the simulation as we’ve done in many models in the book (for example, 

with the Time Between Arrivals area in the Create module from the Basic Process panel). 

 However, many systems experience time-varying, or  nonstationary  patterns of 

events—the lunch stampede at a fast-food restaurant, morning and evening rush hours 

in traffi c systems, mid-afternoon peaks of calls coming in to a call center, or a rash of 

accidents when the moon is full. While you might be tempted to ignore these patterns 

and make the events occur at some kind of “average” rate throughout your simulation, 

doing so could lead to seriously inaccurate results if there is much variation in the actual 

pattern. For instance, if we average the freeway load over 24 hours, there’s little doubt 

that a small number of lanes would appear to be adequate in the model; in fact, though, 

rush hours would be impossible messes. So modeling nonstationary external events can 

be a critical part of valid modeling in general. 

 Actually, we’ve already discussed a situation exactly like this, Model 5-2. The exter-

nal events are the incoming call arrivals, and we specifi ed the observed rates (in arrivals 

per hour) for each 30-minute period in the  Arrival Schedule  line of the Schedule 

module. 

 The usual way to represent time-varying event patterns like this is by what’s called 

a  nonstationary Poisson process  (NSPP). To use such a process, you need to specify a 

 rate function ,  l ( t ), that changes with time ( t ), having the rough interpretation that  l ( t ) is 

high for times  t  when lots of events are happening, and low when things are quiet. More 

precisely, the defi nition of an NSPP is that events occur one at a time, are independent of 

each other, and the number (count) of events occurring during and interval of time [ t  
1
 ,  t  

2
 ] 

is a Poisson random variable (see Appendix C) with expected value given by 

   L(t
1
, t

2
) 5 et2 

t1

 l(t) dt   

 which is large over time intervals where  l ( t ) is high and small when  l ( t ) is low. 

 If you want to use an NSPP in a simulation, there are two issues: how to form an 

estimate of  l ( t ), and then how to generate the arrivals in accordance with your estimated 

rate function. The estimated rate function we used in Model 5-2 was piecewise constant, 
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with (possible) changes of level occurring every 30 minutes. This approach is probably 

the most practical one since it’s quite general and easy to specify (though you must 

be careful about keeping the time units straight). There are, however, more sophisti-

cated ways to estimate the rate function, including amplitudes and periodicities, with 

fi rm grounding in statistical theory; see, for instance, Leemis (1991); Johnson, Lee, and 

 Wilson (1994); and Kuhl and Wilson (2000, 2001). 

 As long as you stick with a piecewise-constant estimated rate function, Arena has a 

built-in generation method, the use of which was illustrated in Model 5-2. The algorithm 

used is a speeded-up variation of a method attributed to Cinlar (1975, pp. 94–101). If 

you’re interested in the details, see Arena’s Help topic “Non-Stationary Exponential 

Distribution.” 

    12.4 Variance Reduction 

  As we’ve indicated in several places (including Sections 2.6, 4.6, 7.2, and Chapter 6), 

simulations using random variates from probability distributions as part of the input will 

in turn produce random output. In other words, there is some  variance  associated with 

the output from a stochastic simulation. The more variance there is, the less precise are 

your results; one manifestation of high variance is wide confi dence intervals. So output 

variance is the enemy, and it would be nice to get rid of it, or at least reduce it. One (bad) 

way to eliminate variance in the output is to purge all the randomness from your inputs, 

perhaps by replacing the input random variables with their expected values. However, 

as we demonstrated in Section 4.6.1, this might make your output nice and stable but it 

also will usually make it seriously wrong. 

 So, barring major violence to your model’s validity, the best you can really hope 

for is to  reduce  the variance in your output performance measures. One obvious way to 

do this is by just simulating more. For terminating models, this implies more replica-

tions (since extending the length of a replication would make the model invalid in the 

terminating case); in Section 6.3, we gave a couple of formulas from which you can 

approximate the number of replications you’ll need to bring a confi dence-interval half 

width down to a value small enough for you to live with. For steady-state models, you 

could also make more replications if you’re taking the truncated-replications approach 

to analysis, as discussed in Section 7.2.2; or you could just make your (single) replica-

tion longer if you’re taking the batch-means approach (Section 7.2.3). In Section 12.5, 

we’ll discuss all of this in detail, including how you can get Arena to “decide” on the fl y 

how much simulating to do. 

 But what we aspire to in this section is a free lunch. Getting more precise results by 

more simulation work is not tricky, but there are some situations where you can achieve 

the same thing without doing any  1    more work. What usually enables this is the fact that, 

unlike in most physical experiments, you’re in control of the randomness in a simulation 

experiment since you can control the random-number generator, as discussed in Sec-

tion 12.1. This allows you to induce certain kinds of correlations that you can exploit to 

your advantage to reduce the variance, and thus imprecision, of your output. These kinds 

  1  Well, hardly any. 
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of schemes are called  variance-reduction techniques  (or sometimes variance-reduction 

 strategies ). In most cases, you need to have a thorough understanding of your model’s 

logic and how it’s represented in Arena to apply such methods. 

  Variance-reduction techniques can be quite different from each other and have been 

classifi ed into several broad categories. We’ll discuss only the most popular one of them 

in detail in Section 12.4.1 and will briefl y describe some others in Section 12.4.2. 

  12.4.1 Common Random Numbers 

 Most simulation studies involve more than just one  alternative  (or  scenario ) of a model. 

Different alternatives could be determined by anything from just an input-parameter change 

to a wholesale revision of the system layout and operation. In these situations, you’re usu-

ally not interested so much in the particular values of the output performance measures 

from the individual alternatives, but rather in their  differences  across the alternatives. These 

differences are measures of the effect of changing from one alternative to another. 

 For example, take Model 7-2, the model of a small manufacturing system with the 

average total WIP (work in process) output we developed in Section 7.2.1. Let’s con-

sider the model exactly as it is as a “base case.” We’ll keep the Replication Length at 5 

Days and keep the Number of Replications at 10; we’re implicitly viewing this as either 

a terminating simulation, or a steady-state simulation using the truncated- replications 

approach but with no Warm-up Period needed. Suppose there’s an opportunity to take 

on 3.5% more business, with the same mix of part types, sequences, and processing 

times, which translates into a decrease in the mean interarrival time between parts from 

13 minutes to 12.56 minutes (the mean arrival  rate  1/12.56 is 3.5% more than the mean 

arrival  rate  1/13). Call the base-case model alternative A and the increased-arrival model 

alternative B. We made the following modifi cations to Model 7-2 to produce what we’ll 

call Model 12-1: 

    ■  Made appropriate documentation changes in  Run  .  Setup  .  Project Parameters .  
   ■  In the Statistic module, eliminated the Output File entry  Total WIP 

History.dat  for the existing statistic with Name Total WIP, since we 

don’t need to save the within-run path of this quantity now.  
   ■  In the Statistic module, added a row for a new statistic with Name  Avg Total 

WIP , Type  Output , Expression  DAVG(Total WIP) , Report Label  Avg 
Total WIP , and Output File  Avg Total WIP.dat  to save to that fi le the 

time-average WIP for each replication to use in the Output Analyzer below.  

    Figure 12-5   shows the entries in the modifi ed Statistic module. Of course, we made sure 

that  Run  .  Run Control  .  Batch Run (No Animation)  was selected since we’re inter-

ested only in numerical results and not the animation.   

  Figure 12-5.  The Completed Statistic Data Module for Model 12-1   
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 The natural thing to do here is run alternative A, make the change to get from alter-

native A to B (change Value in the Create module from  13  to  12.56 ), run alternative B 

(of course, you’d remember to change the Output File name out in the operating system 

after run A so as not to overwrite it in run B), and use  Analyze  .  Compare Means  in the 

Output Analyzer, accepting the Paired-t Test default there since we did not do anything 

to cause us to use separate random numbers in run B; See Section 6.4 for a discussion 

of the mechanics and further explanation. This results in   Figure 12-6   from the Com-

pare Means function in the Output Analyzer. Remembering that the difference is in the 

direction A 2 B, it’s intuitive that the point estimator of the mean is negative, since 

alternative B is the higher-arrival model so we’d expect WIP to be bigger. However, 

the confi dence interval on the expected difference contains zero, so we can’t conclude 

that there’s a statistically signifi cant difference. Of course, making more than the ten 

 replications could change this, but we’re trying to be smarter here. 

 And here’s one way to be smarter. To estimate the difference between the average 

total WIPs produced by alternatives A and B, it makes intuitive sense to simulate both 

alternatives under conditions that are as similar as possible, except for the model change 

we made. In simulation, what the “conditions” boil down to are the generated variates 

from the input distributions, like interarrival and service times. If we reuse the same ran-

dom numbers in run B as we did in run A, we might hope to get the same generated vari-

ates. In that way, when we look at the difference in the results, we’d know that it’s due 

to the difference in the models rather than due to the random numbers having bounced 

differently in the two alternatives. 

 If you think about it, we actually  did  use the same random numbers in run B as we 

did in run A, but since we drew on just one fi xed sequence (stream) of random numbers 

for everything, the usage of these random numbers is extremely likely to get mixed up 

after a little while between runs A and B, due to the difference in the paths followed by 

alternatives A and B in terms of generating variates. This doesn’t make our statistical 

  Figure 12-6.  Compare Means Results for the Natural Comparison   
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comparison in   Figure 12-6   wrong (so long as we stick with the Paired-t Test rather than 

the Two-Sample-t Test), but it doesn’t accomplish the goal of generating the same vari-

ates for the same purposes in runs A and B either. We need to be even smarter (as well as 

have a good random-number generator with lots of really long streams and substreams, 

which Arena has, as described in Section 12.1). 

 Here’s how to be even smarter. In this model, there are 14 sources of randomness—

interarrival times, part indices, and 12 processing-time distributions as defi ned in Table 7-1. 

For our comparison, we’d like to run both alternatives A and B with the “same” external 

loads. In this case, it means blank parts arriving at the same times, assigned the same part 

indices, and experiencing the same processing times at each of the stops along their ways. 

When we ran this comparison, producing   Figure 12-6  , we didn’t do anything to try to get 

any of this to happen. True, the same random-number stream (the default, stream 10) was 

used for everything throughout both alternatives, and this stream started the fi rst of the ten 

replications from the same seed for both alternatives. But due to the change made in the 

model between the alternatives, this fi xed sequence of random numbers will be used in a 

different order if, at any point during the runs, there is a difference in the order of execu-

tion in which the 14 places draw the variates they need. This causes the “external loads” 

to differ at this point, and likely from then on, which is not the effect we want. 

 Instead, we need to  synchronize  the use of the random numbers across the model alter-

natives, or at least do so as far as possible given the model logic and the changes  between 

the alternatives. One approach (though not the only one) to this end is to  dedicate  a stream 

of random numbers to each of the 14 places in the model where variates are generated. 

This is like piping in separate “faucets” of random numbers to each  random-variate gener-

ator and other situations (like chance-type Decide modules and generation of nonstation-

ary Poisson processes, neither of which occurs in this model) where a random number is 

needed. In this way, you can usually get reasonable synchronization, though in complex 

models it might not ensure that everything is matched up across the alternatives (which 

does not make your model in any way incorrect or invalid, but it is not quite as close 

a match-up across the alternatives as you might like to have the “same” external loads 

presented to both alternative models). However, there will still probably be at least some 

variance-reduction benefi t even though the matchups might not be quite perfect. This is 

the synchronization approach we’ll take in our next example. 

 A different way to attempt random-number synchronization, which might work bet-

ter in some models, is to assign to each entity, immediately upon its arrival, attribute 

values for all possible processing times, branching decisions, etc., that it might need on 

its entire path through the model. When the entity needs one of these values during its 

life in the model, such as a processing time somewhere, you just read it out of the appro-

priate attribute of the entity rather than generate it on the spot. This might come closer 

for some models to the ideal of having the “same” external conditions, but it can require 

a lot more computer memory if you need to hold lots of attributes for lots of entities at 

the same time. If Arena has to use your disk drive to extend memory temporarily (called 

 virtual memory ), there can be a signifi cant increase in execution time as well since disk 

access is much slower than memory access. In this situation, you might be just as well 

off using this extra computer time doing more simulation (either more replications or a 
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longer single run). We won’t carry out this synchronization approach in our next exam-

ple, but will leave it for you as Exercises 12-1 and 12-2. 

 Sometimes achieving full, complete, and certain synchronization in complex models 

is just impractical, in which case you might consider matching up what you can, and 

generating the rest independently. When you use the same random numbers across sim-

ulated alternatives, synchronized in some way, you’re using a variance-reduction tech-

nique called  common random numbers  (CRN), also sometimes called  matched pairs  or 

 correlated sampling . 

 To implement the fi rst of the previous two synchronization approaches to CRN (pip-

ing in separate faucets of random numbers to the separate sources of randomness in a 

model) in Model 12-1, we modifi ed it into what we’ll call Model 12-2. To each of the 14 

variate-generation expressions, we added an extra parameter (see Section 12.1), assign-

ing a unique stream number, as given in   Table 12-2  . We actually defi ned a Variable for 

each stream number, initialized them all in the Variable module, and used the variable 

names in the variate-generation expressions; this made it easier to carry out further 

experiments later. We skipped over stream 10 since that’s Arena’s default stream and is 

used for the built-in nonstationary-Poisson-process generator and any Chance-type De-

cide modules; fortunately, we have neither in our model so it’s easy to maintain proper 

synchronization. (See Exercise 12-7 for a way to trick chance-type Decide modules into 

using whatever random-number stream you want.) In this model, the processing times 

are assigned for Cell 1 via an Expression, and for the other cells via assignments in the 

Sequences;   Table 12-2   also indicates where the required change was made.  

  Table 12-2.   Stream Assignment and Usage for Model 12-2  

 Stream 
Number  Usage Variable Name

Location
of Change

 1  Interarrival Times   S Interarrivals   Create module 

 2  Part Indices   S Part Index   Assign module 

 3  Part Type 1 at Cell 1   S P1 C1   Expression module 

 4  Part Type 1 at Cell 2   S P1 C2   Sequence module 

 5  Part Type 1 at Cell 3   S P1 C3   Sequence module 

 6  Part Type 1 at Cell 4   S P1 C4   Sequence module 

 7  Part Type 2 at Cell 1   S P1 C1   Expression module 

 8  Part Type 2 at Cell 2 (fi rst visit)   S P1 C2   Sequence module 

 9  Part Type 2 at Cell 4   S P1 C4   Sequence module 

 11  Part Type 2 at Cell 2 (second visit)   S P1 C2 Again   Sequence module 

 12  Part Type 2 at Cell 3   S P1 C3   Sequence module 

 13  Part Type 3 at Cell 2   S P1 C2   Sequence module 

 14  Part Type 3 at Cell 1   S P1 C1   Expression module 

 15  Part Type 3 at Cell 3   S P1 C3   Sequence module 
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 These stream assignments dedicate a separate random-number stream to each source 

of randomness in the model, and they will be in effect for the running of both alternatives 

A and B. Recall that we’re doing ten replications of each alternative, and that the Arena 

random-number generator will automatically advance to the next substream within each 

stream for each new replication. In this way, we’re assured that the matchup of random 

numbers across alternatives will stay synchronized beyond just the fi rst replication, even 

if the alternatives disagree about how many random numbers from a stream are used for 

a given replication. Since it will take at least 478 million years for a typical machine 

of today to exhaust a substream, we can be pretty sure that we won’t “lap” ourselves in 

terms of substream usage from one replication to the next. 

 What we set up is a fairly carefully synchronized random-number allocation for 

CRN. What we did in Section 6.4 and to produce   Figure 12-6  , using the same stream 

(10) for everything might be described as  using  the same random numbers across the 

alternatives, but in a disorganized, haphazard, and mostly unsynchronized way, diluting 

or even erasing the effect. It’s possible to simulate the alternatives using completely 

different, and thus independent random numbers across the alternatives, but you have 

to work to make this happen by bumping up the stream numbers in   Table 12-2   for, say, 

alternative B (but not A) so that streams 1–15 are not used. Thus, in a way, CRN is the 

“default” for the way most people would naturally run comparisons, but it’s extremely 

unlikely that proper synchronization of random-number usage will just happen on its 

own unless your model is awfully simple. 

 Proceeding as in Section 6.4 and what we did to produce   Figure 12-6  , we made 

ten replications of alternatives A and B using Model 12-2 for both, with the stream as-

signments discussed, resulting in synchronized CRN. We then invoked the  Analyze   . 
Compare Means  menu option in the Output Analyzer except calling for comparisons 

of A against the CRN run of B, to get the results in   Figure 12-7   for a 95% confi dence 

interval on the difference between expected average total WIPs for alternative A minus 

alternative B (  Figure 12-7   actually includes both this synchronized-CRN comparison 

as well as the unsynchronized “natural”). Looking back at   Figure 12-6   (repeated as the 

top comparison in   Figure 12-7  ), the qualitative conclusion from synchronized CRN is 

the same as before—increasing the arrival rate increases average total WIP, though the 

“natural” comparison could not conclude that with statistical signifi cance (at the 0.05 

level) while the synchronized CRN comparison can. In terms of the precision of the 

estimate of the magnitude of this increase, though, the effect of synchronizing CRN 

is to reduce the confi dence-interval half width fairly dramatically, from 7.41 to 0.711, 

 without doing any more simulation work than before  (ten replications of both alternative 

models). Thus, for this model with these comparisons, the benefi t from properly syn-

chronized CRN is quite apparent. The magnitude of the effect of CRN is highly model- 

and situation-dependent, and it is pretty potent in this example. Sometimes, however, it 

can be less dramatic, but the (small) effort to synchronize stream usage is still probably 

worthwhile in most cases.  

 You may have noticed in   Figures 12-6   and   12-7  , or from the  Analyze . Compare 
Means  dialog box in Display 6-1, that we’ve used one of two possibilities for building 

the confi dence intervals on the expected differences, and for testing the null hypothesis 
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that there is no difference between the two expectations. This option is called the  Paired-t  
approach (which is the default). This approach takes replication-by-replication differ-

ences between the results from the two alternatives, thus “collapsing” the two samples 

to a single sample on which the analysis is done. The advantage of the Paired-t approach 

is that it does not require the assumption of independent sampling across the alternatives 

for statistical validity, thus allowing the use of CRN. The disadvantage is that you wind 

up with a “sample” that’s only half as big as the number of runs you made (in our exam-

ple, going from 20 to 10), resulting in “loss” of degrees of freedom (DF), which has the 

effect of increasing the confi dence-interval half width. The other available option, called 

the  Two-Sample-t  approach, on the other hand, retains the “full” sample size (20 in our 

case), but requires that all observations from the two alternatives be independent of each 

other; this outlaws the use of CRN as well as the “natural” approach since it uses the 

same random numbers, though it does not synchronize their use. If you’re using CRN 

for your comparison, then you have no choice in the matter—you must use the Paired-t 

approach. Even though you’re suffering the loss of DF, the reduction in variance you’re 

getting from CRN often more than offsets this loss, resulting in a tighter interval. If 

you’re doing completely independent sampling across your alternatives, though, you 

could use either approach. We made a completely independent set of ten replications 

of alternative B by changing the stream assignments in   Table 12-2   by just adding 100 

to each stream number so that they’re all different from the streams (1–15, except for 

10) used in run A. The resulting half widths of confi dence intervals on the expected dif-

ferences from Compare Means were 4.53 with the Paired-t approach and 4.92 with the 

Two-Sample-t approach; both are valid, and there’s not much difference between them 

  Figure 12-7.  Compare Means Results for the Synchronized CRN Comparison   
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(they’re close to what we got from the “natural” comparison), but they aren’t even close 

to being as precise as the 0.711 we got from synchronized CRN. 

 While the intuitive appeal of synchronized CRN, to “compare like with like,” is 

clear, there’s also a mathematical justifi cation for the idea. Let  X  and  Y  denote the output 

random variables for, respectively, alternatives A and B. In our example,  X  and  Y  would 

be the averages over the ten replications of the average total WIP in each replication, 

in alternatives A and B. What we want to estimate is  E ( X ) 2  E ( Y ) 5  E ( X  2  Y ), and our 

(unbiased) point estimator of it is just  X  2  Y . If we make the runs independently, the 

variance of our independent-samples estimator is 

    Var ( X 2 Y )  5 Var ( X )  1 Var ( Y )   

 since, as random variables,  X  and  Y  are independent. If, however, we use synchronized 

CRN, what we’re doing is inducing correlation, hopefully positive, between  X  and  Y . 

Since correlation has the same sign as covariance (see Section B.2.4 in Appendix B), the 

variance of our CRN estimator is 

    Var ( X 2 Y )  5 Var ( X )  1 Var ( Y )  2 2 Cov ( X, Y ) ,    

 which will be less than the variance of the independent-samples estimator since we’re 

subtracting a (hopefully) positive covariance. So, what’s needed to make CRN “work” is 

that the outputs be positively correlated, and the stronger the better. While you can fi nd 

examples where the correlation is negative, causing CRN to “backfi re,” such models are 

generally contrived pathologies just to make the point. In most cases, CRN will work, 

sometimes dramatically. It is true, though, that you can’t tell how well it will work until 

you actually do it. And, as you’ve seen, CRN in its haphazard, unsynchronized version, 

is almost automatic—you have to work to  avoid  it. However, you probably won’t get 

much benefi t unless you do something to synchronize the random-number usage across 

the alternatives by assigning random-number streams carefully and with an understand-

ing of how your model works. 

   12.4.2 Other Methods 

 In addition to CRN, there are several other variance-reduction techniques, which we’ll 

just briefl y mention here; see Chapter 3 of Bratley, Fox, and Schrage (1987) for more 

details on these and other methods. Unlike CRN, these techniques apply when you have 

just a single model variant of interest. 

 The method of  antithetic variates  attempts to induce negative correlation between the 

results of one replication and another, and uses this correlation to reduce variance. In a 

terminating simulation, make the fi rst replication “as usual,” but in the second replica-

tion, replace the random numbers  U  
1
 ,  U  

2
 , . . . you used in the fi rst replication by 1 2  U  

1
 , 

1 2  U  
2
 , etc. This still results in valid variate generation since, if  U  is distributed uniformly 

on [0, 1], then 1 2  U  is as well. The idea is that, since a “big”  U  results in a “small” 

1 2  U  (and vice versa), the results from replications one and two will be negatively cor-

related. Your fi rst observation for statistical analysis, then, is not the result from the fi rst 

replication, but rather the  average  of the results from the fi rst two replications, which 

are treated as a pair. You could then go on and make replication three with “fresh” 
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(independent)  U ’s, and then reuse these in replication four but in their antithetic form 

1 2  U ; your second observation for statistical analysis is then the average of the results 

from replications three and four. Within an antithetic pair, the (hopefully) negative correla-

tion will cause the average of the two output statistics to snap in toward the true expecta-

tion more closely than if they were independent. Like CRN, this method requires careful 

synchronization of random-number usage in your model, probably involving streams and 

seeds. In Arena, you’d need to carry out some low-level manipulation to implement anti-

thetic variates since there isn’t any direct support. 

  Control variates  uses an ancillary “controlling” random variate to adjust your re-

sults up or down, as warranted by the control variate. For example, in Model 12-1, if 

we noted that, in a particular replication, the average of the generated interarrival times 

of parts happened to be smaller than their expected value (which we’d know since we 

specifi ed the interarrival-time distribution as part of the model input), then it’s likely that 

we’re seeing higher-than-expected congestion measures and thus high average WIP in 

this replication. Thus, we’d adjust these output measures downward by some amount 

to “control” for the fact that we know that our parts were arriving faster than “usual.” 

From one replication to another, then, this adjustment will tend to dampen the variation 

of the results around their (unknown) expectations, reducing variance. In a given model, 

there are many potential control variates, and there are different ways to select from 

among them as well as to specify the direction and magnitude of the adjustment to the 

simulation output. For further information on control variates, see, for example, Bauer 

and Wilson (1992) or Nelson (1990). 

     12.5 Sequential Sampling 

  When you do a simulation, you should always try to quantify the imprecision in your 

results. If this imprecision is not great enough to matter to you, you’re done. But if the 

imprecision is large enough to be upsetting, you need to do something to reduce it. In 

Section 12.4, we discussed variance-reduction techniques, which might help. And in 

Section 6.3, we gave a couple of formulas for approximating the number  n  of replica-

tions you’d need (in a terminating model) to get a confi dence-interval half width down 

to a value small enough for you to live with. 

