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a b s t r a c t

The spinodal represents the limit of thermodynamic stability of a homogeneous fluid. In this work, we
present a robust methodology to obtain the spinodal of multicomponent fluids described even with the
most sophisticated equations of state (EoS) available. We elaborate how information about the spinodal
and its uncertainty can contribute both in the development of modern EoS and to estimate their un-
certainty in the metastable regions. Inequality constraints are presented that can be exploited in the
fitting of modern EoS of single-component fluids to avoid inadmissible pseudo-stable states between the
vapor and liquid spinodals. We find that even cubic EoS violate some of these constraints.

With the use of a selection of EoS representative of modern applications, we compare vapor and liquid
spinodal curves, superheat and supersaturation limits from classic nucleation theory (CNT), and available
experimental data for the superheat limit. Computations are performed with pure species found in
natural gas, binary mixtures, as well as a multi-component natural gas mixture in order to demonstrate
the scalability of the approach. We demonstrate that there are large inconsistencies in predicted spi-
nodals from a wide range of EoS such as cubic EoS, extended corresponding state EoS, SAFT and
multiparameter EoS. The overall standard deviation in the prediction of the spinodal temperatures were
1.4 K and 2.7 K for single- and multi-component liquid-spinodals and 6.3 K and 26.9 K for single- and
multi-component vapor spinodals.

The relationship between the measurable limit of superheat, or supersaturation, and the theoretical
concept of the spinodal is discussed. While nucleation rates from CNT can deviate orders of magnitude
from experiments, we find that the limit of superheat from experiments agree within 1.0 K and 2.4 K
with predictions from CNT for single- and multi-component fluids respectively. We demonstrate that a
large part of the metastable domain of the phase diagram is currently unavailable to experiments, in
particular for metastable vapor. Novel techniques, experimental or with computational simulations,
should be developed to characterize the thermodynamic properties in these regions, and to identify the
thermodynamic states that define the spinodal.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metastable fluids can be found everywhere and continue to
attract attention [1]. Recent examples include the ongoing discus-
sion on cavitation of water at large negative pressures [2e6],
magma erupting from volcanoes [7] and violent vapor-explosions
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from liquids spills in contact with a substantially warmer sub-
stance [8e11]. It is challenging to measure the properties of highly
metastable fluids. By their own labile nature, they transform into a
more stable phase via nucleation, where the nucleation process is
triggered by thermal fluctuations. These fluctuations occur natu-
rally, even in perfectly homogeneous fluids at equilibrium [12].

Properties of metastable fluids are central in the description of
many processes. An important example is nucleation, which is
ubiquitous in a wide range of physical, chemical, and biological
processes. In nucleation theory, the thermodynamic state of the
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critical embryo is within the metastable region of the fluid [12].
Even for the simple case of condensation of the noble gas argon,
predictions of nucleation rates from classical nucleation theory
(CNT) deviatemore than 20 orders of magnitude from experiments.
In contrast, we will here show that CNT predicts accurately the
“limit of superheat” for many hydrocarbons, which represents the
experimentally available limit of metastability of liquids. Some of
the deviation between several theories [13,14] and experimental
data is likely because of inaccuracies in current equations of state
(EoS) in the metastable regions [13].

In the development of modernmultiparameter EoS, for example
for water [15], the thermodynamic properties of metastable fluid
phases such as subcooled liquid (metastable with respect to solid-
liquid) and superheated liquid (metastable with respect to the
vapor-liquid) are included in the fitting procedure. The extrema for
metastability are defined by the spinodal. At the spinodal, the ho-
mogeneous fluid becomes intrinsically unstable and the activation
barrier for nucleation disappears. The unstable fluid will then
spontaneously decompose into the more stable phases. From a
thermodynamic point of view,much is known about the state of the
fluid at the spinodal. For instance, for single-component fluids,
several thermodynamic properties such as the bulk modulus and
the inverse isobaric heat capacity equal zero. Therefore, informa-
tion about the spinodal is valuable, both in the development of
modern EoS and to estimate their uncertainty in the metastable
regions. Moreover, a thermodynamically consistent behavior of the
EoS in the unstable domain of the homogeneous fluid is a prereq-
uisite for combining them with mass based density functional
theory for studying interfacial phenomena [16].

A major challenge in the study of metastable fluids is that there
are limitations to how close to the spinodal one can get in experi-
ments with real fluids. No matter how careful an experiment has
been carried out, thermal fluctuations that occur naturally in the
fluid will trigger homogeneous nucleation before the spinodal has
been reached, even though the metastable domain extends
significantly further. Highly metastable states that are experimen-
tally unavailable for bulk fluids can still be encountered in small
cavities, or within the critical cluster or cavity during nucleation,
and are thus of practical relevance. The experimentally attainable
limit where a superheated liquid spontaneously transforms into
vapor is known as the limit of superheat [1]. The most popular
experimental technique for measuring the limit of superheat is the
droplet explosion method, a technique dating back to the early
work of Wakeshima and Takata [17] and Moore [18]. The droplet
explosion method remains the most popular technique to date
[8,11], and represents one of the techniques that can bring the
liquid closest to the spinodal [19].We shall in this work discuss how
close to the spinodal it is possible to get experimentally, and how to
get even closer.

From a theoretical perspective, we shall elaborate how infor-
mation about the spinodal and its uncertainty can contribute both
in the development of modern EoS and to estimate their uncer-
tainty in the metastable regions. With the use of a selection of EoS
with varying degree of complexity, we predict the spinodal curves
for pure species and mixtures. The predicted spinodals are
compared to both the limit of superheated liquid and supersatu-
rated vapor from CNT and available experimental data. The present
paper extends previous work on the topic spanning the last three
decades [9,20e24]. Whereas previous studies have focused on cu-
bic EoS, where obtaining the spinodal curve is straightforward, we
present a general and robust approach based on thermodynamic
stability analysis. This allows us to calculate and compare spinodals
from a number of EoS with very different functional forms and
levels of complexity. Moreover, while previous works have focused
mostly on pure species, we calculate spinodals for hydrocarbon
mixtures with up to five components. We show that the functional
form of the EoS can have a significant influence on the predicted
spinodal.

2. Theory

In this section, we present the theoretical foundation for the
work. We start in Sec. 2.1 by describing the different types of EoS
that will be used. In Sec. 2.2, we discuss how the spinodal can be
characterized, before we in Sec. 2.3 explain how to estimate the
experimental limit of stability for a homogeneous fluid with clas-
sical nucleation theory.

