
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/1

Outline

• Introduction

• Background

• Distributed Database Design

• Database Integration

• Semantic Data Control

• Distributed Query Processing

• Distributed Transaction Management
➡ Transaction Concepts and Models
➡ Distributed Concurrency Control
➡ Distributed Reliability

• Data Replication

• Parallel Database Systems

• Distributed Object DBMS

• Peer-to-Peer Data Management

• Web Data Management

• Current Issues

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/2

Reliability

Problem:

How to maintain

atomicity

durability

properties of transactions

Ch.10/2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/3

Fundamental Definitions

•Reliability

➡ A measure of success with which a system conforms to some authoritative
specification of its behavior.

➡ Probability that the system has not experienced any failures within a given
time period.

➡ Typically used to describe systems that cannot be repaired or where the
continuous operation of the system is critical.

•Availability

➡ The fraction of the time that a system meets its specification.

➡ The probability that the system is operational at a given time t.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/4

Fundamental Definitions

•Failure

➡ The deviation of a system from the behavior that is described in its
specification.

•Erroneous state

➡ The internal state of a system such that there exist circumstances in which
further processing, by the normal algorithms of the system, will lead to a
failure which is not attributed to a subsequent fault.

•Error

➡ The part of the state which is incorrect.

•Fault

➡ An error in the internal states of the components of a system or in the design
of a system.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/5

Faults to Failures

Fault Error Failure
causes results in

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/6

Types of Faults

•Hard faults

➡ Permanent

➡ Resulting failures are called hard failures

•Soft faults

➡ Transient or intermittent

➡ Account for more than 90% of all failures

➡ Resulting failures are called soft failures

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/7

Fault Classification

Permanent
fault

Incorrect
design

Unstable
environment

Operator
mistake

Transient
error

System
Failure

Unstable or
marginal

components

Intermittent
error

Permanent
error

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/8

Failures

Fault
occurs

Error
caused

Detection
of error

Repair Fault
occurs

Error
caused

MTBF

MTTRMTTD

Multiple errors can occur
during this period

Time

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/9

Fault Tolerance Measures

Reliability

R(t) = Pr{0 failures in time [0,t] | no failures at t=0}

If occurrence of failures is Poisson

R(t) = Pr{0 failures in time [0,t]}

Then

 where

 z(x) is known as the hazard function which gives the time-dependent failure
rate of the component

k!
Pr(k failures in time [0,t] =

e-m(t)[m(t)]k

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/10

Fault-Tolerance Measures

Reliability

The mean number of failures in time [0, t] can be computed as

and the variance can be be computed as

 Var[k] = E[k2] - (E[k])2 = m(t)

Thus, reliability of a single component is

 R(t) = e-m(t)

 and of a system consisting of n non-redundant components as

E [k] =
k =0

∞

k k!
e-m(t)[m(t)]k

= m(t)

Rsys(t) = 
i =1

n

Ri(t)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/11

Fault-Tolerance Measures

Availability

A(t) = Pr{system is operational at time t}

Assume

✦ Poisson failures with rate 

✦ Repair time is exponentially distributed with mean 1/μ

Then, steady-state availability

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/12

Fault-Tolerance Measures

MTBF

Mean time between failures

MTTR

Mean time to repair

Availability

MTBF
MTBF + MTTR

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/13

Types of Failures

•Transaction failures

➡ Transaction aborts (unilaterally or due to deadlock)

➡ Avg. 3% of transactions abort abnormally

•System (site) failures

➡ Failure of processor, main memory, power supply, …

➡ Main memory contents are lost, but secondary storage contents are safe

➡ Partial vs. total failure

•Media failures
➡ Failure of secondary storage devices such that the stored data is lost

➡ Head crash/controller failure (?)

•Communication failures
➡ Lost/undeliverable messages

➡ Network partitioning

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/14

Local Recovery Management –
Architecture
•Volatile storage
➡ Consists of the main memory of the computer system (RAM).

•Stable storage
➡ Resilient to failures and loses its contents only in the presence of media

failures (e.g., head crashes on disks).

➡ Implemented via a combination of hardware (non-volatile storage) and
software (stable-write, stable-read, clean-up) components.

Secondary
storage

Stable
database

Read Write

Write Read

Main memoryLocal Recovery
Manager

Database Buffer
Manager

Fetch,
Flush Database

buffers
(Volatile
database)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/15

Update Strategies

• In-place update

➡ Each update causes a change in one or more data values on pages in the
database buffers

•Out-of-place update

➡ Each update causes the new value(s) of data item(s) to be stored separate
from the old value(s)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/16

In-Place Update Recovery
Information
Database Log

 Every action of a transaction must not only perform the action, but must also
write a log record to an append-only file.

