Outline

® Introduction

® Background

® Distributed Database Design
® Database Integration

® Semantic Data Control

® Distributed Query Processing

® Distributed Transaction Management
— Transaction Concepts and Models

— Distributed Concurrency Control
— Distributed Reliability

® Data Replication

® Parallel Database Systems

® Distributed Object DBMS

® Peer-to-Peer Data Management
® Web Data Management

® Current Issues

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/1

Reliability

Problem:
How to maintain
atomicity
durability

properties of transactions

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.10/2

Fundamental Definitions

® Reliability

— A measure of success with which a system conforms to some authoritative
specification of its behavior.

— Probability that the system has not experienced any failures within a given
time period.

— Typically used to describe systems that cannot be repaired or where the
continuous operation of the system is critical.

® Availability

— The fraction of the time that a system meets its specification.

— The probability that the system is operational at a given time t.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/3

Fundamental Definitions

® Failure

— The deviation of a system from the behavior that is described in its
specification.

® Erroneous state

— The internal state of a system such that there exist circumstances in which
further processing, by the normal algorithms of the system, will lead to a
failure which is not attributed to a subsequent fault.

® Error
— The part of the state which is incorrect.

® Fault

— An error in the internal states of the components of a system or in the design
of a system.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/4

Faults to Failures

causes results in
Fault > Erxror 4 Failure

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/5

Types of Faults

® Hard faults

— Permanent

— Resulting failures are called hard failures

® Soft faults

— Transient or intermittent
— Account for more than 90% of all failures

— Resulting failures are called soft failures

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/6

Fault Classification

Permanent

faUIt \
Permanent
/ error

Incorrect
design

Unstable or
marginal
components

Unstable] Transient
environment error
Operator
mistake

Intermittent
error

System

Failure

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/7

Failures

) MTBF >
—MTTD MTTR—
5 v — Time
Fault Error Detection Repair = Fault Error
occurs caused of error occurs caused

Multiple errors can occur
during this period

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/8

Fault Tolerance Measures

Reliability

R(t) = Pr{0 failures in time [0,¢] | no failures at t=0}
If occurrence of failures is Poisson
R(t) = Pr{0 failures in time [0,¢|}
Then
e [m(t)]"
k!

Pr(k failures in time [0,f] =

where m(t)= I;z(x)dx

z(x) is known as the hazard function which gives the time-dependent failure
rate of the component

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/9

Fault-Tolerance Measures

Reliability

The mean number of failures in time [0,] can be computed as

k
E [K] Zk mit) m(t)
and the variance can be be Computed as
Var[k] = Ek?] - (E[K])? = m(#
Thus, reliability of a single component is
R(t) = e-M(t)

and of a system consisting of n non-redundant components as

Ryys(t) = HR()

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/10

Fault-Tolerance Measures

Availability
A(t) = Pr{system is operational at time ¢}
Assume
+ Poisson failures with rate A

+ Repair time is exponentially distributed with mean 1/1

Then, steady-state availability

A=limA() =~ a
[—oco -I—u

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/11

Fault-Tolerance Measures

MTBF

Mean time between failures

MTBF = jR(z)dr
0

MTTR

Mean time to repair

Availability

MTBE
MTBF + MTTR

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/62

Types of Failures

® Transaction failures
— Transaction aborts (unilaterally or due to deadlock)
— Avg. 3% of transactions abort abnormally
® System (site) failures
— Failure of processor, main memory, power supply, ...
— Main memory contents are lost, but secondary storage contents are safe
— Partial vs. total failure
® Media failures
— Failure of secondary storage devices such that the stored data is lost
— Head crash/controller failure (?)
® Communication failures
— Lost/undeliverable messages
— Network partitioning

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/13

Local Recovery Management —
Architecture

® Volatile storage
— Consists of the main memory of the computer system (RAM).

® Stable storage

— Resilient to failures and loses its contents only in the presence of media
failures (e.g., head crashes on disks).

— Implemented via a combination of hardware (non-volatile storage) and
software (stable-write, stable-read, clean-up) components.

