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Abstract: Polarization independent guided-mode resonance (GMR) in a one-dimensional liquid
crystal-based polarization grating is demonstrated. The proposed GMR filter consists of a liquid
crystal layer and two glass substrates. The resonance location and bandwidth are investigated
through anisotropic rigorous coupled-wave analysis. This type of polarization independent GMR
filters also manifest strong electric field enhancements and ultra-narrow spectral bandwidths,
offering great potential for applications with unpolarized light sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The guided-mode resonance (GMR) is a unique phenomenon where a diffracted order is phase
matched to a leaky mode of the waveguide [1]. Due to multi-beam interference, narrowband
resonant peaks can be formed using resonant waveguide gratings [2], making them suitable
for optical notch filters [3–5], lasers feedback elements [6], and refractive index biosensors [7].
The electrical field enhancement in GMR filters has also been studied by Wei, et al. [8], which
extends their application to fluorescence enhancement [9].
Most GMRs behave differently depending on the polarization states of an incident beam

because of the different propagation constants for the TE and TM guided modes. Therefore,
it poses limitation to many applications where a nonpolarizing light source is used. Many
efforts have been devoted to realizing polarization independence based on two-dimensional
(2D) and one-dimensional (1D) gratings for more than two decades. Peng and Morris [10,11]
theoretically investigated and experimentally demonstrated the resonant anomalies in 2D gratings
and polarization independent narrowband GMRs. Mizutani, et al. [12] proposed a rhombic
grating structure whose symmetric plane coincidedwith the incident plane to realize nonpolarizing
GMRs at an oblique incidence. Two orthogonally cross-integrated GMR gratings were reported
by Kintaka, et al. [13] to achieve polarization independence. Although a 2D grating can provide
more degrees of freedom than its 1D counterpart, its geometrical structure and fabrication process
are more complicated. Ding and Magnusson [14] designed a polarization independent reflector
based on a 1D single-layer waveguide grating with a large modulation depth, but the spectral
bandwidth for the TE and TM polarizations was considerably different. Hu, et al. [15] harnessed
possible intersections of dispersion curves for the TE and TM leaky modes in a 1D periodic
waveguide to realize polarization independent GMRs at an oblique incidence. The resonant
wavelength for the TE and TM polarizations is accordant, however, the spectral bandwidth is still
not matched.

In this paper, a novel structure based on 1D liquid crystal (LC) polarization gratings (PGs) is
proposed to realize polarization independent GMRs. Sun and Wang [16] reported an electrically
tunable polarization independent GMR filter based on polymer-dispersed liquid crystal (PDLC).
However, the polarization independence was not fulfilled by the PDLC but by a square 2D
aluminum grating. Concerning previous LC-based GMRs, the LCs are employed to achieve an
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electrically tunable [16] or switchable [17] functionality, but little attention is paid to exploiting
the LC-based Pancharatnam-Berry phase [18] for polarization independent GMRs. Compared
to previous polarization independent approaches, our method stands out due to its polarization
independent resonance location and bandwidth, and a relatively simple device structure. To study
the field distributions and enhancements of GMRs in PGs, we first modify the field solution
[19] and formulate the stable field distribution by anisotropic Rigorous Coupled-Wave Analysis
(RCWA). Then specific structural parameters to realize polarization independent GMRs are
searched and optimized. The effects of the LC birefringence (∆n) on spectral bandwidths and
electric field enhancements are investigated via selecting three commercial LC mixtures as
calculation examples.

2. RCWA formulation

Wang, et al. [1] thoroughly studied GMR in planar gratings by RCWA [20]. They pointed out
that RCWA could give detailed physical explanations to GMR. Besides that, in term of searching
and optimizing numerous structural parameters [21], RCWA provides a much faster simulation
speed than those purely numerical methods. Rumpf [19] formulated a general field solution, but
the electromagnetic fields involved evanescent waves could be numerically unstable.
Starting with an incident plane wave having a single frequency denoted by w, Maxwell

equations that govern the light propagation in the LC PG without free charge and current are
given by:

∇ × E = −jwµ0H, (1)

∇ ×H = jwε0[ε]E. (2)

For a nematic LC, the anisotropy axis orientation is in the direction of the LC directors, as
Fig. 1 depicts. The propagation vector k lies in the x-z plane, and Λ and d is the grating periodicity
and thickness, respectively.

Fig. 1. Device structure of the proposed LC polarization grating.

