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Abstract: Based on numerical shape functions and the structural stressing state theory, the mechanical
properties of the curved prestressed concrete box girder (CPCBG) bridge model under different
loading cases are presented. First, the generalized strain energy density (GSED) obtained from
the measured strain data is used to represent the stressing state pattern of the structure; then, the
stressing state of the concrete section is analyzed by plotting the strain and stress fields of the bridge
model. The stressing state pattern and strain fields of the CPCBG are shown to reveal its mechanical
properties. In addition, the measured concrete strain data are interpolated by the non-sample point
interpolation (NPI) method. The strain and stress fields of the bridge model have been plotted to
analyze the stressing state of the concrete cross-section. The internal forces in the concrete sections
are calculated by using interpolated strains. Finally, the torsional effects are simulated by measuring
the displacements to show the torsional behavior of the cross-section. The analysis and comparison
of the internal force and strain fields reveal the common and different mechanical properties of the
bridge model. The results of the analysis of the curved bridge model provide a reference for the
future rational design of bridge projects.

Keywords: curved bridge model; mechanical property; numerical shape function; torsion effect;
stressing state; box-girder bridge

1. Introduction

Curved bridges are becoming increasingly popular due to their reasonable structural
performance, aesthetic properties and high torsional stiffness, and are widely used to
accommodate more complex routes and tight geometric site constraints [1]. Initially,
steel structures were used for curved bridges and later, given the economic practicality,
reinforced concrete structures were generally used for small-span curved bridges [2]. Later,
the use of prestressing gave the advantages of large spans, large cross-sections, low self-
weight, good performance, durability and high torsional stiffness of the box girders. As
a result, the application of curved prestressed concrete box girder (CPCBG) bridges has
been further expanded in recent years [3–5]. However, under the influence of curvature
and prestressing, bridges may have complex spatial stress structures and prestressing can
have complex effects such as increased torsional effects [6,7].

Although the early analysis of the ultimate load-carrying capacity of curved girders can
be dated back to the 1960s [4,6–11], regarding the analysis methods, some scholars studied
the theory of curved bridges, including pure torsion theory, limiting torsion theory, and
bridge type theory, which built the groundwork for the study of CPCBG bridges [12,13].
Subsequently, with the improvement of computing technology, which can realize the
operation of a higher-order matrix on the computer, some researchers have used the curve
finite band method and finite element method to analyze the deflection deformation and
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structural force of the prestressed curve bridge [14,15]. However, the analysis method still
lags behind the engineering application. Due to the lack of some necessary studies as design
references, some functional accidents (such as single pier column urban interchange ramp
overturning accident of the main girder due to overload) have occurred [16], prompting
scholars to conduct an in-depth study on the necessary working behavior of this type
of structure. The following problems of large curvature prestressed concrete box girder
bridges deserve critical attention: 1. The complex stressing state of CPCBG bridges, with
the presence of a large curvature, makes the bent girders under vertical loads not only
subject to bending deformation but also to torsional deformation, with shear stresses,
bending normal stresses and warpage stresses in the cross-section existing simultaneously.
In addition, second-order effects can also significantly reduce the ultimate load level [17].
The stress level and distribution of CPCBG bridges are related to a variety of factors, such as
geometry, the bending and torsional stiffness of the cross-section, support conditions, and
loading [18]. In contrast, existing analytical theories and methods find it difficult to achieve
an accurate prediction of the structural bearing capacity. 2. The high nonlinearity of the
structure and the working behavior involving various parameter uncertainties [19] make
CPCBG bridge structures exhibit complex failure mechanisms; the current study of the
failure process focuses on the ultimate collapse state [4,8,20–23], but does not give a clear
judgment basis to define when the bridge structure starts to lose it. In fact, this conservative
approach is aimed at avoiding and reducing the negative effects of inaccurate predictions,
which may lead to considerable material costs and even to the irrationality of the structural
design due to the negative impact. At the same time, the degree of reduction in torsional
stiffness of the structure and its contribution to lateral deflection-torsional buckling is quite
difficult to describe quantitatively due to the development of plasticity. Therefore, it is not
easy to find an analytical solution to the relative control equation [20,21].