2.1. Equations of state

2.1.1. Cubic EoS (PR, SRK)
The simplest type of EoS that can still predict the spinodal are

the cubic EoS. These can in general be represented as

P ¼ RT
v� b

� aaðTÞ
ðv� bm1Þðv� bm2Þ

: (1)

Here, P is the pressure, T is the temperature, R the universal gas
constant, v the molar volume, and a, a, and b are parameters of the
EoS. The constants m1 and m2 characterize various two-parameter
cubic EoS. For instance, for the van der Waals (VdW) EoS,
m1 ¼ m2 ¼ 0, for the SoaveeRedlicheKwong (SRK) EoS [25], m1 ¼
1 andm2 ¼ 0, and for the PengeRobinson (PR) EoS [26],m1 ¼ �1þffiffiffi
2

p
and m2 ¼ �1�

ffiffiffi
2

p
. All these EoS are two-parameter cubic EoS

in the sense that they use the two parameters a and b. For fluids
with several components, mixing rules are used to compute the
parameters a and b, which then depend on the composition.

2.1.2. Extended corresponding state EoS (SPUNG)
An extension of the corresponding state (CSP) methodology was

initiated by Leach, Rowlinson andWatson as elaborated in Ref. [27],
by including so-called “shape factors” that take into account how
the mixture in consideration differs from the reference fluid(s). For
pure components, this extension has a basis in statistical me-
chanics. If cubic EoS are used to calculate the shape factors, onemay
combine the strength of cubic EoS observed in VLE calculations
with improved prediction of bulk properties obtained from a very
accurate reference EoS. This methodology has also been referred to
as the SPUNG EoS, and has proven to be both computationally fast
as well as accurate [28]. We refer to Chapter 4 in Ref. [29] for further
details.

2.1.3. Statistical associating fluid theory (SAFT)
Statistical Associating Fluid Theory (SAFT) gives EoS that are

founded on statistical mechanics [30]. The perhapsmost commonly
used formulation is PC-SAFT [31] that has, in general, substantially
improved accuracy in comparison with cubic EoS. Since PC-SAFT is
founded on statistical mechanics and accounts for sizes and shapes
of molecules, it is also expected to be the EoS with the largest
predictive ability of the EoS considered in this work, in particular
for polar substances and associating substances.

2.1.4. Multiparameter equations of state (GERG-2008)
Multiparameter EoS are today the most accurate EoS for the

regions where thermodynamic property data are available. The EoS
are founded on a comprehensive analysis of experimental data and
a diligent optimization procedure, with functional forms optimized
for accuracy. They have been devised for single-component fluids
[15,32e36] and mixtures [37]. For some of these EoS, the thermo-
dynamic properties of metastable fluid phases such as
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supersaturated vapor and superheated liquid have been included in
the fitting procedure [15]. In this work, we will use the multipa-
rameter EoS for natural gas called GERG-2008 [37]. It is defined in
terms of a reduced Helmholtz energy function:

aðr; T ; xÞ ¼ a0ðr; T ; xÞ þ
XNc

i¼1

xia
r
i ðr; TÞ þ Darðr; T ; xÞ; (2)

where the superscripts 0 and r refer to the ideal gas and the residual
contributions respectively, subscript i refers to species i, Nc is the
number of components, r is the density and xi is the mole fraction
of component i. The last term on the right-hand-side, Dar is the
departure function that takes into account the deviation from ideal
mixture.

2.2. Thermodynamic stability and the spinodal

The spinodal represents the limit of intrinsic stability of a single-
phase fluid. The spinodal is a theoretical limit, since thermal fluc-
tuations will lead to homogeneous nucleation long before the
spinodal has been reached in experiments, as explained in Sec. 1.

2.2.1. Thermodynamic stability in terms of the eigenvalues of the
Hessian matrices of the energy state functions

Classical thermodynamics states that at equilibrium, the en-
tropy of an isolated system is at its maximum. By considering an
isolated composite system consisting of a subsystem that interacts
with a thermal, pressure or particle reservoir, this criterion can be
reformulated in terms of minima of various energy state functions
for the subsystem [38]. The identity of the energy state function
depends on the surroundings of the subsystem, or alternatively
which state variables that have been fixed. Some examples are:

minfUðS;V ;NÞg at fixed S;V and N (3)

minfAðT ;V ;NÞg at fixed T ;V and N (4)

minfHðS; P;NÞg at fixed S; P and N (5)

minfGðT ; P;NÞg at fixed T ; P and N (6)

where U is the internal energy, A is the Helmholtz energy, H is the
enthalpy, G is the Gibbs energy, S is the entropy, V is the total vol-
ume, and N is the mole numbers, where boldface symbols are
vectors. In addition, in a single-component system, U� ¼ U � Nm is
the Legendre transform of the internal energy with respect to the
mole number, where m is the chemical potential. Even if U� is not
commonly used in engineering applications, we shall refer to it in
subsequent discussions. The energy state functions A;U� and H are
Legendre transforms of the internal energy with respect to one
variable, while G is a Legendre transform of the internal energy
with respect to two variables.

The thermodynamic stability of a stationary homogeneous
system can be examined by evaluating the change in internal en-
ergy when decomposing into two phases, denoted with subscripts
a and b (the initial system has no subscript). Let us start with an
isolated system where U is a minimum at equilibrium, meaning
that dU ¼ dðUa þ UbÞ ¼ 0, i.e. the system is in a stationary state.
This condition implies uniform intensive variables: T, P and mi,
where subscript i refers to component i (see Chapters 5 and 6 in
Ref. [38]). However, a stationary state can be aminimum,maximum
or saddle point. For the energy state function to be a minimum, the
lowest order of non-vanishing variation must be positive. In most
cases, this is the second order variation:
d2U ¼ d2Ua þ d2Ub ¼ dxTa VVUa dxa þ dxTb VVUb dxb � 0;

(7)

where dxT ¼ ½dS;dV ;dN1;…;dNNc
� represents an arbitrary change

in the state variables and VVU is the Hessian matrix of the internal
energy, i.e. the matrix containing the second order partial de-
rivatives of U with respect to the variables in x. Since the system is
isolated, dxa ¼ �dxb and since the a and the b phases have uniform
intensive variables, Eq. (7) can be reformulated as [39]:

dxT VVU dx � 0; (8)

where we have omitted subscript a and a scaling factor of
N=Nb. Equation (8) can be rewritten in terms of the eigenvalues
of VVU, lj:

XNcþ2

j¼1

c2j lj � 0; (9)

where dx ¼ PNcþ2
j cjej and e1;…; eNcþ2 are the eigenvectors of the

Hessian matrix. Here, we have expressed the vector dx in terms of
the eigenvector-space of the Hessian matrix and the parameters, cj,
which can take any value. Since c2j is always positive for any real
number, the criterion for thermodynamic stability of an isolated
system expressed by Eq. (7) can be reformulated as:

minfeigðVVUÞg � 0; (10)

i.e., the Hessian matrix of U should be positive-semidefinite. Leg-
endre transforming the internal energy gives other energy state
functions, and equivalent thermodynamic stability criteria can be
formulated for these by following a similar approach as elaborated
above:

min
�
eig

�
VV ;NVV ;N AðT ;V ;NÞ�� � 0 at fixed T ;V and N (11)

min
�
eig

�
VS;NVS;N HðS; P;NÞ�� � 0 at fixed S; P and N (12)

minfeigðVNVN GðT; P;NÞÞg � 0 at fixed T; P and N (13)

where the subscripts indicate which variables are included in the
del-operator, i.e. only the extensive variables of the respective po-
tentials are included. In fact, at equilibrium, the Legendre trans-
formed energy state functions are concave functions of their
intensive canonical variables, and they are only a minimum if these
variables are fixed [38] (see Eqs. (3)e(6)). The spinodal can thus be
identified by investigating the eigenvalues of the Hessian matrices
above. The criteria above are completely general, however, the
typical textbook treatment defines an alternativeway of identifying
the spinodal in terms of a set of thermodynamic quantities that
become zero at the spinodal. Since this method can give further
insight, we shall discuss it next.

2.2.2. Thermodynamic stability in terms of selected thermodynamic
derivatives

In conventional textbook literature on thermodynamic stability
analysis, the approach outlined by Beegle et al. is often referred to
[40], where the inner product between the Hessianmatrices and dx
is examined in more detail. In particular, they show that some
thermodynamic quantities go to zero before any other properties at
the spinodal. In their textbook on classical thermodynamics, Tester
and Modell state that a necessary and sufficient condition for
thermodynamic stability is that [39]:
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v2UðNcÞ

vxNcþ1vxNcþ1
>0; (14)

where the superscript in UðkÞ denotes that the internal energy has
been Legendre transformed with respect to the number k, of the
first variables in the vector xT ¼ ½S;V ;N1;…;NNc

�. Moreover, xl de-
fines index l of the vector x. The spinodal is then defined in terms of
the following equation:

v2UðNcÞ

vxNcþ1vxNcþ1
¼ 0: (15)

However, the order of the variables in x can be chosen arbi-
trarily. Therefore, Eq. (15) results in several thermodynamic iden-
tities that equal zero at the spinodal. For a single-component
system, these are:

v2A
vx2k

: �
�
vP
vV

�
T ;N

¼ 0 and
�
vm

vN

�
T ;V

¼ 0 (16)

v2U�

vx2k
:

�
vT
vS

�
m;V

¼ 0 and �
�
vP
vV

�
m;S

¼ 0 (17)

v2H
vx2k

:

�
vm

vN

�
P;S

¼ 0 and
�
vT
vS

�
P;N

¼ 0 (18)

where Eq. (16) contains the diagonal entries of VV ;NVV ;N A, Eq. (17)
of VS;VVS;V U� and Eq. (18) of VS;NVS;N H. All of these equations are
satisfied simultaneously at the spinodal, where they change from
positive to negative. An interesting questionwe shall discuss in Sec.
3.1 is whether the left-hand-side of Eqs. (16)e(18) should remain
negative between the vapor and liquid spinodals. Such information
is useful in the development of modern EoS, because if one can
argue that thermodynamic quantities such as those defined in Eqs.
(16)e(18) should remain negative, they can be exploited as
inequality constraints in the fitting of single-component EoS to
avoid inadmissible pseudo-stable states between the vapor and
liquid spinodals. Any of the thermodynamic quantities in Eqs.
(16)e(18) can be used equivalently to locate the spinodal of a
single-component fluid.
2.2.3. The numerical algorithm used to identify the spinodal in this
work

The Hessian matrices of all the energy state functions are sin-
gular, i.e. one of their eigenvalues is always zero. The reason for this
is that the energy state functions are Euler homogeneous functions
of first degree with respect to their extensive variables, while the
Hessian matrices contain derivatives of only intensive variables
(see Theorem 4, Chapter 1 in Ref. [41]). In practice, the spinodal can
be found by eliminating one row and one column of the Hessian
matrix of an appropriate energy state function to construct the
matrix F. In the stable domain, F is non-singular, and the smallest
eigenvalue becomes 0 at the spinodal (see Theorem 6, Chapter 1 in
Ref. [41]). In this work, we have used the following criterion to
identify the spinodal:

minfeigðFÞg ¼ 0 where F ¼ VNVN AðT ;V ;NÞ: (19)

The use of the Helmholtz energy formulation has proven
numerically robust when solving for critical points [42]. Applying
the Hessian scaling suggested by Michelsen [43], the spinodal is
found by solving for the temperature at a given specific volume. A
second-order method that uses numerical differentials for the
minimum eigenvalue, lmin is used. The eigenvalue calculation of a
symmetric matrix can be performedwith high numerical efficiency.
With a given initial point on the spinodal, the entire spinodal curve
can easily be traversed with the use of uniform steps in lnðVÞ.
Extrapolation from a known spinodal point can be achieved by
utilizing:

dlmin ¼
�
vlmin
vT

�
V
dT þ

�
vlmin
vV

�
T
dV ¼ 0; (20)

which provides a good initial value for the temperature at the next
spinodal point.

2.3. The experimentally available limit of stability of a
homogeneous fluid as predicted by classical nucleation theory (CNT)

When a liquid has been sufficiently superheated, the homoge-
neous nucleation rate becomes at some point so large that the
liquid transforms into two phases in a much shorter time than the
characteristic time of the experiment. This corresponds to the
observed superheat limit, and nucleation theory can thus be used to
predict this.

