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A B S T R A C T   

In this article, the magnetohydrodynamic boundary layer flow and spatial fractional heat transport of Gr- 
Fe3O4–H2O hybrid nanofluid on a moving flat plate is investigated. The diffusion terms in the energy equation 
are modified by incorporating the spatial fractional derivatives using Fourier’s law. Moreover, the effect of the 
joule heating, heat sink/source and viscous dissipation on the energy equation is also taken into account. The 
optimal collocation method as a new semi-analytical approach is introduced and the effects of physical pa
rameters on the flow and heat transport specifications are obtained and analyzed. It is seen that changing the 
order of fractional derivatives from 0.92 (fractional diffusion) to 1 (classical diffusion) leads to a growth of the 
temperature. Furthermore, for the case λ = 0.7, the Nusselt number of Gr-Fe3O4–H2O augments by 22% when 
compared to Fe3O4–H2O and by 66% when compared to H2O. The results of Nusselt number and Skin friction 
coefficient for Prandtl number of 0.71 are validated by comparing with both the experimental and numerical 
studies in the existing literature, which confirms that the optimal collocation method can be successfully used to 
predict the spatial-fractional MHD boundary layer flow.   

1. Introduction 

The fractional theory has wide applications in the modeling of many 
physical phenomena and engineering such as signal processing, control 
theory, rheology, hydrologic cycle, flexible structures, condensed matter 
physics, electromagnetics, viscoelasticity, optical fibers, image pro
cessing, etc [1–3]. In the classical studies of nanofluid flows, the diffu
sion term is considered by second-order equations and the effect of the 
space fractional derivatives are not taken into account. Recently, many 
authors proposed fractional derivatives of diffusion terms in their in
vestigations. Pan et al. [4] presented a numerical solution for stochastic 
thermal transport that occurs in mixed convection boundary layer flow 
by considering the modified space fractional derivatives of Fourier’s 
law. Chen et al. [5] numerically studied the effect of space fractional 
derivatives on MHD boundary layer flow and heat transport of a visco
elastic fluid. Their results indicate that with the augmentation of the 
fractional parameter, the first-order temperature gradients (Nusselt 
number) rises; however, opposite behavior appears for wall 
fractional-order temperature gradients. Tassaddiq [6] examined 
numerically the MHD mixed convection boundary layer of second grade 
fluid flow in the vicinity of an inclined periodic plate by considering the 

Atangana–Baleanu fractional derivatives. Li and Liu [7] discussed the 
impact of fractional-derivative on viscoelastic fluid through a permeable 
surface by implicit difference method. The present literature survey il
lustrates that all attempts to analyze the fractional boundary layer flows 
are based on the numerical approach. 

With the rapid advancement of modern physics, the new techniques 
for heat transfer augmentation play a vital role in thermal engineering 
systems. The hybrid nanofluid is a relatively novel branch of heat 
transfer, which remarkably enhances the heat transfer rate. Recently, 
several researchers discussed the effect of various combinations of 
nanoparticles on the hybrid nanofluid flow problems through different 
geometries [8–11]. Furthermore, Mabood et al. [12] have studied the 
magnetic field effect on hybrid nanofluid convective flow and their 
study reveals that the increase of nanoparticle volume fraction leads to 
an improved heat transfer rate. Tlili et al. [13] have used the shooting 
scheme to solve a 3-D MHD hybrid nanofluid flow along an irregular 
dimension sheet in the presence of thermal radiation. Compared with 
other nanoparticles, the hybrid graphene (Gr) and magnetite (Fe3O4) 
have been paying much attention due to their good thermal properties. 
Askari et al. [14] performed experimental research on the heat transfer 
of magnetite/graphene/water hybrid nanofluid within a cooling tower. 
They reported that Nusselt number increases 8.5% and 14.5% for Gr −
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Fe3O4 − H2O hybrid nanofluid and Fe3O4 − H2O single nanofluid 
compared to the base fluid at Reynolds number of 4248. Mabood et al. 
[15] numerically examined the influence of different volume concen
trations of Gr − Fe3O4 − H2Ohybrid nanofluid on a stagnation-point flow 
with radiative heat. Tao et al. [16] applied a method to prepare a highly 
stable hybrid nanofluid, where the base fluid is Silicone oil with Fe3O4 
and Gr nanoparticles. They demonstrate that the temperature rising rate 
of hybrid nanofluid in solar-thermal energy harvesting improves 
compared to unitary nanofluids. 