 But a rather obvious idea is just to keep simulating, one “step” at a time, until you’re 

happy. In the case of terminating models, a “step” is the next replication; in the case of 

steady-state models, a “step” is either the next truncated replication (if you’re taking 

that strategy, as in Section 7.2.2); or if you’re doing batch means in a single replication 

(as in Section 7.2.3), extend by some amount the single replication you have going. 

Then, after this next “step,” check again to see, for instance, if the half width of the 

new confi dence interval is small enough. If it is, you can stop; if not, keep going and 

make the next step. If you can afford to do so, such  sequential sampling  is usually 

fairly simple, and typically will get you the precision you need. What’s even better is 

that these ideas, while being entirely intuitive, are backed up by solid statistical theory; 

one consequence is that the actual coverage probability of your confi dence interval 

will approach what it’s supposed to be as your smallness demands on the half width 

get tighter. 
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 In this section, we’ll show you some examples of sequential sampling, indicating 

how you can set things up so that Arena will take care of the checking and stopping for 

you. We’ll consider terminating simulations in Section 12.5.1 and the steady-state case 

in Section 12.5.2. 

  12.5.1 Terminating Models 

 First let’s consider a terminating simulation. We’ll modify Model 12-2 (with the 

random-number streams set up) since you never know when you might want to do some 

variance reduction and synchronize the random numbers. We’ll view this as either a 

terminating simulation or as a steady-state simulation using the truncated-replications 

approach but with no Warm-up Period needed. As the output performance measure of 

primary interest (the one whose confi dence-interval half width we want to make sure 

is “small enough”), let’s take the average total WIP. We fi rst made a fi xed number of 

replications (25, rather than the original 10 to give us a little better chance at getting a 

decent variance estimate), not really knowing how wide our confi dence intervals would 

be; we got a 95% confi dence interval of 13.03 6 1.28. In Section 6.3, we also discussed 

two formulas for approximating how many replications would be needed to reduce the 

half width of a 95% confi dence interval to a fi xed value; in this example, to reduce it 

from 1.28 to, say, 0.5, our formulas say to we’d need to make either about 124 or about 

164 total replications instead of 25, depending on which formula we used (and keep in 

mind that these are perhaps crude approximations subject to uncertainty in the variance 

estimate from these initial 25 replications). 

 Let’s instead invoke the sequential-sampling idea to get this half width down to 0.5. 

We have to make a minor change to our model (into what we’ll call Model 12-3) to ask 

it to keep replicating until the across-replications 95% confi dence-interval half width 

for the average total WIP output performance measure falls below 0.5, then stop the 

replications. Recall from Section 6.3 that if you call for multiple replications, Arena will 

automatically compute 95% confi dence intervals across the replications on quantities 

you’ve specifi ed for your reports; we’ll use internal Arena variables describing these 

confi dence intervals to get sequential sampling going. The pertinent Arena variables are:

      ORUNHALF(Output ID), the half width of the automatic across-replications 

confi dence interval from however many replications have been completed, where 

Output ID is the identifi cation of the output measure of interest (in our case,  Avg 
Total WIP )  

     MREP, the total number of replications we’re asking for (initially the Number of 

Replications fi eld in  Run   . Setup   . Replication Parameters )  
     NREP, the replication number we’re on at the moment (5 1, 2, 3, . . .)    

 Here’s the general strategy. Initially, specify MREP to be some absurdly enormous 

value in the Number of Replications fi eld in the  Run   . Setup   . Replication Parameters  

dialog box; this gets the replications going and keeps them going until we cut them off 

ourselves when the half width becomes small enough. Add a chunk of logic to the model 

to cause a single control entity to arrive at the beginning of each replication, whose job it 

is to check whether we’re done yet—in other words, if  ORUNHALF(Avg Total WIP)  

kel01315_ch12_519-548.indd   539kel01315_ch12_519-548.indd   539 06/12/13   9:44 AM06/12/13   9:44 AM



540     Chapter 12

is smaller than the tolerance we want, 0.5. If not, we need to keep simulating, so this entity 

just disposes of itself; we’ll go ahead and do the replication that’s just starting and check 

again at the beginning of the next replication. On the other hand, if the current half width 

is small enough, we’re ready to quit. However, because we’ve already begun the current 

replication (by having the “checking” entity show up) we have to fi nish it, but before 

doing so, we’ll tell our control entity to reset MREP (the total number of replications we 

want) to NREP (the number we will have completed at the end of the one that’s just start-

ing), which will terminate the replications after this one. 

 Note that this strategy “overshoots” (by one) the number of replications really re-

quired; it turns out that you can’t reliably do the termination check at the  end  of a rep-

lication, so this is necessary. As a result, you’ll usually get a half width that’s not only 

under the tolerance you specify, but probably even a bit smaller due to this extra replica-

tion. It’s technically possible (though unlikely) that your fi nal half width will be slightly 

larger than the tolerance you specifi ed if the “extra” replication at the end happens to 

produce a wild outlier that itself causes the standard-deviation estimate to increase a 

lot. This whole situation does not seem particularly onerous, though, since in sequential 

sampling, you’re pretty much admitting that you don’t really know how many replica-

tions to make and that you might have to make a lot of them; thus, overshooting by one 

is no big deal. Furthermore, the tolerance you specify is probably fairly arbitrary in your 

mind, so being a little over or under won’t matter—(only a truly obnoxious customer 

would demand that the person behind the deli counter  exactly  hit the half pound of garlic 

hummus they ordered). The chunk of control logic added (which we put inside a new 

submodel called  Terminating Sequential-Sampling Control Logic ) is 

shown in   Figure 12-8  . A  submodel  in Arena is just a way of covering up some logic, and 

what’s inside it participates fully in the simulation just as if it were not in a submodel; 

to open a submodel, just double-click on it and to close it, right-click in a blank area 

within the submodel and select Close Submodel in the popup, or use the Navigate panel 

in the Project Bar.  For more on submodels, go to Arena Help, Index tab, and type in the 

keyword Submodels.   

 The completed dialog box for the Create module in this “control” submodel is shown 

in   Figure 12-9  . By setting Max Arrivals to 1, we ensure that there will be only one of 

these entities showing up, at the beginning of each replication; we also (redundantly) set 

the Time Between Arrivals to be a constant at a million hours. 

  Figure 12-8.  Control Logic for Sequential Sampling in Terminating Simulations   
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 After the entity is created, it goes to the Decide module, shown in   Figure 12-10  . Here 

it fi rst checks to see if the number of replications,  NREP , is less than or equal to 2 ( NREP  

is the number of the replication now beginning). If so, since at least two complete rep-

lications are required to form a confi dence interval, the entity disposes of itself (via the 

graphical connection visible in   Figure 12-8  ), meaning that  MREP  remains at its absurdly 

high value and we go ahead and do this replication (and begin the next one too). The 

next check in the Decide module is to see if the current half width  ORUNHALF(Total 
Cost)  is still too big; if so, we need to keep going for more replications, so we dispose 

of the entity as well (again via a graphical connection).   

 If, however,  NREP  is at least 3  and  the half width we have on record (the one com-

pleted at the end of the previous replication) is at most 0.5, we’ll fall through both of the 

If statements and out the Else exit point, whose graphical connection sends the entity 

to the Assign module (  Figure 12-11  ), where  MREP  is set to  NREP , the current replica-

tion number, causing the simulation to stop at the end of the replication now getting 

started—(as mentioned earlier, this fi nal replication is technically not needed but will 

  Figure 12-9.  Create Module for Control Logic for Sequential Sampling 

in Terminating Simulations   

  Figure 12-10.  Decide Module for Control Logic for Sequential Sampling 

in Terminating Simulations   
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be executed anyway). Note in the Assign module that we selected the Assignment Type 

to be Other since  MREP  is a built-in Arena variable with a reserved word as its name. 

Selecting the Assignment Type to be Variable would result in an attempt to create a new 

user-defi ned variable named  MREP , which would confl ict with the existing Arena vari-

able of the same name (and cause an error). 

 We made a fi nal change in the Statistic module, to remove the Output File  Avg 
Total WIP.dat  since we no longer need to save these values. 

 We ran this model, and it decided to stop after 232 replications; the User Specifi ed 

part of the Category Overview Report is in   Figure 12-12  , showing only the relevant 

portion. Note that, as advertised, the half width of the confi dence interval for expected 

average total WIP is down to 0.5 (barely—from the . out  fi le the half width is actually 

0.49699). 

 Why is the required number of replications, 232 (or, if you prefer, 231 due to the 

extra replication at the end), different from the 124 or 164 that the formulas from Sec-

tion 6.3 suggested? As we said there, those formulas are only approximations, with 

errors owing to the fact that one uses the normal distribution rather than  t -distribution 

for the critical value, but mostly due to the fact that they’re both based on a variance 

estimate from only an initial, somewhat arbitrary number of replications (we had used 

25). It just turned out this time that the variance estimate from the initial 25 replications 

was apparently on the small side, so in the end we needed quite a few more replications 

than what the formulas predicted (it could just as easily have gone the other way).  

  Figure 12-11.  Assign Module for Control Logic for Sequential Sampling 

in Terminating Simulations   

  Figure 12-12.  Report for the Terminating Sequential-Sampling Run   
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 Sequential sampling, perhaps more aptly termed sequential  stopping , can be set up 

for other purposes as well. For instance, in the preceding run, we demanded that the half 

width for the confi dence interval on only one of the (many) outputs be brought down 

to under the specifi ed tolerance 0.5; we got just enough replications to satisfy that sole 

criterion. However, the setup of the model is general enough to allow easy modifi cation 

to demand that the half widths on several (or all) of the output measures be “controlled” 

to be less than separate tolerances for each of them; we’ll ask you to look into this in 

Exercises 12-3 and 12-5. 

 Another modifi cation would be to ask not that the half width be made smaller than 

a tolerance, but rather that the half width divided by the point estimate (the average 

across the replications) be brought down to be less than another kind of tolerance. Note 

that the half width divided by the point estimate is a dimensionless quantity, and so the 

tolerance in this case would also be dimensionless, giving it a universal emotional in-

terpretation. For instance, if you specify this tolerance to be 0.10, what you’re asking is 

that the half width of the confi dence interval be no more than 10% of the mean; in this 

case, you could restate the confi dence interval as something like “point estimate plus or 

minus 10%.” This is sometimes called a confi dence interval with a  relative precision  of 

10%. Such a goal might be useful in a situation where you don’t have much of an idea 

what the magnitude of your results will be, making it problematic to specify a sensible 

(absolute) value under which you’d like the half width itself to fall. Exercises 12-4 and 

12-5 ask you to set up this kind of thing. One caution here—if the expected value being 

estimated is zero (or in some sense close to it) or the point estimate of this expected 

value is zero or close to it, you can get into diffi culty with dividing by a number that’s 

near zero, creating instability; in such a case, it would clearly be better not to use a 

 relative-precision stopping criterion (see Exercise 12-6). 

   12.5.2 Steady-State Models 

 Sequential sampling for steady-state models is at least as easy to set up as for terminat-

ing models, though naturally the amount of computation time can become frightening if 

you need to make really long replications and also demand very tight precision. Proba-

bly it’s prudent to get some notion of how much precision is practical before setting up 

a sequential-sampling run and just turning it loose. 

 If you’re taking the truncated-replications approach to steady-state analysis, as de-

scribed in Section 7.2.2, you can do things just as we described in Section 12.5.1, except 

now you’d have a Warm-up Period specifi ed in  Run   . Setup   . Replication Parameters  

to carry out the truncation of initial data to ameliorate start-up bias. A caution here is 

that you need to make quite sure that you’re warming up long enough to get rid of ini-

tialization bias, so err on the side of longer-than-really-necessary warm-ups. The reason 

for this bit of friendly advice is that if you want a tight confi dence interval with this 

strategy, you’ll certainly get it. However, if there’s bias in your results due to insuffi cient 

warm up, your sequentially-determined confi dence intervals will be tightening down 

around a biased point, meaning that the nice tight interval you get is likely to miss the 

mark in terms of covering the steady-state expected value. And depressingly, the tighter 

you make your interval, the worse this problem gets since the bias stays present but the 
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interval gets smaller and thus more likely to miss the steady-state expectation of inter-

est. Thus, the harder you work, the worse off you are in terms of confi dence-interval 

coverage probability. 

 So, unless you’re quite confi dent that you’ve pretty much eliminated start-up bias, 

it might be safer to set up a single long run that you then keep extending until the half 

width of the resulting confi dence interval satisfi es your smallness criterion. In this case, 

the batch-means confi dence intervals that Arena attempts to form from a single long 

run (Section 7.2.3) work quite nicely for this purpose. The key is the  Run . Setup . 
Replication Parameters  Terminating Condition fi eld, where you specify the half-width 

smallness criterion (and remove all other replication-stopping devices from your model, 

such as the Replication Length fi eld in  Run . Setup . Replication Parameters ). The 

pertinent internal Arena variables for this are THALF(Tally ID), which returns the cur-

rent half width of the 95% confi dence interval on a Tally statistic with Tally ID in its 

argument, and DHALF(Dstat ID) for DSTAT (time-persistent) output statistics. The 

batching/rebatching scheme described in Section 7.2.3 takes over and your run will stop 

as soon as the Terminating Condition is satisfi ed. If a particular run length along the 

way is not long enough to form a valid batch-means confi dence interval, causing this 

scheme to conclude “(Insuffi cient)” or “(Correlated)” as described in Section 7.2.3, the 

numerical value of the half-width variable is set by Arena to a huge number; this will 

cause your replication to be extended since the half width appears too large, which is 

the behavior you want. 

 To illustrate this, let’s create Model 12-4 by modifying Model 7-4 from Section 7.2.3, 

which was originally set up for a single long run of 50 days of which the fi rst 2 days are 

discarded as a Warm-up Period. Our result from Section 7.2.3 was a 95% batch-means 

confi dence interval of 13.6394 ± 1.38366 on steady-state expected average total WIP. 

How about extending the run long enough for the half width to drop to 1, for example? 

Making this change involves only a couple of modifi cations in  Run   . Setup   . Rep-
lication Parameters , as shown in   Figure 12-13  . We’ve cleared the Replication Length 

fi eld (its default of “Infi nite” appears after closing the dialog box) and fi lled in the Termi-

nating Condition fi eld with the stopping rule we want,  DHALF(Total WIP) , 1.0 . 

We also removed the Output File  Total WIP History One Long Run.dat  from 

the Statistic data module since we no longer need to save these values. 

 Part of the report is in   Figure 12-14   and indicates that the desired precision for the 

 Total WIP  output measure was indeed achieved, though again only barely, as we’d 

expect from a sequential stopping rule. To achieve this, the model decided to extend its 

run length to almost 99 days (142148.4917 minutes, to be more precise), in comparison 

with the original 50-day run.   

 As with sequential sampling for terminating simulations, you can modify the 

 Terminating Condition to include smallness criteria on each of several confi dence in-

tervals instead of just one. You can also specify relative-precision stopping rules based 

on  the ratio of the half width to the point estimate; to this end, the Arena variables 

 TAVG(Tally ID)  and  DAVG(Dstat ID)  give the current average of the indicated 

Tally or Dstat statistic, respectively (see Exercise 12-6). 
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     12.6 Designing and Executing Simulation Experiments 

  As we’ve tried to emphasize throughout, a simulation model is a lot more than some-

thing to run just once. Rather, you should think of it as a great and convenient test bed 

for trying out a lot of things and for investigating the effects of various inputs and con-

fi gurations on various outputs. Thus, simulation is a natural for application of some of 

the classical experimental-design techniques usually presented for physical rather than 

simulation-based experiments. 

 For instance, consider a model with fi ve different input parameters or confi gurations. 

You’d like to know what the  effect  is on the results of changing a parameter or confi g-

uration from one  level  to another. Viewing the inputs and confi gurations as experimen-

tal  factors , you could specify two possible levels for each and carry out a 2 5  factorial 

  Figure 12-13.  The Run . Setup . Replication Parameters Dialog Box for Sequential 

Sampling in Steady-State Simulation Using the Automatic Batch Means Confi dence Intervals   

  Figure 12-14.  Results for Sequential Sampling on Steady-State Total WIP Using the 

Automatic Batch Means Confi dence Intervals   
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design, from which you could measure the main effects of and possible interactions 

between the input factors on the outputs of interest, which are the  responses  for this 

simulation-based experiment. Unlike most physical experiments, you could then easily 

go on and replicate the whole factorial experiment to place confi dence intervals around 

the expected main effects and interactions. Other possibilities include using common 

random numbers across the design points (as a blocking variable in experimental-design 

terminology), the use of screening designs to sort out which of many factors are really 

important, and sophisticated nonlinear and response-surface designs. For more on these 

and related issues, see Law and Kelton (2000). 

      12.7 Exercises 

    12-1  Modify Model 12-2 for a different way to allocate random numbers to support 

synchronization for CRN, as follows. When a new part arrives, (pre-)generate and store 

in attributes of this entity its processing-time requirements for all of the cells in its se-

quence. When a part entity gets to a cell, take its processing time from the appropriate 

attribute of the entity rather than generating it on the spot. Depending on how you set 

this up, it might be useful to recall that the attribute Entity.JobStep of an entity is its 

station number (1, 2, 3, . . .) as it makes its way through the sequence. You might also 

fi nd useful the Attributes element from the Elements panel to defi ne a vector-valued 

attribute; to assign values to elements of this vector in an Assign module, you’ll need 

to choose the Type to be Other. Use the same random-number-stream allocation as in 

Model 12-1.  

   12-2  In Exercise 12-1, is it necessary to have dedicated random-number streams in 

order to achieve proper synchronization? Discuss this issue, experimenting with some 

examples if appropriate.  

   12-3  Modify Model 12-3 from Section 12.5.1 to demand, in addition to the 95% 

confi dence-interval half width on the expected average total WIP being no more than 

0.4, that the half width of the 95% confi dence intervals on expected average total time 

in system (for all part types combined) be no more than 3 minutes. One way to do this 

is to modify the Decide module in   Figure 12-10   by adding an additional Condition 

to keep replicating (that is, dispose of the checking entity) if any half width is still 

too big.  

   12-4  Modify Model 12-3 from Section 12.5.1 to demand instead that the ratio of 

the 95% confi dence-interval half width to the point estimate on the expected average 

total WIP be less than 0.04, as described at the end of Section 12.5.1; that is, form 

a 4% relative-precision confi dence interval. The Arena variable ORUNAVG(Output 

ID) is the average across all completed replications of the output measure with this 

Output ID.  

   12-5  Combine Exercises 12-3 and 12-4, as follows. Set up a sequential-sampling run 

so that you get 4% relative-precision confi dence intervals on both the expected average 

total WIP as well as on the expected total time in system.  
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   12-6  Modify Model 12-4 from Section 12.5.2 to terminate the replication when the ratio 

of the half width to the midpoint (point estimate) of the automatic batch-means run-time 

confi dence interval on steady-state expected total WIP falls below 0.04; that is, when the 

relative precision is 4%. The Arena variable DAVG(Dstat ID) returns the current average 

of the indicated Dstat (that is, time-persistent) statistic. Note that the condition you want 

to check is of the form  H / A  , 0.04, where  H  is the half width and  A  is the point estimate, 

which can be an uncomfortable calculation if  A  5 0 (which it will be at the start of your 

run). Instead, check the condition in its equivalent form,  H  , 0.04  A .  

   12-7  As noted in Section 12.4.1, Chance-type Decide modules use random-number 

stream 10 for their hypercoin fl ips, and there’s no way to change that in the module. 

Describe (in words) how you could work around this to use whatever stream you want 

to accomplish the same thing. Also, build a useless little Arena model (but one that 

runs) that does the same thing as a Decide module fl ipping a four-sided hypercoin with 

probabilities 0.2, 0.5, 0.1, and 0.2 for outbound routes A, B, C, and D, respectively, ex-

cept using random-number stream 77. Verify that your model produces decisions with 

probabilities that are about right.      
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     CHAPTER 13 

 Conducting Simulation Studies 

  In Section 2.8, we briefl y outlined the key ingredients of a simulation study. Now that 

you’ve gained some insight into the process of developing and analyzing a simulation 

model, it’s time that we stepped back and discussed the overall activities involved in a 

typical simulation study. As we proceed with this discussion, we’ll assume that you are 

the analyst—the individual who will perform the simulation study. You may be on a 

corporate support staff, support staff at the operational level, or an external consultant. 

The client is whoever requested the study, which will be focused on a system of some 

type. The system may produce manufactured goods, fast food, or services. It could also 

be a system for handling paperwork, call center, distribution center or system, or any 

other system that results in a product or service. We will assume that you’re able to 

translate the ideas presented in this chapter (as well as the rest of the book) to your own 

circumstances. 

 There are numerous publications on the activities to be discussed in the chapter. Prob-

ably the best source is the  Proceedings of the Winter Simulation Conference , a conference 

held annually in December. A selection of these include Balci (1990, 1995), Farrington 

and Swain (1993), Goldsman (1992), Kelton (1996), Kleindorfer and Ganeshan (1993), 

Musselman (1993), Sadowski (1989, 1993), Sargent (1996), and Seila (1990). Another 

good source is an article by Banks and Gibson (1996) in  IIE Solutions  magazine. 

 We’ll start by discussing what constitutes a successful simulation in Section 13.1, 

followed in Section 13.2 by advice on formulating the problem. Section 13.3 addresses 

the issue of using the correct solution methodology for the problem. Assuming that sim-

ulation is the preferred solution methodology, we continue with the system and simula-

tion specifi cation in Section 13.4. The model formulation and construction activities are 

discussed in Section 13.5, and the ever-present verifi cation and validation approaches 

are presented in Section 13.6. Section 13.7 discusses experimentation and analysis, and 

Section 13.8 provides an overview of the reporting and documentation requirements for 

a simulation project. We end this chapter with a brief discussion of the Arena run-time 

capability (Section 13.9), which is a good way to disseminate your work. 

    13.1  A Successful Simulation Study 

  Before we start talking about what’s involved in a simulation study, we need to address 

the issue of what defi nes a successful simulation project. It might seem obvious that if 

you solve the problem or meet the objectives, you’ve achieved success; however, that is 

not always the case. In most instances, the fi nal pronunciation of success or failure will 

be made by the higher-level management that is paying the bill—and, like it or not, they 

have a tendency to view the problem or objectives in a different context. Let’s illustrate 

this with a real-life example. 
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 An automotive supplier had developed a highly successful process for producing a 

specialized set of parts for the automotive OEM (original equipment manufacturer) and 

after market. The process was implemented using a high-volume, semi-automated man-

ufacturing cell concept. Although the process produced a high-quality, low-cost part, 

the initial system was not achieving a high utilization for the key, and most expensive, 

piece of equipment in the process. Because of the variability in the types and quantities 

of parts being produced and the processing times of those parts, simulation was chosen 

as an analysis tool. The objective was to re-design the existing system or to design a new 

production system that would make better use of the key equipment—in other words, a 

system that would achieve the same quality, but at a lower production cost per part. A 

secondary objective was to devise a way to allow incremental increases in production 

volume by adding equipment to the system gradually, rather than just building a new cell. 

 The simulation study was undertaken, and after an extensive analysis of the existing 

system, it was determined that it was not possible to achieve the desired results with the 

current cell concept. The simulation was then used to develop, design, and analyze sev-

eral new approaches. This resulted in a totally different production system design that 

ultimately was recommended to management as the production system of the future. 

This new system design met all the objectives, and the simulation study was pronounced 

a success by the project team. Management accepted the team’s recommendation and 

authorized the construction of a system using the new design concept. The new system 

was built, but did not function as projected, causing management to pronounce the sim-

ulation study a failure since the new system, which was built based on the results of the 

simulation, did not meet expectations. In fact, the resulting production output was about 

30% lower than projected. 

 So what happened? Fortunately for the reputation of simulation, the simulation team 

was directed to conduct a post-analysis of the system. The simulation model of the new 

system was dusted off and compared to the actual system, which now existed. The sim-

ulation was modifi ed to represent the system as it was actually constructed, and much 

to the surprise of the simulation team, it predicted that the new system would produce 

exactly the volume that it was currently producing. So they looked at the modifi cations 

that were made to the simulation model and found that they could classify these modi-

fi cations into two groups. 

 The fi rst group of model modifi cations was composed of required data changes to 

the model based on measurements of actual operation times occurring in the new sys-

tem. As is often the case, several new types of equipment were included in the new 

system design, and the vendors who provided this new equipment were rather optimistic 

in their estimates of operation times. This accounted for about a third of the resulting 

production loss. 