Hence, a significant amount of research, including model experiments, numerical
simulations, analytical theories and methods, have been carried out to perceive the special
or invisible characteristics of the working behavior of this type of bridge. Static or dynamic
experiments of curved girder bridges have been used to investigate their structural working
behavior relative to curvature. For example, YongLi et al. [24] performed dynamic ultimate
flexural load capacity tests on prestressed concrete box girders and analyzed scenarios
such as the ultimate bending capacity of undamaged and damaged box girders. Kim
et al. [25] constructed a 40 m long double girder curved precast prestressed concrete
bridge using a multitasking formwork and performed static flexural tests to evaluate its
safety and serviceability performance. While numerical simulations of continuous curved
box girder bridges were performed to analyze their operational performance considering
multiple factors such as span radius of curvature ratio and span length. For example,
Khaloo [14] investigated the bending behavior of horizontally curved prestressed box
girder bridges using a refined three-dimensional finite element (FE) model and showed
that the redistribution of prestressing tendons across the section width can significantly
reduce the critical stress. Yang et al. [26] established a numerical model of curved box girder
bridges to simulate the tension of prestressing tendons, and then calculated and evaluated
the mechanical reflections of bridges with different tension orders to determine the optimal
tensile sequence. However, the above experimental data are strain and displacement data
of certain measurement points under static or dynamic loading, which only represent the
local response of the cross-section, not the whole bridge. Since there are always various
errors between numerical simulations and real conditions, it is important to investigate a
comprehensive and intuitive approach to study parameters such as strains and internal
forces of the whole bridge to further understand the mechanical properties of the bridge.

Structural stressing state theory and non-sample point interpolation (NPI) methods
are applied to study the stress characteristics of CPCBG bridges under different loading
conditions. Firstly, the characteristics of the structural stressing state embodied in the
experimental data of the 1/6 scale bridge model are investigated in depth. The generalized
strain energy density (GSED) values (Eij) for different loading cases are used to describe
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the stressing state of the structure; the strain distribution patterns of the bridge model are
plotted to go through the stressing state of the box girder cross-section. Various values
of internal forces in the concrete cross-section, specific stress distribution in the cross-
section, and torsional effects under different loading cases are clarified. In addition, the
experimental data are expanded by interpolation using the NPI method to visually plot the
strain and stress fields of the bridge model to analyze the stressing state of the concrete cross-
section includes axial force and bending moment. In summary, verified by experimental
and simulation data, this study explores a new way to reveal some undiscovered working
properties of structures, reveals common and different mechanical properties of bridge
models, and provides a new approach to the design and analysis of other types of structures.

2. Analysis Method of the Stressing State of Box Girder Model
2.1. Retrospective for the Computational Theory of Curved Bridges

Previous analysis theories and calculation methods of curved girder bridges can be
summarized into the following three types of analysis: analytical method, semi-analytical
method and numerical method. The specific theories are simple torsion theory, warping
torsion theory, girder lattice system theory, orthogonal anisotropic plate theory, folding
plate theory, polygonal curve theory, internal force transverse distribution theory, finite
unit method, finite strip method, energy method and laminated plate method. Among
them, the numerical method is the most commonly used. All the above methods have their
relative applicability conditions and use characteristics, and the equivalent mechanical
treatment of the actual structure is carried out on some assumed mechanical model so
that the simulation calculation model can match the structure under actual conditions.
Therefore, before applying a certain method, the essential characteristics of the structure
are fully grasped, and the corresponding analytical theory and calculation model are used
for processing so that the theoretical calculation results can more fully reflect the actual
loading case of the bridge structure. Firstly, the pure torsion theory treats the bent bridge
structure as an elastic rod concentrated in the center of the beam axis and considers that
the cross-section remains flat after loading, i.e., no warpage occurs and the shape of the
cross-section remains unchanged, which is based on the pure torsion theory. Second, the
warpage torsion theory in the warpage torque in the total torque occupies a considerable
proportion. To consider the warpage torsion influence, elastic thin-walled curved rod
theory will also be treated as a single thin-walled bending beam for analysis. Thirdly, the
combined plate and girder system theory is used for the longitudinal horizontal seam
along the intersection of plate and girder to split each main beam rib and deck plate; the
deck plate is a multi-span elastic support continuous plate supported on each flexible
bending main beam. The deflection of the curved girder and the fan-shaped deck plate
is expressed in the form of a sine series and the displacement function is used to express
the elastic support reaction force, and the stiffness constant of each plate is derived by
substituting the boundary conditions. Then, the differential equation of the curved girder
is used to derive the relationship between the external force and the displacement of the
beam. Finally, the set of equilibrium equations at the intersection of the plate and the beam
is established to solve the displacement function of each bent beam and the internal force
is solved. Fourthly, the folding plate theory is to consider the beam as a combination of
multiple plates connected, the strain and displacement in the plane of the plate are solved
by the plane strain of elastic mechanics, and the internal force and displacement out of the
plane are solved by the thin plate theory. Fifth, the principle of the lattice system theory is
to replace the bridge superstructure with an equivalent lattice and restore the equivalent
results to the original structure to obtain the required calculation results.