The study of magnetohydrodynamic has great importance in engi
neering and industrial processes. Examples of these processes include 
electromagnetic pumps, magnetic drug targeting, MHD power genera
tors, plasma studies, and emergency cooling of nuclear reactors. Also, 
the imposed magnetic field for electrically conducting fluids has 
attracted considerable attention as a promising approach to control the 
momentum and heat transport in the boundary layer flow. For example, 
the usage of the magnetic field is a beneficial approach in the sheet 
extrusion process to control the transport phenomena during sheet 
forming operations, resulting in improving product quality. Sardar et al. 
[17] surveyed the thermal-diffusion and diffusion-thermo effects on a 
wedge surface in an MHD carreau nanofluid flow using the numerical 
technique. Makinde et al. [18] carried out a numerical work to inves
tigate the MHD effect on heat and mass transfer of the nanofluid along a 
stretching convective sheet. Elshehabey et al. [19] considered free 
convection ferrofluid flow under the influence of MHD in a partial open 
cavity by dispersing nanoparticles of Fe3O4 in water. Their observations 
revealed that the flow momentum reduces when the magnetic param
eter (Hartmann number) increases. Sáchica et al. [20] numerically 
suggested the mixed convection heat transfer and entropy production 
analysis of H2O containing Al2O3 nanofluid flow through a channel with 
double cavity under the presence of a transversal magnetic field. Other 
studies relevant to the MHD on the boundary layer flow and heat 
transfer can be seen in Refs. [21–30]. 

To the best of the authors’ knowledge, the problem of spatial frac
tional heat transfer and boundary layer flow of MHD hybrid nanofluid 
over a moving plate is studied for the first time. Moreover, the plate is 
subjected to the mixed impact of joule heating, heat sink/source, and 
viscous dissipation. Additionally, as a novelty, the optimal collocation 
method (OCM) as a new semi-analytical method is applied to deal with 

the infinity boundary conditions as well as space fractional derivatives 
in MHD boundary layer flow. 

2. Mathematical model 

We consider a steady laminar boundary layer and heat transport of 
the hybrid nanofluid flow containing nanoparticles of Gr (φnp2) and 
Fe3O4 (φnp1) dispersed into H2O along a horizontal moving plate. The 
plate has velocity Uw and temperature Tw whereas the external free 
stream has velocity U∞ and temperature T∞, where Tw > T∞ as shown in 
Fig. 1. Here Uw + U∞ and φnp1 + φnp2 represent the composite velocity 
and volume fraction of nanoparticles, respectively. The hybrid nanofluid 
flow is considered to be conductive electrically. Then an external mag
netic field with intensity B = B0X− 0.5 is applied perpendicular to the 
moving flat plate. The effects of Joule heating and heat sink/source are 
also considered. Besides, the modified Fourier’s law of heat conduction 
is obtained using spatial fractional derivatives. Then the modified Fou
rier’s law is utilized to analyze the rate of heat transfer [4]: 

q= − kβhnf ∇
βT(X,Y)= − kβhnf

(
∂βT
∂Xβ i→+

∂βT
∂Yβ j→

)

(1)  

where q is the heat flux of the generalized Fourier’s law, T is the tem
perature, X and Y are the coordinates along and normal to the flow di
rection respectively, kβhnf is the generalized thermal conductivity of the 
hybrid nanofluid, β is the order of gradient where 0 < β < 1 and 
∇βT(X,Y) represents the Caputo fractional derivative of function T(X,Y)
which is expressed as follows [31]: 

∇βT
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= CDβ

X T
(

X, Y
)

i→+ CDβ
Y T
(

X,Y
)

j→

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
Γ(1 − β)

⎡

⎢
⎣

⎛

⎜
⎝

∫X

0

∂T(τ,Y)
∂τ

(X − τ)β dτ

⎞

⎟
⎠ i→+

⎛

⎜
⎝

∫Y

0

∂T(X, τ)
∂τ

(Y − τ)β dτ

⎞

⎟
⎠ j→

⎤

⎥
⎦, 0 < β < 1

(
∂T
∂X

i→+
∂T
∂Y

j→
)

, β = 1

(2)  

where CDX
β and CDY

β are the Caputo’s fractional derivative operators 

Nomenclature 

T Temperature (K)
X, Y Cartesian coordinates (m)

U Velocity in X direction (m s− 1)

V Velocity in Y direction (m s− 1)

q Heat flux (W m− 2)

cp Heat capacity (J kg− 1 K− 1)

k Thermal conductivity (W mβ− 2 K− 1)

Q• Internal heat generation (W K− 1 m− 3)

B Magnetic field (T)
Qs Heat sink/source parameter 
Re Reynolds number 
Ec Eckert number 
Pr Prandtl number 
Ha Hartmann number 
λ Velocity ratio parameter 
Wi Weight functions 
R Residual function 
c Unknown constants for the trial function 
z,g,h Change of variable 
Nu Nusselt number 

Cf Surface drag coefficient 
f ′ Non-dimensional velocity 

Greek symbols 
μ Viscosity (kg m− 1 s− 1)

ρ Density (kg m− 3)

σ Electrically conductivity (Ω− 1m− 1)