 The second group of model modifi cations was composed of changes in the actual 

system design that was implemented. As it turns out, there were two critical errors made 

in the new system design. One was caused because the placement of the new system 

did not allow for suffi cient fl oor space as called for by the simulation design. Thus, the 

system design was modifi ed to allow it to fi t into the available space. The second error 

was due to changes requested by upper-level management in an attempt to decrease the 
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overall cost of the new system. These changes accounted for the remaining two-thirds 

of the production loss. 

 So what are the lessons to be learned? First, the simulation team should have rec-

ognized that the operation times for the new equipment were only estimates, and they 

should have conducted a sensitivity analysis of the model outputs to these input data. 

This would have predicted a potential problem if the actual times were greater than the 

vendor-supplied estimates. If the times were critical, a penalty clause could have been 

included in the contract for the new equipment stipulating that it perform as estimated. 

Second, the simulation team should have tracked the implementation of the new system. 

This would have allowed them to evaluate the proposed modifi cations before imple-

mentation. It might not have changed the results, but at least it would have predicted the 

outcome. 

 Let’s return to the initial issue of what defi nes a successful simulation project. Suc-

cess seldom means that a good simulation model was developed. It more often means 

that the simulation study met the objectives set forth by the decision makers. This 

 implies that it is important to understand which metrics they will use. 

 If you’re asked to undertake a simulation study to redesign a current system, inquire 

further to gain a better understanding of what is expected. If that inquiry results in a 

statement that indicates that management is interested in fi nding out if it is possible 

to make the system perform better, fi nd out what “better” means. If better means that 

you are expected to reduce WIP (work in process) by 30%, reduce cycle times by 20%, 

increase resource utilizations by 15%, and meet all future customer due dates without 

any capital investment, you at least know that you’re facing an impossible mission. We 

recommend that you elect not to accept the assignment. If, however, “better” means 

that the primary measures are WIP, cycle times, resource utilizations, and customer due 

dates balanced against capital investment, you at least have a fi ghting chance of designing 

a better system. 

 Unfortunately, you are seldom  asked  if you want to do the study; in most cases, you 

are just  told  to do the study. Even under these circumstances, you should identify the 

decision maker and attempt to defi ne the metrics by which the project will be measured. 

 If you’re about to undertake the fi rst simulation study for a company or facility, 

it’s critical that it result in a success. If the fi rst simulation study is labeled a failure, it 

is unlikely that a second study will ever be started. If you have a choice of simulation 

projects, select one that is simple and is almost guaranteed to result in a success. Once 

you have achieved several successes, you might be able to afford a failure (but not a 

disaster). 

 There is also a peculiar dilemma frequently faced by the experienced simulation an-

alyst. If you use simulation as a standard tool through the design of a new system and the 

new system works as advertised, what have you saved? If you had not used simulation, 

would the results have been any different? You really don’t know. So the tool worked, or 

at least you think it did, but you have no way of quantifying any savings resulting from 

the application of the tool. 

 The one approach that is often suggested, but seldom used, is not to use simulation 

for the design of the next new system. The assumption here is that the resulting system 
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will not perform as advertised. After it’s clear that the system has problems, use simula-

tion to show how the system should have been designed. This would allow you to quan-

tify the savings had you used simulation. This is clearly an extreme approach—and not 

recommended by us—that’s based on numerous assumptions. Of course, there is always 

the possibility that the system will perform just fi ne. (It can happen!) This would leave 

the value of simulation in even greater doubt in the eyes of management. 

 We close this section by again suggesting that you be aware that  your  defi nition of 

success may not be the same as that used by management. Although you may not be able 

to control management’s evaluation, at least you should try to understand what measure-

ments they will use in making their evaluation. Now let’s proceed with our discussion of 

the key activities of a good simulation study. 

    13.2  Problem Formulation 

  The fi rst step in any problem-solving task is to defi ne and formulate the problem. In 

the real world, you are rarely handed some sheets of paper that completely defi ne the 

problem to be solved. Most often you (the analyst) will be approached by someone (the 

client) who thinks that you might be able to help them. The initial problem is rarely 

defi ned clearly. In fact, it may not even be obvious that simulation is the proper tool. At 

this point, you need to be able to open a dialog with the requester, or their designate, and 

begin asking a series of questions that will ultimately allow you to defi ne the problem 

completely. Often, the fi nal problem you end up addressing is quite different from the 

one that was initially presented. 

 Many simulation studies deal with systems that are not meeting the client’s expec-

tations. The client wants to know: How do I fi x it? Other simulation studies are not 

focused on a known problem, but are trying to avoid a potential future problem. This 

is most often the case when you’re using simulation to help design a new system. Yet 

another class of simulation studies is composed of those focused on a system that has 

been completely designed, but not yet constructed or implemented. In this case, you’re 

being asked if the system will perform as predicted. 

 So the problems are often put forth in the form of a series of questions: Can you fi x it? 

Will it work? Can you help me make sure it will work? These are really the best kinds of 

problems because you have the potential to have an impact on the system (and your ca-

reer). The worst kind of problem is when you’re told that the company wants to start using 

simulation, so they’ve requested that a simulation be developed for an arbitrary system. 

 Let’s assume that you have at least a vague notion of what the problem is, and hope-

fully, a better idea of what the system is. It might be a good idea to start with the system. 

Does the system currently exist, is it a new design, or has it not yet been designed? 

Knowing this, you can try to  bound  the system for the purpose of the study. Is the system 

a single or a small number of operations, a large department, the entire facility, or the 

entire company? Although it would be nice if you could draw walls around the system 

so that there are no interactions with the other side of the wall (like the Great Wall of 

China), this is not likely to be the case. However, you might at least try to place initial 

bounds on the size of the system. Try not to cast these boundaries in stone, as you may 

have to expand or contract them as you learn more about the problem and system. 
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 Having established some initial boundaries, next try to defi ne the performance met-

rics. There are really two kinds of metrics with which you should be concerned. The 

fi rst, and most obvious, are the performance metrics that will be used to measure the 

quality of the system under study. The second, and maybe the most important, are the 

performance metrics that will be used to measure the success of the study. Let’s con-

centrate on the fi rst kind of metrics. Although the client might imply that there is only 

one metric, there are almost always several that need to be considered. For example, the 

application may be a fast-food restaurant where the client is interested in being assured 

that any customer who enters the door receives his food within a given period of time. 

This is most likely not just a performance metric, but a performance objective. Other 

metrics of interest could be the staffi ng required, the job assignments, the seating capac-

ity, and the freshness of the food. 

 Having established how the performance of the system is to be measured, fi nd out if 

there are current baseline values for these metrics. These values should be available if 

the system currently exists. If not, there may be similar existing systems that could be 

used to provide estimates. In the worst case, at least design values should be available. 

Knowing what the current baseline metrics are (or at least using an estimate), what are 

the expectations of the client? This type of information should provide some insight as 

to the magnitude of the problem you have been handed. 

 By this time, you should have a fairly good understanding of the system (and its 

size), the performance metrics, and the expectations of the client. The next step is to 

select a solution methodology—don’t assume that you will always use simulation. 

    13.3  Solution Methodology 

  We’re not going to attempt to describe every problem-solution technique known to hu-

manity and recommend where they should be used. However, we do recommend that 

you at least consider alternative solution techniques. You should also consider the cost 

of using a particular solution technique compared to the potential benefi ts of the even-

tual solution. Unfortunately, identifying the best solution methodology is not always an 

easy task. If you determine that a specifi c methodology might give you the best answer, 

but you have never used that technique, this might not be the best time to experiment. 

Therefore, you might want to rephrase the question: Given the solution methodologies 

that you feel comfortable using, which will most likely give the most cost-effective 

solution? 

 Sometimes the choice is obvious, at least to us. For example, if you’re being asked 

to perform a rough-capacity analysis of a proposed system, and you’re given only mean 

values for all the system parameters and you are only interested in average utilizations, 

it might be faster (and just as accurate) to use a calculator to determine the answer. At 

the other extreme, you might be asked to fi nd the set of optimal routes for a fl eet of 

school buses or garbage trucks. Although you could use simulation, there are other tools 

specifi cally designed to solve this problem. We would suggest you consider purchasing 

a product to implement such a tool. 

 You might fi rst fi nd out how much time you have to analyze the problem. If you need 

an answer immediately, then simulation is not normally an option. We hedged a little bit 
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on this because there are rare circumstances where simulation can be used to analyze 

problems quickly. You might have a simple problem, or a small system, which allows 

you to develop a simulation using the Arena high-level constructs in just a few hours. 

 There are also instances where companies have devoted effort to develop generic 

simulation models that can be altered quickly. These types of models are typically devel-

oped when there are many similar systems within an organization. A generic simulation 

is then developed that can be used to model any of these systems by simply changing 

the data. The task of changing the data can be made easy if the values are contained in 

an external fi le or program. This external source might be a text fi le or a spreadsheet. 

Instances where this approach has been used include assembly lines, warehousing, fast 

food, distribution centers, call centers, and manufacturing cells. 

 Let’s assume that simulation is the correct technique for the problem. Now you need 

to defi ne the system and the details of the resulting simulation. 

    13.4  System and Simulation Specifi cation 

  So far we may have given the impression that a simulation study consists of a series of 

well-defi ned steps that need to be followed in a specifi c order, like a recipe from a cook-

book. Although most experienced simulation analysts agree that there are usually some 

well-defi ned activities or steps, they are often performed repeatedly in an interactive 

manner. You may fi nd that halfway through the development of a simulation, conditions 

suddenly change, new information becomes available, or you gain early insight that 

spawns new ideas. This might cause you to revisit the problem-formulation phase or to 

alter the design of your model drastically. This is not all that uncommon, so be prepared 

to back up and revisit the problem whenever conditions change. 

 The process of developing a  specifi cation  can take many forms, depending on the 

size of the study, the relationship between the analyst and client, and the ability of 

both parties to agree on the details at this early stage. If one individual is playing both 

roles—client and analyst—this step might be combined with the model formulation 

and construction phases. Although it is still necessary to defi ne and understand the sys-

tem completely, the development of a formal simulation specifi cation is probably not 

required. However, if you fi nd yourself at the other extreme, where the analyst is an 

external consultant, a formal specifi cation can be useful for both parties. For the purpose 

of the following discussion, let’s assume we’re somewhere between the two extremes. 

Let’s further assume that the client and analyst are not the same person and that a written 

document is to be developed. 

 Before we proceed, let’s summarize where we are in the process and where we want 

to go. We’ve already formulated the problem and defi ned the objectives of the study. 

We’ve decided to use simulation as the means to solve our problem, and we’re now 

ready to defi ne the details of the simulation study that will follow. 

 A good place to start is with the system itself. If the system exists, go visit the site 

and walk through it. The best advice is to look, touch, and ask questions. You want to 

understand what’s happening and why it’s happening, so don’t be afraid to ask ques-

tions, even ones that seem insignifi cant. Often you’ll fi nd that activities are performed 

in a specifi c way just because that’s the way they’ve always been done, while at other 
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times, you’ll fi nd that there are very good reasons for a routine. As you learn more about 

the system, start thinking in terms of how you might model these activities. And even 

more important, think about whether it’s necessary to include certain activities in the 

simulation model. At this stage of the process, you’re a systems analyst, not a simula-

tion modeler. Thus, don’t be afraid to make recommendations that might improve the 

process. Providing early input that will result in only minor improvements can increase 

your credibility for the tasks to follow. 

 If the system is a new design, fi nd out if there are similar existing systems that you 

might tour. At the minimum, you’ll obtain a better understanding of the overall process 

that you’re about to simulate. If the system exists only on paper, take a tour of the blue-

prints. If there’s nothing on paper, develop a process fl ow diagram or a rough sketch of 

the potential system. You should do this with the client so that there is total agreement 

on the specifi cs of the system. 

 With an understanding of the system to be modeled, it’s now time to gather all in-

terested parties in a conference room and develop your specifi cation. There is no magic 

formula for such a specifi cation, but generally it should contain the following elements:

      Simulation objectives  
     System description and modeling approach  
     Animation exactness  
     Model input and output  
     Project deliverables    

 The time required to obtain all the necessary information can vary from an hour to 

a few days. The discussions that yield the details of this specifi cation should include all 

the interested parties. In most cases, the discussions are focused on the system rather 

than the simulation because at this point, it is the one common ground. The types of 

questions that should be asked, and answered, are as follows:

      What is to be included in the simulation model?  
     At what level of detail should it be included?  
     What are the primary resources of the system?    
      What tasks or operations can they perform?    
     Are process plans or process fl ow diagrams available?     
     Are they up-to-date?  
        Are they always followed?  
        Under what conditions are they not followed?    
     Are there physical, technological, or legal constraints on how the system operates?
          Can they be changed?    
     Are there defi ned system procedures?     
     Are they followed?  

        Can new procedures be considered?    
     How are decisions made?     
     Are there any exceptions?    
     Are there data available?  
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     Who will collect or assemble the data?     
     When will they be available?  
        What form will they be in?  
        How accurate are the data?  
        Will they change, and if so, how will they change?    
     Who will provide data estimates if data are not available?
          How accurate must they be?  
        Will they require that a sensitivity analysis be conducted?    
     What type of animation is required?     
     Are there different animations required at different phases of the project?  
        How will the animations be used?    
     Who will verify and validate the model, and how will it be done?     
     Are comparative data available?  
        How accurate are the data?    
     What kind of output is required?     
     What are the primary performance measures?  
        Can they be ranked or weighted?    
     How general should the model be?     
     Will it be revised for other decisions?    
     Who will perform the analysis?
         What type of analysis is required?  
        How confi dent do you have to be in your results?    
     How many scenarios will be considered?
          What are they?    
     What are the major milestones of the study?    
      When do they need to be completed?    
     What are the deliverables?    

 This is not intended to be a complete list, but it should give you a general idea of the 

detail required. 

 Normally, these types of discussions are enlightening to both parties. In this type 

of forum, the analyst is asking questions and recording information. The assumption is 

that the client has all, or at least most, of the information required. Experience reveals a 

somewhat different situation. In most cases, the client is a team of three to six individu-

als representing different levels of interest in the system. They generally have different 

expertise and knowledge of the system. It is not uncommon to fi nd that these individuals 

disagree strongly on some of the details of the system that may generally be confi ned 

to process descriptions and decision logic, but other areas are not excluded. This should 

not be surprising, as you’re trying to get a complete understanding of the system, as well 

as consensus on how the system works. If you’re faced with disagreement on certain 

details, we suggest that you stand back and let the client team arrive at a consensus. 

 If you’re developing a specifi cation for the fi rst time, don’t expect to get all your an-

swers during the initial meeting. You might want to consider the 70/20/10 rule. Through 

experience, we have found that about 70% of the time the client team will have the 
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complete answer or the information required. About 20% of the time the team will not 

know the answer, but they will know how to get it (for example, they may have to ask 

 Dennis, who works on the night shift). The remaining 10% of the time they have no idea 

what the answer is or where they might fi nd it (or there are several competing answers). 

This might surprise you, but this is a rather common phenomenon. Don’t let this bother 

you; just make it clear that you need the information and ask when it will be available. 

 During this meeting, you’ll also be exploring the availability, or lack thereof, of 

data to drive your simulation. Again, don’t expect to get all the data you need at this 

initial meeting. However, it’s important to know what data ultimately will be available, 

and when. You should also make note of what data are from historical sources and 

what data will be estimates. Finally, it might be advisable to identify the form in which 

the data will be delivered, as well as who is responsible for collecting, assembling, or 

 observing the data. For a discussion of data issues, see Section 4.6.2. 

 Before you leave this meeting, you should identify one person from the client team 

who will serve as the primary contact for the study. When you return to your offi ce, 

you’ll need to organize the information into a document that resembles a specifi cation. 

We recommend that you do this as soon as possible, while the details are still fresh in 

your mind. Even then you’ll undoubtedly fi nd yourself scratching your head over at 

least one item in your notes. Something that was very clear during the meeting may 

now look muddy. No problem! Get on the phone, fax, or e-mail and clarify it with your 

primary contact. 

 Once you’ve developed this document, you should send it to the client for review. 

It may take several iterations before a fi nal document emerges that’s agreed upon and 

acceptable to both parties. Upon completion, we recommend that both parties sign this 

fi nal document. If, during the simulation study, you fi nd that conditions change, data are 

not available, and so forth, you may fi nd it necessary to revise this document. 

 We would love to be able to provide you with a detailed set of instructions on how to 

perform this entire task. Unfortunately, each simulation study is different, and circum-

stances really dictate the amount of detail that’s required. We can, however, give you an 

idea of what a specifi cation looks like. We were fortunate to receive permission from 

 The Washington Post  to include a functional specifi cation for a simulation study (see 

Appendix A) that was developed as part of a consulting project conducted in the mid-

1990s by the Systems Modeling consulting group. The original specifi cation was devel-

oped by Scott Miller, a Systems Modeling consultant, for Gary Lucke and Olivier Girod 

of  The Washington Post . Other than a few minor changes made for confi dentiality and 

formatting reasons, it is the original document. We strongly suggest that you take time 

to read it before you undertake your fi rst specifi cation. We do not suggest that you use 

this form for all of your specifi cations, but it should provide an excellent starting point. 

 Throughout this discussion, we made the assumption that it’s possible to defi ne the 

complete study before you start building the actual model. There are circumstances 

where this is not possible. These types of projects are open-ended in that the complete 

project is not yet defi ned or the direction of the project depends on the results obtained 

in the early phases. Even though it may not be possible to specify the entire project com-

pletely, the development of a specifi cation still is often desirable. Of course, it means 
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that you may have to amend or expand the specifi cation frequently. As long as both 

parties are agreeable, there’s no reason to avoid these types of projects. You just have to 

be willing to accept the fact that direction of the project can change dramatically over 

its duration. These are often called  spiral projects  in that they tend to spiral up into huge 

projects or spiral down into no project at all. 

 For now, let’s assume that you have specifi ed the simulation, and it’s fi nally time to 

start the model. 

    13.5  Model Formulation and Construction 

  The nice part of having a complete specifi cation of the simulation model and study is 

that it allows you to design the simulation model that can easily meet all of the objec-

tives. Before you open a new model window and begin placing modules, we recommend 

that you spend some time formulating the model design. Some of the things that you 

want to take into consideration are the data structure or constraints, the type of analysis 

to be performed, the type of animation required, and your current comprehension of 

Arena. The more complex the system, the more important the formulation. 

 For example, consider a simulation of a large warehouse with 500,000 SKUs. You 

will obviously need to develop a data structure that will contain the necessary informa-

tion on the changing state of the contents yet be easily accessed by the simulation model. 

If you’re interested only in the number of pickers and stockers required for a given level 

of activity, it may not even be necessary to include information at the SKU level. You 

might create a model based on randomly created requests. If you can develop accurate 

expressions for the frequency and locations of these activities, this type of model might 

answer your questions. However, if you’re interested in the details of the system, you 

would obviously need to create a much more elaborate model. You also need to under-

stand the animation requirements. If no animation is required, you might model the 

picker movement and activities as a series of delays. If you need a detailed animation, 

you’ll have to structure your model, most likely using guided transporter constructs, to 

allow the actual movement and positioning of the pickers on the animation. 

 You should also consider the potential impact of different scenarios that must be 

evaluated. Should each scenario be created as a different model, or can a suffi ciently 

general model that requires only data changes be created? Consider our warehouse. If 

you want to compare a manual picking operation to an automated picking operation, 

you may require different models (although you may use the same data structure for 

both models). However, if you simply want to compare different types of layouts, you 

might develop a general model. 

 Once you’ve formulated a modeling approach, you need to consider what constructs 

you’re going to use to build your model. So far we’ve advocated a top-down approach. 

This suggests that your fi rst choice should be modules from the Basic Process panel, 

followed by modules from the Advanced Process and Advanced Transfer panels, and 

modules from the Blocks and Elements panel only when required. This is a recom-

mended approach for the novice Arena user, but as you gain experience and confi dence 

in your modeling skills, you’ll most likely take a different approach. Most experienced 

modelers prefer to start with the Advanced Process and Advanced Transfer panels and 
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select from the other panels when required. This allows you to create exactly the type of 

model required and gives you the maximum amount of fl exibility. 

 Finally, you’re ready to open a new model window and begin the model construc-

tion, which is probably the most fun part of the entire study. Before you begin, we’d 

like to offer one more piece of advice. As you become more experienced with the Arena 

system, you’ll start to develop habits—some good, some bad. You’ll tend to use those 

constructs with which you’re most familiar for  every  model you create. We recall a con-

sultant who created a very detailed model of a complicated assembly system that used a 

series of overhead power-and-free conveyors to move the assembly through the system 

(this was a number of years ago). About 2 days before the model was to be delivered to 

the client, it developed a bug. The consultant claimed it was caused by extraterrestrial 

beings, but we suspect that it was a simple modeling error. Two long, sleepless nights 

later (accompanied by freely offered, unsolicited advice from the other consultants), 

the error was uncovered. A quick fi x was added by using a series of Signal and Hold 

modules (see Section 9.4) to synchronize the merging of subassembly conveyors, which 

solved the problem. The model was delivered to the client and the study was ultimately 

a success. 

 What’s interesting about this extraterrestrial experience is that for the next several 

years, every model (and we mean  every  model) that the consultant created had at least 

one pair of Signal and Hold modules. This habit did not result in inaccurate models, but 

there were often simpler and more direct ways to model the system features. The consul-

tant had stopped being creative in his model building and always used those constructs 

that saved his career that fateful night. Essentially, he had developed a bad habit, which, 

by the way, was extremely hard to break. 

 Another example that comes to mind occurred around the time that the Arena system 

was fi rst introduced. Prior to that time, the consultants at Systems Modeling developed 

all their simulation models using the SIMAN language. This required the creation of two 

separate fi les—the experiment and model fi les (see Section 7.1.6). Although there were 

programs available to aid in developing these fi les, almost all the consultants developed 

their models in a text editor. Once their models were running, they’d create the separate 

animation of the model using the Cinema software. With the release of the Arena system, 

you could develop your entire model, including the animation, in one fi le using the point-

and-click method with which you’re now familiar. The consultants felt very comfortable 

with their text editors and were very reluctant to change their method of modeling. In 

fact, they went so far as to try to convince clients that the old way was the best way. 

 Finally, something akin to an edict was passed down stating, “You  will  use the new 

Arena system for all future models!” There was a lot of grumbling and complaining, 

but in a very short period of time, they were all working with the new software. In 

fact, before long you started to hear such comments as, “How did we ever do this be-

fore Arena?” Of course, years later, one individual still claimed that it was easier to 

develop models in a text editor. We have omitted names to protect the innocent, or the 

not-so-innocent. 

 So we recommend that you be open-minded about the methods you use to build 

models and the constructs that you choose to use. If there are other modelers in your 
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group, ask them how they would approach a new model. You might also consider attend-

ing conferences or user-group meetings to fi nd out what your peers are doing. 

 With that last caution noted, you can start constructing your model. If the model is 

small, you might place all the required modules, fi ll in the required data and hope that it 

works right the fi rst time. (It rarely does.) If the system to be modeled requires a large, 

complicated model, you might try to partition the model building into phases. Select a 

portion of the system and build a model of that portion, including at least a rough ani-

mation. Once you are convinced it’s working correctly, add the next phase. Continue in 

this manner until the entire model has been created. This approach makes model verifi -

cation, which is our next topic, much easier. 

    13.6  Verifi cation and Validation 

  Once you have a working model, and sometimes even while you are building it, it is 

time to verify and then validate the model.  Verifi cation  is the task of ensuring that the 

model behaves as you intended; more colloquially, it’s known as debugging the model. 

 Validation  is the task of ensuring that the model behaves the same as the real system. We 

briefl y introduced these topics in Sections 2.7 and 7.1.6. Let’s expand our discussion by 

fi rst addressing the issue of verifi cation. 

 You now have a completed simulation model, or at least a completed component, 

and you’d like to be sure that the model is performing as designed. This may seem to be 

a simple task, but as your models and the systems they represent become more compli-

cated, it can become very diffi cult. In larger models, you can have many different simul-

taneous activities occurring that can cause interactions that were never intended. You’ll 

need to design or develop tests that will allow you to ferret out the offending interactions 

or just the plain and simple modeling mistakes. If you haven’t already developed an an-

imation, we suggest that you complete that task before you start the verifi cation phase. 

It does not need to be the fi nal animation, but it should have enough detail to allow you 

to view the activities that are occurring within the system. You might start by checking 

the obvious. 

 Consider the system we modeled in Chapter 7, which produced three different parts. 