New
stable database

state

Database
Log

Update
Operation

Old
stable database

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/17

Logging

The log contains information used by the recovery process to restore the
consistency of a system. This information may include

➡ transaction identifier

➡ type of operation (action)

➡ items accessed by the transaction to perform the action

➡ old value (state) of item (before image)

➡ new value (state) of item (after image)

 …

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/18

Why Logging?

Upon recovery:

➡ all of T1's effects should be reflected in the database (REDO if necessary due to
a failure)

➡ none of T2's effects should be reflected in the database (UNDO if necessary)

0 t time

system
crash

T1Begin End

Begin T2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/19

REDO Protocol

•REDO'ing an action means performing it again.

•The REDO operation uses the log information and performs the action that
might have been done before, or not done due to failures.

•The REDO operation generates the new image.

Database
Log

REDO
Old

stable database
state

New
stable database

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/20

UNDO Protocol

•UNDO'ing an action means to restore the object to its before image.

•The UNDO operation uses the log information and restores the old value
of the object.

New
stable database

state

Database
Log

UNDO
Old

stable database
state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/21

When to Write Log Records Into
Stable Store
Assume a transaction T updates a page P

•Fortunate case
➡ System writes P in stable database

➡ System updates stable log for this update

➡ SYSTEM FAILURE OCCURS!... (before T commits)

 We can recover (undo) by restoring P to its old state by using the log

•Unfortunate case
➡ System writes P in stable database

➡ SYSTEM FAILURE OCCURS!... (before stable log is updated)

 We cannot recover from this failure because there is no log record to
restore the old value.

•Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/22

Write–Ahead Log Protocol

•Notice:

➡ If a system crashes before a transaction is committed, then all the operations
must be undone. Only need the before images (undo portion of the log).

➡ Once a transaction is committed, some of its actions might have to be redone.
Need the after images (redo portion of the log).

•WAL protocol :

 Before a stable database is updated, the undo portion of the log should be
written to the stable log

 When a transaction commits, the redo portion of the log must be written to
stable log prior to the updating of the stable database.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/23

Logging Interface

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,

Flush

Secondary
storage

Stable
log

Stable
database

Database
buffers

(Volatile
database)

Log
buffers

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/24

Out-of-Place Update Recovery
Information
•Shadowing

➡ When an update occurs, don't change the old page, but create a shadow page
with the new values and write it into the stable database.

➡ Update the access paths so that subsequent accesses are to the new shadow
page.

➡ The old page retained for recovery.

•Differential files

➡ For each file F maintain

✦ a read only part FR

✦ a differential file consisting of insertions part DF+ and deletions part DF-

✦ Thus, F = (FR  DF+) – DF-

➡ Updates treated as delete old value, insert new value

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/25

Execution of Commands

Commands to consider:

begin_transaction

read

write

commit

abort

recover

Independent of execution
strategy for LRM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/26

Execution Strategies

•Dependent upon

➡ Can the buffer manager decide to write some of the buffer pages being
accessed by a transaction into stable storage or does it wait for LRM to
instruct it?

✦ fix/no-fix decision

➡ Does the LRM force the buffer manager to write certain buffer pages into
stable database at the end of a transaction's execution?

✦ flush/no-flush decision

•Possible execution strategies:

➡ no-fix/no-flush

➡ no-fix/flush

➡ fix/no-flush

➡ fix/flush

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/27

No-Fix/No-Flush

•Abort

➡ Buffer manager may have written some of the updated pages into stable
database

➡ LRM performs transaction undo (or partial undo)

•Commit

➡ LRM writes an “end_of_transaction” record into the log.

•Recover

➡ For those transactions that have both a “begin_transaction” and an
“end_of_transaction” record in the log, a partial redo is initiated by LRM

➡ For those transactions that only have a “begin_transaction” in the log, a global
undo is executed by LRM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/28

No-Fix/Flush

•Abort

➡ Buffer manager may have written some of the updated pages into stable
database

➡ LRM performs transaction undo (or partial undo)

•Commit

➡ LRM issues a flush command to the buffer manager for all updated pages

➡ LRM writes an “end_of_transaction” record into the log.

•Recover

➡ No need to perform redo

➡ Perform global undo

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/29

Fix/No-Flush

•Abort

➡ None of the updated pages have been written into stable database

➡ Release the fixed pages

•Commit

➡ LRM writes an “end_of_transaction” record into the log.

