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Abstract

The detection of heart disease using a stethoscope requires significant skill and time, mak-

ing it expensive and impractical for widespread screening in low-resource environments.

Machine learning analysis of heart sound recordings can improve upon the accessibility and

accuracy of diagnoses, but existing approaches require further validation on larger and

more representative clinical datasets. For many previous algorithms, segmenting the signal

into its individual sound components is a key first step. However, segmentation algorithms

often struggle to find S1 or S2 sounds in the presence of strong murmurs or noise that signif-

icantly alter or mask the expected sound. Segmentation errors then propagate to the subse-

quent disease classifier steps. We propose a novel recurrent neural network and hidden

semi-Markov model (HSMM) algorithm that can both segment the signal and detect a heart

murmur, removing the need for a two-stage algorithm. This algorithm formed the ‘CUED_A-

coustics’ entry to the 2022 George B. Moody PhysioNet challenge, where it won the first

prize in both the challenge tasks. The algorithm’s performance exceeded that of many end-

to-end deep learning approaches that struggled to generalise to new test data. As our

approach both segments the heart sound and detects a murmur, it can provide interpretable

predictions for a clinician. The model also estimates the signal quality of the recording,

which may be useful for a screening environment where non-experts are using a stetho-

scope. These properties make the algorithm a promising tool for screening of abnormal

heart murmurs.

Author summary

The use of machine learning algorithms to detect heart disease from sound recordings has

great potential to enable widespread and low-skill screening, improving early detection

and treatment. The area has seen increasing interest in recent years, with many novel algo-

rithms inspired by deep learning advancements in other fields. However, the size of heart

sound datasets remains small, making deep learning models particularly susceptible to

overfitting. In addition, the performance of these algorithms has rarely been directly
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compared on unseen data. We describe a novel lightweight algorithm to detect and clas-

sify murmurs in heart sound recordings. This algorithm was the winning entry into the

George B. Moody PhysioNet 2022 challenge, beating many complex deep-learning

approaches. Our approach both detects and localises the murmur, providing an interpret-

able result for a clinician.

Introduction

Cardiovascular disease is the leading cause of mortality worldwide, with 18 million deaths

every year [1]. However, compared to other serious diseases, awareness of many types of heart

disease remains low and many are critically underdiagnosed [2]. In young people, rheumatic

valvular heart disease is the most common cardiovascular disease, with an estimated global

burden of 41 million cases, primarily in developing countries [3]. More than a quarter of

patients with rheumatic disease present to a clinician at a late stage with heart failure [4].

There is a clear need for widespread early detection, to improve early treatment of the disease

and prevent long-lasting morbidity [1].

Many heart diseases, such as rheumatic valve disease, cause structural changes in the heart

that lead to abnormal sounds, such as heart murmurs [5]. The only tool currently available to

detect these sounds in primary care is a stethoscope. Listening to the chest with a stethoscope

(auscultation) is a quick and non-invasive test. However, auscultation proficiency varies widely

amongst clinicians. The sensitivity of an experienced general practitioner in detecting valvular

heart disease can be as low as 44% [6]. Enabling low-cost screening of the disease, especially in

resource-constrained areas, will require a test that can be quickly and accurately performed by

non-specialist clinicians.

Automated analysis of heart sound recordings (phonocardiograms) is a promising solution

to improve the accuracy and accessibility of auscultation. A number of novel methods have

been proposed in recent years, driven by an increased amount of open-access datasets and

renewed interest in machine learning and AI [7]. However, many of these algorithms suffer

from issues such as overfitting and poor generalisation to new data. The George B. Moody

PhysioNet 2022 challenge [8] tasked participants to design novel algorithms to detect and clas-

sify heart murmurs in a new paediatric dataset, enabling an independent comparison of

approaches that is more representative of a real-world clinical environment.

In this paper, we describe a novel algorithm that won the First Prize in both tasks in the

challenge [8, 9]. The algorithm is inspired by takeaways from the earlier 2016 PhysioNet chal-

lenge on heart sound classification [7, 10] and, in contrast to many other approaches, does not

use an end-to-end deep learning model. We also explore the results of the challenge and com-

pare the algorithm’s efficacy on the two distinct tasks.

Materials and methods

Dataset

Limitations of previous datasets. An ongoing limitation of research into automated anal-

ysis of heart sound recordings (also known as phonocardiograms, PCGs) is the availability of

high-quality labelled data. Whilst electronic stethoscopes have received regulatory approval

and are available to purchase, the vast majority of stethoscopes in clinical practice are ana-

logue. Therefore, heart sounds are rarely recorded and stored with patient records, unlike

other cardiac tools such as electrocardiography (ECG) and echocardiography. The creation of
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heart sound datasets therefore requires bespoke clinical research studies that are expensive and

time-consuming, especially in resource-strained cardiology units.

Due to these constraints, open-access data has proved a valuable resource for advancing

algorithm design. These datasets include the 2016 PhysioNet/Computing in Cardiology dataset

[11] and the PASCAL Challenge dataset [12]. However, these datasets are limited by a lack of

detailed information on the recording environment, murmur assessments, and patient out-

comes. The 2016 PhysioNet challenge included a withheld test set to assess the generalisation

of algorithms [7]. However, this test set was never made public after the challenge. Research

using this dataset since 2016 has created new test sets by applying varying cross-validation and

splitting strategies to the training set. These varied strategies have made direct comparisons

between approaches challenging. The 2016 PhysioNet dataset also used recordings from multi-

ple different devices, with its largest dataset using different devices to record abnormal and

normal patients [11]. This unintentionally prompted machine learning algorithms to overfit to

the dataset by learning to distinguish device characteristics rather than diagnostic sounds [10].