Main memor
Secondary Local Recovery y
Manager
storage
Fetch,
Flush Database

Szl I Read - Write BRUUIEE
database) § Database Buffer B d (Volatile
Write Manager Read QGEIEIERD)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/14

Update Strategies

® In-place update

— Each update causes a change in one or more data values on pages in the
database buffers

® QOut-of-place update

— Each update causes the new value(s) of data item(s) to be stored separate
from the old value(s)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/15

In-Place Update Recovery
Information

Database Log

Every action of a transaction must not only perform the action, but must also
write a log record to an append-only file.

Old
stable database

New
stable database

state

§ Database
Log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/16

state

Logging

The log contains information used by the recovery process to restore the
consistency of a system. This information may include

— transaction identifier

— type of operation (action)

— items accessed by the transaction to perform the action
— old value (state) of item (before image)

— new value (state) of item (after image)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/17

Why Logging?

Upon recovery:

— all of T;'s etfects should be reflected in the database (REDO if necessary due to
a failure)

— none of T,'s effects should be reflected in the database (UNDO if necessary)

system
crash
Be gin 05 End

Begin T,

0 f time

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/18

REDO Protocol

Old New
stable database a g stable database
state state

Database

Log

® REDOQO'ing an action means performing it again.

® The REDO operation uses the log information and performs the action that
might have been done betore, or not done due to failures.

® The REDO operation generates the new image.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/19

UNDO Protocol

New Old
stable database stable database

state state

Database
Log

® UNDO'ing an action means to restore the object to its before image.

® The UNDO operation uses the log information and restores the old value
of the object.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/20

When to Write Log Records Into
Stable Store

Assume a transaction T updates a page P

® Fortunate case
— System writes P in stable database
— System updates stable log for this update
— SYSTEM FAILURE OCCURS!... (before T commits)
We can recover (undo) by restoring P to its old state by using the log

® Unfortunate case
— System writes P in stable database
— SYSTEM FAILURE OCCURS!... (before stable log is updated)

We cannot recover from this failure because there is no log record to
restore the old value.

® Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/21

Write—Ahead Log Protocol

® Notice:

— If a system crashes before a transaction is committed, then all the operations
must be undone. Only need the before images (undo portion of the log).

— Once a transaction is committed, some of its actions might have to be redone.
Need the after images (redo portion of the log).

® WAL protocol :

© Before a stable database is updated, the undo portion of the log should be
written to the stable log

® When a transaction commits, the redo portion of the log must be written to
stable log prior to the updating of the stable database.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/22

Logging Interface

Main memory

Secondary
Local Recovery
Manager 3

storage
>
l Fetch, 22 2

X
\ Flush \Q&
Read Database Buffer Read

> Manager >
Write 5 Write

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/23

Out-of-Place Update Recovery
Information

® Shadowing

— When an update occurs, don't change the old page, but create a shadow page
with the new values and write it into the stable database.

— Update the access paths so that subsequent accesses are to the new shadow
page.
— The old page retained for recovery.
® Differential files

— For each file F maintain
+ aread only part FR
+ a differential file consisting of insertions part DF* and deletions part DF-
+ Thus, F = (FR U DF") - DF-

— Updates treated as delete old value, insert new value

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/24

Execution of Commands

Commands to consider:

begin_transaction o
read _ Independent of execution
strategy for LRM

write
commit
abort

recover

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/25

Execution Strategies

® Dependent upon

— Can the buffer manager decide to write some of the buffer pages being
accessed by a transaction into stable storage or does it wait for LRM to
instruct it?

+ fix/no-fix decision

— Does the LRM force the buffer manager to write certain buffer pages into
stable database at the end of a transaction's execution?

+ flush/no-flush decision
® Possible execution strategies:
— no-fix/no-flush
— no-fix/flush
— fix/no-flush
— fix/flush

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/26

No-Fix/No-Flush

® Abort

— Buffer manager may have written some of the updated pages into stable
database

— LRM performs transaction undo (or partial undo)

® Commit

— LRM writes an “end_of_transaction” record into the log.