Simultaneously, for the finite element analysis method for curved girder bridges, no
matter how complex the form of the structure and how many types of loads, the correctly
and reasonably established model can be used to analyze and calculate the structure and
can analyze the warpage, distortion and shear hysteresis to obtain more comprehensive
local stresses as well as the other required stress results. As a result, the simulation of



Materials 2022, 15, 5414 4 of 30

the actual stressing state of the curved bridge is more comprehensive. First, the finite
strip method combines the advantages of both the elastic mechanical solution of the
orthotropic anisotropic plate and the finite element method as a semi-analytical method
that is especially suitable for analyzing regular structures, considering the combined effect
of in-plane displacement and out-of-plane buckling of the structure. The displacement
function of the finite strip method is usually composed of a Fourier series or spline function
in the curve direction and an interpolating polynomial in the radial direction. Then, the
finite unit method is solved along the lines of dividing the units, establishing the stiffness
matrix of each unit, which can accurately analyze the detailed structure of the bent bridge.
However, the time spent is too much and not economical. Third, the plate and shell method,
using folded plate approximation or shell unit, correctly establishes the model and carries
out a reasonable division of plate and shell units, sets the boundary conditions correctly,
and arranges the load according to the actual force condition, so that the displacement and
deformation of the structure can be analyzed and various internal forces (torque, bending
moment, shear force, axial force) of the bridge structure can also be calculated. Thirdly,
the solid method is suitable for local stressing state analysis in some complex parts of the
local forces, isolating the analysis object from the whole member. The solid unit method
is generally used to establish the critical analysis model and reasonable division of units,
and then, based on the relevant boundary conditions, the structure will be discrete in three
dimensions. The choice of the solid unit can fully consider the effects of distortion, buckling,
shear hysteresis, Poisson’s ratio, etc.

In summary, the analysis of curved girder bridges requires comprehensive consid-
eration of the actual situation of the bridge. Generally, the analysis can be carried out in
the following two steps: (i) the beam unit method is chosen for the overall analysis of
the structure: (ii) for irregular members or complex force areas. For example, for a large
curvature curved bridge, continuous rigid block zero, large volume bearing platform, bull
leg, etc., the solid unit or plate and shell unit are selected for further local analysis. All
the above methods are based on one or more mechanical assumptions, and although the
overall or part of the control, or part of the original analytical model, has been simplified as
necessary, the calculation and analysis process is still cumbersome and complicated, and
the solution time is long. In addition, there are great difficulties in verifying the results of
different methods against each other, not only because the actual mechanical properties still
differ greatly, but also the limited and valuable test data cannot be fully utilized. Therefore,
the basic method of the structural stressing state theory is adopted here to fully analyze the
test data collected, and the NPI method is constructed to expand the test data and reveal
some hidden mechanical properties of the bent bridge.

2.2. Modeling and Theory of Stressing States of Curved Box Girder Bridges

The concept of structural stressing state is essential in structural analysis and is gradu-
ally accepted by most researchers. However, for the complex and continuous structural
stressing state during loading, there is no uniform and accurate definition in the corre-
sponding codes so far. Therefore, according to the mutually varying and cross-progressive
characteristics presented in the structural working process and the structural behavior
revealed by classical mechanics, the structural stressing state can be defined as the internal
or external working behavior under certain loading cases, which characterizes the response
of different distribution modes and reflects the forms of strain, generalized strain energy
density (GESD), displacement, deflection, rotation angle, internal force, etc. at the critical
points of the structure. In other words, the stressing state of the structure can be fully
represented by a numerical model consisting of the relevant point mechanical responses.

The structural response of box girder bridges subjected to stressing states is evaluated
by numerical models to characterize the structural work behavior. Stress and stress data are
collected as raw data for experiments and can be used to analyze the deformation charac-
teristics and the working behavior of the structure. Numerical models and corresponding
characteristic parameters are constructed in the form of arrays or cells (matrices). A mi-
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croscopic scalar related to strain and stress [5], i.e., the generalized strain energy density
(GSED), is used to represent the stressing state at the measured points of the box beam.
Due to their experimental error and subjective nature of selection, other structural response
parameters (e.g., deflection and crack width) are considered to be limited in reflecting the
internal or external performance under loading. The application of the GSED parameters
presented above can better demonstrate the correct working characteristics of the structure.
For the measurement points of the box girder structure, the GSED values can be expressed
as [27].