Nucleation is an activated process where an energy barrier must
be overcome by thermal fluctuations. Accordingly, the nucleation
rate J depends exponentially on the height of the nucleation barrier
according to a standard Arrhenius rate law,

J ¼ Kexp
�
� DG�

kBT

�
; (21)

where DG� is the nucleation barrier, kB is Boltzmann's constant, and
K is the kinetic prefactor. Equation (21) can be used both to describe
the formation of bubbles and droplets; however, the expression for
K and DG� differ in the two cases. The nucleation barrier, DG�, is:

DG� ¼ 4psr�2

3
; (22)

where the radius of the critical cluster or cavity r�, for bubble for-
mation in a liquid [1], is

r� ¼ 2s
PsatðTÞ � Pl

; (23)

or for droplet formation in a gas [1],

r� ¼ 2s
~rlkBTln

�
Pg
	
Psat

�; (24)

where ~rl is the number density of the liquid phase. Further, the
kinetic prefactors can be approximated by following a range of
approaches. In this work, we have used the following expressions to
calculate the kinetic prefactor for bubble formation in a liquid [1]:

Kz~rl

ffiffiffiffiffiffiffiffi
2s
pm

r
; (25)

where ~rl is the number density of the liquid phase and m is the
mass of one molecule. For droplet formation in a gas, we have used
[1]:

Kz
~r2g
~rl

ffiffiffiffiffiffiffiffi
2s
pm

r
; (26)

where ~rg is the number density of the vapor-phase, i.e. Eqs. (25) and
(26) differ by the factor ð~rg=~rlÞ2.We have in this work provided only
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the necessary formulas, and we refer to Refs. [1,44] for details and
derivations. Once the nucleation barrier has been found and the
kinetic prefactors have been estimated based on properties at
saturation, the nucleation rate can be calculated by use of Eq. (21).
However, to set a specific limit of superheat or supersaturation,
one must decide on a critical nucleation rate that represents
the observed sudden phase change. Experiments indicate values
of Jcrit in the range 102 � 106 cm�3 s�1 [1]. Since the exact value
of the critical nucleation rate has very little influence on the pre-
dicted limit of superheat (See Fig. 3.13 in Ref. [1]) we use
Jcrit ¼ 106 cm�3 s�1 in this work.

Given a value for Jcrit, we find the superheat/supersaturation
temperature limits for a given pressure and composition by solving

JðTÞ ¼ Jcrit; (27)

for T. In order to complete this model, thermodynamic properties
are needed. The pressures and densities are supplied by an EoS, and
in this work we have used the most accurate EoS for the compo-
nents in natural gas, GERG2008 [37]. Pure component surface
tensions were modeled by the corresponding state correlation
recommended in Ref. [45] (see Chapter 12). The deviation between
this correlation and experiments is below 5% for most fluids ac-
cording to Tables 12e1 in Ref. [45]. The procedure for finding the
limits of superheat/supersaturation is described above for pure
components. We extend it to mixtures by replacing the saturation
properties by the properties at the bubble line (superheat limit) or
at the dew line (subcool limit) of the mixture. The molecule massm
is then replaced by the mole fraction averagedmolecule mass. Also,
we use the mole fraction weighted average of the pure component
surface tensions.

3. Results

We shall in Secs. 3.1 and 3.2 discuss the vapor and liquid spi-
nodals from a theoretical perspective and their relevance in the
development of EoS. Next, we evaluate in Sec. 3.3 how much the
spinodals predicted from various EoS differ, and the implications of
this on prediction of properties in the metastable regions. Even-
tually, we discuss in Sec. 3.4 how close to the spinodal that current
experiments can bring us. In the following, we will focus on hy-
drocarbons and their mixtures.

3.1. The spinodals and their relevance for developing EoS

Properties of metastable fluids have received much attention in
recent literature, partly because such states are ubiquitous in na-
ture, including in important processes such as nucleation of drop-
lets or bubbles in condensation and evaporation processes. It is
therefore important to develop EoS that give an accurate repre-
sentation of the metastable regions of the fluid.

Fig. 1a shows the pressure as a function of the density for
methane at T ¼ 175 K, as predicted by the PengeRobinson cubic
EoS. The figure highlights five regimes, one regime with single-
phase gas at low densities (green solid line), one regime with
single-phase liquid at high densities (blue solid line), two regimes
where the single-phase fluid is metastable (dashed lines) and one
regime where it is unstable (dotted line). If the inequality,
ðvP=vrÞ < 0, is satisfied where r is the density (equivalent to Eq.
(16)-left), the single-phase fluid is mechanically unstable and will
spontaneously decompose into liquid and vapor.

The shape of the pressure, P plotted as a function of the density,
r displayed in Fig. 1a with a local maximum followed by a local
minimum is called aMaxwell loop. Many EoS have a singleMaxwell
loop, but some EoS have a second, artificial Maxwell loop in the
two-phase region. One example is shown in Fig. 1b, where
GERG2008 (blue solid line) exhibits a second loop. Since
ðvP=vrÞ > 0 (mechanically stable) and also other thermodynamic
stability criteria are satisfied, the EoS predicts a pseudo-stable
single-phase fluid within a region where experiments show a
coexistence between vapor and liquid. For many fluids and condi-
tions, the pseudo-stable phase has even a lower energy than the
vapor-liquid coexistence [16]. The second Maxwell loop is an arti-
fact of the functional form and parameters of the GERG2008 EoS,
and is a general problem/challenge in the present development of
multiparameter EoS.

Fig. 1b shows the behavior of several EoS in the metastable and
unstable regions, and elucidates some important points:

� The exact location of the spinodals (the maxima and minima)
varies much with the choice of EoS.

� The EoS have different behaviors between the spinodals; some
EoS exhibit a thermodynamically consistent behavior (a single
Maxwell loop), while other EoS do not.

� The behavior of the metastable regions depends much on the
choice of EoS.

A goal should be to develop EoS that are accurate and thermo-
dynamically consistent, also in the metastable and unstable regions
of the phase diagram of the single-phase fluid. A future goal should
be to develop EoS without inadmissible pseudo-stable states in the
unstable domain of the single-phase fluid. This is of importance,
both for combining them with mass based density functional the-
ory and to develop thermodynamically consistent mixing rules
with a physical interpretation as elaborated in detail in Ref. [16].

Fig. 1b shows that GERG2008 and PC-SAFT follow each other
closely in the first part of the metastable regions. This is expected,
as their Taylor-expansions of the pressure as a function of density
about the saturation state are very similar, because they both
reproduce well the thermodynamic properties at saturation from
experiments. Therefore, accurate prediction of equilibrium prop-
erties at the saturation curve is a prerequisite for accurately pre-
dicting properties in the metastable regions. However, the figure
also shows that GERG2008 and PC-SAFT predict very different
pressures for the onset of the liquid-spinodal (the minima of the
curves). Since equilibrium measurements at saturation can provide
the right slope of, for instance P as a function of r into the meta-
stable regions, the location of the spinodal would provide a refer-
ence for this extrapolation. Therefore, if it was possible to find the
precise onset of the spinodal, either through experiments or com-
putations, it would be possible to characterize the whole meta-
stable regionwith good accuracy. Moreover, if the spinodal could be
determined to some degree of uncertainty it would be possible,
based on the known uncertainty of properties at coexistence, to
make statements about how accurate extrapolations to the meta-
stable regions from various EoS are. We shall discuss the current
uncertainty in the prediction of the liquid and vapor spinodals in
Sec. 3.3.