The CirCor DigiScope dataset. In this study, we train and evaluate algorithms using the

open-access paediatric CirCor DigiScope dataset [13–15], which was used in the George B.

Moody PhysioNet Challenge 2022 [8]. To date, this dataset forms the largest open-access data-

set for murmur detection and classification [13].

As described by Oliveira et al. [13], the dataset was gathered as a part of two screening pro-

grams in Brazil in 2014 and 2015. Approval for the study protocol was granted by the

5192-Complexo Hospitalar HUOC/PROCAPE Institutional Review Board under the request

of the Real Hospital Português de Beneficiência em Pernambuco. Written consent was

obtained for all participants, with parental consent where appropriate.

A total of 5268 phonocardiogram recordings were collected from 1452 patients. Some

patients were recruited more than once, giving 1568 unique patient encounters. Recordings

were made using the Littmann 3200 electronic stethoscope at up to four of the standard aus-

cultation sites on the chest (aortic, pulmonic, tricuspid, mitral). All patients underwent a

detailed cardiac investigation (radiography, electrocardiogram, echocardiogram). However,

the released public dataset gives limited per-patient information on the individual diseases

present, simply labelling each patient as ‘normal’ or ‘abnormal’.

Each patient was labelled by an operator as ‘murmur absent’, ‘murmur present’, or

‘unknown’. The unknown class was assigned when the signal quality of the patient’s recordings

was too poor for confident labelling. The chest locations where a murmur could be heard were

labelled, allowing for per-recording labels to be assigned. The murmur timing, grade, and

characteristics were also labelled. However, the dataset does not differentiate between patho-

logical and physiological (innocent) murmurs [8]. Patients with an abnormal clinical outcome

may therefore have an innocent murmur that is unrelated to their cardiac disease. Addition-

ally, whilst a total of 305 patients have a murmur, with 304 systolic murmurs, only 10 have dia-

stolic murmurs. This means the dataset is not suitable for designing or evaluating algorithms

for diastolic murmur detection.

A subset (n = 110) of patients self-reported pregnancy during recruitment [13]. However,

the age of these patients was not specified, making it unclear if they belong to the paediatric

population [8].

George B. Moody PhysioNet challenge 2022. Reyna et al. [8] provide a detailed overview

of the 2022 PhysioNet challenge. 60% of the CirCor dataset was released publicly by the orga-

nisers as a training set (942 encounters), with the remaining 40% split between a validation

(10%) and a final test set (30%) [8]. Participants were able to submit their algorithms to the val-

idation set throughout the challenge to assess their performance, whilst the challenge organis-

ers ran each entry only once on the test set to determine the final ranking [8]. The structure
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and hyperparameters of the algorithms described in this work were developed using the chal-

lenge training set.

The challenge was split into two distinct tasks [8]. The first was murmur detection, where

teams were asked to label each patient encounter as ‘murmur absent’, ‘murmur present’, or

‘unknown’, matching the labelling assigned by the expert annotator. A weighted accuracy met-

ric was used to judge entries, assigning a weight of five to ‘murmur present‘, three to

‘unknown’, and one to ‘murmur absent’. This was designed to model the potential high cost of

a false negative, and the importance of judging when a signal could be not be confidently diag-

nosed [8].

The second task was to predict the overall clinical outcome for a patient encounter as ‘nor-

mal’ or ‘abnormal’. The challenge organisers designed a custom cost function for this task,

modelling the potential costs of using the algorithm in a screening pathway [8]. A lower cost

was better. Similar to the murmur task, the cost function placed a high cost on false negatives

because this could lead to delayed or missed treatments.

Previous work

Whilst the CirCor dataset is a significant addition to open-access PCG data, it is still small

compared to many machine learning domains where deep learning algorithms dominate per-

formance. Feature extraction is a beneficial step to reduce the complexity of the audio data and

hence the complexity required of subsequent classifiers, making it easier to train them to iden-

tify diagnostic features. A key conclusion of the 2016 PhysioNet challenge was that feature

extraction was the most ‘crucial and important’ part of algorithms [7].

Segmentation of heart sound signals. The nature of heart sounds is well-understood

from a clinical perspective [5]. A phonocardiogram is a non-stationary signal consisting of a

generally periodic set of S1 (lub) and S2 (dub) sounds corresponding to closures of the atrio-

ventricular and semilunar valves respectively [5]. Abnormal murmurs can appear in the sys-

tolic and diastolic regions of the signal, depending on the particular structural pathology of the

patient’s heart. Other abnormal sounds, such as S3 and S4, may also appear, giving distinctive

rhythms in the signal. Due to this periodic structure, a common first step in classifiers is seg-

mentation, where the individual heart sound states (S1, S2, systole, diastole) are labelled in

time. This allows subsequent algorithm stages to focus on diagnostically relevant areas of the

recording and apply ensemble averaging to segments to reduce noise.

In the 2016 challenge, a segmentation algorithm designed by Springer et al. [16] was pro-

vided to participants to aid their design [7]. This model used a hybrid structure, where a logis-

tic regression provided observations for a hidden semi-Markov model (HSMM). It was

considered state-of-the-art at the time [7]. However, the algorithm assumes a healthy heart

cycle which makes it susceptible to errors when loud murmurs or noise overwhelm weaker S1

or S2 sounds [17].