For a specific direction of the LC directors, the dielectric tensor [ε] is given by [22]:

[ε] =


n2o + (n2e − n2o)cos2φ (n2e − n2o) sinφ cosφ 0

(n2e − n2o) sinφ cosφ n2o + (n2e − n2o)sin2φ 0

0 0 n2o


, (3)

where φ is the azimuthal orientation angle between the x axis and the projection of the LC
directors on the x-y plane, the pretilt angle of the LC directors is assumed to be zero, and no
and ne are the LC ordinary and extraordinary refractive index, respectively. The LC directors
periodically vary along the x-axis in Fig. 1, which can be mathematically expressed as φ(x)=πx/Λ.
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Next, the fields in the grating region are represented by a periodic Fourier expansion with spatially
variant coefficients, and each periodic permittivity component is expanded in Fourier series. The
expanded fields and permittivity components are given by:

Ei(x, z) =
∞∑

m=−∞
Si,m(z)e−jkx,mx, (4)

Hi(x, z) =
∞∑

m=−∞
Ui,m(z)e−jkx,mx, (5)

εij(x) =
1∑

h=−1
εij, hejh

2π
Λ
x, (6)

where kx,m=kx,0−2πm/Λ, Si,m(z) and Ui,m(z) are the amplitudes of the m-th field harmonic in the
grating region, and subscripts i and j refer to any one of x, y, z. For mathematical simplicity, the
magnetic field is normalized according to H̃ = −j

√
µ0/ε0H. The tangential wavevector and z

coordinate are normalized by k̃x,m = kx,m/k0 and z̃ = k0z, respectively. Then we insert Eq. (4),
Eq. (5) and Eq. (6) into Eq. (1) and Eq. (2), resulting in following six matrix equations:

d
dz̃

uy = −[εxx]sx − [εxy]sy, (7)

d
dz̃

ux + jK̃xuz = [εyx]sx + [εyy]sy, (8)

−jK̃xuy = [εzz]sz, (9)
d
dz̃

sy = −ux, (10)

d
dz̃

sx + jK̃xsz = uy, (11)

K̃xsy = juz, (12)
where si = [Si,−M , . . . , Si,M]T , ui = [Ui,−M , . . . ,Ui,M]

T , [εij] is the convolution matrix formed by
εij,mp = εij, m−p, and K̃x is the diagonal matrix constructed by kx,m. The infinite series expansion
is truncated to a finite number of harmonics. Then two coupled equations between ux, uy and
sx, sy can be obtained via expressing the longitudinal field components uz, sz in terms of sy, uy:

d
dz̃


ux

uy

 = Q

sx

sy

 =

[εyx] [εyy] − K̃x I−1 K̃x

−[εxx] −[εxy]



sx

sy

 , (13)

d
dz̃


sx

sy

 = P

ux

uy

 =


O I − K̃x[εzz]
−1K̃x

−I O



ux

uy

 , (14)

where I and O refer to the unitary and zero matrix respectively. The solutions for the coupled
wave equations can be combined as:

sx

sy

ux

uy


=


W W

−V V




X(z) O

O X(d − z)



c+

c−

 , (15)

where c+ and c− are column vectors representing the amplitude coefficients of the forward and
backward propagations of space harmonics respectively, X(z)=exp(−λk0z), W and λ2 are the
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eigenvectors and eigenvalues of the matrix P×Q, and V=QWλ−1. Equation (15) is numerically
stable even if evanescent waves are present. Finally, the same procedure is repeated for the
superstrate and substrate, then the tangential fields at the two boundaries are matched to give the
expression for the scattering matrix:

W1 W1

−V1 V1



c+1
c−1

 =


W W

−V V




I O

O X(d)



c+

c−

 , (16)


W W

−V V




X(d) O

O I



c+

c−

 =


W2 W2

−V2 V2



c+2
c−2

 , (17)


c−1
c+2

 =

S11 S12

S21 S22



c+1
c−2

 , (18)

where the subscripts 1, 2 signify the incident region I and the transmitted region II, respectively.
Without introducing a gap medium, a backward input is not present. Once the three-dimensional
(3D) polarization denoted by (px, py, pz) of the incident light is given, the transverse components
of the reflected and transmitted fields can be obtained by solving Eq. (16), Eq. (17) and Eq. (18).
The derived formula for the scattering matrix is the same as that published in [19], although the
form of the field solution is different. The longitudinal components in two homogenous regions
can be derived from the divergence equation. Thus, the three amplitude components of electric
fields in regions I and II have been manifested. Then sx, sy, ux and uy will be correctly given in
Eq. (15) as long as c+ and c− are numerically stable. X(–d)may become very large for evanescent
waves, thus causing the numerical instability. To eliminate the term X(–d) in the solution for c+
and c−, Eq. (16) and Eq. (17) must be jointly solved for c+ and c−, which leads to:

2c+ = (W−1 + V−1V1)c1++(W−1 − V−1V1)c1−

2c− = (W−1 − V−1V2)c2++(W−1 + V−1V2)c2−
. (19)