➡ LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

•Recover

➡ Perform partial redo

➡ No need to perform global undo

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/30

Fix/Flush

•Abort

➡ None of the updated pages have been written into stable database

➡ Release the fixed pages

•Commit (the following have to be done atomically)

➡ LRM issues a flush command to the buffer manager for all updated pages

➡ LRM sends an unfix command to the buffer manager for all pages that were
previously fixed

➡ LRM writes an “end_of_transaction” record into the log.

•Recover

➡ No need to do anything

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/31

Checkpoints

•Simplifies the task of determining actions of transactions that need to be
undone or redone when a failure occurs.

•A checkpoint record contains a list of active transactions.

•Steps:

 Write a begin_checkpoint record into the log

 Collect the checkpoint dat into the stable storage

 Write an end_checkpoint record into the log

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/32

Media Failures – Full Architecture

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,

Flush

Archive
log

Archive
database

Secondary
storage

Stable
log

Stable
database

Database
buffers

(Volatile
database)

Log
buffers

Write Write

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/33

Distributed Reliability Protocols

•Commit protocols

➡ How to execute commit command for distributed transactions.

➡ Issue: how to ensure atomicity and durability?

•Termination protocols

➡ If a failure occurs, how can the remaining operational sites deal with it.

➡ Non-blocking : the occurrence of failures should not force the sites to wait until
the failure is repaired to terminate the transaction.

•Recovery protocols

➡ When a failure occurs, how do the sites where the failure occurred deal with
it.

➡ Independent : a failed site can determine the outcome of a transaction without
having to obtain remote information.

• Independent recovery  non-blocking termination

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/34

Two-Phase Commit (2PC)

Phase 1 : The coordinator gets the participants ready to write the results into
the database

Phase 2 : Everybody writes the results into the database

➡ Coordinator :The process at the site where the transaction originates and
which controls the execution

➡ Participant :The process at the other sites that participate in executing the
transaction

Global Commit Rule:

 The coordinator aborts a transaction if and only if at least one participant
votes to abort it.

 The coordinator commits a transaction if and only if all of the participants
vote to commit it.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/35

Centralized 2PC

ready? yes/no commit/abort?commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/36

2PC Protocol Actions

Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No?
write abort

in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

write
end_of_transaction

in log

READ
Y

INITIAL

U
n

il
a

te
ra

l
ab

o
rt

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/37

Linear 2PC

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

≈
≈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/38

Distributed 2PC

prepare
vote-abort/
vote-commit

global-commit/
global-abort

decision made
independently

Phase 1

Coordinator Participants Participants

Phase 2

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/39

State Transitions in 2PC

INITIAL

WAIT

Commit command
Prepare

Vote-commit (all)
Global-commit

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

Coordinator Participants

Vote-abort
Global-abort

ABORT COMMIT COMMITABORT

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/40

Site Failures - 2PC Termination

• Timeout in INITIAL

➡ Who cares

• Timeout in WAIT

➡ Cannot unilaterally commit

➡ Can unilaterally abort

• Timeout in ABORT or COMMIT

➡ Stay blocked and wait for the acks

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/41

Site Failures - 2PC Termination

•Timeout in INITIAL

➡ Coordinator must have failed in
INITIAL state

➡ Unilaterally abort

•Timeout in READY

➡ Stay blocked

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/42

Site Failures - 2PC Recovery

•Failure in INITIAL

➡ Start the commit process upon recovery

•Failure in WAIT

➡ Restart the commit process upon recovery

•Failure in ABORT or COMMIT

➡ Nothing special if all the acks have been
received

➡ Otherwise the termination protocol is
involved

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/43

Site Failures - 2PC Recovery

•Failure in INITIAL

➡ Unilaterally abort upon recovery

•Failure in READY

➡ The coordinator has been informed
about the local decision

➡ Treat as timeout in READY state and
invoke the termination protocol

•Failure in ABORT or COMMIT

➡ Nothing special needs to be done

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/44

2PC Recovery Protocols –
Additional Cases
Arise due to non-atomicity of log and message send actions

•Coordinator site fails after writing “begin_commit” log and before sending
“prepare” command

➡ treat it as a failure in WAIT state; send “prepare” command

•Participant site fails after writing “ready” record in log but before “vote-
commit” is sent

➡ treat it as failure in READY state

➡ alternatively, can send “vote-commit” upon recovery

•Participant site fails after writing “abort” record in log but before “vote-
abort” is sent

➡ no need to do anything upon recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/45

2PC Recovery Protocols –
Additional Case
•Coordinator site fails after logging its final decision record but before

sending its decision to the participants

➡ coordinator treats it as a failure in COMMIT or ABORT state

➡ participants treat it as timeout in the READY state

•Participant site fails after writing “abort” or “commit” record in log but
before acknowledgement is sent

➡ participant treats it as failure in COMMIT or ABORT state

➡ coordinator will handle it by timeout in COMMIT or ABORT state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/46

Problem With 2PC

•Blocking

➡ Ready implies that the participant waits for the coordinator

➡ If coordinator fails, site is blocked until recovery

➡ Blocking reduces availability

• Independent recovery is not possible

•However, it is known that:

➡ Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.