Kay [17] observed this limitation and designed a segmentation algorithm that directly mod-

els the heart sound state. He calculates a series of band-pass-filtered homomorphic envelopes

and power spectral densities (PSDs) to give a feature set that can distinguish murmurs from

healthy sounds. He then replaces the logistic regression of Springer with a fully connected neu-

ral network, giving greater non-linear discrimination between states. Noting that the algo-

rithm of Springer struggles to distinguish S1 from S2 and systole from diastole, Kay’s

algorithm predicts only three states: murmur, major heart sound, and silence. These neural

network predictions are used as observations for two hidden semi-Markov models, one of

which assumes the murmur state appears in systole and one that assumes a healthy heart

sound with silence in systole. The most confident segmentation produced by the HSMM gives
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a murmur diagnosis. We provide more detail on this HSMM approach in the Methods section

of this paper.

One limitation of the approaches of Springer [16] and Kay [17] is that the discriminative

classifiers providing observation probabilities predict on a per-frame basis and do not model

dependencies between adjacent time frames. When inspecting a phonocardiogram, a skilled

clinician will identify the S1 and S2 sounds by assessing the timing of the sounds. The models

of Springer and Kay cannot do this as they view each frame independently, and so rely on the

HSMM to provide this timing information. In previous work, recurrent neural networks

(RNNs) have been applied to model this time dependency [18], offering improved predictive

power compared to logistic regressions. However, the models deployed in previous work

neglect to predict a murmur state and assume that only a healthy heart sound cycle is present.

Method

The murmur detection and segmentation algorithm we describe in the following sections is an

improvement over Kay’s work [17] and has been optimised for the 2022 PhysioNet challenge.

The algorithm, as shown in Fig 1, consists of four distinct stages: (i) feature extraction, (ii) neu-

ral network prediction, (iii) segmentation, and (iv) final classification through a comparison of

segmentation confidences. We then describe an algorithm to combine the output of murmur

predictions from multiple auscultation positions to predict the patient’s final clinical outcome.

We define a time-series heart sound recording with N samples as r1:N. All the recordings in

the challenge dataset were made using the Littmann 3200 electronic stethoscope, which has a

fixed sampling frequency of 4000 Hz. In feature extraction, the time-series recording is con-

verted into a time-frequency series with T time windows, x1:T. Four parallel HSMM models

(ω1, . . ., ω4), are then applied to produce four distinct segmentations qðoÞ1:T . The confidence in

these segmentations is then compared to produce a final segmentation and classification.

The following subsections describe each step of the algorithm in more detail. All computa-

tion was conducted in Python 3 using PyTorch 1.11, NumPy 1.21, and SciPy 1.7. The code to

train these models and generate results is available on a public repository [19].

Feature extraction. The amplitude of the PCG is first normalised by removing its mean

and dividing by the resulting peak amplitude. The absolute amplitude of a PCG is an unreliable

feature as it varies significantly depending on the application pressure of the stethoscope and

the particular patient [20].

Fig 1. Parallel HSMM algorithm structure. A heart sound recording is transformed into log-spectrogram features, which are then input to an RNN.

The RNN probabilities are then used to produce four segmentations using four parallel HSMMs. The confidence in these segmentations is then

compared to give the most probable segmentation, murmur prediction, and a signal quality estimate.

https://doi.org/10.1371/journal.pdig.0000436.g001
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The homomorphic envelope and PSD features of Kay [17] allow discrimination of energy

in high and low frequencies but there is significant redundancy and extra computation in com-

puting both the band-pass-filtered envelopes and the PSDs. Instead, in this work we compute

a log-spectrogram using a Hann window of length 50 ms and step 20 ms. A larger window

length enables a higher frequency resolution at the cost of a lower time resolution. The time

duration of S1 and S2 sounds is approximately 100 ms, so a 50 ms window was chosen to

enable precise identification of the major heart sounds whilst maintaining an effective fre-

quency resolution of 20 Hz. A secondary advantage of this approach is that spectrograms pro-

vide an interpretable 2D visualisation of the time-frequency energy in the recording, as shown

in Fig 2.

Although the Nyquist frequency of the recordings is 2000 Hz, we further limit the spectro-

gram to 0–800 Hz to remove higher frequencies that contain no heart sound information. This

reduces the risk of the subsequent neural network stages learning to overfit to irrelevant high-

frequency noise such as speech and background sounds.

As a key final step, each frequency row in the spectrogram is z-score normalised by sub-

tracting its mean and dividing by its variance. Murmurs commonly contain much less time-

frequency energy than S1 and S2 sounds, and this normalisation reduces the dynamic range

[10].

Recurrent neural network. A recurrent neural network with knowledge of the timing of

heart sounds should be able to discriminate S1, S2 and murmur sounds without relying on a

subsequent HSMM. We therefore define a ground-truth segmentation q1:T of five distinct

Fig 2. Neural network prediction of per-time heart sound categories. The heart sound recording (top) is

transformed to a normalised spectrogram (middle) that is then passed to a RNN that predicts the state corresponding

to each time window (bottom). The RNN is able to use the spectrogram to correctly distinguish between S1, S2, and

the systolic murmur. The RNN also predicts systolic and diastolic states which are omitted from the bottom figure for

clarity.

https://doi.org/10.1371/journal.pdig.0000436.g002
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heart sound states ξi 2 {S1, S2, systole, diastole, murmur}. The challenge dataset includes seg-

mented locations for the S1, S2, systole and diastole sounds but does not explicitly localise

murmurs. However, the additional labels provided by the challenge include a prediction of the

‘murmur timing’ annotated by a clinician [13]. We use these labels to approximately annotate

the location of the murmur in the ground-truth segmentation. If the recording is labelled to

contain an early-systolic murmur, the first 50% of each systolic period is annotated as ‘mur-

mur’. If ‘mid-systolic’, the middle 50% is murmur. If ‘holosystolic’, the entire systole portion is

annotated as a murmur.