Ei =
∫

σxdεx + σydεy + σzdεz (1)

where Ei is the GSED value of the i-th measurement point under the j-th loading cases;
σx, σy, σz and εx, εy, εz are the nominal stress and nominal strain in the three orthogonal
directions, respectively.

Regarding the concept of strain energy density, in this paper, the generalized (or
quasi) strain energy density (GSED) is chosen as the characteristic parameter to express the
stressing state at the measurement point [28]. Therefore, Equation (1) is simplified as.

Ei =
1
2

3

∑
N=1

Eε2
N (2)

where Ei is the GSED value at the i-th measurement point; εN is the nominal strain in the
N-th direction; and E is the modulus of elasticity. The sum of GSEDs of a group of key
points can be calculated by the following Equation (3).

Esum =
n

∑
i=1

Ei (3)

where Esum is the sum of the GSEDs of all measurement points of a section of the specimen,
representing the stressing state on the entire structure or component (control section,
connector, etc.). n is the total number of all critical measurement points on the relevant
component in the stressing state.

2.3. The Method of Non-Sample Point Interpolation

In structural analysis, the limited structural response data collected from experi-
ments can, to a certain extent, reflect the working characteristics of a structure under
load. However, it cannot provide the complete expression of the response mechanism
and characteristics of the structure. In the experimental part of the stressing state analysis,
the strain measurements at several points of the cross-section are used to construct the
characteristic values to approximately characterize the stressing state of the cross-section,
and this modeling analysis can reflect the changing characteristics of the stressing state of
the cross-section to a certain extent, but the stressing state model and physical meaning are
not strict enough and not intuitive enough. Therefore, it is necessary to reasonably extend
the measured data on the cross-section to obtain more accurate cross-sectional eigenvalues,
and on this basis to realize an accurate analysis of the stressing state in the field region of
the structure (represented by the cross-section), to reveal the concealed mechanical rules
behind the test.

A non-sample point interpolation (NPI) method of response simulation that combines
numerical simulation with experimental response samples to improve the interpolation
accuracy is introduced here, and a specific response simulation is proposed. The method is
based on the concept of shape function in the finite element method to construct discrete
weight functions by generalized numerical simulation of a specific ideal model. The
numerical shape function is used to adjust the a priori model response results of traditional
simulations; the available model information is also considered, which can further improve
the interpolation accuracy. The stochastic simulations are then performed by fitting the
model with different sample distributions and loadings. The unique structure of the
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method, with no optional parameters and precise physical meaning, allows for more
accurate estimates compared to ordinary simulated values.

Although the assumptions and properties of the numerical shape functions differ,
almost all methods use the following estimation formula.

u(x0) =
m

∑
i=1

wi(x0)ui (4)

where u(x0) is the estimated value at any point x0 after interpolation; Wi is the weight-
ing function assigned to the i-th sampling point with observation ui; and m denotes
the total number of sampling points. The above is based on the construction of the
weighting function.

Additionally, in the finite element, the same Equation (4) is used for the interpolation
of the intra-cell displacement. Here, the weight function is denoted as Ni and is referred
to as the shape function. The displacement field is represented as a linear combination
of shape functions expressed by explicit polynomials. For the calculation of the stiffness
equation to converge to a stable solution, the shape function needs to satisfy the following
four properties.

1. For the shape function Ni, it has a value of 1 at node i and is bounded at all remaining nodes;
2. The continuity of physical quantities between adjacent elements should be guaranteed.

It must have at least C0-continuity to form a smooth displacement field;
3. The shape function must contain linear terms to satisfy the constant strain condition.

In other words, to make the shape function have a simple mathematical form, priority
should be given to the lower polynomial;

4. The shape functions can be linear systems but must satisfy that their sum is equal to
the constant one, i.e., ∑Ni =1.

Herein, we only try to use the useful properties of shape functions for interpolation,
not to improve them for finite element analysis. In general, common simulation functions,
including the shape function interpolation method, are versatile and general but have low
accuracy for specific problems due to their little physical significance. However, since the
calculation of the unit stiffness matrix and the assembly of the global stiffness equations are
based on the virtual displacement principle and the force balance principle, respectively,
the simulation of a finite element model assembled with a sufficient number of small units
can reflect the real response field. According to the concept of discretization and the four
important properties mentioned above, the weighting function Wi can be obtained by a
numerical simulation of the specific model.