One of the more urgent challenges in the development of EoS is
to remove the second artificial Maxwell loop in the two-phase re-
gion, an artifact characteristic for so-called multiparameter EoS
(see Sec. 2.1.4). Multiparameter EoS are founded on a comprehen-
sive analysis of experimental data and a diligent optimization
procedure, with functional forms optimized for accuracy. By adding
new terms to the Helmholtz energy functional of multiparameter
EoS and with the use of additional constraints in the nonlinear
fitting routine, Lemmon and Jacobsen managed to reduce the
magnitude of the second Maxwell loop in the multiparameter EoS
for the fluid R125 [46] from � 106 MPa to below � 102 MPa. In
2009, Lemmon et al. presented a multiparameter EoS for propane,



Fig. 1. Pure methane isotherms at 175 K. (a), the stable, metastable and unstable regions are illustrated by an isotherm as predicted by the PR EoS. (b), isotherms are drawn with
different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and extended CSP (dotted cyan). The saturation points are indicated by circles. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where they reverted back to the functional formwith Gaussian bell
shaped terms [47]. With the use of the new fitting techniques and
constraints from Ref. [46], they were able to reduce the magnitude
of the artificial Maxwell loop. Recent multiparameter EoS are
formulated with the functional form presented in Ref. [47]. Lem-
mon and Jacobsen implemented the constraint discussed by
Elhassan et al. [48]:

aðrÞ � atangðrÞ � 0 (28)

where a is the Helmholtz energy and subscript tang means the
Helmholtz energy evaluated at the equilibrium tangent line.
Despite what Elhassan and coauthors claim in their work [48], the
constraint in Eq. (28) does not “remove any inconsistencies be-
tween thermodynamic stability and physical reality”. Even if
Eq. (28) guarantees that both the Helmholtz energy and the Gibbs
energy of the vapor-liquid coexistence state is lower than the Gibbs
energy of a pseudo-stable state coming from a second Maxwell
loop [48], the pseudo-stable state can still be stable in other en-
sembles such as in an isolated system. We have elaborated in detail
on this in Ref. [16].
3.2. Inequality constraints to avoid inadmissible pseudo-stable
states between the spinodals

Since the inequality in Eq. (28) is insufficient for constraining
EoS to avoid inadmissible pseudo-stable states in the unstable-
region of the single-phase fluid (between the spinodals), we shall
next discuss which inequality constraints that can be used instead.
The derivatives in Eqs. (16e18) are natural candidates for such
inequality constraints for the single-component fluid, since they
reach zero before any other thermodynamic identities at the spi-
nodals. We note that similar thermodynamic quantities can be
defined for multicomponent fluids [39], and exploited in the fitting
of multiparameter EoS for mixtures, such as GERG2008. We shall
now evaluate Eqs. (16e18) for an EoS that is considered, from a
qualitative perspective, to have a physically admissible behavior in
the two-phase region: the Van der Waals cubic (VdW) EoS.

Fig. 2 plots Eqs. (16e18) for methane at 92 K through the
metastable and unstable regions of the single-phase fluid, as pre-
dicted by the VdW EoS. The figure shows that all six of the ther-
modynamic quantities in Eqs. (16e18) reach zero at exactly the
same two densities (r ¼ 32 kg=m3 and r ¼ 251 kg=m3), as shown
by the vertical red dashed lines. These two densities define the
vapor and liquid spinodals. At constant temperature, these are the
only two densities where the thermodynamic quantities in Eqs.
(16e18) equal zero.

If we examine the sign of the thermodynamic relations in Eqs.
(16) and (18), only four of them remain negative between the vapor
and liquid spinodals (vertical red dashed lines). The two thermo-
dynamic relations that represent the diagonal entries of the Hes-
sianmatrix of the enthalpy, ðvm=vNÞP;S and ðvT=vSÞP;N shown in Figs.
2e and f, have asymptotes at densities just after the vapor spinodal
and right before the liquid spinodal, and are positive in a region
between the asymptotes. One of these thermodynamic relations
has a clear physical interpretation:

�
vT
vS

�
P;N

¼ T

N


C0
p þ Cr

p

� ; (29)

where the isobaric heat capacity, Cp, is split into an ideal gas
contribution (superscript 0) and a residual contribution (super-
script r). While Cr

p goes to ±∞ at the spinodals, C0
p is positive and

depends only on the temperature. It is thus constant in Figs. 2 and 3.
While C0

p ðTÞ can be determined experimentally and is well-known
for methane, Cr

pðT ; rÞ is unknown between the spinodals. The as-
ymptotes of Eq. (29) correspond to the points where

Cr
pðT ; rÞ ¼ �C0

p ðTÞ; (30)

which can occur only between the spinodals. Interestingly, whether
Eq. (30) is satisfied between the spinodals depends on which pa-
rameters that are used in the VdW EoS, and at which temperature
the EoS is used. For instance, for methane at 92 K, Eq. (30) is clearly
satisfied at two densities (see the asymptotes in Figs. 2e and f).
However, for methane at 157 K, the same EoS predicts that
Cr
pðT; rÞ< � C0

p ðTÞ for all densities between the spinodals, where
both of the thermodynamic relations in Eq. (18) remain negative
between the spinodals, as shown in Fig. 3.

We shall next discuss if there are any physical arguments for
why the thermodynamic quantities in Eqs. (16e18) should remain
negative between the spinodals. To examine thermodynamic sta-
bility, we evaluate the sign of the eigenvalues of the Hessian
matrices, since they definewhether a stationary point of the energy
state function is a minimum (only positive eigenvalues), a



Fig. 2. A plot of Eqs. (16e18) through the two-phase region in the case of methane at 92 K as predicted by the Van der Waals cubic EoS (blue solid lines). The vertical red dashed
lines show where the quantities pass through zero. The reported values are for 1 kmol of fluid. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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maximum (only negative eigenvalues) or a saddle point (positive
and negative eigenvalues).