We note that one limitation of this analysis is that diastolic murmurs cannot be detected,

which may result in false negatives. Diastolic murmurs are much less prevalent than systolic

murmurs in clinical practice, and only 5 patients in the training dataset have diastolic sounds.

A future improvement, given more diastolic examples, would be to replicate this labelling

approach for diastolic murmur signals.

Using this modified ground-truth segmentation, we train a bidirectional RNN with param-

eters θ to predict the state qt at each time instance using the log-spectrogram features x1:T, giv-

ing posterior probabilities P(qt = ξi|x1:T, θ). An example of the outputs of the RNN is shown in

Fig 2. The RNN is confidently able to distinguish S1 and S2, verifying the five-state segmenta-

tion model.

The RNN structure and hyperparameters are optimised through cross-validation on the

training dataset. The final model consists of a three-layer bidirectional RNN with Gated Recur-

rent Unit (GRU) [21] cells with a hidden layer size of 60. The concatenated forward and back-

ward outputs of the RNN are passed to a two-layer fully connected neural network with Tanh

activations and hidden sizes of 60 and 40. This fully connected network and a subsequent soft-

max layer reduce the RNN output to the five-dimensional output of the segmentation labels.

Dropout with probability 0.1 is applied between the GRU and fully connected layers to reduce

overfitting.

The model is trained using a cross-entropy loss with the Adam optimiser [22]. Some states

in the segmentation (e.g. diastole) are much more prevalent than others (e.g. murmur), so to

avoid models learning to favour one class the loss function is inversely weighted by the fre-

quency of each class label in the overall dataset.

Parallel hidden semi-Markov models. Given posterior probabilities from the RNN, the

simplest method to produce a segmentation would be to ‘greedily’ pick the state with the maxi-

mum probability at each time instance:

qt ¼ max
xi

Pðqt ¼ xijx1:T; yÞ ð1Þ

A murmur could then be predicted if the greedy segmentation ever contains a murmur

state. However, in practice, this approach is very prone to false positive murmur predictions

because higher-frequency signal noise can cause occasional spurious predictions. Additionally,

the heart is physiologically constrained to generate sounds in the order S1, systole, S2, diastole

but the RNN is not similarly bound. This means that physically impossible state transitions are

possible (e.g. S2 to systole) in the greedy segmentation.

To generate a globally optimum and physically valid segmentation we use the RNN proba-

bilities as observations for hidden semi-Markov models, following the hybrid structure used in

Springer [16] and Kay [17].

As described by Springer et al. [16], the HSMM is an extension to a traditional hidden Mar-

kov model that uses an explicit model for the duration of each state. This is particularly useful

for physiological signals, such as phonocardiograms, where states have reasonably well-defined

durations due to physical constraints.
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The expected durations of states (particularly systole and diastole) significantly vary

between patients due to the wide range of resting heart rates in the dataset. Springer et al. [16]

therefore does not use one global model for the state durations, instead fine-tuning Gaussian

distributions by scaling their means by an estimate of the heart rate. Their approach follows

the work of Schmidt et al. [23] and estimates the heart rate by computing the autocorrelation

of a smoothed homomorphic envelope of the heart sound signal. They then search for the

highest peak in the autocorrelation in the 500 to 2000 ms range, corresponding to heart rates

between 30 bpm and 120 bpm. This search range requires modification for paediatric use as

approximately 20% of the dataset has a heart rate above 120 bpm.

In this work, we improve upon this estimate of the heart rate by noting that the posterior

probabilities from the RNN are a filtered version of the original signal from which a period

can be estimated. The homomorphic envelope Springer uses can therefore be replaced with

the RNN posteriors to get an autocorrelation that is much smoother and less affected by noise

spikes. See S1 Fig for more information.

Kay uses two HSMMs, one assuming a healthy sound and the other assuming a holosystolic

murmur [17]. However, many of the murmurs in this dataset are early systolic [13].

In this work, we improve upon these assumptions by using four HSMMs that each make

different assumptions about the underlying signal and hence generate a different segmenta-

tion. The state durations are shared between each HSMM but the observation probabilities

and transition matrix differ:

ω1 A normal signal with no murmur. A four-state segmentation model is used with the mur-

mur posterior from the RNN discarded.

ω2 A holosystolic murmur signal. A four-state segmentation model is used, where the murmur

posterior replaces every systole posterior.

ω3 An early-systolic murmur signal. A five-state segmentation model is used, with a transition

matrix that forces the S1 state to transition to the murmur state and then to the systolic

state.

ω4 A mid-systolic murmur signal. A five-state segmentation model as above, but with a transi-

tion matrix that forces the S1 state to go to systole first.