ψ Stream function (m2 s− 1)

η Similarity variable 
φ Nanoparticles volume fraction 
θ Non-dimensional temperature 
Γ Gamma function 
δ Dirac function 
β Space-fractional parameter 

Subscripts 
f Fluid 
nf Nanofluid 
hnf Hybrid nanofluid 
np Nanoparticle 
W Wall 
∞ Ambient condition  
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and Γ(.) is the Gamma function. Regarding the above assumptions, the 
fundamental equations contain mass, motion, and energy can be 
expressed as [32–34]: 

∂U
∂X

+
∂V
∂Y

= 0 (3)  

ρhnf

(

U
∂U
∂X

+V
∂U
∂Y

)

= μhnf

(
∂2U
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∂2U
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)

+ σhnf B2(U∞ − U) (4)  
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(6)  

in which (U,V) represent the components of velocity in the (X,Y) di
rections, β is the fractional parameter, T is the temperature inside the 
boundary layer and Q• = Q0X− 1 is the internal heat generation which 
Q• < 0 and Q• > 0 are heat sink and heat source respectively. The 
thermophysical properties of hybrid nanofluid, ρhnf , μhnf , σhnf , cphnf and 
khnf are the density, dynamic viscosity, electrical conductivity, heat 
capacity, and generalized thermal conductivity of hybrid nanofluid 
respectively [35,36]: 

ρhnf =
(
1 − φnp1 − φnp2

)
ρf +φnp1 ρnp1 + φnp2 ρnp2 (7)  

μhnf =
μf

(
1 − φnp1 − φnp2

)2.5 (8)  

σhnf = σf +
3σf
(
φnp1 + φnp2

)(
φ1σnp1 + φ2σnp1 − σf

(
φnp1 + φnp2

))

(
φnp1σnp1 + φnp2σnp2

+2
(
φnp1 + φnp2

)
σf

)

−
(
φnp1 + φnp2

)
( (

φnp1σnp1 + φnp2σnp2
)

−
(
φnp1 + φnp2

)
σf

)

(9)  
(
ρcp
)

hnf =
(
1 − φnp1 − φnp2

)(
ρcp
)

f +φnp1
(
ρcp
)

np1 + φnp2
(
ρcp
)

np2 (10)  

Fig. 1. Geometry of the problem.  

M. Khazayinejad and S.S. Nourazar                                                                                                                                                                                                       

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



International Journal of Thermal Sciences 172 (2022) 107265

4

in which φnp1 and φnp2 stand for the magnetite nanoparticles and gra
phene volume fractions, respectively. Table 1 displays the thermo
physical properties of base fluid and nanoparticles [37,38]. The 
Relevant boundary conditions are: 

U =Uw, V = 0, T = Tw at Y = 0 (12)  

U =U∞, T = T∞ at Y = ∞ (13) 

The similarity transformation variables are defined as [32]: 

η= Y
̅̅̅̅̅̅̅̅̅̅̅̅

νf X
Uw+U∞

√ , f =
− ψ(X, Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
νf X(Uw + U∞)

√ , θ=
T − T∞

Tw − T∞
(14) 

Here, f is the non-dimensional stream function dependent on the 
variable η, ψ is the stream function and θ is the non-dimensional tem
perature. Moreover, the stream function ψ is defined to satisfy the 
continuity equation (Eq. (4)) as: 

U =
− ∂ψ
∂Y

, V =
∂ψ
∂X

(15) 

According to Eqs. (14) and (15) we can deduce: 

U =(Uw +U∞)f
′

(η), V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
νf (Uw + U∞)

4X

√

(ηf ′

(η) − f (η)) (16)  

where prime signifies derivatives with respect to η. Under the above 
similarity transformations, boundary layer approximations and using 
the Caputo’s fractional derivative model, Eqs. (4)–(6) can be re-arranged 
as follows: 

f ′′(η)+ 1
2

ρhnf

ρf

μf

μhnf
f (η)f ′′(η)+Ha

σhnf

σf

μf

μhnf
(1 − λ − f

′

(η))= 0,U∞ (17)  

kβhnf

kf

(
νf X

(Uw + U∞)

)1− β
2 1

Γ(1 − β)

⎛

⎜
⎜
⎝

∫η

0

d2θ(τ)
dτ2

(η − τ)β dτ

⎞

⎟
⎟
⎠ +

Pr
2

(
ρcp
)

hnf(
ρcp
)

f

f (η)θ′

(η)

+Ha Pr Ec
σhnf

σf
(1 − λ − f

′

(η))2
+Pr Qs θ(η)+

μhnf

μf
Pr Ec f ′′2(η)= 0

(18) 

The boundary conditions for equations (17) and (18) become: 

f (0) = 0, f ′

(0) = λ, f
′

(∞) = 1 − λ,

θ(0) = 1, θ(∞) = 0
(19) 