The remaining sz can also be calculated by Eq. (9), and the solution is sz = −j[εzz]−1K̃xuy. Thus,
the three amplitude components of electric fields in the grating region have also been derived.
Since transverse and longitudinal amplitude coefficients in the three regions have been obtained
above, the 3D field distributions are summarized as follows:

Ei(x, z) =
M∑

m=−M
Si,m(z)e−jkx,mx (0<z<d), (20)

EI,i(x, z) = pie−j(kx,0x+k1,z,0z) +
M∑

m=−M
C−1,i,me

−j(kx,mx−k1,z,mz)(z<0), (21)

EII,i(x, z) =
M∑

m=−M
C+2,i,me

−j[kx,mx+k2,z,m(z−d)](z>d), (22)

where the subscript i refers to any one of x, y, z, and Si,m,C−1,i,m, and C+2,i,m are the m-th harmonic
element of the column vector si, c−1,i, and c+2,i, respectively.
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3. Polarization-independent GMRs

The proposed waveguide grating structure is simply composed of a LC PG between two identical
glass substrates. The proposed structure can function as a GMR filter based on the mode matching:
the real part of a mode propagation constant in a period leaky waveguide approaches the tangential
propagation constant of a diffracted order, strong resonance can result in a narrowband reflection
peak. Incident waves can be coupled into certain waveguide modes due to the transverse
momentum additional provided by the grating, however, guided modes are not stable and thus
become leaky due to the presence of the whole grating layer. The grating with a larger modulation
depth can cause a faster leaking and less interference, leading to a broader filtering response.
In our device structure, the LC PG acts as both a waveguide layer and a phase-matching

medium. The LC PG layer can be approximately treated as a uniform layer with the effective
refractive index denoted by neff . Thus, this periodic anisotropic waveguide can be regarded as a
three-layer homogeneous waveguide. Due to the grating diffraction, each diffracted order has
a corresponding tangential propagation constant determined by the grating equation. When
a diffracted order is phase matched to a leaky mode in the symmetric waveguide, the grating
periodicity Λ, the incident wavelength λ0, and the incident angle θinc are constrained by:

2π
λ0

n<
����2πλ0 n sin θinc − m

2π
Λ

����<2πλ0 neff , (23)

where n is the refractive index of the cover glass, which is set to be 1.52, and m is the diffraction
order. Here, the target incident angle θinc is 0°. The geometrical parameters of the LC PG that
response to red wavelengths are as follows: the grating periodicity Λ= 400 nm and thickness
d = 1.591 µm, respectively. Three commercial LC mixtures, E44, E7 and MLC-9200-100 are
selected as examples to present our novel polarization independent design. Their measured
refractive indices [ne, no] are [1.7806, 1.5245], [1.7378, 1.5188], and [1.6039, 1.4908] at
λ0=633 nm and 20°C, respectively [23]. To study the polarization dependence of this anisotropic
structure, the polarization state of the incident light at normal incidence is expressed using Jones
vector:

J =


cosα

sinα · ejβ

 , (24)

where tan(α) represents the amplitude ratio of Ey to Ex, and β is the relative phase angle between
Ey and Ex. For each polarization state, the corresponding reflectance can be obtained via
anisotropic RCWA. For three LC mixtures, the calculated reflectance at normal incidence is all
polarization independent one hundred percent, as shown in Fig. 2.
The field distribution in Fig. 3(a) shows that when the light is incident from the bottom glass

substrate (z<0), the electric field within the subwavelength E44 PG (0<z< d) is enhanced more
than 30x due to the coupling between ±1 diffraction orders and evanescent waves. Due to normal
incidence, two counterpropagating diffraction orders can be simultaneously excited, generating a
standing-wave pattern along the x direction [8], as illustrated in Fig. 3(a). When the incident
wavelength is 635.00 nm, which is away from the resonance wavelength of 628.71 nm, Fig. 3(b)
depicts a rather weak resonant process where the electric field enhancement within the E44
PG is much less than that in Fig. 3(a). Thus, the field distribution in Fig. 3(b) can be almost
equivalent to that in a single-layer uniform film sandwiched two glass substrates. In Fig. 3,
the mode type is unknown because the field components are not revealed. Due to off-diagonal
elements in the [ε] tensor, it is not possible to split the modes into a pure TE or TM mode, and
thus the modes are hybrid [24]. Figure 4 shows that right-handed circularly polarized (RCP)
light and left-handed circularly polarized (LCP) light are coupled into the same HE2 (TE2 is
dominant) hybrid mode. This polarization independent coupling to the hybrid mode gives rise to
the polarization independent resonance location and bandwidth.
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Fig. 2. The reflectance for normally incident light with all polarization states defined by J.