Alter your model so that it creates only a single instance of a Part Type 1, and watch that 

solitary part fl ow through the system. Repeat this for the other two part types. Change 

all your model times to constant values, and release a limited number of parts into the 

system. The results should be predictable. Test the other extreme by decreasing the part 

interarrival rate and observe what happens as the system becomes overloaded. Change 

the part mix, processing times, failure rates, etc. What you’re trying to do is create a 

wide variety of different situations where your model logic might just fail. Of course, 

if you fi nd problems, correct them. You’ll have to decide if you need to repeat some of 

your earlier tests. 

 Once you have completed the obvious tests, you should try to stand back and vi-

sualize what types of scenarios you might consider in your analysis. Replicate these 

projected scenarios as best you can and see if your model still performs adequately. If 

you have periods when you’re not using your computer, default the replication time and 

allow the simulation to run for extended periods of time. This type of experiment might 
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be best performed overnight. Carefully review the results from these runs, looking for 

huge queues, resources not utilized, etc. Basically, you want to ask the following ques-

tion: Do these results make sense? If you have extended periods of time when you’re at 

your desk, but not using your computer, allow the model to run with the animation ac-

tive. As time permits, glance at the monitor and see if everything appears to be all right. 

If you are confi dent that your model is working correctly, you’re ready for the acid test. 

 Reconvene the client group and show them your simulation. In most cases, this 

means the animation. If there are problems, this is probably where they will be detected. 

Once this group grants its blessing, you might try one more experiment before you 

pronounce your model verifi ed. Ask the group if they’d like to change the model in any 

way. Individuals who are familiar with the system, but not simulation, tend to think dif-

ferently. They just might suggest modifi cations that you never considered. 

 Before you show your model to the client group, you should give some consider-

ation to the level of detail required in the animation. In most cases, a rough animation 

showing the basic activities is suffi cient. You may have to describe what your animation 

is showing, but once the individuals get beyond the pretty pictures, they are often able 

to visualize their system. At the same time, be sensitive to the feedback provided by 

the group when they fi rst view the animation. You might be surprised at the types of 

reactions you’ll get. We have seen individuals unable to get beyond the fact that your 

machines are blue and their machines are green. If you detect these types of comments, 

take the time to make some changes. Ultimately, you want the client group to accept 

your model as an accurate representation of their system. If you’re lucky, they’ll become 

your strongest supporters as you proceed with the project. 

 At this point, we should probably admit that it’s almost impossible to verify totally 

a model for a complex system. We have seen verifi ed models, which have already been 

used for extensive analysis, suddenly produce fl awed results. This is typically caused 

by a unique combination of circumstances that was never originally considered being 

imposed on the model. Unfortunately, you need at least to consider that all of your 

previous analysis may be inaccurate. We should also point out that there’s no magic to 

verifi cation, nor is there a single method accepted by all. The key is that you, and your 

client, become totally convinced that the model is working as intended. Having done 

that, you are now ready to consider trying to validate the model. Although we are treat-

ing verifi cation and validation as two separate topics or tasks, the difference between 

the two is often blurred. 

 To validate a simulation model, you should compare the results from your model to 

the results from the real system. If the system does not yet exist, you’re in trouble right 

from the start. Even if the system does exist, such a comparison may be a diffi cult task. 

It’s not uncommon for organizations to keep extensive metrics on past system perfor-

mance, but often they do not keep the information that tells you what the system was 

doing, making, or subject to during that time period. Even if the data exist, they may be 

inaccurate or misleading. 

 Years ago, there was a large and complex simulation model developed for a facility 

that produced heavy-duty transmissions. The facility had approximately 1,400 machines 

and resources grouped into about 30 departments. The model had been developed to 
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determine the sensitivity of product mix on the total throughput and the potential effect 

of introducing a new product line into the system. The primary performance measures 

were all related to the system’s capacity. All of the process plans and process times were 

downloaded from the facility’s databases. In addition, all the order releases were avail-

able for the last year of production. It looked like it would be an easy task to validate the 

model. Having already verifi ed the model, the validation was undertaken. 

 The fi rst set of runs produced results that totally mystifi ed the clients. There were 

bottlenecks in the model that did not occur in the real system and bottlenecks in the 

real system that did not show up in the model results. In fact, a detailed comparison of 

 resource-utilization statistics from the model to the historical records showed that there 

were major differences. This problem was resolved rather quickly when it became appar-

ent that the processing times maintained in the facility’s databases were based on standard 

times used for costing. They in no way represented the actual processing times observed 

on the shop fl oor. Be aware that this is a fairly common problem. Data are often kept for 

the convenience of the accountant, not the systems engineer. Luckily, someone had devel-

oped a set of conversion tables that converted the standard times to accurate processing 

times. These tables were included in the model and the validation process continued. 

 Everything looked good until a simulation run was made for the entire year, and the 

results were compared to the historical records. Eleven of the 12 months produced al-

most identical results. There was, however, one month near the middle of the simulated 

year where the records indicated that the output was approximately 40% larger than that 

predicted by the simulation model. A lot of time was spent trying to fi gure out what had 

caused this discrepancy. It was assumed that there was a problem with the simulation 

model—wrong! Finally, the analysis group started to suspect that maybe the histori-

cal data were fl awed. By looking at the detailed statistics for the month in question, it 

became apparent that the resource statistics from the simulation closely matched the 

recorded statistics. In fact, it was quickly determined that the only difference was in the 

total number of transmissions produced. In addition, everyone was convinced that the 

system did not have the capacity to produce that many units. It took several weeks of 

part-time sleuthing before the answer emerged. 

 Someone fi nally realized that the month in question was the last month of the com-

pany’s fi scal year. As it turned out, there was a small amount of product that was rejected 

for various reasons through the fi rst 11 months of the year. These products were simply 

set aside until the fi nal month when they suddenly became acceptable and were reported 

as part of that month’s output. The reasoning was that it improved the performance 

of the system for the year. Weeks later these products were formally rejected, but the 

previous year’s records were never adjusted. Removing these rejected items from the 

monthly throughput fi nally allowed the model to be validated. 

 If accurate records on the actual system do not exist, then it may be impossible to 

validate the model. In that case, concentrate on the verifi cation and use the best judg-

ment of individuals who are the most familiar with the system’s capability. Sometimes 

individuals from the production fl oor have an uncanny ability to predict the performance 

of a new system accurately. Remember, the key is for both the analyst and the client to 

have confi dence in the results from the model. 
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 If you’ve gotten this far with your simulation project, you’ve cleared most of the 

major hurdles. You’re now ready to use the model to answer some questions. 

    13.7  Experimentation and Analysis 

  We’ve already covered most, if not all, of the statistical issues associated with simulation 

analysis, and we’ll not repeat that material here. However, there are several practical im-

plications that we would like you to be aware of. Ideally, before you start any analysis, you 

would design a complete set of experiments that you intend to conduct. You would also de-

cide on the types of analysis tools that you would be using. Although this may be ideal, it’s 

far from reality. In some cases, you just don’t have the luxury of suffi cient time; in other 

cases, you don’t really know where you’re going with the analysis until you get there. 

 For example, if your objective is to improve the system throughput, you may not 

know what changes are required to achieve that goal. Sometimes the best analysis 

method is a group of knowledgeable individuals sitting around a computer suggesting 

and trying alternatives. This normally means that almost all the alternatives that are in-

vestigated will, at least, be feasible. One problem with this type of approach is that you 

may be tempted to reduce run times drastically in order to reduce the time you have to 

wait for the next set of results. Or worse yet, you may want to evaluate the system based 

only on a view of the animation. Don’t yield to this pressure as it can lead to a disaster 

(and disasters can alter the direction of your career). 

 You might also consider structuring your experimentation based on the type of 

 analysis that needs to be performed. For the sake of this discussion, let’s identify three 

different types of analysis: candidate, comparative, and predictive. 

  Candidate analysis  is normally done during the early design phases of a system. You 

are generally trying to identify the best candidate systems from a much larger group of 

potential designs that merit additional study. Models for these types of analysis are nor-

mally lacking in detail. You might think of these as rough-cut capacity models. You’re 

trying to weed out the obvious losers and identify the potential winners. When you’re 

performing this type of analysis, you can’t put much faith in the accuracy of the true 

system’s performance. You still need to make sure that you have a suffi cient number of 

replications to provide good estimates of the system’s performance (or your run times 

are of suffi cient length), but there is very little value in increasing the number of replica-

tions (or the run time) to obtain tighter confi dence limits on your results. 

  Comparative analysis  would normally be the next logical step in selecting the fi nal 

system design. You have a fi nite set of designs, and you want to compare them to iden-

tify the best design. This type of analysis typically requires a more detailed model, but 

we’re only concerned with comparing one system to another. For example, there may 

be system activities that will affect the performance of the system, but the amount of 

the effect is common across all systems under consideration. For example, it may not be 

necessary to incorporate preventive maintenance or operator schedules into these types 

of models. The activities that are common to all systems under consideration and have 

the same effect do not have to be included in the models. For these types of systems, 

there may be value in increasing run times (or number of replications) to boost your 

confi dence in selecting the best system. 
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  Predictive analysis  typically deals with only a few systems—often only one. By this 

time, you’ve selected what appears to be the best system, and you’re now interested in 

estimating the actual performance of that system. This type of analysis requires that you 

include all activities that will affect the system’s ability to achieve the predicted perfor-

mance. At this point, you’ve selected the best system, and you’re going forth with a recom-

mendation to build it, provided that it meets the required objectives. These types of models 

need to be very detailed, and you also need to be confi dent in the data that are being used. 

 Regardless of the type of analysis you’re conducting, be careful not to make strong 

judgments based on limited information. Be sure that your results are based on sound 

statistical practice, and when you conclude that one system is better than another, be 

sure that there is a signifi cant statistical difference between them. More details on these 

issues are in Sections 6.4–6.6, 7.2, and 12.4–12.6. 

 Before proceeding, we fi nd it necessary to point out again that the activities that 

constitute a simulation project appear to follow a logical time pattern. In reality, it’s not 

uncommon to jump back and forth between activities, often revisiting activities that you 

thought were complete. In practice, you often fi nd that a good project will force you 

through several iterations of these activities. 

    13.8  Presenting and Preserving the Results 

  When you get to this stage, you’ve completed at least the initial study, and you’re ready 

to go forth with your results. In many instances, only a written report is required or ex-

pected. In other cases, you may have to go before a group of decision makers and give an 

informal or formal presentation of your results. This may actually be the most important 

phase of the project because it may determine whether your results are accepted. We’re 

not going to go into great detail about how to write or give a report. If you feel that your 

skills are lacking, we suggest you fi nd a book devoted to these subjects or take a formal 

course to sharpen your skills. You’ll fi nd that you’ll need these types of skills in many 

other areas as well! However, there are a few obvious points to be made. 

 First, be sure you’re addressing the correct questions, and be sure to provide concise 

answers. Always include the equivalent of an executive summary that states your recom-

mendations clearly—and the major reasons for them—in one page (or slide) or less. If 

possible, try to avoid presenting numbers in absolute terms; use ranges or confi dence in-

tervals. Understand your audience before you proceed. If you have volumes of material 

to support your recommendations, put them in an appendix or hold them in reserve (to 

be used only if requested). Don’t be tempted to answer questions about features of the 

system that were not included in your model. Finally, be prepared to receive instructions 

to go back and look at additional alternatives. 

 Preserving the results should be an ongoing task throughout the duration of the proj-

ect. Normally, we would call this the documentation process. It should include not only 

the fi nal recommendations, but also documentation of the model and the details of the 

analysis. It is true that most simulation projects are not revisited. But there are excep-

tions, and it is not uncommon to have to dust off an old model years later to perform 

more analysis. We’re aware of one simulation model developed in 1983, as a SIMAN 

model, that’s still being used periodically, even though the model is basically the same. 
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 Most practitioners agree that there’s a law of nature, or maybe even a theorem, about 

documentation. The more documentation that you have on a project, the lower the prob-

ability of ever having to use the model again. It always seems to be those crash projects 

that leave no time for documentation that you’re asked to resurrect years later. However, 

if you’ve followed our advice in this chapter, most of your documentation is already 

available and in electronic form. If you store all of this information (simulation model, 

specifi cation, report, and presentation) in the same folder, you’ve covered most of the 

bases. 

 You might also admit that in most cases the documentation will be used by someone 

else, if it’s used at all. Individuals are promoted, change positions, or change organiza-

tions, so your best approach to this task is to ask yourself what you’d want or need to 

know if someone else had performed the original study. This may not help you, but the 

next person will certainly be grateful. 

    13.9  Disseminating the Model 

  During the course of a simulation study, you will certainly share your simulation model 

and animation with your client. If the clients have a copy of Arena, you only need to 

send them the latest model ( .doe ) fi le, and they can view and alter your model at any 

time. If the clients (or anyone else, for that matter) do not have the software, this obvi-

ously won’t work. 

 Arena does have a run-time mode, which will allow the user to open, run, and view 

the animation and the results of any model. It allows the user to edit any existing data 

and re-save the model. However, it does not allow the user to add or alter any logic 

or  data modules. If the run-time version is required, you should contact Rockwell 

Automation for more information. 
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    APPENDIX A

A Functional Specifi cation for
 The Washington Post  

   A.1  Introduction 

  This appendix contains functional specifi cation material provided to  The Washington 
Post  as part of a Systems Modeling simulation modeling consulting project (in the mid-

1990s, which was prior to acquisition by Rockwell Automation). This project was deliv-

ered to Gary Lucke, manager of manufacturing systems engineering, and Olivier Girod, 

manager of industrial engineering, of  The Washington Post.  This appendix has been 

modifi ed slightly to retain confi dentiality of certain proprietary information. Some of 

the technology will appear dated, but we’ve left its original form from the time of this 

project because the process is unaffected by it. 

  A.1.1  Document Organization 

 This document is provided to describe the mailroom operations at  The Washington 
Post’s  Springfi eld, Va., and proposed Maryland facilities. The description will include 

the detail necessary to develop accurately an Arena simulation model of both operations. 

 This document is divided into six sections. The fi rst section defi nes the objectives of 

the simulation project, the purpose of this document, the use of the Arena model, and the 

software and hardware required to run the Arena model. The second section describes 

the physical components of the mailroom operation, as well as the modeling approaches 

for each component. The third section describes the animation of the simulation model. 

The fourth section summarizes the user input requirements for the Arena model and the 

desired output generated from the Arena model. The fi fth section describes the project 

deliverables. Finally, the sixth section contains the agreement and acceptance signatures 

required to proceed with the project. 

   A.1.2  Simulation Objectives 

 The objective of the simulation study is to provide  The Washington Post  with a decision 

support tool that will assist in evaluating the truck-loading operation at the Springfi eld 

plant as well as the proposed Maryland facility. The simulation will aid in assessing the 

impact of press output, tray utilization, tray trip rate, and truck arrival patterns on the 

loading operations. 

 In order to obtain the simulation objectives, two simulation models will be devel-

oped under this contract. These models will incorporate actual operational data and 

information collected from the Springfi eld and Maryland facilities. The simulation will 

utilize actual production sequences and decision logic required to represent facility op-

erations accurately. In addition, the simulation will incorporate the information and out-

puts generated by the AGV Roll Delivery simulation currently under development by 

Systems Modeling (SM), a material-handling vendor, and the newspaper. 
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 The development of this model requires a number of tasks. Initially, a thorough 

understanding of the newspaper’s Springfi eld and Maryland facilities is necessary to 

conceptualize and develop an accurate representation of this system. This process has 

been, and will continue to be, a joint effort between  The Washington Post  and Systems 

Modeling. This procedure defi nes the user’s conceptualization of the system that SM 

will use to develop the Arena simulation model. Included in this process is defi ning the 

inputs and outputs of the model, verifying that the Arena model has been implemented 

accurately, and validating that the model accurately represents the facility. 

 Upon completion of the project, the newspaper will have a tool that will allow an an-

alyst to specify various operating scenarios for the mailroom facility, execute simulation 

experiments of the scenarios, and perform statistical analysis of the scenarios. 

   A.1.3  Purpose of the Functional Specifi cation 

 This functional specifi cation serves four purposes. First and foremost, this document de-

scribes the mailroom operation at the newspaper’s Springfi eld and Maryland facilities, 

at the level of detail required for modeling purposes. This description includes process 

fl ow, equipment functionality, operating procedures and rules, system interactions, and 

logistical issues. These systems must be thoroughly understood before they can be rep-

resented in a computer simulation. 

 Second, the user input required to perform the simulation analysis is defi ned. The 

input required includes such things as the press behavior, dock allocations, truck load 

time, and other operational characteristics. 

 Third, the output generated by the computer simulation is defi ned. Output is gen-

erally in the form of system performance measures from which the simulation analysis 

is performed. These output statistics include such things as dock utilization, truck load 

times, tray utilization, etc. 

 Finally, the project deliverables are described. The deliverables will include the 

Arena model, input data fi les, data fi les, a user’s manual to describe how to use the 

software, and the fi nal report. 

  This document explicitly defi nes issues that are part of the quotation and other unof-
fi cial documents exchanged by SM and The Washington Post. Therefore, for those issues 
that are discussed in other documents, this document supersedes all correspondence in 
defi ning the project . 

   A.1.4  Use of the Model 

 The use of the simulation model will be detailed completely in the user’s manual pro-

vided at the completion of the project. Use of the model includes initializing the Arena 

model and input fi les with the desired input parameters, running the model on the com-

puter, and generating summary statistics and reports. The summary reports generated 

from various runs can be compared to evaluate the impact of specifi c parameters on 

system performance. 

   A.1.5  Hardware and Software Requirements 

 SM will develop the Arena simulation model under the Microsoft® Windows® operating 

system environment. The software and hardware required to run the model are specifi ed 
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in System Requirements, part of the Release Notes under the Help menu in the Arena 

software itself. 

 The software is not included with this project, but can be purchased under a separate 

contract. 

     A.2  System Description and Modeling Approach 

  The following sections defi ne the fl ow of newspapers from the presses through the mail-

room to the loading docks. The various system components will be described for both 

the Springfi eld and Maryland facilities since the two plants have different layouts and 

modes of operation. Any operational differences will be addressed in the detail needed 

for this modeling effort. Overall, the logic defi ned will be similar for both facilities. 

 The model will include the production of headsheets, movement of headsheet prod-

uct via the tray system to the docks, and the palletizing and loading of the bundles onto 

the trucks at the docks. It will also include the loading of previously produced advance 

product onto the trucks at the docks. 

  A.2.1  Model Timeline 

 The model will be able to simulate mailroom activities ranging from 1 day to a complete 

week. 

   A.2.2  Presses 

 The presses will be the starting point within the simulation model. Product generated from 

a press is sent to a stacker where it is bundled and then sent to the tray system. Neither 

the presses nor the stackers will be modeled in detail for this project. Press product is pro-

duced on each of four identical presses at a constant press rate during normal operations. 

Assuming a constant, user-defi ned bundle size at the stacker, bundles will be modeled en-

tering the system at a constant rate for each press. The production rate for each press will 

be defi ned on an hourly basis over a 1-week time horizon. Most of the time, press runs 

should start between 12:15  am  and 12:30  am  and fi nish between 4:30  am  and 4:40  am . 

 At the conclusion of the AGV Roll Delivery simulation project, logic will be added 

so that the AGV simulation generates a press schedule that includes all uptimes and 

downtimes for each press. These press schedules can then be used as input fi les for the 

mailroom simulation. The mailroom simulation will be designed so that the analyst 

can choose to use either (1) “late run” press output schedules generated from the AGV 

simulation, or (2) user-defi ned press parameters and press downtime distributions. Both 

options are described. 

   A.2.2.1  AGV Simulation Press Output Schedule 
 Late-run press output schedules generated by the AGV simulation model will be im-

ported into the mailroom model as ASCII fi les. For each press, these fi les will consist of 

a sequence of uptimes, downtimes, and speeds. An example of a late-run press output 

schedule generated by the AGV simulation is presented in   Table A-1  . 

   A.2.2.2  User-Defi ned Press Schedule 
 User-defi ned press parameters will be read into the simulation model from one 

ASCII fi le and will include, for each press: (1) total work order size, (2) press speeds, 
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(3) ramp-up counts, and (4) ramp-up speeds. An example of user-defi ned press param-

eters is provided in   Table A-2  . 

 Besides replating downtime, each press also experiences random downtime. This 

downtime is caused by either (1) bad paper roll, or (2) newsprint web breaks. For each 

failure type, the frequency of occurrence will be based on headsheet count, while the 

time to repair distribution will be expressed in minutes. 

   A.2.2.3  Replating 
 For each press, replating will occur according to a user-defi ned schedule, and its associ-

ated downtimes will be modeled using a time-based distribution. An example of the re-

plating schedule is given in   Table A-3  . In this example, it is assumed that the presses are 

turned on between 12:15  am  and 12:30  am  and are off between 4:30  am  and 4:40  am . 

For the purpose of the simulation, it will be assumed that there may be as many as ten 

replatings in a given run. 

  Table A-1.   Late-Run Press Output Generated by AGV Simulation (Press 1)  

 Press 1
Sequence  Up/Down 

 Time 
(minutes) 

 Press Speed
(copies/hr) 

 Ramp Up
(copies) 

 Ramp-Up Speed
(copies/hr) 

 1  Up  30  70,000  5,000  56,000 

 2  Down  5  0  0  0 

 3  Up   45  70,000  5,000  56,000 

 4  Down  10  0  0  0 

  Table A-2.   User-Defi ned Press Output Schedule  

 Press
Number 

 Work Order
(copies) 

 Press Speed
(copies/hr) 

 Ramp Up
(copies) 

 Ramp-Up Speed 
(copies/hr) 

 1  120,000  70,000  5,000  56,000 

 2  120,000  65,000  3,000  49,000 

 3  120,000   55,000  5,000  49,000 

 4  120,000  70,000  5,000  56,000 

  Table A-3.   User-Defi ned Replating-Induced Downtime  

 Replating 
 Replating Occurrence 

(minutes) 
 Replating Downtime 

(minutes) 

 1st  1:15 to 1:30  7 to 10 

 2nd  2:15 to 2:30  10 to 15 

 3rd  2:45 to 3:00  7 to 10 

 4th  :  : 
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   Most of the time, replating should induce the following sequence: Presses 1 and 2 

go down, press 1 goes back up, press 3 goes down, press 2 goes back up, press 4 goes 

down, press 3 goes back up, and press 4 goes back up. 

    A.2.3  Product Types 

 Presses produce two types of product—advance and headsheet. Advance product is the 

part of the newspaper that is not time sensitive and can therefore be produced earlier in 

the day. The headsheet is typically the fi rst few sections of the newspaper that contain 

time-sensitive news. For purposes of this simulation, it will be assumed that all of the 

advance product needed for a given day is available when needed to load the delivery 

trucks. Only the headsheet production will be modeled explicitly. 

   A.2.4  Press Packaging Lines 

 Each press feeds three press packaging lines and each press packaging line is connected 

to the tray system. Press output can be regulated through each of the three press pack-

aging lines. These lines input headsheets and produce bundles. A press packaging line has 

three operational modes: (1) backup, (2) regular, and (3) manual insertion. In the backup 

mode, the press packaging line is idle and does not produce any bundles. In the regular 

mode, a user-defi ned percentage of press output is fed to the line and mechanically 

transformed into bundles. Bundle size will be user defi ned. In the manual insertion 

mode, the line functions in the regular mode except that bundles are manually reworked 

to satisfy additional product requirements. These requirements involve merging advance 

products with headsheets. The manual insertion process will be described in A.2.9. 

   A.2.5  Tray System 

 Bundles entering the tray system from the press packaging lines have no pre-defi ned 

destination. At the determination point in the tray system, the bundles will be given a 

fi nal destination (dock or palletizer) based on the tray trip rate and the trucks currently 

waiting for product. 

  A.2.5.1  Springfi eld, Va., Tray System 
 The Springfi eld tray system consists of two identical tray conveyors that transport bun-

dles from the presses and stackers to the loading docks and palletizers. The two tray 

conveyors are differentiated and identifi ed by their color, green or yellow. The output 

from each press is dedicated to one of the two conveyors, with the output from presses 1 

and 3 sent to the green tray conveyor, and the output from presses 2 and 4 sent to the 

yellow tray conveyor. The green tray conveyor has exactly 263 trays, while the yellow 

tray conveyor has exactly 266 trays. Both conveyors move at a velocity of 150 trays/min 

and can deliver bundles to any of the bundle docks or any of the palletizers. The tray 

trip rate determines how often product may be diverted to a given location. At the de-

termination point in the tray system, the bundle will look at the truck with the highest 

priority, currently at a dock. If the trip rate is not exceeded, the bundle will be diverted 

to that location. If the trip rate would be exceeded, the bundle will look at trucks with 

lower and lower priorities until a valid destination is found. If a bundle cannot fi nd a 

valid destination, it is recirculated on the tray conveyor. The conveyor velocity and trip 

rate are user defi ned.  
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   A2.5.2  Maryland Tray System 
 The tray system in the Maryland facility will function in a similar manner. However, 

because the Maryland facility is one story, there is only one conveyor in the tray system. 