® Recover

— For those transactions that have both a “begin_transaction” and an
“end_of_transaction” record in the log, a partial redo is initiated by LRM

— For those transactions that only have a “begin_transaction” in the log, a global
undo is executed by LRM

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/27

No-Fix/Flush

® Abort

— Buffer manager may have written some of the updated pages into stable
database

— LRM performs transaction undo (or partial undo)

® Commit
— LRM issues a flush command to the buffer manager for all updated pages
— LRM writes an “end_of_transaction” record into the log.

® Recover

— No need to perform redo

— Perform global undo

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/28

Fix/No-Flush

® Abort
— None of the updated pages have been written into stable database

— Release the fixed pages

® Commit
— LRM writes an “end_of_transaction” record into the log.

— LRM sends an unfix command to the buffer manager for all pages that were
previously f1xed

® Recover

— Perform partial redo

— No need to perform global undo

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/29

Fix/Flush

® Abort
— None of the updated pages have been written into stable database

— Release the fixed pages

® Commit (the following have to be done atomically)
— LRM issues a flush command to the buffer manager for all updated pages

— LRM sends an unfix command to the buffer manager for all pages that were
previously f1ixed

— LRM writes an “end_of_transaction” record into the log.

® Recover

— No need to do anything

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/30

Checkpoints

® Simplifies the task of determining actions of transactions that need to be
undone or redone when a failure occurs.

® A checkpoint record contains a list of active transactions.
® Steps:

© Write a begin_checkpoint record into the log

® Collect the checkpoint dat into the stable storage

® Write an end_checkpoint record into the log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/31

Media Failures — Full Architecture

Secondary
storage

\ Flush
Read { Database Buffer Read
Write Manager erte

Main memory

Local Recovery
Manager
@’5&’

Fetch

Write Write
Archive Archive
database log

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/32

Distributed Reliability Protocols

® Commit protocols
— How to execute commit command for distributed transactions.
— Issue: how to ensure atomicity and durability?

® Termination protocols
— If a failure occurs, how can the remaining operational sites deal with it.
— Non-blocking : the occurrence of failures should not force the sites to wait until
the failure is repaired to terminate the transaction.
® Recovery protocols
— When a failure occurs, how do the sites where the failure occurred deal with
it.
— Independent : a failed site can determine the outcome of a transaction without
having to obtain remote information.

® Independent recovery = non-blocking termination

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/33

Two-Phase Commit (2PC)

Phase 1 : The coordinator gets the participants ready to write the results into
the database
Phase 2 : Everybody writes the results into the database

— Coordinator :The process at the site where the transaction originates and
which controls the execution

— Participant :The process at the other sites that participate in executing the
transaction

Global Commit Rule:

©® The coordinator aborts a transaction if and only if at least one participant
votes to abort it.

® The coordinator commits a transaction if and only if all of the participants
vote to commit it.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/34

Centralized 2PC

commit/abort“ommited /aborted
| |
| |

Phase 2

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/35

2PC Protocol Actions

Coordinator

begin_commit

write

in log

Participant

write commit
in log

write abort
in log
VOTE-COMMIT write ready
in log
e b GLOBAL-ABORT >
in log /

yore oM

Unilateral abort

write abort

write

end_of transaction

in log

in log

Distributed DBMS

© M. T. Ozsu & P. Valduriez

write commit
in log

ABORT OMMI

Ch.12/36

Linear 2PC

Phase 1

Prepare VC/VA VC/VA VC/VA VC/VA

v v v v v
1 2 3 4 5 N

1 t t t t :
GC/GA GC/GA GC/GA GC/GA GC/GA

Phase 2

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/37

Distributed 2PC

Coordinator Participants Participants

global-commit/

lobal-abort

vote-abort/ decision made
prepare ol S independently
I | |
Phase 1 Phase 2

Distributed DBMS © M. T. Ozsu & P. Valduriez

Ch.12/38

State Transitions in 2PC

Commit command Prepare
Prepare Prepare Vote-commit
v Vote-abort v
Vote-abort

Global-abort

Global-commit

\ Ack

Vote-commit (all) Global-abort
Global-commit Ack

Coordinator Participants

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/39

Site Failures - 2PC Termination

® Timeout in INITIAL COORDINATOR

— Who cares
® Timeout in WAIT

— Cannot unilaterally commit

— Can unilaterally abort Commit command

Prepare
® Timeout in ABORT or COMMIT
— Stay blocked and wait for the acks
Vote-abort Vote-commit
Global-abort Global-commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/40