First, let us discuss the rank of Hessian matrices and hence how
many non-zero eigenvalues we expect. Since the energy state
functions are Euler homogeneous functions of first degree in their
extensive variables, the highest possible rank of their Hessian
matrices is r � 1, where r is the number of extensive variables (we
refer to Sec. 1.3 in Ref. [41] for details). Thus, for all the Hessian
matrices, we expect at least one eigenvalue to be zero since they are
singular [41]. For a single-component fluid, this gives a maximum



Fig. 3. A plot of two of the thermodynamic relations in Eq (18) through the two-phase region in the case of methane at 157 K as predicted by the VdW EoS (blue dashed lines). The
vertical red dashed lines show where the quantities pass through zero. The reported values are for 1 kmol3 of fluid. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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of two non-zero eigenvalues for U and one non-zero eigenvalue for
U�;H and A. We have plotted the non-zero eigenvalues in Fig. 4 for
methane, as described by the VdW EoS at 92 K (solid lines). In the
figure, the eigenvalues have been divided by the eigenvalue of the
liquid phase at saturation, and the subscripts refer to which energy
state function the eigenvalues come from.

Fig. 4 shows that except for one of the eigenvalues of the Hessian
matrix of U, lU;1, all eigenvalues go from positive to negative at the
spinodals. This means that the internal energy goes from being a
local minimum to a saddle point at the spinodals (one positive and
one negative eigenvalue), while U�;H and A go from local minima
to maxima at the spinodals. Except for the eigenvalue of the Hes-
sianmatrix of the enthalpy displayed in Fig. 4c, the eigenvalues look
very similar at 157 K and have not been plotted.

The asymptotes in the diagonal elements of the Hessian matrix
of H at 92 K displayed in Fig. 2e and f are also reflected in asymp-
totes at the same densities in lH . In fact, Fig. 4c shows that the
eigenvalue of VS;NVS;N H goes from negative to positive in a region
between the spinodals. When the asymptotes in the diagonal ele-
ments of the Hessian matrix of H disappear, such as at 157 K (see
Fig. 3), then lH remains negative between the spinodals, similar to
lU;2, lU� and lA, as shown by the blue dashed lines in Fig. 4d.

Since all eigenvalues of the Hessian matrix of the enthalpy are
non-negative in a region between the spinodals, the energy state
function is a minimum. The VdW EoS thus predicts a uniform phase
between the spinodals to be “pseudo-stable” in an adiabatic system
kept at constant pressure, since the enthalpy is then the appro-
priate energy state function to examine.

In a macroscopic, single-phase system of arbitrary size, the
thermodynamic stability of a sub-volume within the fluid should
be independent of the choice of surroundings. Moreover, a pseudo-
stable phase has never been observed experimentally between the
spinodals, regardless of which experimental conditions that have
been chosen. Therefore, the positive value of lH between the spi-
nodals is an artifact of the VdW EoS and its parameters. We find a
similar behavior of other cubic EoS, such as SRK and PR, where lH
becomes positive between the spinodals at low temperatures. This
is surprising, as its shows that even cubic EoS that have been
considered to have a “physically admissible” behavior between the
spinodals exhibit inconsistencies in the unstable domain of the
single-phase fluid. To summarize: If one can find a state between
the spinodals where, for any choice of energy state function, all
eigenvalues of the Hessian are positive (one eigenvalue is always
zero), one has found a pseudo-stable phase in that region. On the
contrary, if at least one eigenvalue stays negative, such states are
thermodynamically unstable. Thus, if we assume that such states
are physically inadmissible, we arrive at the following statement:

A sufficient condition for EoS to avoid inadmissible pseudo-
stable states between the vapor and liquid spinodals is that at
least one eigenvalue of the Hessian of the energy state function
goes from positive to negative at, and remains negative be-
tween, the spinodals, for any choice of energy state function.

Fig. 2 shows that even if the EoS exhibits a physically admissible
behavior for many of the state functions, this does not guarantee a
physically admissible behavior for all energy state functions, unlike
what is suggested in the work by Elhassan and coauthors [48]. We
can also make some statements about the suitability of using Eqs.
(16e18) as inequality constraints in fitting an EoS for a single-
component fluid (similar statements can be made about multi-
component fluids).

We know the following about the Hessian matrices of the en-
ergy state functions: They are singular, meaning that one of the
eigenvalues is always zero and they are symmetric. Since the sum of
the eigenvalues of a matrix equals the sum of the diagonal ele-
ments, one can prove mathematically that the two thermodynamic
quantities in each of Eqs. (16e18) will always have the same sign for
a single-component fluid. Therefore, it is only necessary to use one
thermodynamic relation in each of the pairs in Eqs. (16e18) as an
inequality constraint between the spinodals, where they have to be
negative for a physically admissible behavior in the unstable region
of the single-component fluid.
3.3. The spinodals and the limit of homogeneous nucleation

In Sec. 3.1 we argue that it is important to determine the spi-
nodal precisely to arrive at EoS that are accurate in the metastable
domain. In what follows, we investigate to which extent the EoS
that are available today differ in their predictions of the spinodal.

Solving phase equilibrium calculations has received much
attention in the literature. This can be challenging, in particular for
multicomponent mixtures and multiparameter EoS [49]. Deter-
mining the spinodal has a comparable degree of complexity to
phase equilibrium calculations, where a set of algebraic equations
have to be solved based on the underlying EoS. However, robust



Fig. 4. A plot of the normalized eigenvalues of the energy state functions through the two-phase region in the case of methane at 92 K as predicted by the Van der Waals cubic EoS
(black solid lines). The dashed line represents the eigenvalue the Hessian matrix of the enthalpy at 157 K. The vertical red dashed lines showwhere the quantities pass through zero.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and accurate methods for obtaining the spinodal have received far
less attention in the literature than phase equilibrium calculations,
partly due to the spinodal being less needed in engineering cal-
culations. Previous work on the topic has mainly been limited to
simple cubic EoS and pure substances [9,20e24].
In Fig. 5 we have used themethodology described in Sec. 2.2.3 to

obtain the spinodal curve of a multicomponent natural gas mixture
with one of the most accurate EoS available today, GERG2008 [50].



Fig. 5. Illustration of the phase envelope and spinodal curves obtained with the
GERG2008 EoS for a five-component mixture of methane (75 mol-%), ethane (10 mol-
%), propane (7 mol-%), butane (3 mol-%) and nitrogen (5 mol-%). The bubble line (solid
blue), the dew line (solid green), the liquid spinodal (dashed blue) and the gas spinodal
(dashed green) all meet in the critical point (black dot). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. The liquid density and pressure at the liquid spinodal curve for ethane, calcu-
lated using GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and
extended CSP (dotted cyan). The saturation line is given by the solid black line. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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The figure demonstrates that the method we have presented is
robust, even in the vicinity of the critical point, scalable to multi-
component mixtures and applicable to complex non-analytical EoS.
We observe, from a comparison of the solid and the dashed lines in
Fig. 5, that there is a significant distance in the TP -space between
the coexistence limits (solid lines) and the spinodal curves (dashed
lines).