A predicted segmentation q̂ðoÞ is calculated using each HSMM model above, giving four

distinct interpretations of the signal. We then calculate a confidence measure of the segmenta-

tion C(ω) by tracing the predicted segmentation path back through the RNN posterior proba-

bilities:

CðoÞ ¼
1

T

XT

t¼1

P qt ¼ q̂ðoÞt jx1:T; y
� �

ð2Þ

The final model, ô, is chosen as the HSMM with the largest confidence:

ô ¼ arg max
o
ðCðoÞÞ ð3Þ

This selects a final predicted segmentation of the signal, q̂ðôÞ1:T , and a final classification of the

type and location of any systolic murmur. The confidence of the chosen model, CðôÞ, can be

used as a measure of the signal quality. The four-class model can easily be reduced to a binary

murmur detector; if the chosen model is a murmur HSMM model (ô 2 fo2;o3;o4g) then a

murmur is predicted. For the binary case, we can also calculate an overall confidence of the
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murmur, C(M), vs no murmur, C(N) decision:

CðMÞ ¼ maxðCðo2Þ;Cðo3Þ;Cðo4ÞÞ ð4Þ

CðNÞ ¼ Cðo1Þ ð5Þ

The difference between these two confidences can then be used as a measure of the separability

of the murmur and no murmur outcomes:

CðM� NÞ ¼ CðMÞ � CðNÞ ð6Þ

The above method produces a per-recording prediction of the presence of a murmur. To get a

per-patient prediction in the format required by the challenge, we apply a simple common-

sense criterion. If a murmur is detected in any of the recordings, the patient is predicted to

have a murmur. If this is not true, the confidence of the chosen model CðôÞ is examined: if this

is below a threshold (0.65), the patient is classified as ‘unknown’. Otherwise, the patient is pre-

dicted to be ‘no murmur’.

Prediction of clinical outcome. When predicting the overall clinical condition of a

patient, a skilled clinician will auscultate each location of the chest and weigh the strength and

characteristics of the sounds at each site [5]. They may also consider general patient biometrics

such as age, and sex, along with the recorded patient history.

The CirCor dataset does not include detailed patient biomarkers or risk factors but does

include basic biometrics such as age. To incorporate this information alongside the heart

sound recordings, we apply a CatBoost gradient boosted decision tree [24] as shown in Fig 3.

For each recording, we use the parallel HSMM method described above to calculate the mur-

mur likelihood, C(M−N). We also compute the maximum confidence, CðôÞ, so that the decision

tree can reject poor-quality signals. In situations where a patient has multiple recordings from

Fig 3. CatBoost algorithm structure to predict clinical outcome. The parallel HSMM algorithm described in Fig 1 is applied to each recording to

generate murmur likelihood C(M−N) and signal quality CðôÞ metrics. These metrics are then combined with additional patient information and

input to a CatBoost decision tree to predict the patient’s final clinical outcome.

https://doi.org/10.1371/journal.pdig.0000436.g003
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the same chest location, the values are averaged before input to the CatBoost model. Added to

the feature set are the patient’s age, pregnancy status, and the overall number of recordings

made. Age and pregnancy are expected to have some effect on the type and intensity of heart

murmurs. The overall number of recordings is included to allow the algorithm to adjust the

confidence of its predictions based on how many examples were taken.

The CatBoost model is trained with a cross-entropy loss and optimised through a five-fold

cross-validation strategy alongside the RNN model. A class weight of 1.8 is used for the abnor-

mal examples and 1 for the normal examples to prioritise sensitivity, because of the high

potential cost of a false negative. The chosen decision tree has a depth of 9. The final threshold

probability to decide an abnormal result (0.4738) is chosen to minimise the challenge cost

function.

Results and discussion

We now explore the results of our algorithm on the CirCor dataset. A limitation of the dataset

is that the test set has not yet been made publicly available, because of its use in the 2022 Physi-

oNet challenge. This means only a limited set of result metrics on the test set can be reported.

For an in-depth exploration of the algorithm, we additionally report additional metrics evalu-

ated through cross-validation on the public training set. As demonstrated later, the cross-vali-

dation results closely match those on the test set. We are therefore confident that the cross-

validation results provide a representative example of the algorithm’s performance.

Murmur detection

Cross-validated results. Fig 4 shows a plot of the HSMM confidence values for every

recording in the training dataset. Using the HSMM confidences allows for a strong separation

of murmur and normal signals, whilst producing an estimate of signal quality. A low threshold

of C(M−N) = 0 was chosen because the challenge weighted accuracy metric strongly penalised

false negatives. However, a higher threshold could be picked for future applications, such as

population screening, where a high specificity is essential to minimise false positive referrals.

Fig 5 shows some examples of recordings analysed by the algorithm that would fall into differ-

ent quadrants of the plot in Fig 4.

Table 1 shows a confusion matrix for the results of the algorithm on the training set. The

corresponding micro-averaged accuracy is 0.771 and challenge weighted accuracy is 0.798.

Table 2 shows the per-class performance of the algorithm in terms of sensitivity and positive

predictive value (PPV). The macro-averaged F1 score is 0.621.

Table 2 shows that the algorithm at its current operating point is 92.7% sensitive to mur-

murs. As expected, the sensitivity of the algorithm increases with the patient’s reported mur-

mur grade. For grade 1 (quiet) murmurs, 87.5% of cases are detected. This rises to 100% for

grades 2 (moderate) and 3 (loud). The algorithm also has a high precision for the ‘murmur

absent’ class, which would be important for use as a rule-out device where patients must be

confidently rejected as having a murmur.

However, the performance at predicting the ‘unknown’ class is poor. Table 1 shows that

‘unknown’ patients (n = 68) were likely to be predicted as ‘murmur’ (n = 19) or ‘no murmur’

(n = 28). Only a single murmur patient was predicted to be ‘unknown’, but 39 ‘no murmur’

patients were. The unknown class was used if the annotator was unable to confidently predict

the presence of a murmur [13]. However, this extra label is subjective and highly dependent on

how the recordings were listened to and annotated. The definition of a poor-quality signal

from an algorithmic and human perspective is likely very different. It is possible that the algo-

rithm can confidently predict cases that a human cannot, due to analysis of lower-frequency
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inaudible energy or greater resilience to noise. Fig 5d shows an example of one of these record-

ings, which does contain some noise and is marked unknown by the clinician, but still has

audible heart sounds and is confidently segmented by the algorithm and predicted as ‘Murmur

absent’.