Site Failures - 2PC Termination

PARTICIPANTS
® Timeout in INITIAL

— Coordinator must have failed in
INITIAL state INITIAL

— Unilaterally abort
® Timeout in READY

Prepare
Vote-commit

Prepare

— Stay blocked Ve aven

Global-abort

Global-commit
Ack

KACI(/
@

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/41

Site Failures - 2PC Recovery

COORDINATOR
® Failure in INITIAL

— Start the commit process upon recovery
® Failure in WAIT
— Restart the commit process upon recovery Copiam SR

® Failure in ABORT or COMMIT Prepare

— Nothing special if all the acks have been
received

— Otherwise the termination protocol is Vs e e Vote-commit
involved Clobalcabor Global-commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/42

Site Failures - 2PC Recovery

® Failure in INITIAL PARTICIPANTS

— Unilaterally abort upon recovery
® Failure in READY

— The coordinator has been informed

A Prepare
about the local decision Pront Vote-commit
— Treat as timeout in READY state and Vote-abort Y
invoke the termination protocol @
® Failure in ABORT or COMMIT

Global-abor

Ack /

Global-commit

\ Ack

— Nothing special needs to be done

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/43

2PC Recovery Protocols —
Additional Cases

Arise due to non-atomicity of log and message send actions

® Coordinator site fails after writing “begin_commit” log and before sending
“prepare” command

— treat it as a failure in WAIT state; send “prepare” command

® Participant site fails after writing “ready” record in log but before “vote-
commit” is sent

— treat it as failure in READY state
— alternatively, can send “vote-commit” upon recovery

® Participant site fails after writing “abort” record in log but before “vote-
abort” is sent

— no need to do anything upon recovery

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/44

2PC Recovery Protocols —
Additional Case

® Coordinator site fails after logging its final decision record but before
sending its decision to the participants

— coordinator treats it as a failure in COMMIT or ABORT state
— participants treat it as timeout in the READY state

® Participant site fails after writing “abort” or “commit” record in log but
before acknowledgement is sent

— participant treats it as failure in COMMIT or ABORT state
— coordinator will handle it by timeout in COMMIT or ABORT state

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/45

Problem With 2PC

® Blocking
— Ready implies that the participant waits for the coordinator

— If coordinator fails, site is blocked until recovery

— Blocking reduces availability
® Independent recovery is not possible

® However, itis known that:

— Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.

® So we search for these protocols - 3PC

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/46

Three-Phase Commit

® 3PC is non-blocking.
® A commit protocols is non-blocking iff

— 1t is synchronous within one state transition, and
— its state transition diagram contains
+ no state which is “adjacent” to both a commit and an abort state, and

+ no non-committable state which is “adjacent” to a commit state

® Adjacent: possible to go from one stat to another with a single state
transition

® Committable: all sites have voted to commit a transaction
- e.g.: COMMIT state

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/47

State Transitions in 3PC

Coordinator INITIAL

Commit command

Prepare Prepare
v Vote-abort
Vote-abort Vote-commit Global-abort

Global-abort

Prepare-to-commit

Ack

Global commit

Participants

Prepare
Vote-commit

\Prepared to-commit
eady—to -commit

Global commit

@
Ready-to-commit l

Distributed DBMS © M. T. Ozsu & P. Valduriez

Ch.12/48

Communication Structure

< m =
s = =

pre-commit/ '
ready? yes/no pre-abort? yes/no | commit/abort ack |
I

Phase 1 Phase 2 Phase 3

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/49

Site Failures — 3PC Termination

Coordinator @ ® Timeout in INITIAL
— Who cares
ComnI}irte;Oaf‘emand ® Timeout in WAIT

v — Unilaterally abort
® Timeout in PRECOMMIT
| — Participants may not be in PRE-
vote-abort / \ ~ote-commil_ COMMIT, but at least in READY
Global-abort Prepare-to-commit
— Move all the participants to