In Eqs. (17) and (18) the dimensionless parameters (λ), (Ha), (Ec), 
(Pr) and (Qs).are the velocity ratio parameter, Hartmann number, Eckert 
number, Prandtl number, and Heat sink/source parameter respectively. 
The dimensionless parameters are defined as follows: 

λ=
Uw

(Uw +U∞)
, Ha=

σf B2
0

ρf (Uw +U∞)
, Ec=

(Uw +U∞)
2

cpf (Tw − T∞)
, Pr =

νf
(
ρcp
)

f

kf
,

Qs =
Q0(

ρcp
)

f (Uw +U∞)

(20) 

The surface drag coefficient Cf and local Nusselt number Nu may be 
obtained by: 

Cf =
τw

1
2ρf (Uw + U∞)

2, Nu=
Xqw

kf (Tw − T∞)
(21) 

Here τw and qw denote the shear stress and heat flux on the plate-fluid 
interface, respectively, can be defined by: 

τw = μhnf

(
∂U
∂Y

)

Y=0
, qw = − kβhnf

(
∂βT
∂Yβ

)

Y=0
(22) 

Therefore, Eq. (21) can be simplified as: 

Cf
̅̅̅̅̅̅
Re

√
=

2
(
1 − φnp1 − φnp2

)2.5f ′′(0)=Cfr (23)  

Nu
̅̅̅̅̅̅
Re

√ = −
kβhnf

kf

(
υf X

( Uw + U∞ )

)1− β
2
(

∂βθ
∂ηβ

)

η=0
= Nur (24)  

in which Re =
(Uw+U∞)X

νf 
represents the Reynolds number. 

When β = 1, Eq. (25) may be reduced to Ref. [39]: 

Nu= 0.332 Pr1/3Re1/2, 0.6 < Pr (25)  

3. The optimal collocation method and problem solution 

In what follows, the optimal collocation method (OCM) is applied to 
achieve a semi-analytical solution of Eqs. (17) and (18). This method is 
suggested via Khazayinejad et al. [34,40] and Nourazar et al. [41] in 
their articles for the solution of boundary layer equations with 
semi-infinite domain to optimize the collocation method (CM) [42]. The 
key points of the OCM are to use the asymptotic boundary conditions 
and transformation of the physical domain to a computational domain. 
The semi-infinite domain, 0 ≤ η < ∞, may be converted into the interval 
0 ≤ η ≤ η∞ which η∞ depends on the physical parameters. Moreover, by 
making the change of variable z = η/η∞, g(z) = f(η)/η∞and h(z) =

θ(η)/η∞, the interval 0 ≤ η ≤ η∞ can be replaced by 0 ≤ z ≤ 1, there
fore, Eqs. (17) and (18) are rewritten as: 

1
η2

∞
g′′′

(z)+
1
2

ρhnf

ρf

μf

μhnf
g(z)g′′(z)+Ha

σhnf

σf

μf

μhnf
(1 − λ − g′

(z))= 0 (26)  

1
ηβ

∞

kβhnf

kf

(
νf X

(Uw +U∞)

)1− β
2 1

Γ(1 − β)

⎛

⎜
⎜
⎝

∫z

0

d2h(τ)
dτ2

(η − τ)β dτ

⎞

⎟
⎟
⎠ +η∞

Pr
2

(
ρcp
)

hnf(
ρcp
)

f

g(z)h′

(z)

+Ha Pr Ec
σhnf

σf
(1 − λ − g

′

(z))2
+η∞Pr Qs h(z)+

1
η2

∞

μhnf

μf
Pr Ec f ′′2(z)=0

(27)  

where the “′” signifies the derivatives on the z ∈ [0,1]. The following 
new boundary conditions are obtained using the change of variable as: 

Table 1 
Thermophysical properties of base fluid and nanoparticles [37,38].  

Properties ρ (kg m− 3) cp (J kg− 1 K− 1) k (W m− 1 K− 1) σ(Ω− 1m− 1)

Water 997.1 4179 0.613 0.05 
Magnetite 5200 670 6 25,000 
Graphene 2250 2100 2500 107  

kβhnf = kf
φnp1knp1 + φnp2knp2 + 2

(
φnp1 + φnp2

)(
φnp1knp1 + φnp2knp2

)
− 2
(
φnp1 + φnp2

)2kf

φnp1knp1 + φnp2knp2 + 2
(
φnp1 + φnp2

)
kf −

(
φnp1 + φnp2

)(
φnp1knp1 + φnp2knp2

)
+
(
φnp1 + φnp2

)2kf

(11)   
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g(0) = 0, g′

(0) = λ, g
′

(1) = 1 − λ, g′′(1) = 0

h(0) =
1

η∞
, h(1) = 0, h′

(1) = 0
(28)  

where g′′(1) = 0 and h′

(1) = 0designate the boundary conditions for 
shear stress and rate of heat transfer in the computational domain at 
infinity. This is the novel aspect of contribution in the present analysis 
where the boundary condition at infinity is taken into account. By 
having considered the boundary conditions at infinity one may expect 
more accurate results in the asymptotic area of the nanofluid boundary 
layer flow. Suitable trial functions including unknown coefficients “c” 
are considered as follows [34,41,43,44]: 

g(z)=
1

η∞

(

c0 +
∑k

i=1
ci zi

)