In what follows, we discuss the predicted spinodal for hydro-
carbons with a selection of EoS representative of what is used in
modern applications. Herein, we mainly focus on the pressure and
temperature. In this discussion it is however crucial to recognize
that the liquid density can change dramatically within the meta-
stable region, even though it might only span a few degrees kelvin.
An illustrative example of this is given in Fig. 6, showing the density
and pressure of the liquid spinodal of ethane compared to the
saturation line. At low pressures, the liquid density of the meta-
stable fluid near the spinodal curve can be half of that at the
saturation curve. Moreover, the difference in liquid density at the
spinodal for different EoS can also be significant.

Fig. 7 shows the spinodal curve in the TP -space compared to the
corresponding homogeneous nucleation limit and available
experimental data for the limit of superheat for a selection of pure
species. For all three substances considered here, there is a clear
agreement between the limit of superheat predicted by nucleation
theory and experimental data obtained from the droplet explosion
method. Table 1 shows the absolute average deviation (AAD) of the
experimental data points relative to the limit of superheat from
classic nucleation theory for pure components and binarymixtures.
The overall AAD between the predictions from CNT and the
experimental measurements for the limit of superheat is only 1.0 K
for pure species and 2.4 K for mixtures. Thus, even though CNT does
not accurately predict the exact nucleation rates of fluids [1], it
accurately reproduces the superheat limit.

The gap between the limit of superheat predicted by CNT and
the liquid spinodal curve thus accurately represents the experi-
mentally unobtainable part of the metastable region, caused by
thermal fluctuations in the liquid. Overall, the liquid spinodal
curves predicted using GERG2008, PC-SAFT, PR, and CSP agree
within 2e3 K in the range from atmospheric to critical pressure. A
notable exception is the liquid and vapor spinodals for n-pentane
calculated using the PC-SAFT EoS (Fig. 7b). Here, a significant in-
accuracy in the predicted critical point seems to offset the entire
liquid spinodal curve by 5e10 K. This suggests that it is imperative
for the EoS to reproduce the critical point of the fluid to provide
reliable predictions of the spinodal. Note that while the CNT pre-
dictions depend on an estimated liquid density, surface tension, as
well as the value of Jcrit, a sensitivity analysis showed that the
predicted limit of superheat matched experimental data for
reasonable perturbations of r and s, and for Jcrit differing by orders
of magnitude.

For the vapor spinodal there is a significantly larger span in the
predicted spinodal curves from the four EoS than for the liquid
spinodal. In particular, at a pressure of 0.9 bar, the difference in the
vapor spinodal ranges from 42.4e85.1 K for methane,
135.5e213.6 K for nepentane and 32.6e59.7 K for nitrogen. Table 2
shows the pressure-averaged standard deviation (with regard to
EoS) in kelvin for a number of light hydrocarbons and nitrogen. The
spread in predictions is higher for the vapor spinodal than the
liquid spinodal, with an average standard deviation of 6.29 K for the
former.

Fig. 8 shows the binary mixture liquid and vapor spinodal
temperature at atmospheric pressure for the GERG2008, PC-SAFT,
PR and extended CSP EoS, as a function of the second component
mole fraction. The spinodal curves are compared to the bubble and
dew lines, the superheat and supersaturation limits predicted by
CNT, as well as available experimental data for the limit of super-
heat. Again, there is a good agreement between liquid superheat
limit obtained in droplet explosion experiments and the limit
predicted by classic nucleation theory. The predicted liquid spino-
dals mostly agree within 5 K. Moreover, the results indicate that for
these species, a mole-weighted average of pure specie spinodal can
provide an accurate estimate of the mixture spinodal.

The binary mixture vapor spinodals (Fig. 8, right) demonstrates
a larger internal spread thanwhat is the case for the liquid spinodal
curves. Specifically, for an even mixture, the vapor spinodal tem-
perature ranges from 85.9e154.7 K for ethane/propane,
108.9e177.0 K for propane/nebutane and 154.4e227.3 K for
nepentane/nehexane. This behavior is consistent with what was



Fig. 7. Comparison of pure-component spinodal curves (liquid and vapor), superheat and subcool limits predicted using CNT (solid gray) and saturation line (solid black). The
saturation lines are calculated with GERG2008. Spinodal curves are shown for four different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and extended
CSP (dotted cyan). Experimental data from various studies of the limit of superheat are also shown: methane by Baidakov and Skripov [51] (squares), n-pentane compiled by
Avedisian [8] (pentagons), nitrogen by Baidakov and Skripov [51] (circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Table 1
The average absolute deviation (AAD) in the temperature for
the experimental data for the limit of superheat compared to
classic nucleation theory for pure components and mixtures
at pressure ranging from 0.9 bar to the critical pressure.

AAD (K)

Methane 0.62
n-Pentane 0.28
Nitrogen 2.21
Ethane/Propane 4.5
Propane/n-Butane 1.2
n-Pentane/n-Hexane 1.6

Table 2
The standard deviation in the temperature with regard to EoS for the predicted
spinodal. For the GERG2008, PC-SAFT, PR, and CSP EoS. Standard deviations are
averaged for pressures ranging from 0.9 bar to the critical pressure.

Liquid
(K)

Vapor
(K)

Methane 0.44 4.07
Ethane 1.13 6.62
Propane 1.60 7.15
n-Butane 2.19 7.99
n-Pentane 2.86 9.31
Nitrogen 0.30 2.61
Overall 1.42 6.29
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observed for pure species (Fig. 7 right). The highest predictions for
the vapor spinodal all come from the multiparameter GERG2008
equation, while the lowest come from the simple cubic Pen-
geRobinson EoS. This further illustrates the inconsistency of widely
used EoS when used in the metastable domain. Table 3 shows the
average (over mole fractions) standard deviation (with regard to
EoS) of the predicted liquid and vapor spinodal temperatures for
mixtures. Again, as for pure species, the spread in predicted spi-
nodal temperatures is significant, especially for the vapor spinodal.