•So we search for these protocols – 3PC

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/47

Three-Phase Commit

•3PC is non-blocking.

•A commit protocols is non-blocking iff

➡ it is synchronous within one state transition, and

➡ its state transition diagram contains

✦ no state which is “adjacent” to both a commit and an abort state, and

✦ no non-committable state which is “adjacent” to a commit state

•Adjacent: possible to go from one stat to another with a single state
transition

•Committable: all sites have voted to commit a transaction

➡ e.g.: COMMIT state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/48

State Transitions in 3PC

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT
PRE-

COMMIT

Global commit
Ack

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/49

Communication Structure

C

P

P

P

P

C

P

P

P

P

C

ready? yes/no
pre-commit/

pre-abort? commit/abort

Phase 1 Phase 2

P

P

P

P

C

yes/no ack

Phase 3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/50

Site Failures – 3PC Termination

•Timeout in INITIAL

➡ Who cares

•Timeout in WAIT

➡ Unilaterally abort

•Timeout in PRECOMMIT

➡ Participants may not be in PRE-
COMMIT, but at least in READY

➡ Move all the participants to
PRECOMMIT state

➡ Terminate by globally committing

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/51

Site Failures – 3PC Termination

•Timeout in ABORT or COMMIT

➡ Just ignore and treat the transaction
as completed

➡ participants are either in
PRECOMMIT or READY state and
can follow their termination
protocols

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/52

Site Failures – 3PC Termination

•Timeout in INITIAL

➡ Coordinator must have failed in
INITIAL state

➡ Unilaterally abort

•Timeout in READY

➡ Voted to commit, but does not
know the coordinator's decision

➡ Elect a new coordinator and
terminate using a special protocol

•Timeout in PRECOMMIT

➡ Handle it the same as timeout in
READY state

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT
PRE-

COMMIT

Global commit
Ack

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/53

Termination Protocol Upon
Coordinator Election
New coordinator can be in one of four states: WAIT, PRECOMMIT,

COMMIT, ABORT

 Coordinator sends its state to all of the participants asking them to assume its
state.

 Participants “back-up” and reply with appriate messages, except those in
ABORT and COMMIT states. Those in these states respond with “Ack” but
stay in their states.

 Coordinator guides the participants towards termination:

✦ If the new coordinator is in the WAIT state, participants can be in INITIAL,
READY, ABORT or PRECOMMIT states. New coordinator globally aborts the
transaction.

✦ If the new coordinator is in the PRECOMMIT state, the participants can be in
READY, PRECOMMIT or COMMIT states. The new coordinator will globally
commit the transaction.

✦ If the new coordinator is in the ABORT or COMMIT states, at the end of the first
phase, the participants will have moved to that state as well.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/54

Site Failures – 3PC Recovery

•Failure in INITIAL

➡ start commit process upon recovery

•Failure in WAIT

➡ the participants may have elected a
new coordinator and terminated the
transaction

➡ the new coordinator could be in WAIT
or ABORT states  transaction
aborted

➡ ask around for the fate of the
transaction

•Failure in PRECOMMIT

➡ ask around for the fate of the
transaction

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/55

Site Failures – 3PC Recovery

•Failure in COMMIT or ABORT

➡ Nothing special if all the
acknowledgements have been
received; otherwise the termination
protocol is involved

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/56

Site Failures – 3PC Recovery

•Failure in INITIAL

➡ unilaterally abort upon recovery

•Failure in READY

➡ the coordinator has been informed
about the local decision

➡ upon recovery, ask around

•Failure in PRECOMMIT

➡ ask around to determine how the
other participants have terminated
the transaction

•Failure in COMMIT or ABORT

➡ no need to do anything

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT
PRE-

COMMIT

Global commit
Ack

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/57

Network Partitioning

•Simple partitioning

➡ Only two partitions

•Multiple partitioning

➡ More than two partitions

•Formal bounds:

➡ There exists no non-blocking protocol that is resilient to a network partition if
messages are lost when partition occurs.