=
1

η∞

(
c0 + c1 z+ c2 z2 +…+ ck zk) (29)  

h(z)=
1

η∞

(

ck+1+
∑m

i=1
ci+k+1 zβ i

)

=
1

η∞

(
ck+1+ck+2 zβ+ck+3 z2β+…+cm+k+1 zm β)

(30) 

The precision of the trial functions may be enhanced by considering 
more terms in sequences of Eqs. (29) and (30). In the OCM, unlike the 
CM, the number of required weight functions is not essential to be 
exactly equivalent to the number of unfamiliar constants. In this method 
the number of weight functions Wi can be written as: 

nWi = nci + 1 − nb − ne (31) 

In this equation, nWi , nci , nb and na are the number of weight func
tions, the number of unknown constants, the number of boundary con
ditions and the number of asymptotic boundary conditions, respectively. 
To satisfy the boundary conditions of Eq. (28), one may proceed as 
follows: 

z= 0 ⇒ g = 0 ⇒ c0 = 0 (32)  

z= 0 ⇒ g
′

= λ ⇒ c1 = λη∞ (33)  

z= 1 ⇒ g′

= 1 − λ ⇒
1

η∞
(c1 + 2c2 +…+ kck)= 1 − λ (34)  

z= 0 ⇒ h =
1

η∞
⇒ ck+1 = 1 (35)  

z= 1 ⇒ h = 0 ⇒ ck+1 + ck+2 + ck+3 + … + cm+k+1 = 0 (36)  

z= 1 ⇒ g′′ = 0 ⇒ 2c2 + 6c3 + … + k(k − 1)ck = 0 (37)  

z= 1 ⇒ h′

= 0 ⇒ ck+2 + 2ck+3 + … + mcm+k+1 = 0 (38) 

Now by putting g and h in Eqs. (26) and (27), the residual functions 
can be obtained: 

Rg(c0, c1,…, ck) =
1

η3
∞

d3

dz3

(

c0 +
∑k

i=1
ci zi

)

+
1

2η2
∞

ρhnf

ρf

μf

μhnf

(

c0 +
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i=1
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)

d2

dz2

(
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i=1
ci zi

)

+ Ha
σhnf

σf

μf

μhnf

(

1 − λ −
1

η∞

d
dz

(

c0 +
∑k

i=1
ci zi

))

(39)  

Rh(c0,c1,…,cm+k+1)=
kβhnf

ηβ+1
∞ kf Γ(1 − β)

(
νf X

(Uw +U∞)

)1− β
2   

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫z

0

d2

dτ2

⎛

⎝

ck+1

+
∑m

i=1
ci+k+1 τβ i

⎞

⎟
⎠

(z − τ)β dτ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

η∞

Pr
2

(
ρcp
)

hnf(
ρcp
)

f

(

c0+
∑k

i=1
ci zi

)

d
dz

(

ck+1 +
∑m

i=1
ci+k+1 zβ i

)

+Ha Pr Ec
σhnf

σf

(

1 − λ −
1

η∞

d
dz

(

c0 +
∑k

i=1
ci zi

))2   

+Pr Qs

(

ck+1 +
∑m

i=1
ci+k+1 zβ i

)

+
1

η3
∞

μhnf

μf
Pr Ec

(
d2

dz2

(

c0 +
∑k

i=1
ci zi

))2

(40) 

Further, the basis of the OCM is to oblige the residuals tend to zero as: 
∫

z
R(z) Wi(z) = 0 , i = 1, 2,…, n (41) 

Here, Wi(z)is the weight function that is selected as: 

Wi(z)= δ(z − zi) (42)  

where δ(z − zi) is the Dirac delta function. After utilizing weight func
tions (Eq. (42)) into Eq. (41), 

Rg

(
1

k − 1

)

= 0 , Rg

(
2

k − 1

)

= 0 , Rg

(
3

k − 1

)

= 0 ,…, Rg

(
k − 2
k − 1

)

= 0 (43)  

Rh

(
1

m − 1

)

= 0 , Rh

(
2

m − 1

)

= 0 , Rh

(
3

m − 1

)

= 0 ,…, Rh

(
m − 2
m − 1

)

= 0 (44) 