In addition, each of the packaging lines is connected directly to one to four docks. This 

enables bundles to be sent directly to a dock, bypassing the tray system. A packaging 

line will only divert a bundle to the tray system if there are no trucks ready for loading 

at one of its docks. The physical layout of the conveyor and the exact number of trays 

in the conveyor must be defi ned by the newspaper before the model may be built. The 

conveyor velocity and trip rate are user defi ned. 

    A.2.6  Truck Arrivals 

 Truck arrivals are controlled from a user-defi ned schedule fi le (  Table A-4  ). Each truck 

has a unique truck ID, a time bucket, a draw quantity, and a truck type. The time bucket 

determines the time segment in which the truck arrives. The draw quantity is the number 

of copies to be loaded onto that truck. The truck type is the type of service for that truck. 

Truck types can be either highway, home delivery, or newsstand. 

 Trucks arrive in the model in time bucket  n  2 1 to begin loading the advance prod-

uct at an advance dock. When the advance product is completely loaded, the truck may 

move to a dispatch dock where it will receive the headsheet needed for completion. 

Trucks are serviced based on their arrival time at a dock. 

  A.2.6.1  Home Delivery 
 Home delivery (HD) trucks receive their advance product at one of the dedicated advance 

docks. Pallets of advance product are disassembled and conveyed in bundles on a dedi-

cated conveyor to the truck. The loading rate in bundles per minute and the dock setup 

time in minutes are user defi ned. After receiving all of the advance product, the HD truck 

can proceed to the regular dispatch docks where the same amount of headsheet product 

is loaded. Headsheet bundles arrive via the tray system. The loading rate in bundles per 

minute and the dock setup time in minutes are user defi ned. A user-defi ned percentage of 

the HD trucks are deemed to be “slow” and as such have a longer load time and setup time. 

   A.2.6.2  Highway 
 Highway (HWY) trucks are serviced at dedicated highway docks. Entire pallets of ad-

vance product are loaded by fork trucks onto the HWY trucks. The loading rate in 

pallets per minute and the wrap-up time (for last pallet) in minutes are user defi ned. 

Headsheet product destined for a HWY truck is sent to the palletizer dedicated to that 

HWY truck. Pallets are formed and are then loaded onto the truck by fork trucks. The 

loading rate and wrap-up time are the same as for the advance pallets. In addition, there 

  Table A-4.   Truck Arrival Schedule  

 Number  Bucket  TruckID  Draw Qty  Truck Type 

 1  1  0906  12294  2 

 2  1  0907   5050  3 

 :  :  :  :  : 

  n   8  9451    650  1 
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is a dock change time between trucks. A HWY truck remains at a dock until all of its 

advance and headsheet product have been loaded. 

   A.2.6.3  Newsstand/Street Sales 
 Newsstand/street sales (NS/SS) trucks receive no advance product. Instead, upon arrival 

at a dispatch dock, bundles are generated from the manual insertion process. These 

bundles travel via the tray system to the NS/SS truck. Load times and wrap-up times are 

similar to those for the HD trucks. 

    A.2.7  Docks 

 In the model, there are three types of docks: (1) pallet, (2) advance bundle, and (3) head-

sheet bundle. Pallet docks are designed for forktruck access and service HWY trucks. 

Advance bundle docks are used to load the advance product onto the trucks during 

time bucket ( n  2 1). Headsheet bundle docks are used to load the headsheet product 

delivered to the trucks via the tray system. A truck receives press product based on its 

arrival time (FIFO) at a given dock area and not its dock location. For each dock type, 

the number of active docks will be user defi ned. 

  A.2.7.1  Springfi eld, Va., Docks 
 The Springfi eld facility has exactly 12 dedicated pallet docks, exactly 10 advance bun-

dle docks, and exactly 14 dedicated headsheet bundle docks. 

   A.2.7.2  Maryland Docks 
 The proposed Maryland facility has exactly 10 combination pallet and advance bundle 

docks and 18 dedicated headsheet bundle docks. 

    A.2.8  Palletizers 

 For purposes of the simulation, all of the palletizers are assumed to be identical. A pal-

letizer is used to package headsheet bundles destined for a HWY truck at a pallet dock. 

Each HWY truck at a dock has a dedicated palletizer. For purposes of the model, a pal-

letizer acts as a possible destination for bundles on the tray system. The palletizing of 

advance product will not be modeled in this project. Palletizers operate at a constant rate 

and form pallets of a constant size. The last pallet loaded will be a partial pallet with as 

much product as necessary to fi nish the load. The palletizer rate and pallet size are user 

defi ned. Palletizers experience various downtimes at random intervals. These down-

times can either be modeled as one downtime by combining all of the failure modes or 

by modeling each individual failure mode separately. 

 If a bundle arriving at a palletizer must wait because the equipment is busy or down, 

it will accumulate in a queue. The capacity of the palletizer queues will be user defi ned. 

If the queue at a palletizer reaches the user-defi ned limit, any additional bundles arriving 

at that palletizer will be turned away. Bundles turned away will be recirculated on the 

tray conveyor and will try to exit at the same palletizer on the next circuit. 

  A.2.8.1  Springfi eld, Va., Palletizers 
 The Springfi eld facility contains fi ve palletizers, located on the fi rst fl oor. 

   A.2.8.2  Maryland Palletizers 
 The proposed Maryland facility contains four palletizers. 
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    A.2.9  Manual Insertion Process 

 Manual insertion begins when the fi rst NS/SS truck arrives at a dock and continues 

until all NS/SS trucks are serviced. As the press packaging lines are changed over to 

manual insertion mode, hand inserters from a pool of workers are assigned to assem-

ble bundles of advance product and headsheets. These bundles, called NS/SS bundles, 

are dispatched to the NS/SS trucks. Each packaging line is staffed by a maximum of 

25 workers. Each worker can insert 500 copies per hour. Bundle size, worker pool size, 

and worker capacity are user defi ned. 

 Manual insertion is a critical component of the mailroom simulation because it con-

ditions press packaging line operations. For each production day, the press packaging line 

operation experiences three sequential phases: (1) the home delivery (HD) phase, (2) the 

combined home delivery and newsstand/street sales (HD+NS/SS) phase, and (3) the news-

stand/street sales (NS/SS) phase. During the fi rst phase, all bundles produced by the press 

packaging lines are assembled mechanically and dispatched to either HD or HWY trucks. 

During the second phase, bundles may be dispatched to either HD, HWY, or NS/SS trucks. 

During the third phase, all bundles are manually assembled and dispatched to NS/SS trucks. 

The following section contains descriptions of these phases for a one-press confi guration. 

The example is provided to illustrate the concept of a press packaging line operation. 

  Example  

    ■   HD Phase . Two packaging lines operate in the regular mode and share press 

output (50%/50%). One packaging line is in backup mode.  

    ■   HD+NS/SS Phase . Two packaging lines operate in the regular mode and share 

80% of press output (40%/40%). One packaging line operates in manual in-

sertion mode and is fed 20% of press production. On the hand insertion line, 

headsheet bundles that are not set aside by a hand inserter are down-stacked 

on a pallet (user-defi ned pallet size) before the bundles reach the tray system. 

These headsheet bundles are stored until the NS/SS phase. The headsheet 

bundles that are set aside are reworked and transformed into NS/SS bundles.  

 ■     NS/SS Phase . While the press is still running, the three packaging lines op-

erate in the manual insertion mode and share press output (33%/33%/33%). 

On these hand insertion lines, headsheet bundles that are not set aside and 

reworked by a hand inserter are down-stacked on a pallet before reaching the 

tray system. These bundles are stored until the press completes its work order. 

Once the press is turned off, all down-stacked headsheet bundles are re-fed 

into hand insertion lines for NS/SS production.  

  In the simulation, the user will defi ne the length of a phase by defi ning the amount 

of product to be produced by the press during that phase. When that amount of product 

has been produced, the next phase will begin. The NS/SS phase will start when all of the 

HD trucks are serviced and end when all of the NS/SS trucks have been serviced. The 

user will also defi ne the mode of operation for each packaging line during each phase. 

If a packaging line is working in manual insertion mode, the user will defi ne the number 

of hand inserters on the line and the hand insertion rate. 
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     A.3 Animation 

  The Arena simulation model will include an animation that will capture the general fl ow 

of bundles through the mailroom to the docks and palletizers. The animation will be a top-

down, two-dimensional view of the system. The animation will show the movement of 

bundles through the tray system to the loading docks and palletizers. In addition, various 

system statistics will be displayed on the animation to show dynamic performance criteria. 

 The newspaper will supply a scaled layout of both the Springfi eld facility and the proposed 

Maryland facility in CAD format that will provide the static background for the animation. 

    A.4 Summary of Input and Output 

   A.4.1 Model Input 

 The data items read into the simulation model from ASCII fi les include but are not 

restricted to: 

 Presses 

    ■  Production Rate  

 ■    Production Schedule (1 day or 1 week)  

 ■    MTBF, MTTR  

  Note: The production schedule output from the AGV Roll Delivery Simulation may 

be used instead of these inputs. 

 Press Packaging Line 

 ■     Line Activation Patterns (Modes, Phases)  

 ■    Tray System  

 ■    Velocity  

 ■    Trip Rate (Docks)  

 ■    Trip Rate (Palletizers)  

  Palletizers 

 ■     Production Rate  

    ■  Bundles per Pallet  

 ■    MTBF, MTTR  

  Bundles 

 ■     Copies per Bundle (Advance)  

 ■    Copies per Bundle (Headsheet)  

 ■    Copies per Bundle (Hand Insertion)  

  Process Time 

     ■  Truck Load Rates 

    ■  HD-Headsheet (Reg)  

   ■  HD-Headsheet (Slow)  

   ■  HD-Advance  

   ■  HWY (Last Pallet)  

   ■  HWY (Other Pallets)     
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   ■  Dock Change Times 

    ■  HD-Headsheet (Reg)  

   ■  HD-Headsheet (Slow)  

   ■  HD-Advance  

   ■  HWY    

  Truck Schedule (for Each Truck) 

    ■  Bucket  

   ■  Truck ID  

   ■  Draw Qty  

   ■  Truck Type  

  Hand Insertion 

    ■  Hand Inserters per Line  

   ■  Hand Inserter Service Rate  

    A.4.2 Model Output 

 The following performance measures will be written to one or more ASCII data fi les at 

the conclusion of the simulation run. These statistics will be collected and output on a 

daily and weekly basis. 

 Input Parameters 

    ■  Process Times  

   ■  Equipment and Resource Levels  

   ■  Failure Rates  

  Press Activity (for Each Press) 

    ■  Available Time (Up)  

   ■  Total Production  

   ■  Average Production Rate  

   ■  Breakdown History  

  Hand Insert Activity (for Each Line) 

    ■  Total Production  

   ■  Average Production Rate  

   ■  Down-Stacked Headsheet Bundles  

  Tray Activity 

    ■  Utilization (Green & Yellow)  

  Bundles 

    ■  Destination Statistics  

  Dispatch Statistics 

    ■  Trucks Early  

   ■  Trucks Late  

   ■  Time to Complete Pct of Trucks  

  Bucket Loading (per Bucket) 

    ■  Total Units Loaded (Actual)  

   ■  Total Units Loaded (Scheduled)  
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  Dock Statistics (per Dock) 

    ■  Dock Utilization  

   ■  Total Units Loaded  

   ■  Utilization per Bucket  

  Truck Statistics (per Truck) 

    ■  Dock Used  

   ■  Advance Load Time  

   ■  Wait Time  

   ■  Idle Time  

   ■  Load Time  

   ■  Change Time  

   ■  Summary for Each Truck Type  

      A.5 Project Deliverables 

  The following sections discuss the project deliverables. Upon completion of the project,  The 
Washington Post  will be supplied with all the computer fi les that were developed under the 

contract. The simulation model and all supporting data fi les are the sole and exclusive prop-

erty of the buyer. This does not include any Arena software unless specifi cally stated and a 

quote has been provided. SM will keep backup copies for maintenance and recordkeeping in 

the event that  The Washington Post  desires changes to the model in the future. 

  A.5.1 Simulation Model Documentation 

 Model documentation will be a continuous process throughout the development of the 

model. This documentation will be contained within the Arena model and will include 

detailed comments describing all major sections of the model logic. Also included will 

be a complete variable listing containing descriptions of all variables, entity attributes, 

stations, queues, etc., used in the model. 

   A.5.2 User’s Manual 

 The user’s manual will include all of those items for which SM is responsible. This man-

ual will only include information that is specifi c to this project. The user is referred to 

the Arena Product Manuals (under the Help menu in the Arena software) for items that 

are specifi c to the Arena software. The contents of the user’s manual will be: 

    1.  The functional specifi cation.  

   2.  The model fi le.  

   3.  All data input fi les.  

   4.  Instructions on how to use the model.  

    A.5.3 Model Validation 

 Validation is the process of establishing that the model accurately represents the real system. 

The actual performance data required as inputs to the simulation model will be essential for 

this validation. The amount of data available, in the proper format, determines the level of 

detail of the validation process. SM and  The Washington Post  will run initial validation tests 

of the models to confi rm system performance and the logic and algorithms implemented. 
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   A.5.4 Animation 

 The Arena model will include a two-dimensional animation designed to allow the ana-

lyst insight into the dynamic features of the model. The animation will closely resemble 

the facility layout supplied by the newspaper in the form of a CAD fi le. 

     A.6 Acceptance 

  The estimate for the modeling project described is six person-weeks of effort to com-

mence after this functional specifi cation document has been signed. 

 The cost of this effort is $ xx. Billing will occur based on the following schedule: 

  Acceptance of the functional specification    $ xx  

  Completion of model development    $ xx  

  Final acceptance    $ xx  

 This cost does not include software required to run the simulation model. 

  The Washington Post  Mailroom Simulation Model 

 Functional Specifi cation Furnished by:     

 Scott A. Miller, Project Manager 

 Simulation and Consulting Services 

 Systems Modeling Corporation 

 Agreed and Accepted by: 

    

  The Washington Post  representatives: 

 Gary Lucke, Manager of Manufacturing Systems Engineering 

 Olivier Girod, Manager of Industrial Engineering         
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 APPENDIX B

A Refresher on Probability and 
Statistics  

 The purpose of this appendix is to provide a brief refresher on selected topics in prob-

ability and statistics necessary to understand some of the probabilistic foundations of 

simulation, as well as to design and analyze simulation experiments appropriately. 

While this material underlies many parts of the book (including every time we use a 

probability distribution in a model to represent some random input quantity like a time 

duration), it’s particularly relevant to Section 2.6, Section 4.6, Chapter 6, Section 7.2, 

and Chapter 12. 

 We intend for this appendix to serve as a brief tutorial, and not like a comprehen-

sive treatment of these topics. There are many excellent texts on probability and sta-

tistics in general, such as Anderson, Sweeney, and Williams (2012), Devore (2012), 

and Hogg and Craig (2013); for a free online “book” on the subject, which links to 

additional online resources, see Lane (2013) at davidmlane.com/hyperstat/. 

 Though we’ll start pretty much from scratch on probability and statistics, we do 

assume that you’re comfortable with algebraic manipulations, including summation 

notation. For a complete understanding of continuous random variables (Section B.2.3), 

you’ll need to know some calculus, particularly integrals. 

 In Section B.1, we go over the basic ideas and terminology of probability. Section B.2 

contains a discussion about random variables in general, describing discrete and con-

tinuous random variables as well as joint distributions. The notion of sampling, and 

the associated probabilistic structure, is discussed in Section B.3. Statistical inference, 

including point estimation, confi dence intervals, and hypothesis testing, is covered in 

Sections B.4–B.6. Throughout, we’ll make the discussion relevant to simulation by way 

of examples. 

  B.1 Probability Basics  

 An  experiment  is any activity you might undertake whose exact outcome is uncertain 

(until you do it and see what happens). While the term might conjure up images of high 

school chemistry lab, its interpretation in probability is much broader. For instance:  

 ■  Flip a “fair” coin. Will it come up tails?  

 ■  Throw a “fair” die (that’s singular for “dice”). Will it be 4? Will it be an odd 

number? Will it be more than 2 but no more than 5?  

 ■  Drive to work tomorrow. How long will it take? How long will you be delayed 

because of construction? Will you be hit by an asteroid?  
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  ■ Run a call center for a week. How many calls will be handled? What will be the 

average duration of your customers’ wait on hold? How many customers will be 

turned away because the hold queues are full?  

 ■  Run a  simulation  of a call center (rather than operate the real center) for a  simu-
lated  week. Ask the same questions as we just did, except now for what happens 

in the simulation rather than in reality; if your simulation model is valid, you 

hope to get the same answers, or at least close.   

 The  sample space  of an experiment is the complete list of all the individual out-

comes that might occur when you do your experiment. For something like fl ipping a 

coin or throwing a die, it’s easy to write down the sample space. In other cases, though, 

the sample space could have an infi nite number of possibilities, like how long it will 

take you to drive to work tomorrow. Fortunately, it’s often possible to understand an ex-

periment and its probabilistic structure without writing down explicitly what the sample 

space is. 

 An  event  is a subset  1 of the sample space. An event can sometimes be described by 

just listing out the individual outcomes defi ning the event, if it’s simple enough. Usu-

ally, though, an event is defi ned by some condition on what happens in the experiment; 

for example, in the call center mentioned, an event of interest might be that at least 

500 calls are handled in a day. Events are often denoted as capital letters like  E ,  F ,  E  
1
 , 

 E  
2
 , etc. The usual set operations apply to events, such as  union  ( E  ø  F ),  intersection  

( E  ù  F ), and  complementation  ( E   C   5 the set of possible outcomes  not  in  E ), as repre-

sented in Figure B-1  .    

 The  probability  of an event is the relative likelihood that it will occur when you 

do the experiment. By convention (and for convenience of arithmetic), probabilities 

are always between 0 and 1.  P ( E ) denotes the probability that the event  E  will occur. 

While it may be impossible to know or derive the probability of an event, it can be inter-

preted as the proportion of time the event occurs in many independent repetitions of the 

 1 In advanced treatments of probability, an event is not allowed to be  any  subset of the sample space, but 

only a particular kind of subset, called a  measurable  subset. For our purposes, though, all the subsets we’ll 

consider will be measurable, so will be events. 

  Figure B-1.   Union, Intersection, and Complementation      

E F E F E

EcE ∪ F E ∩ F

Sample space
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experiment (even if you can’t actually repeat the experiment). Here are some properties 

(among many others) of probabilities:  

  ■ If  S  is the entire sample space, then  P ( S ) 5 1.  

  ■ If [ is the  empty  ( null ) event, then  P ([) 5 0.  

  ■  P ( E   C  ) 5 1 2  P ( E ).  

  ■  P ( E  ø  F ) 5  P ( E ) 1  P ( F ) 2  P ( E  ù  F ).  

  ■ If  E  and  F  are  mutually exclusive  ( E  ù  F  5 [), then  P ( E  ø  F ) 5  P ( E ) 1  P ( F ).  

  ■ If  E  is a subset of  F  (i.e., the event  E  implies the event  F ), then  P ( E ) #  P ( F ).  

  ■ If  o  
1
 ,  o  

2
 ,  o  

3
 , . . . are the individual outcomes in the sample space (fi nite or infi nite), 

then ∑ 
all i

P(o
i
) 5 1.   

 Sometimes, the knowledge that one event occurred can alter the probability that an-

other event also occurred. The  conditional probability  of  E  given  F  is defi ned as

   P ( E u F ) 5  P ( E  ù  F )y P ( F )   

 (assuming that  P ( F ) . 0). The intuition for this is that knowing that  F  occurred reduces 

the “world” from the whole sample space down to  F , and so the only relevant part of  E  

is that part that intersects with  F . This probability is then measured relative to the “size” 

of the reduced world,  P ( F ). 

 Events  E  and  F  are called  independent  if  P ( E  ù  F ) 5  P ( E )  P ( F ). If this is so, then 

 P ( E u F ) 5  P ( E ), and  P ( F u E ) 5  P ( F ), by defi nition of conditional probability. In other 

words, knowing that one of two independent events has occurred tells you nothing about 

whether the other one occurred. 

 A lot of different kinds of events and probabilities come up in simulation. For ex-

ample, you might want to ask about the probability that:  

  ■ a part passes inspection.  

  ■ an arriving part is of priority 3.  

  ■ a service time will be between 2 and 6.  

  ■ no customers will arrive during a 5-minute time interval.  

  ■ the maximum queue length during a simulation will exceed 10.  

  ■ the average time in system of parts is less than 4 hours.     

  B.2 Random Variables  

 Events can be defi ned in many different ways and can be complex. One way of quan-

tifying and simplifying events is by defi ning  random variables  relating to them. In this 

section, we’ll discuss the basic ideas of random variables and their two basic forms 

(discrete and continuous), and then consider multiple random variables defi ned together 

and their possible relationships. 

  B.2.1 Basics 

 A  random variable  is a number whose value is determined by the outcome of an experi-

ment, so can be thought of as a quantifi cation of an experiment. Technically, a random 

variable is a function defi ned from the sample space to the real numbers. As such, it’s 

a rule or mapping that assigns a number to each possible outcome of the experiment. 
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While you can sometimes defi ne a random variable in this way, by going back to the 

sample space and assigning the mapping, you often just start by defi ning the random 

variable without bothering with the sample space. A reasonable way to think about a 

random variable is that it’s a number whose value you don’t know for sure before doing 

the experiment, but you will generally know  something  about it, like its range of pos-

sible values or its probability of being equal to something or falling in some range. 

Random variables are typically denoted by capital letters like  X ,  Y ,  W  
1
 ,  W  

2
 , etc. 

 Random variables come in two basic “fl avors”:  discrete  and  continuous . A discrete 

random variable can take on only certain separated values. For instance, the number of 

defective items in a shipment of 50 items would have to be an integer between 0 and 

50. Another example of a discrete random variable is the number of times a part has to 

undergo inspection to pass; without further information, this random variable would be 

a positive integer with no upper bound. Thus, a discrete random variable could have a 

fi nite or infi nite range of possible values. 

 A continuous random variable, on the other hand, can take on any real value, pos-

sibly bounded on the left or the right. Continuous random variables typically represent 

physical measurements like time or distance. There are always infi nitely many possible 

values for a continuous random variable, even if there are limits on its value on both ends. 

For instance, if  X  is the time to process a part on a machine, the range would be [0, `) 

unless we assumed that no part was allowed to stay on the machine for longer than a 

certain time  a , in which case the range would be [0,  a ]. 

 In simulation, random variables are used for several different purposes. They often 

serve as “models” for input quantities like uncertain time durations (service or interar-

rival times), the number of customers in an arriving group, or which of several different 

part types a given arriving part is. Random variables are also used to represent output 

quantities like the average time in system, the number of customers served, or the maxi-

mum length of a buffer. 

 The probabilistic behavior of a random variable is described by its  probability dis-
tribution . Since the nature of this distribution is somewhat different for discrete and 

continuous random variables, we’ll consider them separately; we’ll also defi ne some 

basic properties of random variables, like expected value and variance.  

  B.2.2 Discrete 

 For a discrete random variable  X,  there will be a list  x  
1
 ,  x  

2
 , . . . (fi nite or infi nite) of possi-

ble values it can take on. Note that the  x  
 i 
 ’s are fi xed, non-random values, but the random 

variable  X  is, well, random. The  probability mass function  (PMF) is simply a function 

that gives the probability that  X  will take on each of the possible values:

   p ( x  
 i 
 ) 5  P ( X  5  x  

 i 
 )   

 for all  i . Note that the statement “ X  5  x  
 i 
 ” is an event that may or may not happen, and 

the PMF gives the probability that it does. The PMF may be expressed in a variety of 

different ways—a numerical list or table, a graph, or some kind of mathematical for-

mula. Since the complete list of the  x  
 i 
 ’s is supposed to represent all the different possible 

values of  X , ∑ 
all i 

 p(x
i
) 5 1. Usually, the PMF is estimated from data, or simply assumed. 
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 The  cumulative distribution function  (CDF) of a discrete random variable  X  is a 

function that gives the probability that  X  will be  less than or equal to  its argument:

F(x) 5    � 
 

   

 

   p(x
i
).  