Fig. 3. The relative electric field |E/E0 | generated by RCWA with light polarized along the
x axis (a) at a resonance wavelength of 628.71 nm, and (b) at a wavelength of 635.00 nm.

Fig. 4. The relative electric field of (a) |Ex/E0 |, (b) |Ey/E0 |, and (c) |Ez/E0 | for RCP and
LCP lights at a resonance wavelength of 628.71 nm.
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The spectral and angular bandwidths, and the LC birefringence effect on the GMR are
thoroughly examined in the following. As calculated from Fig. 5, the spectral bandwidth defined
by the full width at half-maximum for the reflectance at normal incidence is 0.135 nm. Figure 5
manifests a narrow spectral and angular width, within which the reflectance is very high. Away
from normal incidence, a degenerate reflectance vs. wavelength curve is split into two branches,
which means there are two wavelengths corresponding to the reflectance maximum at a fixed
angle. This splitting phenomenon is predicted by Eq. (23).

Fig. 5. Spectral and angular response of the GMR at E44 LC PG.

The wavelength dependent reflectance for E7, which has a smaller ∆n than E44, is calculated
to study the LC birefringence effect on the spectral bandwidth of GMR. Within the wavelength
ranging from 620 nm to 650 nm, the ±1 diffraction orders can be phase-matched to several
hybrid leaky modes, as indicated in Fig. 6. Polarization independent resonance location and
bandwidth is demonstrated due to the fully overlapping reflectance vs. wavelength curve for the
RCP and LCP. Due to different spectral bandwidths corresponding to different modes, we select
the same HE1 mode for E7 and E44 to compare their bandwidths. As calculated from Fig. 6,
their bandwidths corresponding to the HE1 mode are 0.255 nm and 0.320 nm, respectively. This
can be explained using multiple-beam interference similar to a Fabry-Perot interferometer. The
larger the ∆n, the higher the grating refractive index contrast. A higher index contrast increases
the grating diffraction strength and thus causes a faster leaking and less interference, giving rise
to a broader spectral bandwidth.
Inspired by the different spectral bandwidth, we also study how ∆n affects the electric field

enhancement. The same HE1 mode is used for comparing the enhancement effect. A 30x field
enhancement is obtained within the PG based on a low ∆n TFT LC mixture, MLC-9200-100 at a
resonant wavelength of 610.13 nm. as Fig. 7(a) shows. For the E44 PG, Fig. 7(b) manifests a
22x field enhancement at a resonant wavelength of 644.00 nm, which is smaller than that in the
MLC-9200-100 PG. A lower index contrast due to a smaller ∆n will decrease the leaking speed
of the ±1 diffraction order and thus induce the stronger coupling between evanescent waves and
±1 diffraction waves.

Considering making a real device, the fabrication method is briefly described as follows [18].
Two glass substrates are first coated with a photoalignment layer (PAL) and then assembled to
form a LC cell. The cell gap is controlled by spacers. To generate desired patterns, the LC cell is
exposed with a linearly polarized light whose polarization direction is linearly changing over the
distance. Afterwards, the LC mixture is injected into the LC cell via capillary action and the
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Fig. 6. Wavelength dependent reflectance for two LC mixtures, E44 and E7 with different
∆n values.

Fig. 7. The relative electric field |E/E0 | generated by RCWA with light polarized along the
x axis for (a) MLC-9200-100, and (b) E44.

LC directors will be orientated according to the patterned direction due to surface anchoring
from the PAL. For this kind of fabrication method, the most challenging part is the alignment of
the LC directors. Due to such a short periodicity, surface anchoring from the PAL may not be
strong enough to align all the LC molecules well. An alternative fabrication method to provide
better LC alignment is based on stacked polymer films. First, we spin-coat a PAL on a cleaned
glass substrate. Next, we expose the PAL using a linearly polarized light with spatial-variant
polarization directions. Then we prepare a LC reactive mesogen precursor by mixing solvent,
monomer, photoinitiator, and surfactant. We spin-coat the mixture on the patterned PAL to align
the LC directors. An ultra-violet light is finally used to polymerize the mixture. The same steps
can be applied for depositing more polymerized layers to achieve a certain film thickness.

4. Conclusion

In conclusion, we have theoretically demonstrated the polarization independent GMR in LC
based PGs. The proposed structure for realizing polarization independent GMRs is a single-layer
LC PG between two glass substrates. Three commercial LC mixtures are selected as calculation
examples to validate our novel method. Ultra-narrow spectral bandwidths and strong field
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enhancements, along with polarization independent resonance location and bandwidth are all
observed through anisotropic RCWA calculations. The LC birefringence effect on the GMR is
also revealed.
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