Thus, we have a set of k + m + 3 equations including Eqs. (32) - (38) 
and Eqs. (43) - (44). By solving the corresponding equations, the un
known coefficients ci and η∞ can be computed. These values are 
substituted into Eqs (29) and (30) to calculate the velocity and tem
perature profiles. For a special of Gr − Fe3O4 − H2O hybrid nanofluid 
with Ha = 2, Qs = 0.1, Pr = 6.2, Ec = 0.2, λ = 0.7, X = 1, φnp1 = 0.02, 
φnp2 = 0.02, β = 0.98, k = 7and m = 8, the approximate solution is: 

f (η)= 0.7 η − 0.293734596 η2 + 0.133531404 η3 + … + 0.000051312 η7

(45)  

θ(η)= 1 − 0.3394714396 η49
50 − 1.310020044 η49

25 + … + 0.000043923 η196
25

(46) 

Also, in an analogous procedure, the solutions of the problem for 
other values of parameters are examined in the results section. 

4. Validation of the solution 

To prove the validity of the OCM, the obtained Skin friction coeffi
cient, Nusselt number, dimensionless stream functions, and velocity 
profiles are compared with those available from the literature ([45–55]). 
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4.1. Experimental validation 

Fig. 2a compares present results with wind tunnel measurements for 
Skin friction coefficient by Dhawan [45] for the limiting case Ha = 0, 
φnp = 0, Pr = 0.71. Also, the Reynolds number ranges from 104 to 106. 
The agreement of the OCM with the experimental data for the skin 
friction coefficient is excellent. Also, Fig. 2b is used to check the 

applicability of the present fractional calculus model in capturing the 
experimental Nusselt number (obtained from wind tunnel measure
ments) by Junkhan and Serovy [46]. Here, case β = 1 corresponds to the 
classical model while 0 < β < 1 (β = 0.85, β = 0.9, and β = 0.95) is for 
the fractional calculus model. It is noteworthy that the fractional order 
β = 0.95 is provided a better fit for the experimental data in comparison 
with the classical model (especially for larger Reynolds numbers) and 
other values of the fractional orders. Thus, the spatial fractional heat 
transport may be used as a new candidate for modeling heat transfer of 
fluids flow. 

4.2. Theoretical validation 

In order to validate the outcome of the present investigation with 
theory results, we make a comparison with the results of [47,48] for 
dimensionless stream functions and velocity profiles. These comparisons 
are shown in Fig. 3a and b. An excellent match is seen between the re
sults in both cases. Also, Fig. 4a and b shows the comparison of our 
results with the numerical results obtained by the Runge–Kutta method 
for U∞ > Uw and Uw > U∞, respectively. It is obvious from the figures 
that the OCM agrees well with the Runge–Kutta method. Another code 
validation test is performed in Tables 2 and 3 to compare the present 
results with the previously published works by Refs. [48–55] for reduced 
Skin friction coefficient and reduced Nusselt number. A good agreement 
may be observed from the comparison of the results. 

5. Results and discussions 

This section presents the behavior of dimensionless velocity f ′

(η), 
temperature θ(η), reduced skin friction coefficient Cfr and reduced 
Nusselt number Nur for various flow parameters in graphical and tabular 
forms. For the intention of discussing the results, the default values for 
variables are: Ha = 2, Qs = 0.1, Pr = 6.2, λ = 0.4, X = 1, φnp1 = 0.02, 
φnp2 = 0.02 and β = 0.98. Further, the results of investigation on the 
velocity and temperature profiles are illustrated for two cases of λ = 0.4 
and λ = 0.7. It is worth mentioning that 0 < λ < 0.5 pertains to Uw >

U∞ (the moving surface velocity is greater than that of the free stream) 
while 0.5 < λ < 1 connects with U∞ > Uw (the velocity of the free 
stream is larger than that of the plate). 

Figs. 5–7 show the velocity distribution (Fig. 5a and b), shear stress 
(Fig. 6a and b), and temperature (Fig. 7a and b) of the inner region of the 
boundary layer flow for several values of velocity ratio parameter λ. It is 
observed that for 0 < λ < 0.5, the values of the absolute magnitude of 
the shear stress decrease with the increase of λ, whereas for 0.5 < λ < 1 

Fig. 2. a. Comparison of OCM with the experimental data [45] for Skin friction 
coefficient. Fig. 2b. Comparison of the experimental data [46] with present 
results (classical derivative results and fractional derivatives results) for Nus
selt number. 

Fig. 3. Comparison of OCM with the available references [47,48] for (a) stream function (b) velocity field.  
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an opposite trend is seen. It means that in the neighborhood of the plate 
the velocity grows for all values of λ. But, in both cases, the velocity 
decreases after a crossover point. Because at this point, the velocity in
side the boundary layer attains the outer flow velocity. Also, it is noticed 
that as λ increases, the thickness of the thermal boundary layer and 
temperature profile decrease for U∞ > Uw, and they increase when 
Uw > U∞. 