 This summation is taken over all possible values  x  
 i 
  that are # the argument  x  of  F . Note 

that 0 #  F ( x ) # 1 for all  x , that  F ( x ) → 0 as  x  → 2 `, and that  F ( x ) → 1 as  x  → 1 `. 

Thus,  F ( x ) is a non-decreasing function going from 0 up to 1 as  x  goes from left to right. 

For a discrete random variable,  F ( x ) is a “step” function that’s fl at between adjacent 

possible values  x  
 i 
 , and takes a “jump” of height  p ( x  

 i 
 ) above  x  

 i 
 . 

 The probability of an event that involves a discrete random variable  X  generally can 

be found by adding up the appropriate values of the PMF. For instance,

P(a # X , b) 5    � 
 

   

 

   p(x
i
). 

  This just says to add up the probabilities of those  x  
 i 
 ’s that are at least  a  but (strictly) less 

than  b . Note that with discrete random variables, you need to be careful about weak vs. 

strong inequalities. 

 Just as data sets have a “center” measured by the average of the data, random vari-

ables have a “center” in a certain sense. The  expected value  of the discrete random 

variable  X  is defi ned as

E(X) 5  � 
all i

   

 

  x
i 
p(x

i
)  

 (this is also called the  mean  or  expectation  of  X  and is often denoted by  �  or, if there’s 

need to identify the random variable,  �  
 X 
 ). This is a weighted average of the possible val-

ues  x  
 i 
  for  X , with the weights being the respective probabilities of occurrence of each  x  

 i 
 . 

In this way, those  x  
 i 
 ’s with high probability of occurrence are counted more heavily than 

are those that are less likely to occur. If there are fi nitely many  x  
 i 
 ’s and each is equally 

likely to occur, then  E ( X ) is just the simple average of the  x  
 i 
 ’s since they all “count” the 

same. Despite the name, it’s important to understand that  E ( X ) is  not  to be interpreted as 

the value of  X  you “expect” to get when you do the experiment defi ning  X . Indeed,  E ( X ) 

might not even be a possible value of a discrete random variable  X  (the  x  
 i 
 ’s might be 

integers but, depending on the situation,  E ( X ) need not be an integer). Instead, interpret 

the expected value like this: do the experiment many times (technically, infi nitely many 

times), observe a value of  X  each time, and compute the average of all these values of  X  

you observe—this average will be the expectation of  X . 

 And just as data sets have a measure of variability, so too do random variables. The 

 variance  of the discrete random variable  X  is defi ned as

Var(X) 5  � 
all i

   

 

  (x
i 
2 m)2 p(x

i
)  

all i such that 
x

i
#x

all i such that 
a#x

i
,b
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 (often denoted  �  2  or  � 
X
  2 ), where  �  is the expected value of  X . This is a weighted aver-

age of the squared deviation of the possible values  x  
 i 
  around the expectation, with the 

weights being the probability of occurrence of each  x  
 i 
 . The variance is a measure of the 

“spread” of the random variable about its mean. The units of the variance are the squares 

of the units of  X , so people often use the positive square root of the variance (denoted  �  

or  �  
 X 
 ) as a measure of spread; this is called the  standard deviation  of  X . 

 As mentioned earlier, there are different ways to defi ne the PMF of a discrete ran-

dom variable. Arena supports several common discrete random variables for modeling 

input quantities, and these are defi ned and described in Appendix C.  

  B.2.3 Continuous 

 A continuous random variable can take on any real value in some range. The range can 

be limited or unlimited on either or both ends. No matter how narrow the range may be, 

a continuous random variable can always take on an infi nite 2  number of real values (that 

is, any value in a continuum). Thus, it doesn’t make sense to talk about the probability 

that a continuous random variable  equals  (exactly) some fi xed number  x ; technically, 

this probability will always be 0 even if  x  is within the range of  X . 

 Instead, the probabilistic behavior of a continuous random variable is described in 

terms of its falling  between  two fi xed values, which can be far apart or close together. 

The  probability density function  (PDF) of a continuous random variable  X  is defi ned to 

be a function  f ( x ) with the following properties and interpretation:  

  ■  f  ( x ) $ 0 for all real values  x .  

  ■ The total area under  f ( x ) is 1. In calculus terminology, the total integral of  f ( x ) is 1:

 � 
2`

  
1`

 f (x)dx 5 1 .  

  ■ For any fi xed real values  a  and  b , with  a  #  b , the probability that  X  will fall 

between  a  and  b  is the area under  f ( x ) between  a  and  b . In calculus terminology,

P(a # X # b) 5  � 
a
  

b

  f (x)dx .   

 This last property says that if we slide a slim interval left and right along the  x  axis 

(keeping the width of the interval constant), we “pick up” more area (probability) in 

those regions where the density is high, so we’re more likely to observe lots of values of 

 X  where the density is high than where the density is low. If you think of repeating the 

experiment many times and making a dot on the  x  axis where the value of the random 

variable  X  lands each time, your dots will be highly dense where the density function is 

high and of low density where the density function is low (get it?). Note that the height 

(value) of  f  ( x ) is itself  not  the probability of  anything . Indeed, we don’t require that 

 f  ( x ) be # 1, and some PDFs can rise above 1 at some points; what’s required is that the 

2   More precisely, an  uncountably  infi nite number of values, for those of you who are concerned with the 

different sizes of infi nity.  
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total  area  under the PDF be equal to 1. For example, consider a uniform distribution 

between 3.0 and 3.1. For the total area under the PDF to be equal to 1, the height  f  ( x ) 

for all possible values of  x  (between 3.0 and 3.1) needs to be equal to 10. Also, we could 

specify that  f  ( x ) 5 0 for values of  x  in or outside of some range, which would mean that 

these ranges are impossible for the random variable  X  to fall in. Unlike discrete random 

variables, we can be sloppy with whether the endpoints of the ranges over which we 

want probabilities are defi ned by weak or strong inequalities (that is, , is the same 

as # , and . is the same as $). 

 The cumulative distribution function of a continuous random variable  X  has 

the same basic defi nition and interpretation as for discrete random variables:  F ( x ) 5 

 P ( X  #  x ) for all real values  x . Thus,  F ( x ) is the probability that  X  will land on or to the 

left of  x . However, computing it requires getting the area under the density function to 

the left of  x :

F(x) 5  � 
2`

  
x

   f (t)dt.  

 Depending on the form of the PDF  f  ( x ), the CDF  F ( x ) may or may not be expressible 

as a closed-form formula involving  x . For instance, the exponential and Weibull dis-

tributions (see Appendix C for defi nitions) do have simple formulas for the CDF, but 

the general gamma and normal distributions do not. If the CDF is not expressible as a 

formula, its evaluation must be left to some numerical method or a table (which is why 

every statistics book has a table of normal-distribution areas). As in the discrete case, the 

CDF  F ( x ) for a continuous random variable rises from 0 at the extreme left to 1 at the 

extreme right, but in this case is a continuous function rather than a step function. Since 

 f ( x ) is the slope (derivative) of  F ( x ), those regions on the  x  axis where  F ( x ) rises steeply 

are those regions where we’d get a lot of observations on  X ; conversely, where  F ( x ) is 

relatively fl at, we won’t see many observations on  X . 

 The expected value of a continuous random variable is, as in the discrete case, one 

measure of the “center” of the distribution and is the average of infi nitely many observa-

tions on  X . It’s defi ned as

E(X) 5  � 
2`

  
1`

 xf (x)dx . 

 and often denoted as  �  or  �  
 X 
 . Roughly, this is a weighted “average” of the  x  values, 

using the density as the weighting function to count more heavily those values of  x  

around which the density is high. The variance of  X , measuring its “spread,” is

Var(X) 5  � 
2`

  
1`

 (x 2 m)2 f (x)dx  

 and often denoted  �  2  or   � 
  X 
   

 
2

 
 
  ; the positive square root of the variance (denoted  �  or  �  

 X 
 ) is 

the standard deviation. 

 Arena supports several different continuous random variables for use in modeling 

random input quantities; these are defi ned and discussed in Appendix C.  
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  B.2.4 Joint Distributions, Covariance, Correlation, and Independence 

 So far we’ve considered random variables only one at a time. But sometimes they natu-

rally come in pairs or triples or even longer ordered sequences (having the wonderful 

name  tuples ), which are called  jointly distributed  random variables or  random vectors . 

For instance, in the input modeling for a job-shop simulation, an arriving order might 

have random variables representing the part type (dictating its route through the shop), 

priority, and processing times at the steps along its route. On the output side, the simula-

tion might generate a sequence  W  
1
 ,  W  

2
 ,  W  

3
 , . . . representing the times in system of the 

fi nished parts in order of their exit. One issue that naturally arises, and which can af-

fect how we model and analyze such random vectors, is whether the random variables 

 composing them are related to each other, and if so, how. 

 To address this, we’ll start with the complete probabilistic representation of random 

vectors. To keep things at least partially digestible, we’ll consider just a pair (two-tuple) 

of random variables ( X  
1
 ,  X  

2
 ), but things extend in the obvious way to higher dimensions. 

The  joint CDF  of ( X  
1
 ,  X  

2
 ) is a function of two variables defi ned as

   F ( x  
1
 ,  x  

2
 ) 5  P ( X  

1
  #  x  

1
  and  X  

2
  #  x  

2
 )   

 for all pairs ( x  
1
 ,  x  

2
 ) of real numbers. Often the word “and” is replaced by just a comma:

   F ( x  
1
 ,  x  

2
 ) 5  P ( X  

1
  #  x  

1
 ,  X  

2
  #  x  

2
 ).   

 If the random variables are both discrete, the  joint PMF  is

   p ( x  
1
 ,  x  

2
 ) 5  P ( X  

1
  5  x  

1
 ,  X  

2
  5  x  

2
 ).   

 If the random variables are both continuous, the  joint PDF  is denoted  f ( x  
1
 ,  x  

2
 ), which 

you can visualize as some kind of surface fl oating above the ( x  
1
 ,  x  

2
 ) plane, and which 

has total volume under it equal to one. The interpretation of the joint PDF in the continu-

ous case is this: the probability that  X  
1
  will fall between  a  

1
  and  b  

1
 , and, simultaneously, 

that  X  
2
  will fall between  a  

2
  and  b  

2
 , is the volume under the joint PDF above the rect-

angle [ a  
1
 ,  b  

1
 ] 3 [ a  

2
 ,  b  

2
 ] in the ( x  

1
 ,  x  

2
 ) plane. In calculus notation, this interpretation is 

expressed as

P(a
1
 # X

1
 # b

1
, a

2
 # X

2
 # b

2
) 5  � 

a
1

  
b

1

     � 
a

2

  
b

2

   f (x
1
, x

2
)dx

2
dx

1
. 

 The joint distribution (expressed as either the CDF, PMF, or PDF) contains a  lot  of 

information about the random vector. In practice, it’s usually not possible to know, or 

even estimate, the complete joint distribution. Fortunately, we can usually address the 

issues we need to without having to know or estimate the full-blown joint distribution. 

 Given a joint distribution of two random variables, we can derive the individual, 

or  marginal , 3  distributions of each of the random variables on their own. In the jointly 

discrete case, the marginal PMF of  X  
1
  is, for all possible values  x  

1 i 
  of  X  

1
 , 

3   The term “marginal” is not to suggest that these distributions are of questionable moral integrity. Rather, 

it simply refers to the fact that, in two dimensions for the jointly discrete case, if the joint probabilities are 

arranged in a table, then summing the rows and columns results in values on the margins of the table, which 

will be the individual “marginal” distributions.  
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p
X

1

(x
1i
) 5 P(X

1
 5 x

1i
) 5  � 

all x
2j

   

 

   p(x
1i
, x

2j
) 

 and the marginal CDF of  X  
1
  is, for all real values of  x ,

F
X

1

(x) 5    � 
 

   

 

   px
1 
(x

1i
)  

 (symmetric defi nitions apply for  X  
2
 ). In the jointly continuous case, the marginal PDF 

of  X  
1
  is

f
x

1

(x
1
) 5  � 

2`

  
1`

 f (x
1
,x

2
)dx

2
  

 and the marginal CDF of  X  
1
  is

F
x

1

(x
1
) 5  � 

2`

  
x

1

  fx
1
(t)dt 

 

 (symmetrically for  X  
2
 ). Note that we can get the marginal distributions in this way from 

the joint distribution, but knowledge of the marginal distributions is generally not suf-

fi cient to determine what the joint distribution is (unless  X  
1
  and  X  

2
  are independent 

random variables, as discussed following). 

 The  covariance  between the components  X  
1
  and  X  

2
  of a random vector is defi ned as

   Cov ( X  
1
 ,  X  

2
 ) 5  E [( X  

1
  −  E ( X  

1
 )) ( X  

2
  −  E ( X  

2
 ))].   

 Note that the quantity inside the [ ] is a random variable with its own distribution, etc., 

and the covariance is the expectation of this random variable. The covariance is a mea-

sure of the (linear) relationship between  X  
1
  and  X  

2
 , and can be positive, zero, or negative. 

If the joint distribution is shaped so that, when  X  
1
  is above its mean, then  X  

2
  tends to be 

above its mean, then the covariance is positive; this implies that a small  X  
1
  tends to be 

associated with a small  X  
2
  as well. On the other hand, if a large  X  

1
  is associated with a 

small  X  
2
  (and vice versa), then the covariance will be negative. If there is no tendency 

for  X  
1
  and  X  

2
  to occur jointly in agreement or disagreement over being big or small, then 

the covariance will be zero. Thus, the covariance tells us whether the two random vari-

ables in the vector are (linearly) related or not, and if they are, whether the relationship 

is positive or negative. 

 However, the covariance’s magnitude is diffi cult to interpret since it depends on the 

units of measurement. To rectify this, the  correlation  between  X  
1
  and  X  

2
  is defi ned as

Cor(X
1
, X

2
) 5   

Cov(X
1
, X

2
)
 __________ 

s
X1

s
X2

  . 

 Clearly, the correlation has the same sign as the covariance (or is zero along with the 

covariance), so the direction of any relationship is also indicated by the sign of the 

correlation. Also, the correlation is a dimensionless quantity (that is, it has no units of 

all i such that 
x

1i
#x
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measurement and will be the same regardless of what units of measurement you choose 

for  X  
1
  and  X  

2
 ). What perhaps is not obvious (but is true) is that the correlation will al-

ways fall between −1 and 11, giving its magnitude universal emotional impact. Without 

knowing anything about the situation, you can say that a correlation of 0.96 or −0.98 is 

quite strong, whereas a correlation of 0.1 or −0.08 is pretty weak. Thus, the correlation 

provides a very meaningful way to express both the direction and strength of any linear 4  

relationship between random variables. 

 The random variables  X  
1
  and  X  

2
  are called  independent  if their joint CDF always 

factors into the product of their marginal CDFs:

   F ( x  
1
 ,  x  

2
 ) 5  F

X
1
 ( x  

1
)   F

X
2
 ( x  

2
 ) for all ( x  

1
,   ( x  

2
 ).  

  Equivalently, independence can be defi ned in terms of similar factorization of the joint 

PMF into the product of the marginal PMFs, or factorization of the joint PDF into the 

product of the marginal PDFs. Here are some properties of independent random vari-

ables  X  
1
  and  X  

2
 :  

 ■  In words, independence means that knowing the value that  X  
1
  hit tells you noth-

ing about where  X  
2
  may have landed.  

 ■  If two random variables are independent, then they will also be uncorrelated. 

The converse, however, is generally not true (unless the random variables have a 

joint normal distribution). Admittedly, the counterexamples are pathological, but 

they’re there.  

 ■  For independent random variables,  E ( X  
1
   X  

2
 ) 5  E ( X  

1
 )  E ( X  

2
 ).  

 ■  Independence of random variables is a pretty big deal in probability and statistics 

since, believe it or not, the factorization property in the above defi nition ren-

ders a whole lot of derivations possible where they would be totally impossible 

otherwise.  

 ■  Maybe because independence is so important analytically, it’s awfully tempting 

just to assume it when you’re not too sure it’s justifi ed. 5  All we can do is alert 

you to the fact that this assumption is there, and violating it usually has unknown 

ramifi cations.   

 In the case of more than two random variables in the random vector, independence 

means that the joint CDF (or PMF or PDF) factors into the product of the single mar-

ginal counterparts; this implies pairwise independence, but pairwise independence does 

not necessarily imply independence of all the random variables. 

 The issues of correlation and independence of random variables comes up in at least 

a couple of places in simulation. On the input side, we usually model the various ran-

dom quantities driving the simulation as being independent, and simply generate them 

4   The reason we keep hedging the language with this “linear” qualifi er for the covariance and correlation 

is that these measures may fail to pick up nonlinear relationships that might be present. However, in most 

modeling applications the relationships will be fairly close to linear, at least over a restricted range.  
5   In this case, some people have been known to refer to this as the Declaration of Independence since 

that’s pretty much all it is.  
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accordingly. But there sometimes might be some kind of dependence present that we 

need to capture for the sake of model validity; Section 4.6.7 discusses this briefl y and 

gives references. On the output side, a run of a simulation over time typically produces 

a sequence of output random variables that may be correlated, perhaps heavily, among 

themselves. This complicates proper statistical analysis of such data, and care must be 

taken to design the runs appropriately and use the output properly; Section 7.2 gets into 

some of the particular problems and remedies.    

  B.3 Sampling and Sampling Distributions  

 The main purpose of statistical analysis is to estimate or infer something concerning a 

large  population , assumed to be too large to look at completely, by doing calculations 

with a  sample  from that population. Sometimes it’s more convenient to think of sam-

pling from some ongoing process rather than from a static population. The mathemati-

cal basis for this is that there is a random variable (or maybe random vector) with some 

distribution, which governs the behavior of the population; in this sense, the population 

can be thought of as the random variable and its distribution, and a sample is just a se-

quence of independent and identically distributed (IID) observations, or  realizations , on 

this random variable. Whichever the case, you don’t know the parameters of the popula-

tion or its governing distribution, and you need to take a sample to make estimates of 

quantities or test hypotheses. 

 There’s been a lot of statistical theory worked out to do this—we’ll describe just a 

little of it, pertinent to the simulation examples in the book, and refer you to the refer-

ences mentioned at the beginning of this appendix for more. This statistical theory as-

sumes that the sample has been taken  randomly —that is, so that every possible sample 

of whatever size you’re taking had the same chance of being the sample actually chosen. 

The link between sampling for statistical inference and the probability theory discussed 

so far in this appendix is that “the experiment” referred to earlier is in this case the act 

of taking a random sample. The outcome is a particular data set (one of many possible) 

from which various quantities are computed, which clearly depend on the sample that 

happened to have been obtained. 

 In simulation, sampling boils down to making some runs of your model, since ran-

dom input makes for random output. Assuming that the random-number generator is op-

erating properly and being used correctly, the randomness of the sample is guaranteed; 

this is to be contrasted with physical or laboratory experiments where great pains are 

often taken to ensure that the sample obtained is really random. 

 Let  X  
1
 ,  X  

2
 , . . . ,  X  

 n 
  be a random sample observed from some population. Equivalently, 

these data are IID observations on some underlying random variable  X  whose distribution 

governs the population. In simulation, this arises on the input side where the data are 

observations from the real system to which some distribution is to be fi tted to serve as 

an input to the simulation (as in Section 4.6). It also arises on the output side where 

the data points are summary statistics across  n  IID replications of the simulation run (as 

in Sections 6.2–6.6 and 7.2.2), or are perhaps batch means from within a single long 

run of a steady-state simulation (as in Section 7.2.3). Let � 5  E ( X ), � 2  5  Var ( X ), and 
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 p  5  P ( X  P  B ) where  B  is a set defi ning some “distinguishing characteristic” of  X  (like 

being more than 25). As we’ll formalize in Section B.4, it’s reasonable to “estimate” 

these three quantities, respectively, by:  

  ■ The sample mean:  
_
 X   5   

 � 
i51

   

n

  X
i
 

 _____ n  .  

  ■ The sample variance: s2 5   

 � 
i51

   

n

    (X
i
 2  

_
 X   )2

  ____________ 
n 2 1

  .  

  ■ The sample proportion:  ̂ p   5   
number of X

i
’s that are in B

   ______________________  n  .   

 (Other population/distribution parameters, and estimates of them, are certainly possible, 

but these three will serve our purposes.) Note that each of these quantities can be com-

puted from knowledge of the sample data only (that is, there are no population/distribu-

tion parameters involved); such quantities are called ( sample )  statistics . The important 

thing to remember about statistics is that they are based on a random sample and, as 

such, are themselves random—you got your sample and we got ours (of the same size  n ), 

which were probably different samples, and so probably produced different numerical 

values of the statistics. Thus, statistics are actually random variables themselves, rela-

tive to the “experiment” of taking a sample. 

 Accordingly, statistics have their own distributions (sometimes called  sampling dis-
tributions ), expectations, variances, etc. Here are some results about the distributions of 

the above three statistics:  

  ■  E (  
_
 X  ) 5  �  and  Var ( 

_
 X  ) 5  �  2 y n . If the underlying distribution of  X  is normal (see 

Appendix C for distribution defi nitions), then the distribution of   
_
 X    is also normal, 

written  
_
 X   | N(�,�y √ 

__
 n  ); we’ll use the convention that the second “argument” of 

the normal-distribution notation is the standard deviation rather than the vari-

ance. Even if the underlying distribution of  X  is not normal, the central limit 

theorem says that, under fairly mild conditions, the distribution of  
_
 X   will be ap-

proximately normal for large  n .  

  ■  E ( s  2 ) 5  �  2 . If the underlying distribution is normal, then the quantity ( n  − 1) s  2 y �  2  

has a chi-square distribution with  n  2 1 degrees of freedom (DF), denoted  

x 
n21

  2
  . Any standard statistics book will have a defi nition and discussion of this 

distribution.  

  ■  E (  ̂ p  ) 5  p  and  Var (  ̂ p  ) 5  p (1 −  p )y n . For large  n , the distribution of    ̂ p    is approxi-

mately normal.   

 The importance of sampling distributions is that they provide the basis for estima-

tion and inference about the population/distribution parameters.   
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  B.4 Point Estimation  

 Quantities that are characteristic of the population/distribution, such as  � ,  �  2 , and  p , are 

called  parameters . Unless you somehow know (or assume) everything about the population/

distribution, you won’t know the values of parameters. Instead, the best you can usually 

do is to  estimate  these parameters with sample statistics, as described in Section B.3. 

Since we’re estimating a parameter by just a single number (rather than an interval), this 

is called  point estimation . While point estimates on their own frankly aren’t worth much 

(since you don’t know how close or stable or generally good they are), they’re a start and 

can have some properties worth mentioning. 

 A statistic serving as a point estimator is called  unbiased  for some population/distri-

bution parameter if  E (point estimator) 5 parameter. In words, this says that if we took a 

lot of samples and computed the point estimator from each sample, the average of these 

estimators would be equal to the parameter being estimated. Clearly, this is a comforting 

property, and, from the sampling-distribution results cited in Section B.3, is one enjoyed 

by    
_
 X    for  � ,  s  2  for  �  2 , and    ̂ p    for  p . 

 While unbiasedness is nice, it doesn’t speak to the stability of the estimator across 

samples. Other things (like unbiasedness) being equal, we’d prefer an estimator that 

has low variance since it’s more likely to be close to the parameter being estimated. 

The lower-variance estimator is called more  effi cient ; this term is actually analogous to 

economic effi ciency in sampling since a more effi cient estimator will require a smaller 

sample for its variance to come down to a tolerable level. 

 Related to effi ciency is the notion of  consistency  of an estimator. While there are 

several different kinds of consistency, the basic idea is that, as the sample size  n  grows, 

the estimator gets “better” in some sense (lack of this property would certainly be upset-

ting). For instance, we’d like the variance of an estimator to decline, hopefully to zero 

and hopefully quickly, as the sample size is increased. Taking a glance at the expressions 

for the variances of    
_
 X   ,  s  2 , and    ̂ p      in Section B.3 shows that they all satisfy this property.   

  B.5 Confi dence Intervals  

 Most of the commonly used point estimators have good properties. But they all have 

variability associated with them, so will generally “miss” the parameter they’re estimat-

ing. A  confi dence interval  provides one way of quantifying this imprecision. The goal 

of a confi dence-interval procedure is to form an interval, with endpoints determined by 

the sample, that will contain, or “cover” the target parameter with a prespecifi ed (high) 

probability called the  confi dence level . The usual notation is that the confi dence level is 

1 2  � , resulting in a 100 (1 2  � ) percent confi dence interval. 