➡ There exist non-blocking protocols which are resilient to a single network
partition if all undeliverable messages are returned to sender.

➡ There exists no non-blocking protocol which is resilient to a multiple
partition.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/58

Independent Recovery Protocols
for Network Partitioning
•No general solution possible

➡ allow one group to terminate while the other is blocked

➡ improve availability

•How to determine which group to proceed?

➡ The group with a majority

•How does a group know if it has majority?

➡ Centralized

✦ Whichever partitions contains the central site should terminate the transaction

➡ Voting-based (quorum)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/59

Quorum Protocols

•The network partitioning problem is handled by the commit protocol.

•Every site is assigned a vote Vi.

•Total number of votes in the system V

•Abort quorum Va, commit quorum Vc

➡ Va + Vc > V where 0 ≤ Va , Vc ≤ V

➡ Before a transaction commits, it must obtain a commit quorum Vc

➡ Before a transaction aborts, it must obtain an abort quorum Va

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/60

State Transitions in Quorum
Protocols

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Prepare-to-abort

ABORT COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

INITIAL

READY

Prepare
Vote-commit

Prepare-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMITABORT

PRE-
COMMIT

Global commit
Ack

PRE-
ABORT

Prepared-to-abortt
Ready-to-abort

PRE-
ABORT

Ready-to-abort
Global-abort

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.12/61

Use for Network Partitioning

•Before commit (i.e., moving from PRECOMMIT to COMMIT), coordinator
receives commit quorum from participants. One partition may have the
commit quorum.

•Assumes that failures are “clean” which means:

➡ failures that change the network's topology are detected by all sites
instantaneously

➡ each site has a view of the network consisting of all the sites it can
communicate with

	Slide 1: Outline
	Slide 2: Reliability
	Slide 3: Fundamental Definitions
	Slide 4: Fundamental Definitions
	Slide 5: Faults to Failures
	Slide 6: Types of Faults
	Slide 7: Fault Classification
	Slide 8: Failures
	Slide 9: Fault Tolerance Measures
	Slide 10: Fault-Tolerance Measures
	Slide 11: Fault-Tolerance Measures
	Slide 12: Fault-Tolerance Measures
	Slide 13: Types of Failures
	Slide 14: Local Recovery Management – Architecture
	Slide 15: Update Strategies
	Slide 16: In-Place Update Recovery Information
	Slide 17: Logging
	Slide 18: Why Logging?
	Slide 19: REDO Protocol
	Slide 20: UNDO Protocol
	Slide 21: When to Write Log Records Into Stable Store
	Slide 22: Write–Ahead Log Protocol
	Slide 23: Logging Interface
	Slide 24: Out-of-Place Update Recovery Information
	Slide 25: Execution of Commands
	Slide 26: Execution Strategies
	Slide 27: No-Fix/No-Flush
	Slide 28: No-Fix/Flush
	Slide 29: Fix/No-Flush
	Slide 30: Fix/Flush
	Slide 31: Checkpoints
	Slide 32: Media Failures – Full Architecture
	Slide 33: Distributed Reliability Protocols
	Slide 34: Two-Phase Commit (2PC)
	Slide 35: Centralized 2PC
	Slide 36: 2PC Protocol Actions
	Slide 37: Linear 2PC
	Slide 38: Distributed 2PC
	Slide 39: State Transitions in 2PC
	Slide 40: Site Failures - 2PC Termination
	Slide 41: Site Failures - 2PC Termination
	Slide 42: Site Failures - 2PC Recovery
	Slide 43: Site Failures - 2PC Recovery
	Slide 44: 2PC Recovery Protocols – Additional Cases
	Slide 45: 2PC Recovery Protocols – Additional Case
	Slide 46: Problem With 2PC
	Slide 47: Three-Phase Commit
	Slide 48: State Transitions in 3PC
	Slide 49: Communication Structure
	Slide 50: Site Failures – 3PC Termination
	Slide 51: Site Failures – 3PC Termination
	Slide 52: Site Failures – 3PC Termination
	Slide 53: Termination Protocol Upon Coordinator Election
	Slide 54: Site Failures – 3PC Recovery
	Slide 55: Site Failures – 3PC Recovery
	Slide 56: Site Failures – 3PC Recovery
	Slide 57: Network Partitioning
	Slide 58: Independent Recovery Protocols for Network Partitioning
	Slide 59: Quorum Protocols
	Slide 60: State Transitions in Quorum Protocols
	Slide 61: Use for Network Partitioning