Fig. 8a and b shows the efficacy of the heat sink/source parameter Qs 
on the temperature profile. The heat sink/source parameter is positive 
(Qs > 0)for heat generation and negative (Qs < 0) for heat absorption, 
where for Qs = 0 there is no heat generation/absorption. The positive 
and negative Qs have different influences on the temperature distribu
tion. As it can be illustrated in Fig. 8a, for Qs > 0 the temperature profile 
rises with increasing Qs but for Qs < 0 it starts decreasing as shown in 
Fig. 8b. 

Fig. 9a and b elucidate the velocity field by increasing the Hartmann 
number Ha. Basically, the Hartmann number is the ratio of magnetic 
forces to viscous forces. The value of Ha = 0 signifies the hydrodynamic 
flow while Ha > 0corresponds to the magneto-hydrodynamic flow 
(MHD). Physically, applying a magnetic field perpendicular to the plate 
creates a body force called the Lorentz force, producing resistance in 
hybrid nanofluid flow. Thus, for Uw > U∞, the fluid flow velocity 

Fig. 4. Comparison of OCM and numerical results for various values of λ(a) U∞ > Uw(b) Uw > U∞  

Table 2 
Comparison of between the present study and previous studies for reduced skin 
friction coefficient number (f ′′(0)) when ϕ = Ec = Ha = Qs = 0,β = 1 and.Pr =

0.7  

f ′′(0)
Blasius flow (λ = 0)

− f ′′(0)
Sakiadis flow (λ = 1)

Blasius 
[49] 

Schetz 
[50] 

Present 
study 

Sakiadis 
[48] 

Ishak et al. 
[51] 

Present 
study 

0.3321 0.332 0.3321 0.44375 0.4438 0.44371  

Table 3 
Comparison of between the present study and previous studies for reduced 
Nusselt number (θ′

(0)) when ϕ = Ec = Ha = Qs = 0, β = 1and.Pr = 0.7  

− θ
′

(0)
Blasius flow (λ = 0)

− θ
′

(0)
Sakiadis flow (λ = 1)

Pohlhausen 
[52] 

Oosthuizen 
[53] 

Present 
study 

Chen 
[54] 

Bachok 
[55] 

Present 
study 

0.295 0.2930 0.2929 0.3492 0.34925 0.34929  

Fig. 5. Velocity profiles for various values of λwhen (a) U∞ > Uw(b) Uw > U∞  
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Fig. 6. Shear stress for various values of λwhen (a) U∞ > Uw(b) Uw > U∞  

Fig. 7. Temperature profiles for various values of λwhen (a) U∞ > Uw(b) Uw > U∞  

Fig. 8. Temperature profiles for various values of Qswhen (a) Qs > 0(b) Qs < 0  
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Fig. 9. Velocity profiles for various values of Hawhen (a) U∞ > Uw(b) Uw > U∞  

Fig. 10. Temperature profiles for various values of Hawhen (a) U∞ > Uw(b) Uw > U∞  

Fig. 11. Velocity profiles for various values of φnp2when (a) U∞ > Uw(b) Uw > U∞  

M. Khazayinejad and S.S. Nourazar                                                                                                                                                                                                       

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



International Journal of Thermal Sciences 172 (2022) 107265

10

Fig. 12. Temperature profiles for various values of φnp2when (a) U∞ > Uw(b) Uw > U∞  

Fig. 13. Velocity profiles for different fluids when (a) U∞ > Uw(b) Uw > U∞  

Fig. 14. Temperature profiles for different fluids when (a) U∞ > Uw(b) Uw > U∞  
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reduces. However, for U∞ > Uw, the velocity rises due to the increase of 
the favorable pressure gradient. The role of Ha on temperature is por
trayed in Fig. 10a and b. It is noticed that enhancement in Ha boosts 
temperature distribution and associated boundary layer thickness for 
both U∞ > Uw and Uw > U∞. As a result, MHD can control the fluid 
flow’s temperature and velocity, which is helpful in many industrial 
applications such as magnetohydrodynamic, power generation, and 
electromagnetic coating of wires and metal. 

The velocity profile verses the nanoparticle volume fraction φ is 
depicted in Fig. 11a and b, respectively. In these figures, the volumetric 
fraction of Fe3O4 nanoparticle (φnp1) is held fixed with φnp1 = 0.02. 
Within the momentum boundary layer, the velocity of Gr− Fe3O4− H2O 
hybrid nanofluid decreases with φnp2 for U∞ > Uw while the enhance
ment in φnp2 raises the velocity for Uw > U∞. It is also observed (Fig. 12a 
and b) that the temperature of hybrid nanofluid flow and thickness of 
the associated boundary layer are enhanced by increasing φnp2. The 
reason behind this argument is that the addition of nanoparticles in 
nanofluid flow helps improve the thermal conductivity of the hybrid 
nanofluid. 