PRECOMMIT state

— Terminate by globally committing

ABORT

Ready-to-commit

Global commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/50

Site Failures — 3PC Termination

Coordinator ® Timeout in ABORT or COMMIT

— Just ignore and treat the transaction

Commit command as COmpletEd

EigpaE — participants are either in
PRECOMMIT or READY state and
can follow their termination
protocols

Vote-abort Vote-commit
Global-abort Prepare-to-commit

Ready-to-commit
Global commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/51

Site Failures — 3PC Termination

® Timeout in INITIAL

— Coordinator must have failed in
INITIAL state
Prepare

Prepare Vote-commit — Unilaterally abort
Vote-abort X)
® Timeout in READY

— Voted to commit, but does not
know the coordinator's decision

Participants

Global-abort Prepared to-commit :
Ack Ready-to A — Elect a new coordinator and

terminate using a special protocol
® Timeout in PRECOMMIT

— Handle it the same as timeout in
READY state

Global commit
Ack

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/52

Termination Protocol Upon
Coordinator Election

New coordinator can be in one of four states: WAIT, PRECOMMIT,
COMMIT, ABORT

© Coordinator sends its state to all of the participants asking them to assume its
state.

® Participants “back-up” and reply with appriate messages, except those in
ABORT and COMMIT states. Those in these states respond with “ Ack” but
stay in their states.

® Coordinator guides the participants towards termination:

+ If the new coordinator is in the WAIT state, participants can be in INITIAL,
READY, ABORT or PRECOMMIT states. New coordinator globally aborts the
transaction.

+ If the new coordinator is in the PRECOMMIT state, the participants can be in
READY, PRECOMMIT or COMMIT states. The new coordinator will globally

commit the transaction.

4+ If the new coordinator is in the ABORT or COMMIT states, at the end of the first
phase, the participants will have moved to that state as well.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/53

Site Failures — 3PC Recovery

: ® Failure in INITIAL
Coordinator INITIAL |
— start commit process upon recovery
e ® Failure in WAIT
P e
i I — the participants may have elected a
new coordinator and terminated the
transaction
— the new coordinator could be in WAIT
Vote-abort Vote-commit or ABORT states = transaction
Global-abort Prepare-to-commit SRR
— ask around for the fate of the
transaction
- . ® Failure in PRECOMMIT
eady-to-commit
Global commit — ask around for the fate of the
transaction

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/54

Site Failures — 3PC Recovery

' ® Fail iIn COMMIT or ABORT
Coordinator NITIAL ailure in CO or O

— Nothing special if all the

. acknowledgements have been
Commit command

Prepare received; otherwise the termination
v protocol is involved
Vote-abort Vote-commit
Global-abort Prepare-to-commit

Ready-to-commit
Global commit

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/55

Site Failures — 3PC Recovery

Participants ® Faﬂure in INITIAL
— unilaterally abort upon recovery
. . ° e
Prepare_ Failure in READY
Prepare Vote-commit — the coordinator has been informed
Vote-abort v about the local decision

— upon recovery, ask around

® Failure in PRECOMMIT
Global-abort Prepared to-commit — ask around to determine how the
G0 eady -to-commut other participants have terminated

the transaction
® Failure in COMMIT or ABORT

— no need to do anything

Global commit
Ack

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/56

Network Partitioning

® Simple partitioning

— Only two partitions
® Multiple partitioning

— More than two partitions
® Formal bounds:

— There exists no non-blocking protocol that is resilient to a network partition if
messages are lost when partition occurs.

— There exist non-blocking protocols which are resilient to a single network
partition if all undeliverable messages are returned to sender.

— There exists no non-blocking protocol which is resilient to a multiple
partition.

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/57

Independent Recovery Protocols
for Network Partitioning

® No general solution possible
— allow one group to terminate while the other is blocked
— improve availability

® How to determine which group to proceed?
— The group with a majority

® How does a group know if it has majority?

— Centralized

+ Whichever partitions contains the central site should terminate the transaction

— Voting-based (quorum)

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/58

Quorum Protocols

® The network partitioning problem is handled by the commit protocol.