If the ‘unknown’ patients are removed to create a new ‘clean’ dataset (n = 874), the murmur

detection task reduces to binary classification and we can plot a receiver operating characteris-

tic (ROC) curve, as shown in Fig 6. The murmur likelihood, C(M−N), can be used as the contin-

uous test statistic to generate the curve. The model achieves an area under the ROC curve of

0.947, with an operating sensitivity of 92.7% and a specificity of 83.2%. However, the model

performs well across a range of threshold and an operating point that prioritises specificity

could be chosen if desired. Fig 7 shows a reliability diagram for this task, where the murmur

likelihood is plotted against the relative frequency of murmurs. The approximately linear rela-

tionship shows that the murmur likelihood provides a calibrated estimate of the confidence in

the decision.

Challenge test results. On the test set, the algorithm achieved a micro-averaged accuracy

of 0.763, challenge weighted accuracy of 0.776, and a macro-averaged F1 score of 0.623 [25].

These values closely match the results reported earlier on the cross-validated training set

(0.771, 0.798, and 0.621 respectively), suggesting overfitting has not taken place. Per-class sen-

sitivity and PPV metrics were not reported by the challenge organisers.

In the context of the PhysioNet challenge, the algorithm achieved the second-highest score,

with an accuracy just 0.004 below the top score. The top-scoring team failed subsequent tests

Fig 4. Separation of murmur, normal, and poor signal quality signals using HSMM confidences. The difference

between the normal HSMM confidence, C(N), and the most confident murmur HSMM, C(M), is used to predict

murmur likelihood C(M−N), whilst the most confident overall HSMM CðôÞ is used as an indication of signal quality. The

horizontal and vertical lines show thresholds that have been chosen to separate the different classes, optimised for the

challenge task. The marker type indicates the ground-truth labels.

https://doi.org/10.1371/journal.pdig.0000436.g004
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to their code which made them ineligible for the final prizes [8]. Our algorithm therefore won

the First Prize for murmur detection. The chosen metric for the challenge was a ‘weighted

accuracy’ that gave murmur examples five times the importance of normal examples, which

meant the high sensitivity operating point shown in Fig 6 performed well.

Fig 5. Four example recordings analysed by the algorithm. Three-second windows are shown for each recording,

with their database ID shown in the top right. Recording (a) contains a strong systolic murmur that is confidently

detected by the algorithm (C(M−N) = 0.25). (b) is a healthy signal that is correctly identified (C(M−N) = −0.10). (c)

contains significant talking and other noise, and is marked as ‘Unknown’ by the clinician. The algorithm

correspondingly rejects the signal with a low confidence of CðôÞ ¼ 0:49. (d) contains a lower amplitude signal with

some noise that is marked as ‘Unknown’ by the clinician, but is segmented by the algorithm with a very high

confidence of CðôÞ ¼ 0:91.

https://doi.org/10.1371/journal.pdig.0000436.g005

Table 1. Confusion matrix for the cross-validated murmur detection task.

Predicted Class True Class

Murmur Unknown No murmur

Murmur 166 19 117

Unknown 1 21 39

No murmur 12 28 539

https://doi.org/10.1371/journal.pdig.0000436.t001

Table 2. Per-class results for the murmur detection task.

Class Cases Sensitivity (%) PPV (%) F1 score

Murmur present 179 92.7 55.0 0.690

Unknown 68 30.9 34.4 0.326

Murmur absent 695 77.6 93.1 0.846

Results are evaluated via 5-fold cross-validation of the training dataset. Shown are sensitivity (also known as recall),

positive predictive value (PPV, also known as precision), and their combined F1 mean.

https://doi.org/10.1371/journal.pdig.0000436.t002
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One additional advantage of the algorithm compared to deeper methods is the computa-

tional resources required for training. The top-scoring algorithm took 18 hours and 51 min-

utes to train on a NVIDIA T4 Tensor Core GPU, whereas our algorithm took just 38 minutes

[8].

Fig 6. Receiver operating characteristic curve for murmur detection algorithm. The sensitivity and specificity of the

parallel HSMM model is shown as the threshold confidence difference C(M−N) varies. The normal operating point of

the algorithm (i.e. decide murmur if C(M−N) > 0) is also shown. A 95% confidence interval (CI) in the curve has been

calculated through bootstrap resampling with 1000 iterations. Patients with an ‘unknown’ murmur label have been

removed.

https://doi.org/10.1371/journal.pdig.0000436.g006

Fig 7. Reliability diagram for prediction of murmurs using HSMM confidence difference. As the confidence

difference C(M−N) increases, so does the relative frequency of murmurs with an almost linear relationship (dashed line).

This suggests good calibration of the murmur likelihood output.

https://doi.org/10.1371/journal.pdig.0000436.g007
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Limitations of analysis. One limitation of the CirCor dataset is that the murmur labels

were annotated by a single clinician rather than a board of reviewers [8]. The labelling of a

heart murmur depends heavily on the annotator’s skill, hearing acuity, and headphones.

Therefore, it is not as repeatable a ground-truth as other cardiac tests such as electrocardiogra-

phy and echocardiogram and some disagreements between the algorithm and the clinician

label are to be expected. Future work should investigate recordings where a large majority of

challenge teams disagree with the clinician label, as this may be indicative of mislabels.