Fig. 13a and b compare the velocity profiles for Gr− Fe3O4− H2O 
hybrid nanofluid flow (φnp1 = 0.1, φnp2 = 0.1), Fe3O4 − H2O single 
nanofluid flow (φnp1 = 0.2, φnp2 = 0) and H2O pure fluid flow (φnp1 =

0, φnp2 = 0). It is concluded that for U∞ > Uw the velocity field is higher 
for pure water followed by single nanofluid and hybrid nanofluid flow 
but opposite behavior is observed for Uw > U∞. As a result, the hybrid 
nanofluid has a higher kinematic viscosity leading to thicker velocity 
boundary layer thickness. Moreover, it is seen (Fig. 14a and b) that the 
values of temperature for hybrid nanofluid flow are greater than the 
values of single nanofluid flow and pure fluid flow for both U∞ > Uw and 
Uw > U∞. The reason for this is that compared with magnetite nano
particles and pure water, graphene nanoparticles have a greater thermal 
conductivity. Thus, changing the working fluid from H2O or Fe3O4−

H2O to Gr − Fe3O4 − H2O hybrid nanofluid improved the thermal 
properties, and the temperature rises. 

The variation of the non-dimensional temperature with the Eckert 
number is depicted in Fig. 15. The Eckert number is a parameter to show 
the effects of viscous dissipation. Physically, the increment in Eckert 
number leads to friction in the flow field, and as a result, the tempera
ture increases. 

Fig. 16 depicts the impact of the space-fractional parameter β on the 
temperature distribution. Here, 0 < β < 1 corresponds to the fractional 
diffusion, and for β = 1, the problem reduces to the case of classical 
diffusion. It is interesting to note that the space-fractional parameter 

models the nonlocal interaction between the heat flux and the temper
ature gradient. It turns out (Fig. 16) that the thickness of the thermal 
boundary layer is thinner for fractional diffusion as compared to clas
sical diffusion. Thus, temperature increases for the larger fractional 
parameter β. Consequently, it can be concluded that temperature in the 
spatial fractional Fourier’s law model is less than the Fourier’s law 
without the spatial fractional derivative. The influence of the space- 
fractional parameter (β) on the reduced Nusselt number is shown in 
Fig. 17. The magnitude of the Nusselt number is augmented via larger 
space-fractional parameter. Besides, the Nusselt number of the hybrid 
nanofluid flow is enhanced by 114% for U∞ > Uw and 63% for Uw > U∞ 

at β = 0.98 when compared with β = 0.94. The magnitude of the 
reduced skin friction coefficient and reduced Nusselt number of hybrid 
nanofluid flow are compared with the single nanofluid and pure water 
flow in Fig. 18a and b respectively. It is found that the skin friction 
coefficient for the pure water (φnp1 = 0, φnp2 = 0) is smaller than that 
for the nanofluid (φnp1 = 0.2, φnp2 = 0) and hybrid nanofluid (φnp1 =

0.1, φnp2 = 0.1). Further, the minimum Nusselt number is noticed for 
pure water and the maximum Nusselt number is observed for hybrid 
nanofluid. The results also show that by using the nanofluid and hybrid 
nanofluid, the Nusselt number is augmented by a value of 75% and 88% 
for the case λ = 0.4 and 46% and 68% for the case λ = 0.7respectively. 

Fig. 15. Temperature profiles for various values of Ec  

Fig. 16. Temperature profiles for various values of β  

Fig. 17. Comparison of the reduced nusselt number for various values of β  
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6. Conclusions 

In the current study, the hybrid nanofluid boundary layer flow and 
heat transport of graphene-magnetite-water past a moving flat plate 
under the impact of MHD are analyzed semi-analytically. The spatial 
fractional derivatives (the Caputo’s derivative operator) are incorpo
rated into Fourier’s law. Then, the modified Fourier’s law is taken into 
account in the diffusion term of the energy equation. The key findings 
can be summarized as follows:  

• The hybrid nanofluid flow elevates temperature and corresponding 
boundary layer thickness more when compared to single and pure 
fluid flows.  

• In the special case of U∞ > Uw, temperature varies as a decreasing 
function of the Hartmann number and velocity nanofluid ratio 
parameter.  

• The higher space-fractional parameter causes a thicker thermal 
boundary layer thickness. 

• The temperature elevates as the nanoparticle volume fraction in
creases for both U∞ > Uw and Uw > U∞.  

• The validations of Nusselt number and Skin friction coefficient for a 
specific Prandtl number available in the literature are achieved by 
comparing the results with both the experimental studies and nu
merical solutions. 

Based on the findings of the present investigation we conclude that 
the OCM may be considered as an efficient semi-analytical method for 
the spatial-fractional MHD boundary layer flow. 
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