® Every site is assigned a vote V.
® Total number of votes in the system V
® Abort quorum V,, commit quorum V.
-V +V.>V where0<V,_ , V.SV
— Before a transaction commits, it must obtain a commit quorum V.

— Before a transaction aborts, it must obtain an abort quorum V,

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/59

State Transitions in Quorum
Protocols

COOrdlnatOr INITIAL PartiCipantS
Commit command Prepare
Prepare Prepare Vote-commit
v Vote-abort v
Vote-abort Vote-commit Prepared-to-abortt PreDare to-commit
Prepare-to-abor Prepare-to-commit Ready-to-abort

\eady-to -commit

PRE-
ABORT

ReadV to-commit \ Global-abort

Global commit

Ready-to-abort
Global-abort l

Global commit Ack

Ack

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/60

Use for Network Partitioning

® Before commit (i.e., moving from PRECOMMIT to COMMIT), coordinator
receives commit quorum from participants. One partition may have the

commit quorum.

® Assumes that failures are “clean” which means:

— failures that change the network's topology are detected by all sites
instantaneously

— each site has a view of the network consisting of all the sites it can
communicate with

Distributed DBMS © M. T. Ozsu & P. Valduriez Ch.12/61

	Slide 1: Outline
	Slide 2: Reliability
	Slide 3: Fundamental Definitions
	Slide 4: Fundamental Definitions
	Slide 5: Faults to Failures
	Slide 6: Types of Faults
	Slide 7: Fault Classification
	Slide 8: Failures
	Slide 9: Fault Tolerance Measures
	Slide 10: Fault-Tolerance Measures
	Slide 11: Fault-Tolerance Measures
	Slide 12: Fault-Tolerance Measures
	Slide 13: Types of Failures
	Slide 14: Local Recovery Management – Architecture
	Slide 15: Update Strategies
	Slide 16: In-Place Update Recovery Information
	Slide 17: Logging
	Slide 18: Why Logging?
	Slide 19: REDO Protocol
	Slide 20: UNDO Protocol
	Slide 21: When to Write Log Records Into Stable Store
	Slide 22: Write–Ahead Log Protocol
	Slide 23: Logging Interface
	Slide 24: Out-of-Place Update Recovery Information
	Slide 25: Execution of Commands
	Slide 26: Execution Strategies
	Slide 27: No-Fix/No-Flush
	Slide 28: No-Fix/Flush
	Slide 29: Fix/No-Flush
	Slide 30: Fix/Flush
	Slide 31: Checkpoints
	Slide 32: Media Failures – Full Architecture
	Slide 33: Distributed Reliability Protocols
	Slide 34: Two-Phase Commit (2PC)
	Slide 35: Centralized 2PC
	Slide 36: 2PC Protocol Actions
	Slide 37: Linear 2PC
	Slide 38: Distributed 2PC
	Slide 39: State Transitions in 2PC
	Slide 40: Site Failures - 2PC Termination
	Slide 41: Site Failures - 2PC Termination
	Slide 42: Site Failures - 2PC Recovery
	Slide 43: Site Failures - 2PC Recovery
	Slide 44: 2PC Recovery Protocols – Additional Cases
	Slide 45: 2PC Recovery Protocols – Additional Case
	Slide 46: Problem With 2PC
	Slide 47: Three-Phase Commit
	Slide 48: State Transitions in 3PC
	Slide 49: Communication Structure
	Slide 50: Site Failures – 3PC Termination
	Slide 51: Site Failures – 3PC Termination
	Slide 52: Site Failures – 3PC Termination
	Slide 53: Termination Protocol Upon Coordinator Election
	Slide 54: Site Failures – 3PC Recovery
	Slide 55: Site Failures – 3PC Recovery
	Slide 56: Site Failures – 3PC Recovery
	Slide 57: Network Partitioning
	Slide 58: Independent Recovery Protocols for Network Partitioning
	Slide 59: Quorum Protocols
	Slide 60: State Transitions in Quorum Protocols
	Slide 61: Use for Network Partitioning