 Using the sampling-distribution results, as well as similar results found in statistics 

books like those referenced at the beginning of this appendix, the following confi dence 

intervals for several common parameter-estimation problems have been derived:  

  ■ The population/distribution expectation  � : The confi dence interval is

   
_
 X    6 t

n21,12ay2
   s ___ 
 
 
 √
__

 n  
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  where  t 
n21,12�y2

   is the point that has below it probability 1 2  � y2 for Student’s  t  
distribution with  n  2 1 DF (this point is called the upper 1 2  � y2  critical point  
for this distribution and is tabled as part of Exercise B-4 at the end of this ap-

pendix and in any statistics book). Proper coverage probability for this interval 

assumes that the underlying distribution is normal, but the central limit theorem 

ensures at least approximately correct coverage for large  n .  

  ■ The population/distribution variance  �  2 : The confi dence interval is

 _   (n 2 1)s2

 ________ 
 x 

n21,12ay2
  2

  
  ,   

(n 2 1)s2

 ________ 
 x 

n21,ay2
  2

  
   +  

  where  x 
n21,12ay2

  2
   is the upper 1 2  � y2 critical point for the chi-square distribu-

tion with  n  2 1 DF (tabled in statistics books). This interval assumes a normal 

population/distribution.  

  ■ The population/distribution standard deviation  � : Due to the defi nition and in-

terpretation of confi dence intervals, we can simply take the square roots of the 

endpoints of the preceding interval:

 _  √ ________

   
(n 2 1)s2

 ________ 
 x 

n21,12ay2
  2

  
    ,  √ ________

   
(n 2 1)s2

 ________ 
 x 

n21,ay2
  2

  
     +   .

  ■ The difference between the expectations of two populations/distributions,  �  
 A 
  2  � 

B
  : 

There are different approaches and resulting formulas for this, discussed in Sec-

tion 12.4.1. One important issue in deciding which approach to use is whether 

the sampling from the two populations/distributions was done independently or 

not. The important interpretation is that if this interval contains 0, the conclusion 

is that we cannot discern a statistically signifi cant (at level  � ) difference between 

the two expectations; if the interval misses 0, then there appears to be a signifi -

cant difference between the expectations.  

  ■ The ratio of the variances of two populations/distributions,  � 
A
  2
  y � 

B
  2
  : The confi -

dence interval is

 _    s 
A
  2
  y s 

B
  2
  
 ___________ 

 F 
n

A
21,n

B
21,12ay2

 
  ,   

 s 
A
  2
  y s 

B
  2
  
 _________ 

 F 
n

A
21,n

B
21,ay2

 
   +  

  where the subscripts  A  and  B  on the sample variances and sample sizes indicate 

the corresponding population/distribution, and  F 
k

1
,k

2
,12ay2

   
   denotes the upper 

1 2  � y2 critical point of the  F  distribution with ( k  
1
 ,  k  

2
 ) DF (tabled in statis-

tics books). A normal population/distribution is assumed for this interval. We 

conclude that there is a statistically signifi cant difference between the variance 

parameters if and only if this interval does not contain 1.  
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 ■  The ratio of the standard deviations of two populations/distributions,  �  
 A 
 y �  

 B 
 : Just 

take the square root of the endpoints in the preceding confi dence interval; con-

clude that the standard-deviation parameters differ signifi cantly if and only if this 

interval misses 1.  

  ■ The population/distribution proportion  p : The confi dence interval is

   ̂ p   6 z
12ay2

  
 

 √
_______

    
 ̂ p  (1 2  ̂ p  )

 _______ n       

  where  z  
12 � y2

  is the upper 1 2 ay2 critical point of the standard (mean 5 0, stan-

dard deviation 5 1) normal distribution (tabled in statistics books). This is an 

approximate-coverage interval, valid for large  n  (one defi nition, among many, of 

“large  n ” is that both  n ̂ p    and  n (1 −   ̂ p   ) be at least 5 or so).  

 ■  The difference between the proportions of two populations/processes  p  
 A 
  2  p  

 B 
 : 

The confi dence interval is

   ̂ p  
A
 2  ̂ p  

B
 6 z

12ay2
   

 

 √
___________________

     
 ̂ p  
A
(1 2  ̂ p  

A
)
 ________ n

A
   1    

 ̂ p  
B
(1 2  ̂ p  

B
)
 ________ n

B
       

  with the obvious interpretation of the subscripts  A  and  B . Both sample sizes need 

to be “large,” as described in the preceding point.     

  B.6 Hypothesis Tests  

 In addition to estimating, either via a point or an interval, population/distribution param-

eters, you might want to use the data to “test” some assertion made about the population/

distribution. These questions and procedures are called  hypothesis tests , and there are 

many, many such tests that people have devised for a wide variety of applications. We 

won’t make any attempt to give a complete treatment of hypothesis testing, but only de-

scribe the general idea and give a couple of simulation-specifi c examples. For derivation 

and specifi c formulas for doing hypothesis tests, please see a statistics book like those 

we mentioned at the beginning of this appendix. 

 The assertion to be tested is called the  null hypothesis , usually denoted  H  
0
 . Often, it 

represents the status quo or the historical situation, or what is being claimed by some-

body else. The denial (opposite) of the null hypothesis is the  alternate hypothesis , which 

we’ll denote  H  
1
 . The intent of hypothesis testing is to develop a decision rule for using 

the data to choose either  H  
0
  or  H  

1
  and be as sure as we can that whichever we declare to 

be true really  is  the truth. 

 Barring complete information about the population/distribution, though, we can 

never be 100% sure that we’re making the right choice between  H  
0
  and  H  

1
 . If  H  

0
  is re-

ally the truth yet we reject it in favor of  H  
1
 , we’ve committed a  Type I Error . But if  H  

1
  

is really the truth yet we don’t reject  H  
0
 , we’ve made a  Type II Error . Hypothesis tests 

are set up to allow you to specify the probability  �  of a Type I Error, while doing the 
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best to minimize the probability  �  of a Type II Error. If you demand a really small  � , 

you’ll get it but at the cost of a higher  �  (though the relationship between the two is not 

simple) unless you can go collect some more data. In hypothesis testing,  H  
0
  and  H  

1
  are 

not given equal treatment—the benefi t of the doubt is given to  H  
0
 , so if we reject  H  

0
 , 

we’re making a fairly strong and confi dent decision that  H  
1
  is true. But if we can’t mount 

enough evidence against  H  
0
  to reject it, we haven’t necessarily “proved” that  H  

0
  is the 

truth—we’ve just failed to fi nd evidence against it. The reason for failing to reject  H  
0 

 could, of course, be that it’s really true. But another reason for failing to reject  H  
0 
 is that 

we just don’t have enough data to “see” that  H  
0
  is false. 

 Another way to set up and carry out a test is not to make a fi rm yes/no decision, but 

rather quantify how “certain” you are about which hypothesis is correct. The  p-value  of 

a data set in a test is the probability of getting a data set, if  H  
0
  is true, that’s more in favor 

of  H  
1
  than the one you got. So if the  p -value is tiny, you’re saying that it’s very hard to 

get information more in favor of  H  
1
  than the information you already have in your data 

set, so that the evidence for  H  
1
  is strong. If the  p -value is large, say 0.3 or 0.6, then it’s 

entirely possible that just by chance you’d get data more in favor of  H  
1
 , so there’s no 

particular reason to suspect  H  
0
 . If the  p -value is “on the edge,” say something like 0.1, 

you’re left with an inconclusive result, which is sometimes all you can say with your 

data. 

 One place in simulation that hypothesis tests come up is in fi tting input probability 

distributions to observed data on the input quantity being modeled (Section 4.6). Here, 

 H  
0
  is the assertion that a particular candidate fi tted distribution adequately explains the 

data. If  H  
0
  is not rejected, then you have insuffi cient evidence that this distribution is 

wrong, so you might go with it. The Arena Input Analyzer has two different tests for 

this built in, the chi-square test and the Kolmogorov-Smirnov test. These tests basically 

ask how close the fi tted distribution is to the empirical distribution defi ned directly by 

the data; for details on how these and other  goodness-of-fi t tests  work, see any standard 

statistics book. 

 Another place in simulation that a hypothesis test comes up is on the output side. 

If there are several (more than two) models you’re comparing on the basis of some se-

lected output performance measure, a natural question is whether there’s any difference 

at all among the means of this measure across the different models. A collection of spe-

cifi c problems and techniques, called  analysis of variance  (ANOVA), is a standard part 

of any statistics book, so we won’t go into its inner workings here. The null hypothesis 

is that all the means across the different models are the same; if you do not reject this, 

you have insuffi cient evidence of any difference on this measure that the different mod-

els make. But if you reject  H  
0
 , you’re saying that there  is  some difference somewhere 

among the means, though not that they’re all unique and different. A natural question 

in this case is then precisely which means differ from which other ones, sometimes 

called  multiple comparisons  in ANOVA. There have been several different methods de-

veloped for attacking this problem, three of which are due to Bonferroni, Scheffé, and 

Tukey. The Arena Output Analyzer (Section 6.4) has a built-in facility for carrying out 

an ANOVA test, including these multiple-comparisons methods. 
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 Related to this goal, but more useful in simulation output analysis, is the question of 

which among several variants (sometimes called  scenarios ) is best according to some 

overall performance measure. The Arena Process Analyzer, or PAN (Section 6.5) has a 

built-in facility for identifying best scenarios and does so in a way related to hypothesis 

tests.   

  B.7 Exercises  

  B-1  Suppose that  X  is a discrete random variable with probability mass function given 

by  p (1) 5 0.1,  p (2) 5 0.3,  p (3) 5 0.3,  p (4) 5 0.2, and  p (5) 5 0.1.  

 (a)  Plot  p ( x ) for all  x  in the range.  

 (b)  Compute numerically and plot the cumulative distribution function  F ( x ).  

 (c)  Compute  P (1.4 #  X  # 4.2).  

 (d)  Compute  P (1.4 ,  X  , 4.2).  

 (e)  Compute the expected value  E ( X ).  

 (f)  Compute the variance  Var ( X ).  

 (g)  Compute the standard deviation of  X .   

  B-2  Suppose that  X  has a (continuous) uniform distribution between 10 and 20 (see 

Appendix C).  

 (a)  Compute  E (X).  

 (b)  Compute  Var ( X ).  

 (c)  Compute  P ( X  , 12).  

 (d)  Compute  P ( X  . 12).  

 (e)  Compute  P ( X  , 8 or  X  . 22).   

  B-3  Suppose that  X  is an exponential random variable with mean 5. (The cumulative 

distribution function is  F ( x ) 5 1 −  e  − x y5  for  x  $ 0, and  F ( x ) 5 0 for  x  , 0; see also 

Appendix C.)  

 (a)  Compute  P ( X  . 5).  

 (b)  Compute  P (1.4 #  X  # 4.2).  

 (c)  Compute  P (1.4 ,  X  , 4.2).   

  B-4  Suppose that 7.3, 6.1, 3.8, 8.4, 6.9, 7.1, 5.3, 8.2, 4.9, and 5.8 are ten observations 

from a normal distribution with unknown mean and unknown variance. Compute the 

sample mean, sample variance, and a 95% confi dence interval for the population mean. 

Here’s part of a  t  table that contains what you’ll need (and then some): 
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1 2 �y2

degrees of freedom 0.900 0.950 0.975 0.990 0.995

1 3.078 6.314 12.706 31.821 63.656

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

25 1.316 1.708 2.060 2.485 2.787

30 1.310 1.697 2.042 2.457 2.750
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 APPENDIX C

  Arena’s Probability Distributions 

  Arena contains a set of built-in functions for generating random variates from the com-

monly used probability distributions. These distributions appear on drop-down menus in 

many Arena modules where they’re likely to be used. They also match the distributions 

in the Arena Input Analyzer (except that the Johnson distribution is not supported by the 

Arena Input Analyzer). This appendix describes all of the Arena distributions. 

 Each of the distributions in Arena has one or more parameter values associated with 

it. You must specify these parameter values to defi ne the distribution fully. The number, 

meaning, and order of the parameter values depend on the distribution. A summary of 

the distributions (in alphabetical order) and parameter values is given in Table C-1  . 

  Table C-1.   Summary of Arena’s Probability Distributions  

 Distribution       Parameter Values 

 Beta BETA BE Beta, Alpha

 Continuous CONT CP CumP
1
, Val

1
, . . . CumP

n
,Val

n

 Discrete DISC DP CumP
1
, Val

1
, . . . CumP

n
, Val

n

Erlang ERLA ER ExpoMean, k

Exponential EXPO EX Mean

Gamma GAMM GA Beta, Alpha

Johnson JOHN JO Gamma, Delta, Lambda, Xi

Lognormal LOGN RL LogMean, LogStd

Normal NORM RN Mean, StdDev

Poisson POIS PO Mean

Triangular TRIA TR Min, Mode, Max

Uniform UNIF UN Min, Max

Weibull WEIB WE Beta, Alpha

 The distributions can be specifi ed by using one of two formats: you can select a 

single format, or you can mix formats within the same model. The format is determined 

by the name used to specify the distribution. The primary format is selected by using 

either the variable’s full name or a four-letter abbreviation of the name consisting of the 

fi rst four letters. For example, UNIFORM or UNIF specifi es the uniform distribution 

in the primary format. The secondary format is selected by specifying the distribution 

with a two-letter abbreviation. For example, UN specifi es the uniform distribution in the 

secondary format. The names are not case-sensitive. 
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 In the primary format, you explicitly enter the parameters of the distribution as 

arguments of the distribution. For example,  UNIFORM ( 10,25 ) specifi es a uniform 

distribution with a minimum value of 10 and a maximum value of 25. In the alterna-

tive format, you indirectly defi ne the parameters of the distribution by referencing a 

parameter set within the Parameters module from the Elements panel. For example, 

 UN ( DelayTime ) specifi es a uniform distribution with the minimum and maximum 

values defi ned in the parameter set named  DelayTime . The main advantage of the 

indirect method of defi ning the parameters provided by the alternative format is that 

the parameters of the distribution can be modifi ed from within the Parameters module. 

 The random-number stream (see Section 12.1), which is used by Arena in gener-

ating the sample, can also be specifi ed in both formats. In the primary format, you 

enter the stream number as the last argument following the parameter value list. For 

example,  UNIFORM ( 10,25,2 ) specifi es a sample from a uniform distribution using 

random-number stream 2. In the secondary format, you enter the random-number 

stream as a second argument following the identifi er for the parameter set. For example, 

 UN ( DelayTime,PTimeStream ) specifi es a sample from a uniform distribution 

using random-number stream  PTimeStream  (which must be an expression defi ned to 

be the stream you want, and is not an entry in the Parameters module). 

 In the following pages, we provide a summary of each of the distributions supported 

by Arena, listed in alphabetical order for easy reference. The summary includes the pri-

mary and secondary formats for specifying the distribution and a brief description of the 

distribution. This description includes the density or mass function, parameters, range, 

mean, variance, and typical applications for the distribution. If you feel in need of a brief 

refresher on probability and statistics, see Appendix B. 
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C.1 Beta(�, �)  BETA(Beta, Alpha) 
or BE(ParamSet)

Probability

Density

Function

 f(x)

0 0.5 1.0

x

       
x�21 (1 2 x)�21

  ____________ 
B(�, �)

    for 0 , x , 1

  

f(x) 5

      0          otherwise

   where B is the complete beta function 

given by

  B(�, �) 5  e
0
  1   t�21 (1 2 t)�21 dt

Parameters Shape parameters Beta (�) and Alpha (�) specifi ed as positive real numbers.

Range  [0, 1] (Can also be transformed to a general range [a, b] as described following)

Mean   
�
 ______ 

� 1 �
  

Variance   
�a
 _________________  

(� 1 �)2 (� 1 � 1 1)
  

Applications  Because of its ability to take on a wide variety of shapes, this distribution is often used 

as a rough model in the absence of data. Because the range of the beta distribution 

is from 0 to 1, the sample X can be transformed to the scaled beta sample Y with the 

range from a to b by using the equation Y 5 a 1 (b 2 a)X. The beta is often used to 

represent random proportions, such as the proportion of defective items in a lot. It can 

also be used as a general and very fl exible distribution to represent many input quan-

tities that can be assumed to have a range bounded on both ends.

5

kel01315_appC_597-612.indd   599kel01315_appC_597-612.indd   599 05/12/13   3:32 PM05/12/13   3:32 PM



600     Appendix C

C.2 Continuous  CONTINUOUS (CumP1, Val1, . . . , CumP
n
, Val

n
) or

(c1, x1, . . . , cn
, x

n
) CONT (CumP1, Val1, . . . , CumP

n
, Val

n
) or CP (ParamSet)

Probability  f(x)

c3–c2

x

c1

x
1

x
2

x
3

x x
nn-1

Density 
Function

Cumulative  

c2

c1

x

c3

c
n
=1

F(x)

x
1

x
2

x
3

x
n-1

x
n

Distribution 
Function

  c
1
 if x 5 x

1
 (a mass of probability c

1
 at x

1
)

 f(x) 5  c
j
 2 c

j21
 if x

j21
 # x , x

j
, for j 5 2, 3, . . . ,n

  0 if x , x
1
 or x $ x

n

Parameters  The CONTINUOUS function in Arena returns a sample from a user-defi ned empiri-

cal distribution. Pairs of cumulative probabilities c
j
 (5 CumP

j
) and associated values 

x
j
 (5 Val

j
) are specifi ed. The sample returned will be a real number between x

1
 and x

n
, 

and will be less than or equal to each x
j
 with corresponding cumulative probability c

j
. 

The x
j
’s must increase with j. The c

j
’s must all be between 0 and 1, must increase with 

j, and c
n
 must be 1.

The cumulative distribution function F(x) is piecewise linear with “corners” 

defi ned by F(x
j
) 5 c

j
 for j 5 1, 2, . . . , n. Thus, for j $ 2, the returned value will be in 

the interval (x
j21

, x
j
] with probability c

j
 2 c

j21
; given that it is in this interval, it will 

be distributed uniformly over it.

You must take care to specify c
1
 and x

1
 to get the effect you want at the left edge 

of the distribution. The CONTINUOUS function will return (exactly) the value x
1
 with 

probability c
1
. Thus, if you specify c

1
 . 0 this actually results in a mixed discrete-

continuous distribution returning (exactly) x
1
 with probability c

1
, and with probability 

1 2 c
1
 a continuous random variate on (x

1
, x

n
] as described previously. The graph of 

F(x) depicts a situation where c
1
 . 0. On the other hand, if you specify c

1
 5 0, you will 

get a (truly) continuous distribution on [x
1
, x

n
] as described, with no “mass” of prob-

ability at x
1
; in this case, the graph of F(x) would be continuous, with no jump at x

1
.

5
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As an example use of the CONTINUOUS function, suppose you have collected a 

set of data x
1
, x

2
, . . . , x

n
 (assumed to be sorted into increasing order) on service times, 

for example. Rather than using a fi tted theoretical distribution from the Input Analyzer 

(Section 4.5), you want to generate service times in the simulation “directly” from the 

data, consistent with how they’re spread out and bunched up, and between the mini-

mum x
1
 and the maximum x

n
 you observed. Assuming that you don’t want a “mass” of 

probability sitting directly on x
1
, you’d specify c

1
 5 0 and then c

j
 5 ( j 2 1)y(n 2 1) 

for j 5 2, 3, . . . , n.

Range [x
1
, x

n
]

Applications  The continuous empirical distribution is used to incorporate empirical data for con-

tinuous random variables directly into the model. This distribution can be used as an 

alternative to a theoretical distribution that has been fi tted to the data, such as in data 

that have a multimodal profi le or where there are signifi cant outliers.
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C.3 Discrete  DISCRETE (CumP1, Val1, . . . , CumP
n
, Val

n
) or

(c1, x1, . . . , cn
, x

n
) DISC (CumP1, Val1, . . . , CumP

n
, Val

n
) or DP(ParamSet)

Probability   p(x
j
) 5 c

j
 2 c

j21

Mass   
where c

0
 5 0

Function 

p(x)

c2–c1

x1 x2 xn

c1

x
x

1
x

2
x

n
.  .  .

c
2
- c

1

c
1

 

Cumulative  
Distribution 
Function 

F(x)

c2

c1

c3 = 1

x1 x2 xn

x

c
n

x
1

x
2

x
n

.  .  .

Parameters  The DISCRETE function in Arena returns a sample from a user-defi ned discrete prob-

ability distribution. The distribution is defi ned by the set of n possible discrete values 

(denoted by x
1
, x

2
, . . . , x

n
) that can be returned by the function and the cumulative 

probabilities (denoted by c
1
, c

2
, . . . , c

n
) associated with these discrete values. The cu-

mulative probability (c
j
) for x

j
 is defi ned as the probability of obtaining a value that is 

less than or equal to x
j
. Hence, c

j
 is equal to the sum of p(x

k
) for k going from 1 to j. By 

defi nition, c
n
 5 1.

Range {x
1
, x

2
, . . . , x

n
}

Applications  The discrete empirical distribution is used to incorporate discrete empirical data di-

rectly into the model. This distribution is frequently used for discrete assignments 

such as the job type, the visitation sequence, or the batch size for an arriving entity.
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C.4 Erlang(�, k)  ERLANG(ExpMean, k) or ERLA(ExpMean, k) or 
ER(ParamSet)

Probability 
Density 
Function         

�2k xk21e2xy�

 _________________ 
(k 2 1)!

   for x . 0

  

f(x) 5 

   0       otherwise

Parameters  If X
1
, X

2
, . . . , X

k
 are IID exponential random variables, then the sum of these k samples 

has an Erlang-k distribution. The mean (�) of each of the component exponential dis-

tributions and the number of exponential random variables (k) are the parameters of 

the distribution. The exponential mean is specifi ed as a positive real number, and k is 

specifi ed as a positive integer.

Range [0,1 ∞)

Mean k�

Variance k�2

Applications  The Erlang distribution is used in situations in which an activity occurs in succes-

sive phases and each phase has an exponential distribution. For large k, the Erlang 

approaches the normal distribution. The Erlang distribution is often used to represent 

the time required to complete a task. The Erlang distribution is a special case of the 

gamma distribution in which the shape parameter, �, is an integer (k).

5
f(x)

0

k=1

k=2
k=3

x
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C.5 Exponential(�)  EXPONENTIAL(Mean) or EXPO(Mean) or 
EX(ParamSet)

Probability

Density 
Function        1 __ 

�
  e2x/� for x . 0

  

f(x) 5

  0    otherwise

Parameters The mean (�) specifi ed as a positive real number.

Range [0,1 ∞)

Mean �

Variance �2

Applications  This distribution is often used to model interevent times in random arrival and break-

down processes, but it is generally inappropriate for modeling process delay times.

5
f(x)

0 x

1

β
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C.6 Gamma(�, �)  GAMMA(Beta, Alpha) or GAMM(Beta, Alpha) or 
GA(ParamSet)

Probability 
Density 
Function         

�2�x�21e2xy�

 __________ 
G(�)

    for x . 0

  

f(x) 5

   0        otherwise

   where G is the complete gamma 

function given by

  G(�) 5  e
0
  

`
   t�21 e2t dt

Parameters Scale parameter (�) and shape parameter (�) specifi ed as positive real values.

Range [0,1∞)

Mean ��

Variance ��2

Applications  For integer shape parameters, the gamma is the same as the Erlang distribution. The 

gamma is often used to represent the time required to complete some task (for exam-

ple, a machining time or machine repair time).

5
f(x)

0

k=1
k=2

k=3

x

α=1/2

α =1

α =1/2

α =2 α =3
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C.7 Johnson  JOHNSON(Gamma, Delta, Lambda, Xi) or JOHN(Gamma, Delta, Lambda, Xi) 
or JO(ParamSet)

Probability

Density 
Function 

Parameters  Gamma shape parameter (�), Delta shape parameter (� . 0), Lambda scale parameter 

(� . 0), and Xi location parameter (�).

Range (2∞, 1∞) Unbounded Family

 [�, � 1 l] Bounded Family

Applications  The fl exibility of the Johnson distribution allows it to fi t many data sets. Arena can 

sample from both the unbounded and bounded form of the distribution. If Delta (�) is 

passed as a positive number, the bounded form is used. If Delta is passed as a nega-

tive value, the unbounded form is used with ZdZ as the parameter. (At present, the Input 

Analyzer does not support fi tting Johnson distributions to data.)

0

Unbounded Family

10

Bounded Family
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C.8 Lognormal(�, �)  LOGNORMAL(LogMean, LogStd) or LOGN(LogMean, LogStd) or 
RL(ParamSet)

Probability 
Density 
Function 

Parameters  Mean LogMean (�
l
 . 0) and standard deviation LogStd (	

l
 . 0) of the lognormal 

random variable. Both LogMean and LogStd must be specifi ed as strictly positive real 

numbers.