An additional limitation in the dataset labelling, as mentioned earlier, is that the ground-

truth does not distinguish between a pathological and physiological (innocent) murmur. This

is an important aspect of clinical deployment that cannot be modelled using this dataset. Refer-

ring many patients with physiological murmurs for follow-up investigation may overwhelm

secondary care departments. Future studies should use an echocardiographic gold standard to

label pathological murmurs, and so assess the sensitivity and PPV of algorithms for the ulti-

mate clinical aim of detecting significant structural heart disease.

Prediction of clinical outcome

Cross-validated results. Fig 8 plots an ROC curve for the performance of the CatBoost

algorithm at predicting ‘normal’ or ‘abnormal’ clinical outcome. The CatBoost algorithm

achieves an area under the ROC of 0.691. The challenge operating point of this algorithm gives

a sensitivity of 84.2% and a specificity of 31.3%, which results in a final challenge score of

Fig 8. Performance of algorithms and clinician on clinical outcomes task. A receiver operating characteristic (ROC)

curve for the CatBoost algorithm at predicting clinical outcome is shown. Also shown are operating points for the

clinician (using the murmur label) and the parallel HSMM murmur detection algorithm. The colourmap shows how

sensitivity and specificity relate to the PhysioNet challenge cost score. On the training set, an optimum random

classifier can achieve a cost score of 12581.

https://doi.org/10.1371/journal.pdig.0000436.g008
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11050. The corresponding micro-averaged accuracy is 0.569. For a fixed prevalence and data-

set size, the challenge cost function can be plotted as a function of sensitivity and specificity, as

shown in the colourmap of the figure.

Table 3 compares the CatBoost operating point to other possible predictors, which are also

shown in Fig 8. Shown are operating points if the presence of a murmur (either annotated by

the clinician, or predicted by our parallel HSMM algorithm) is taken as a direct indication of

an abnormal clinical outcome. For both these predictors, we assume all cases that are predicted

‘unknown’ are referred on for follow-up because they cannot be confidently screened out.

Both the murmur algorithm and the clinician are specific, but their sensitivity is poor, indicat-

ing that many patients have heart disease that does not produce an audible signature. Both the

murmur algorithm and clinician labels achieve a Youden’s index (0.328 and 0.312 respectively)

that is higher than is achieved by the CatBoost model optimised for the challenge cost function.

However, the CatBoost challenge score (11050) is significantly better than the murmur detec-

tion algorithm (13642) and the clinician label (16083). These two latter scores are worse than a

hypothetical random classifier on the random diagonal line of the ROC, shown in Fig 8, and

achieves a score of 12581.

The colourmap in Fig 8 shows that the overall effect of the cost function is to heavily priori-

tise sensitivity over specificity. The figure also illustrates that the main effect of the CatBoost

algorithm has been to shift the operating point from a specific area (i.e. the murmur detection

performance) to a sensitive area. This is highly beneficial to lower the challenge cost function,

but may not be practical for widespread screening. Many population-level screening programs

prioritise a high specificity over sensitivity [26], because this is crucial to maintaining a high

positive predictive value when operating over a low prevalence population. An algorithm with

low specificity could lead to a very large number of false positive referrals overwhelming sec-

ondary care cardiac services, such as echocardiography.

Challenge test results. On the challenge test set for the clinical outcome task, the algo-

rithm achieved a micro-averaged accuracy of 0.602 and an overall challenge cost score of

11144. This was the winning score. As for the murmur detection task, these test results do not

differ significantly from the training results (0.569 and 11050 respectively), again suggesting

that the model has not significantly overfit to the training data.

In general, across challenge entries, the performance of the algorithm at detecting clinical

outcome was poor compared to murmur detection. The CirCor dataset only provides a binary

label of disease and does not provide additional labels on its nature or severity [8]. Given the

low sensitivity of clinical auscultation, it is likely that many of the patients recruited have dis-

eases that do not produce audible murmurs or other abnormal sounds. Phonocardiography is

a useful tool to detect many structural heart diseases but should be combined with non-inva-

sive cardiac screening tests (e.g. electrocardiography) to provide a more sensitive test for heart

Table 3. Performance of different predictors on the clinical outcome task.

Operating point Sensitivity (%) Specificity (%) Youden’s index Challenge cost

CatBoost algorithm 84.2 31.3 0.155 11050

Murmur algorithm 55.5 77.4 0.328 13643

Clinician label 42.3 88.9 0.312 16083

Random classifier 78.3 21.7 0 12581

The operating points listed are shown graphically in Fig 8. Youden’s index is calculated as ‘sensitivity + specificity − 1’. The ‘murmur algorithm’ row denotes the

performance if the murmur predictions from the parallel HSMM algorithm were directly used to predict clinical outcome. Similarly, the ‘clinician label’ row shows the

performance if the annotated murmur labels were directly used to predict the clinical outcome, assuming unknown cases are referred on as positives.

https://doi.org/10.1371/journal.pdig.0000436.t003
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dysfunction. It may therefore be beneficial to focus algorithm designs on diseases that are

known to produce abnormal sounds (e.g. valvular heart disease, septal defects) rather than

training models to predict a general abnormality.

Analysis of the PhysioNet 2022 challenge

A notable observation of the challenge results is that the ranking of entries changed signifi-

cantly between the validation and test sets. The final scores also showed a significant difference

between the validation and the training and test sets. The validation set (10% of the data) was

smaller than the test set (30%) and teams were allowed up to 10 submissions to the validation

set. Teams, therefore, optimised their algorithm for best performance on the validation set,

which, given the relatively small total dataset, was not entirely representative of the final test

set. In particular, the prevalence of the ‘abnormal outcome’ in the validation set (0.383) was

significantly lower than in the test set (0.507) [8].