3.4. How close to the spinodals can experiments bring us?

We showed in Sec. 3.3 that the limit of superheat from experi-
ments agreed very well with predictions from CNT, both for single-
component liquids (Fig. 7) and mixtures (Fig. 8). This does not
contradict that CNT is unable to reproduce experimental nucleation
rates, since the limit of superheat is insensitive to the exact choice
of the critical nucleation rate in Eq. (27). We can therefore use CNT
to estimate the limits for how close to the spinodal it is possible to
get experimentally before homogeneous nucleation occurs spon-
taneously. In Fig. 9, we have used methane as example and plotted
the phase envelope that encloses the two-phase region (blue solid
line), the limit of homogeneous nucleation as predicted by CNT
(green dashed line) and the spinodals (red solid line). The spino-
dals, the coexistence line and the homogeneous nucleation limit all
merge in the critical point.

In the following, we shall refer to the function P ¼ PðT; rÞ as the
thermodynamic surface of methane. Fig. 9 shows that:

1 On a curve on the thermodynamic surface that goes from the
spinodal to the coexistence limit, the distance between the
spinodal and the nucleation limit relative to the corresponding
distance to the coexistence limit is significant.

2 The relative distance on this curve is much larger for metastable
vapor than for metastable liquid.

Point number 1 means that there is large part of the thermo-
dynamic surface where the properties of the metastable fluid are
currently experimentally unavailable, in particular for metastable
vapor. In the literature, some suggestions have been put forward on
how to enter the region of the thermodynamic surface that is
currently experimentally unavailable.

A recent work [56] shows how small closed containers can be
used to completely prevent nucleation, achieving infinitely long-
lived metastable states, referred to as superstable. Experiments
can be carried out in quartz inclusions, similar to Ref. [6], where
speed of sound measurements in the inclusion give information
about the slope of PðrÞ at constant entropy, similar to Ref. [57].
Since such experiments are very challenging, the perhaps most
available methodology to study the properties of highly metastable
states is to use molecular dynamics simulations in the canonical
ensemble. For many fluids like alkanes, carbon dioxide and nitro-
gen, force fields have been developed that reproduce the thermo-
dynamic properties from experiments very accurately [58].
Molecular Dynamics simulations are then capable of generating
pseudo-experimental data in the metastable regions, or to estimate
the spinodals of the fluid. Eventually, hybrid data sets with both
experimental data and data from computations can be exploited in
the fitting of the next generation multiparameter EoS, following a
procedure similar to Rutkai et al. [59]. This represents a largely
unexplored research topic for the future.

Bullet point 2 agrees with the results in Figs. 7 and 8, and shows
that CNT predicts the nucleation limit to be closer to the spinodal
for liquids than for vapor.

4. Conclusion

In this work, we have presented a method that can be used to
obtain the thermodynamic stability limit of a single-phase fluid,
called the spinodal. We demonstrated that the method was robust
in vicinity of the critical point, scalable to multicomponent mix-
tures and applicable to complex non-analytical EoS.

We next discussed the role of the spinodal, the metastable and
the unstable regions of the phase diagram of the single-phase fluid
in the development of modern equations of state (EoS). Since the
spinodal provides a reference for an extrapolation into the meta-
stable domain from the saturation curve, and since much is known
about the thermodynamic properties of the fluid at the spinodal,
information about the spinodal can be used to characterize the
properties or to estimate the uncertainty of the properties of fluids
in the metastable domain.

A future goal should be to develop EoS without inadmissible
pseudo-stable states in the unstable domain. This is of importance,
both for combining them with mass based density functional the-
ory and to develop thermodynamically consistent mixing rules
with a physical interpretation. We proposed and evaluated a set of
inequality constraints that can be used for this purpose in the fitting
of modern EoS for single-component fluids.

We showed that there were large inconsistencies in predicted
spinodals from a wide range of EoS such as cubic EoS, extended
corresponding state EoS, SAFT and multiparameter EoS. The overall
standard deviation in the prediction of the spinodal temperatures
were 1.4 K and 2.7 K for single- and multi-component liquid-spi-
nodals and 6.3 K and 26.9 K for single- and multi-component vapor
spinodals. However, the range between the smallest and the largest
predictions were significantly larger. For example, for an even
mixture of hydrocarbons, the vapor spinodal temperature ranged
from 85.9e154.7 K for ethane/propane, 108.9e177.0 K for propane/
nebutane and 154.4e227.3 K for nepentane/nehexane. In general,
there was a much larger spread in the prediction of the vapor-
spinodal than the liquid-spinodal.

We also discussed the relationship between the measurable
limit of superheat or supersaturation and the theoretical concept of



Fig. 8. Comparison of the spinodal curve (liquid and vapor), superheat and subcool limits predicted using CNT (solid gray), and bubble and dew lines (solid black) for some binary
mixtures at 1 bar. The bubble and dew lines are computed using GERG2008. Spinodals are shown for four different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-
dot red) and extended CSP (dotted cyan). Experimental data from various studies of the limit of superheat are also shown: ethane þ propane by Porteous and Blander [52]
(hexagons), propane þ n-butane by Renner et al. [53] (pentagons), n-pentane þ n-hexane by Holden and Katz [54] (squares), Park et al. [24] (diamonds) and Skripov [55] (tri-
angles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
The standard deviation in the temperature for the predicted spinodal limit for binary
mixtures at atmospheric pressure using the GERG2008, PC-SAFT, PR, and CSP EoS.
Standard deviations are averaged over all mole fractions.

Liquid
(K)

Vapor
(K)

Methane/Ethane 1.85 21.51
Methane/Propane 2.62 23.34
Ethane/Propane 2.05 27.22
Ethane/n-Butane 2.67 28.92
Propane/n-Butane 2.70 28.13
n-Pentane/n-Hexane 4.31 31.97
Overall 2.70 26.85

Fig. 9. A three-dimensional representation of the thermodynamic landscape of
methane (relation between P, T and r) as predicted by the PR EoS. Here, the blue solid
line encloses the two-phase region, the green dashed lines denote the states where Eq.
(27) is satisfied and the homogeneous nucleation rate as predicted by CNT is so fast
that the single-phase fluid appearers to decompose spontaneously into two phases.
The red solid lines denote the spinodal, and enclose a region in which the single-phase
fluid is unstable. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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the spinodal. While nucleation rates from CNTcan deviate orders of
magnitude from experiments, we found that the limit of superheat
experiments agreed within 1.0 K and 2.4 K with predictions from
CNT for single- and multi-component fluids respectively.

At present, a large part of the metastable domain of the phase
diagram is experimentally unavailable, in particular for metastable
vapor. Novel techniques, with experimental or computational
methods, should be developed to characterize the thermodynamic
properties in these regions, and to identify the thermodynamic
states that define the spinodal.
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