Range [0,1 ∞)

Mean LogMean 5 �
l
 5 e�1	2/2

Variance (LogStd)2 5 	2

l
 5 e2�1	2

 (e	2
 2 1)

Applications  The lognormal distribution is used in situations in which the quantity is the product of 

a large number of random quantities. It is also frequently used to represent task times 

that have a distribution skewed to the right. This distribution is related to the normal 

distribution as follows. If X has a Lognormal (�
l
, 	

l
) distribution, then ln(X) has a 

Normal(�, 	) distribution. Note that � and 	 are not the mean and standard deviation 

of the lognormal random variable X, but rather the mean and standard deviation of the 

normal random variable lnX; the mean LogMean 5 �
l
 and variance (LogStd)2 5 	2

l
 of 

X are given by the formulas earlier on this page.

f(x)

0 x

Denote the user-specifi ed input parame-

ters as LogMean 5 �
l
 and LogStd 5 	

l
.

Then let � 5 ln(�2

l
 y √ 

______

 	2

l
 1�2

l
  ) and 

	 5  √ 
______________

  ln[(	2

l
 1 �2

l
)y�2

l
 ]  . The probability 

density function can then be written as 

f(x) 5
    1 _______ 

	x √
___

 2
  
   e2(ln (x)2�)2y(2	2) for x . 0

 0 otherwise
5
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f(x)

0 x
μ

C.9 Normal(�, �)  NORMAL(Mean, StdDev) or NORM(Mean, StdDev) or 
RN(ParamSet)

Probability 
Density 
Function  f(x) 5    1 ______ 

	 √
___

 2
  
   e2(x2�)2y(2	2) for all real x

Parameters  The mean (�) specifi ed as a real number and standard deviation (	) specifi ed as a 

positive real number.

Range (2∞, 1∞)

Mean �

Variance 	2

Applications  The normal distribution is used in situations in which the central limit theorem 

applies—that is, quantities that are sums of other quantities. It is also used empirically 

for many processes that appear to have a symmetric distribution. Because the theoreti-

cal range is from 2∞ to 1∞, the distribution should not be used for positive quantities 

like processing times.
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f(x)

0 x

p( )x

C.10 Poisson(�)  POISSON(Mean) or POIS(Mean) or 
PO(ParamSet)

Probability 
Mass

Function  
p(x) 5  

   e
2��x

 _____ 
x!

   for x 5 0, 1, 2, . . . 

          0    otherwise

Parameters The mean (�) specifi ed as a positive real number.

Range {0, 1, . . .}

Mean �

Variance �

Applications  The Poisson distribution is a discrete distribution that is often used to model the num-

ber of random events occurring in a fi xed interval of time. If the time between succes-

sive events is exponentially distributed, then the number of events that occur in a fi xed 

time interval has a Poisson distribution. The Poisson distribution is also used to model 

random batch sizes.

5
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f(x)

x0
a m b

   
2(x 2 a)

 _____________  
(m 2 a)(b 2 a)

   for a # x # m 

  f(x) 5
   

2(b 2 x)
 _____________  

(b 2 m)(b 2 a)
   for m # x # b

    0 otherwise

5

C.11 Triangular(a, m, b)  TRIANGULAR(Min, Mode, Max) or TRIA(Min, Mode, Max) or 
TR(ParamSet)

Probability 
Density 
Function 

Parameters  The minimum (a), mode (m), and maximum (b) values for the distribution specifi ed as 

real numbers with a , m , b.

Range [a, b]

Mean (a 1 m 1 b)/3

Variance (a2 1 m2 1 b2 2 ma 2 ab 2 mb)y18

Applications  The triangular distribution is commonly used in situations in which the exact form of 

the distribution is not known, but estimates (or guesses) for the minimum, maximum, 

and most likely values are available. The triangular distribution is easier to use and 

explain than other distributions that may be used in this situation (for example, the 

beta distribution).
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C.12 Uniform(a, b)  UNIFORM(Min, Max) or UNIF(Min, Max) or 
UN(ParamSet)

Probability 
Density 
Function  

f(x) 5    
  1 _____ 
b 2 a

    for a # x # b

      0     otherwise

Parameters  The minimum (a) and maximum (b) values for the distribution specifi ed as real numbers 

with a , b.

Range [a, b]

Mean (a 1 b)y2

Variance (b 2 a)2y12

Applications  The uniform distribution is used when all values over a fi nite range are considered to 

be equally likely. It is sometimes used when no information other than the range is 

available. The uniform distribution has a larger variance than other distributions that 

are used when information is lacking (for example, the triangular distribution).

5
f(x)

0
a

1

b

b–a

1

b-a

x
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C.13 Weibull(�, �)  WEIBULL(Beta, Alpha) or WEIB(Beta, Alpha) or 
WE(ParamSet)

Probability 
Density 
Function  

f(x) 5    
��2�x�21e2(x/�)�  for x . 0

         0           otherwise

Parameters Scale parameter (�) and shape parameter (�) specifi ed as positive real numbers.

Range [0, 1∞)

Mean   
�

 __ �   G _   1 __ �   +  , where G is the complete gamma function (see gamma distribution).

Variance   
�2

 __ �    5 2G _   2 __ �   +  2   1 __ �    f G  _   1 __ �   +  g  2 6 

Applications  The Weibull distribution is widely used in reliability models to represent the lifetime 

of a  device. If a system consists of a large number of parts that fail independently, and 

if the system fails when any single part fails, then the time between successive fail-

ures can be approximated by the Weibull distribution. This distribution is also used to 

represent nonnegative task times.

    

5
f(x)

0 x

α=1/2

α=1

α=2

α=3
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 APPENDIX D

  Academic Software Installation 
Instructions 

   Arena is a 32-bit Windows application that also runs on 64-bit operating systems. Arena 
supports the following operating systems: Microsoft® Windows® 7, Microsoft Windows 
Vista (SP2 or later), Microsoft Windows XP Pro or Home (32-bit SP3, 64-bit SP2), Mic-
rosoft Windows Server 2008. Arena requires Microsoft Internet Explorer, version 6.0 or 
later. Version 7.0 is recommended for Microsoft Windows 7 and Vista operating systems. 
Arena 14.5 is known to operate in Windows 8 Professional, but this operating system is 
not yet offi cially supported.  

  D.1 Authorization to Copy Software 

  This academic software can be installed on any university computer as well as on stu-

dents’ computers. It is intended for use in conjunction with this book for the purpose of 

learning simulation and Arena. You have the right to use and make copies the software 

for academic use for teaching and research purposes only. Commercial use of the soft-

ware is prohibited. Software support is supplied only to the registered instructor via the 

instructions provided at the book’s website: http://www.mhhe.com/kelton. 

 This book describes the features and functionality of the latest version of Arena 

available at the time of publication and uses it for compiling and running the examples, 

but it is expected that future versions of Arena can be used equally well with this book. 

Since new releases of Arena typically outpace updates to this book, academic institu-

tions are encouraged to keep their lab and research software up-to-date. However, it 

is important that students use the same software version as used in the labs because 

models are forward compatible, but not backward compatible (for example, an Arena 

12.0 model can be loaded into Arena 14.5, but an Arena 14.5 model cannot be loaded 

into Arena 12.0). 

  

  D.2 Installing the Arena Software 

  Go to the following McGraw-Hill website and follow the instructions to download and 

install the Arena software: 

  http://www.mhhe.com/kelton  

 License activation is not supplied with, or required for, the academic version of Arena. 

For more information on license activation or any other aspect of installation, select 

 Installation Notes  from the Arena installation screen. 
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  D.3 System Requirements 

   Hardware  

  Minimum System Requirements  
    ■  Arena® simulation software, version 14.50.00  

   ■  Adobe® Acrobat Reader 9.1.0 or later recommended to view documentation  

   ■  Hard drive with 1GB free disk space (or more)  

   ■  2GB RAM (or more)   

  Graphics Confi guration  

 Applicable for the Arena Visual Designer tool. 

  Minimum Requirements  
 Graphics card should have 512 MB or more of dedicated DDR3 type or better memory. 

 Here are example graphics cards that meet the minimum requirements: 

  ■  NVIDIA Quadro NVS 160M or better  

 ■  NVIDIA NVS 3100M or better  

 ■  NVIDIA Quadro PCI-E Series or better  

 ■  NVIDIA GeForce GTX 295 or better   

 Arena Visual Designer performance is dependent upon the OpenGL and graphics card 

drivers installed on your computer. Early versions of some graphics card drivers contain 

issues that can cause Arena Visual Designer to not render graphics properly or generate 

runtime errors. It is strongly recommended that you visit your graphics card vendor’s 

website to obtain the latest version of your graphics card driver.     
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Symbols

>, 217

>=, 217

<, 217

<=, 217

< >, 217

= =, 217

+/– toggle, 58

2-way by Change, 128, 190

3D Scene, 475–477

70/20/10 rule, 556–557

A

.a23 fi le extension, 474

Academic software installation, 613–614

Access, 429–435

Access database fi le, 77

Access module, 382, 383

Accumulating conveyor, 367–368, 373–374

Accumulators, 23

Activate module, 386

Activation procedures (other versions 

of Arena), 102

Active Entity window, 173

ActiveX Automation, 442–443, 473

ActiveX Data Objects (ADO), 433–434, 

438–439

Ad hoc data, 190

ADO, 433–434, 438–439

Advanced Process panel, 58, 60, 144, 212, 213

Advanced Set data module, 244, 317

Advanced Transfer panel, 58, 60, 212, 213

AINT, 246

Align (Arrange menu), 101

Align (Arrange toolbar), 105

Alignment, 60

Allocate module, 354

Allocate-Move module combination, 354

Alternate hypothesis (H1), 593

Amusement park rides, 414

Analysis of variance (ANOVA), 594

Analyze > Batch/Truncate Obs’ns, 338

Analyze > Compare Means, 289

Ancient Lanchester combat equations, 517

.AND., 217

Anderson, D. R., 579

Animate At Desktop Color Depth, 101

Animate Connectors, 69, 101

Animate toolbar, 104

Animate Transfer toolbar, 105, 163

Animation

call center system, 234–237, 249

coal-loading operation, 499, 500

connectors, 69

electronic assembly and test system, 

153–162, 166–170

entity pictures, 156–157

resource pictures, 158–160

resources/queues, 67

small manufacturing system, 324–326

station animation objects, 325

thermometer, 269

transporters, 359–365

Visual Designer, 473–477

Animation stations, 163

Antithetic variates, 537–538

Application-focused template, 473

Application integration, Integration 

and customization, 423, 443

Arc, 106

Arena, 11–12, 613

academic software installation, 613–614

Arena window, 56–58

compatibility, 53

drawing, 106–107

dynamic integration, 12

dynamic plots, 69–71

examples. See Do-it-yourself model

hierarchical structure, 11, 212

integrated support, 12, 33

internal model documentation, 61–62

menus, 98–102

model window, 56

modeling constructs, 33

module. See Module

modules, 11

operating systems, 613

panels, 11

panning, zooming, viewing, aligning, 

58–60
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AVI Capture toolbar, 105

.avi fi le extension, 105

B

Back-of-the-envelope calculation, 18

Balci, O., 549

Balk limit, 388

Balking, 209, 210

Balking and reneging, 386–395

“Bambi,” 55n

Banks, 209

Banks, J., 549

Base case, 287

Basic Process button, 57

Basic Process panel, 60, 61, 212, 213

Basic Process panel Assign module, 213

Batch means, 137, 336–338

Batch module, 400

Batching, 335–338, 396–402

Bauer, K. W., 538

BeginReplication, 442

BeginSimulation, 442

Best case scenario (evaluating many 

scenarios), 291–296

Beta distribution, 599

Bézier curve, 106

Bimodal data, 189

Bindingnavle, S. G., 505

Blocks, 263

Blocks Assign module, 213

Blocks panel, 58, 213

Bonferroni method, 594

Book Examples folder, 286

Box, 106

Branch block, 265–267

Bratley, P., 537

Break angel, 21

Breakdown demon, 21

Breakpoint Properties dialog box, 173, 174

Breakpoints window, 173, 174

Bretthauer, K. M., 204

Bridge crane, 346

Bring to Front, 101, 325

Buckles, B. P., 6

Buffon, Comte de, 9

Buffon cross, 9

Buffon needle problem, 7, 8–9

Bug, 138n

Build it yourself. See Do-it-yourself model

Arena (Continued)

reports, 74–79

run conditions/running models, 72–74, 

109–110

SIMAN components, 12

software support, 613

starting up, 53–55

templates, 11

toolbars, 103–107

Arena built-in variables, 22

Arena conveyors, 365–374, 380–384

Arena Error-Warning window, 358

Arena folder, 55

Arena Help, 102

Arena hierarchical structure, 11, 212

Arena-initiated run events, 445

Arena Input Analyzer, 182–190

Arena NewsFlash, 100

Arena Output Analyzer, 288–291, 338, 594

Arena Process Analyzer (PAN), 75, 100, 

291–296, 595

Arena Product Manuals, 102

Arena SMART Files, 102, 108

Arena Symbol Factory, 100

Arena Template building, 472–473

Arena transporters, 351–365, 385–387

Arena Visual Designer, 100. See also Visual 

Designer

Arena window, 56–58

Arrange > Bring to Front, 325

Arrange > Flowchart Alignment, 60

Arrange Icons, 102

Arrange menu, 101

Arrange toolbar, 71–72, 105

Arrow Style, 107

Ashour, S., 505

Assign block, 265, 267, 268

Assign module, 391, 494

Attributes, 21

Attributes data module, 440

Attributes element, 261

Auto-Connect, 69, 101

AutoCAD, 324, 443

Autocorrelation, 44

Automated guided vehicle (AGV), 351, 414

Automatic batch-means confi dence 

interval, 338

Automatic batch-means half width, 338

Automatic search features, 213

AVI Capture (Tools menu), 101
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Combined probabilistic and logic 

branching, 213

Command button (Run Interaction toolbar), 177

Common random number (CRN), 42, 531–537

Communications, 14

Comparative analysis, 563

Compare Means function, 289, 290

Comparing two scenarios, 287–291

Complementation, 580

Computer simulation, 5. See also Simulation

Comte de Buffon (Leclerc), 9

Conditional probability, 581

Conducting simulation studies, 549–566. 

See also Overview of simulation study

disseminating the model, 565

experimentation and analysis, 563–564

model formulation and construction, 558–560

presenting and preserving the results, 

564–565

problem formulation, 552–553

questions to ask, 555–556

solution methodology, 553–554

system and simulation specifi cation, 554–558

verifi cation and validation, 560–562

Confi dence interval, 36, 285, 591–593

Confi dence level, 591

Connect (Object menu), 101

Connect option, 312–313, 345

Connections, 68–69

Connector Arrows, 99

Contact center, 14

ContactCenter, 100

Context Help, 55

Context-sensitive help, 108

Continuous-change processes, 479–518

carpet-cleaning-liquid model, 480–487

coal-loading operation, 487–501

coal loading with fl ow process, 501–505

combined discrete/continuous model, 

483–501

continuous state-change system, 505–514

continuous-update times, 481

differential equations, 506, 507, 512–513

Flow Process template, 501–505

levels/rates, 480

simple continuous system, 480–482

soaking-pit furnace, 505–514

Continuous distribution, 183

Continuous empirical distribution, 183, 

600–601

Built-in Arena variables, 22

Built-in VBA events, 444–448

Business-process re-engineering, 14

Busy, 140

C

CAD drawings, 98

CAD programs, 324

Calendar window, 173, 175

Call center system, 208–257

animation, 234–237, 249

arrival cutoff logic, 220–222

arrivals and service selection process 

logic, 215

cost, 250–257

create arrivals and direct to service, 214–220

enhanced system, 237–250

order-status calls, 226–232

reading/writing fi les, 423–440
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system description, 208

system exit and run setup, 232–234

technical support calls, 222–225
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Carpet-cleaning-liquid model, 480–487
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CDF, 526–528, 583

Central limit theorem, 285

Chance-type Decide module, 534, 547
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Chart, 295
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Chi-square goodness-of-fi t test, 187

Child window, 444

Choice variable, 297

Cinema, 328, 559

Cinlar, E., 530
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Clock, 24

CMRG, 523

Coal-loading operation, 487–501

Coal loading with fl ow process, 501–505

Collecting data, 180–181, 280–282
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Data module, 61
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DAVG, 263, 544, 547
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Decide module, 112, 114, 190, 217, 220, 
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Detect module, 484, 485, 495, 496, 512

Deterministic inputs, 179
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DHALF, 338, 544
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Differential equations, 506, 507, 512–513

Direct read of variables and expressions, 442

DISCRETE-CHANGE VARIABLES, 78

Discrete empirical distribution, 183, 602

Discrete-event models, 479

Discrete-event simulation, 24, 33

Discrete-event simulation languages, 10

Discrete model, 7

Discrete-parameter statistics, 17

Discrete random variable, 582–583

Discrete system, 479
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Discrete-time statistics, 17, 77
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Dispose module, 67, 498, 499

Dispose spreadsheet, 68
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Continuous random variable, 582, 584–585

Continuous state-change system, 505–514
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182–183

Continuous-time statistics, 77, 302

Continuous-update times, 481

Control variates, 538

Convey module, 380, 382

Conveyor module, 368

Conveyors, 365–374, 380–384
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Correlation, 194, 587–588

Corresponding p-value, 187
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data collection, 181
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Counter set, 244
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Covariance, 587
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Create block, 264, 266

Create dialog box, 62, 82, 83

Create module, 62–63, 193, 397, 455

Create spreadsheet, 63
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Cross Severity, 486
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Customer reneging and balking, 386–395

Customize toolbar, 103
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Cut, 99

Cycle time, 18

Cyclical, 322, 353
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enhanced system, 137–152

Entity data module, 133

entity pictures, 156–157

fi nal model (fi gure), 133

frequencies, 146–148

model window of placed modules, 124

Part A Create dialog box, 124

part arrival logic modules, 164

Part B Create dialog box, 125

part transfers, 162–170

plot, 160
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Queue dialog box, 155

Record Scrapped Parts dialog box, 130
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resource pictures, 158–160

resource schedules, 140–143

Reword Schedule, 143
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route logic, 164–167
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Sealer Failure Spreadsheet view, 145
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Elements panel, 58, 214, 260
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EndIF module, 416
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Enter module, 348, 354, 370
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Distance dialog box, 357
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DISTRIBUTION.OUT, 185

DMAX, 401

Do-it-yourself model, 79–90
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Create fl owchart module, 81–82
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Dispose fl owchart module, 85

dynamic plots, 85–88
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place and connect fl owchart modules, 81

Process Flowchart module, 83
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window dressing, 88–89
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.doe fi le extension, 55, 444, 474, 565

Donno, L., 4

Down Time, 145

Draw toolbar, 104, 106, 107

Draws, 519

.dst fi le extension, 184

DSTAT, 544

DStats element, 262, 263
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Durations dialog, 242, 243

Durations spreadsheet window, 242

dx/dt, 505

DXF Format, 98, 324
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Dynamic plots, 69–71, 85–88
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Econometric time-series modeling, 339
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Edit > Entity Pictures, 133, 156, 170, 317

Edit > Insert New Object, 89

Edit menu, 99
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Editor Explorer, 474, 475
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Electronic assembly and test system, 121–170
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Failure data module, 144, 405

Failure Rule, 145
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File > Data File > Use Existing, 184

File > DXF Import, 324

File > Open, 55

File data module, 428

File menu, 98
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380–384

First in fi rst out (FIFO), 229

First-order differential equations, 507
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Fit > Fit All, 185

Fit All Summary table, 187

Fit menu, 185

Fitting input distributions, 182–190

Fixture requirement, 386

Flip, 101, 105

Flow module, 504

Flow Process panel, 58, 60

Flow Process template, 501–505

Flowchart Alignment, 101

Flowchart module, 60

Flowchart view, 56, 57

Flowcharting, 33
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Forklift, 345

Formative years (simulation), 12–13

Fox, B. L., 537

Free module, 354, 386

Free-path transporter, 351

Entity balking, 386, 387

Entity data module, 63–64

Entity Picture Placement window, 133, 157, 

170, 317

Entity pictures, 99, 156–157

Entity reference point, 156

Entity reneging, 386, 387

Entity spreadsheet, 64

Entity Summary dialog box, 135

Entity transfers, 345–378

conveyors, 365–374

resource-constrained transfers, 347–351

transporters, 351–365

types, 345–346

Entity.JobStep, 313

Entity.Sequence, 313

Entity.Station, 313, 319, 496

ENTITY.WAITTIME, 254

.EQ., 217

Erlang distribution, 603

Error Tolerance, 296

Errors, 171–178

DeBug Bar, 173

hypothesis tests, 593–594

typical, 171

Estimating probabilities, 180

Euler integration method, 486, 492, 496, 508

EVAL, 441

Evaluating many scenarios, 291–296

Event, 23–24, 479, 580

Event calendar, 23, 479

Event-driven hand simulation, 25–32

Event-driven simulation, 24

Event orientation, 32–33

Event record, 23

Example models, 108, 109

Example simulation, 15–20

analysis options, 18–20

output performance measures, 17–18

simple processing, 15–17

Examples folder, 108

Excel, 429–435, 465–472

Exit command, 98

Exit module, 383

.exp fi le extension, 110, 328

Expectation, 583

Expected value, 583

Experiment, 579–580

Experimentation and analysis, 563–564

Exponential distribution, 36, 62, 191, 604
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Higher-order differential equations, 507

Highlight Active Module, 172
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Frequencies, 146–148, 405
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FRQTIM, 411
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Leave module, 348, 354, 369
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Tools > Macro > Record Macro, 451

Tools > Macro > Run Macro, 453

Tools > Macro > Show Visual Basic Editor, 

443, 452, 466

Tools > Model Documentation 

Report, 61

Tools > Process Analyzer, 291

Tools > References, 467

Tools menu, 100–101

Tooltips, 55, 108

.tpo fi le extension, 55, 58

Traffi c routing model, 440

Transfer Out dialog box, 384

Transferring entities. See Entity transfers

Transport, 351

Transport Block module, 364

Transport devices, 345

Transport module, 354, 385

Transporter data module, 352

Transporter Selection rule, 351

Transporters, 351–365, 385–387

Triangular distribution, 191, 610

Truncated replications, 334–335

Trunk Line resource, 209

Tukey method, 594

Tuples, 586

Two-Sample-t Test, 290, 536

Type I error, 593

Type II error, 593, 594

Type III error, 5n

Type library, 448

U

Undo, 99

Ungroup, 101

Uniform distribution, 191, 192, 611

Union, 580

Unit, 22

Unload-Delay module, 382

Unstore module, 219

Uptime, 145

Use System Background Color, 102

User-defi ned expressions, 211

User-defi ned variables, 22, 210

UserContinuousEquations, 512, 513

UserForm, 454, 456–458, 459

UserFunction, 447

Utilization statistics, 150–151

Template Detach, 55

Template folder, 55

Terminating simulation, 211–212

comparing two scenarios, 287–291

confi dence intervals, 282–287

data collection and analysis, 280–282

defi ned, 280

optimal scenario, 296–301

periodic statistics, 302–303

sequential sampling, 539–543

Text (Draw toolbar), 107

Text Color, 71, 107

Text labels, 71

Text String dialog box, 88

Textbook, overview, 1

THALF, 338, 544

Theoretical distribution, 182, 187

Thermometer animation, 269

ThisDocument, 444, 450, 452, 466

Thomas, G., 6

Three-way decisions, 210

Thumbnails tool window, 475

Tightly coupled production system, 

404–410

Tile, 102

Time-based failure, 145

Time delays, 180

Time frame of simulations, 280

Time-persistent statistics, 17, 77, 137, 

302, 303

Time-varying event patterns, 529

TNOW, 24, 125, 246

TNUM, 411

Toolbar, 103–107

Animate, 104

Animate Transfer, 105

Arrange, 105

AVI Capture, 105

Customize, 103

Draw, 104, 106, 107

Integration, 104

Record Macro, 105

Run Interaction, 105

Standard, 103

View, 104–105

Toolbars (View menu), 100

Toolbox, 474, 475

Tools > Arena Visual Designer, 474

Tools > Input Analyzer, 184

kel01315_ind_619-636.indd   634kel01315_ind_619-636.indd   634 05/12/13   4:37 PM05/12/13   4:37 PM



Index     635

interacting with Arena users, 454–465

macro recording, 451–454

Microsoft Excel, 465–472

music, 462–463

object model, 448–451

run state, 446

tags, 456
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