A novel part of the 2022 challenge was the use of the custom cost function for the binary

clinical outcome task. The challenge organisers argue that traditional metrics for binary classi-

fiers, such as area under the receiver operating characteristic curve, weigh all examples equally

and are not optimised for particular clinical contexts [27]. The 2022 cost function was

designed to represent the key issues in the deployment of an algorithm in low-cost screening

environments [8]. However, one potential limitation of solely using a custom loss function is

that results from the challenge cannot be easily compared to other studies applying machine

learning to PCG analysis. The cost value can also mask whether the algorithms are actually

identifying diagnostic features. Approximately half of the challenge teams (19) achieved a

worse performance on the test set than a random classifier. An optimum random model that

achieves a sensitivity of 80% and a specificity of 20% (thus lying on the diagonal line of a

receiver operating characteristic graph) on the test set would achieve a challenge cost score of

13168. In Fig 9, we compare the training and test scores for all the official challenge entries.

Fig 9 also shows that shows that many algorithms overfit to the training set with far worse

performance on the final testing set. Many teams used deep learning algorithms commonly

deployed in other areas such as speech recognition. However, the small size of the dataset

makes training generalisable models a challenge. Although an RNN is used in this work, it is

constrained to perform a specific task within the segmentation model and does not generate

the final prediction of clinical outcome. Unlike many other teams, our approach does not re-

train a completely new model to predict clinical outcome. The CatBoost model was designed

to leverage the murmur predictions from the parallel HSMM and combine them with limited

patient biometrics. Therefore, it had a limited feature set to train on and the risk of overfitting

was low. However, one limitation of this approach is that the murmur detector algorithm is

only trained to detect audible abnormal sounds. It is possible that some of the abnormal exam-

ples contain inaudible time-frequency features that would be missed by the murmur detection

algorithm and hence the CatBoost model. A model trained directly to predict clinical outcome

could detect these features.

Conclusion

We present a novel algorithm to detect and classify heart murmurs that was the winning entry

in the 2022 PhysioNet challenge. The model uses a hybrid approach combining a recurrent

neural network with parallel hidden semi-Markov models to accurately segment and classify

signals, even in the presence of noise and murmurs. Compared to many other algorithms

described in the literature and used in the challenge, our model is lightweight and can easily be

interpreted by a clinician.
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On the murmur detection task, the model won the first prize in the challenge with a sensi-

tivity of 92.7% and 77.6% for the ‘murmur present’ and ‘murmur absent’ classes respectively.

The algorithm also won the first prize in the clinical outcome task. However, its accuracy was

reduced compared to the murmur detection task because many of the abnormal patients did

not have audible pathological sounds. More specific labels of disease were not available in the

CirCor dataset, and future work could investigate the accuracy of these approaches on a per-

disease basis. The dataset labels also did not differentiate between physiological and pathologi-

cal murmurs, meaning that the full clinical significance of the murmur detection task is

unclear.

The structure of the challenge allowed an independent comparison of different machine

learning algorithms. However, it was not possible to directly compare the performance of

these algorithms with a general clinician using a stethoscope, as the CirCor dataset did not

include a prospective evaluation of blinded clinicians’ performance. Future studies should pro-

spectively compare general clinicians with these algorithms, to investigate any performance

increase and provide early health economic evidence for replacing clinician auscultation with

AI.

Whilst the CirCor data used in this work is a significant improvement over previous open-

access datasets, future studies are needed to validate the use of automated heart sound analysis

in specific clinical pathways. The relative importance of sensitivity and specificity will signifi-

cantly differ depending on health system priorities and the availability of follow-up tests such

as echocardiography.

Fig 9. Training and test performance of all the official entries on the clinical outcomes task. A lower score is better.

Many algorithms had significantly better performance on the training set, indicating overfitting has taken place. The

diagonal line shows ideal performance where training and test performance are equal. The parallel HSMM algorithm

achieves the best score and shows little evidence of overfitting. For context, the performance of a random classifier at

an optimal operating point is also shown.

https://doi.org/10.1371/journal.pdig.0000436.g009
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The algorithm additionally predicts signal quality, so a user can be asked to make a repeat

recording if their stethoscope was incorrectly held or if there is substantial bodily or environ-

mental noise. However, the algorithm’s predictions often disagreed with the signal quality

label assigned by the clinician. For widespread and low-cost screening, it is essential that heart

sound data can be reliably gathered by an unskilled operator. Future studies should explore the

usability of electronic stethoscopes and investigate if automatic signal quality assessment can

aid this process.

Supporting information

S1 Fig. Improved estimate of heart rate using RNN output. Compared here are the methods

of Schmidt et al. [23] (left column) and our approach (right column). Schmidt et al. take a

homomorphic envelope (middle left) of the signal and then compute its autocorrelation (bot-

tom left). They then search for a peak in a specified range to estimate the heart rate. We use a

range of 30-180 bpm for both methods in this dataset because of the faster paediatric sounds.

However, this example heart sound (top left) has significant noise which corrupts the envelope

and therefore gives a noisy autocorrelation where the correct peak is difficult to find. Our

approach instead uses the output of the RNN to create a signal that shows the probability the

signal is not in diastole, P(qt 6¼ diastole|x1:T, θ), (i.e. the summed probability of the S1, S2, sys-

tole, and systolic murmur states, middle right). This is a much cleaner signal than the homo-

morphic envelope, so its autocorrelation (bottom right) is much clearer and the correct peak

corresponding to the signal period is easy to find.

(TIF)
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