3. Experimental Bridge Model
3.1. Configuration of CPCBG Bridge

Considering the unique bending-torsional coupling nature of curved girder bridges
leading to their complex force characteristics, Shao [29] designed and tested a large curva-
ture prestressed concrete three-span continuous curved box girder bridge model according
to the scale of 1:6, to study the actual force characteristics of the curved girder bridge,
based on a prototype ramp quadruple bridge for a cross-river bridge project. the above
tests satisfy the requirements of geometric similarity, boundary conditions and physical
conditions. The bridge model is shown in Figure 1. Seven control sections are set up in the
model, namely, supports A and G on both sides, supports C and E in the middle, span B in
the right span with spacer, span F in the left span without spacer, and span D in the middle
mid-span. The total design axial length and curve radius of the whole bridge are 20 m
and 10 m, respectively. Since the test model is a large curvature curved box girder bridge,
the significant torsional effect leads to different force characteristics on both sides, so the
interior side and exterior side are used to distinguish them. The span thickness of span B
and D is 200 mm (marked by blue dashed boxes). To compare the effect of the partition
beam on the force characteristics of the bridge, only span F of the left span without the
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partition beam, and the rest of span B and D are provided with the partition beam. The
model of the continuous girder bridge adopts bi-directional support in the middle and
fixed hinge support at both ends. The bearing type adopts plate rubber bearing, which can
effectively absorb the impact energy and reduce the uneven vertical displacement of the
bearing during the loading process by its excellent deformation performance.
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Figure 1. CPCBG model bridge top view and side view (units: mm).

The cross-sectional dimensions of the box girder are shown in Figures 2 and A1, the
thickness of the top and bottom plates of the cross-section are 55 mm and 50 mm, respectively,
and the thickness of the web of the cross-section is 110 mm. Since there are obvious differences
between the tensile and compressive stressing states of the top and bottom plates at the
support and mid-span of the continuous bridge model, and the prestressing tendons are
always set in the tension zone, the location of the holes reserved for the prestressing tendons
in each control section is different. Figure 2a shows the control section of D in the middle
span, Figure 2b shows the control sections of supports A, C, E and G, while Figure 2c shows
the control sections of B and F in the middle of the left and right spans.
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control section, (b) support: A, C, E, G control section; (c) both side span midspan: B, F control section.
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Figure 3 shows the arrangement of reinforcement in the box girder section. Longi-
tudinal reinforcement, hoop reinforcement, distribution reinforcement and prestressing
reinforcement are installed in the model box girder. The diameter of common reinforce-
ment is 6 mm, and the diameter of prestressing reinforcement is 15.2 mm. The diameter
of the bellows in the web is 18 mm, and the box girder is prestressed and tensioned by
the post-tensioning method. The model material concrete is C50 commercial concrete,
and all common reinforcement is HRB400 steel. The prestressing tendons are unbonded
prestressing strands, and the prestressing tendons are configured as two layers of two rows
of Φ15.2 prestressing strands arranged in the web of the girder. The concrete mix ratios are
shown in Table 1. the test damage states of the specimens at different ages under standard
curing conditions of 7, 14 and 28 days are shown in Figure A2. The compressive strength of
the cubes is shown in Table 2, and the average elastic modulus of the specimens is 33 GPa
as shown in Table 3. The measured yield stress, elastic modulus and ultimate strength
parameters of various steel materials are shown in Table 4.
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Figure 3. Details of the arrangement of longitudinal reinforcement, distribution reinforcement and
stirrups for the bridge model (units: mm).

Table 1. Concrete material mix ratio (kg/m3).

Water
(kg)

Cement
(kg)

Fly Coal Ash
(kg)

Mineral Powder
(kg)

Sand
(kg)

Gravel
(kg)

Pumping Agent
(kg)

170 346 32 105 716 978 14

Table 2. Compressive strength of specimens at different ages.

Compressive Strength (MPa) Bottom Plate Web/Top Plate Bottom Plate Web/Top Plate

Age(d) 7 14 28 7 14 28
Test sample 1 42.5 47.1 48.6 44.6 58.4 62.2
Test sample 2 39.9 47.6 50.5 41.3 57.1 55.0
Test sample 3 38.2 51.4 49.3 47.4 43.0 48.7

Mean 40.2 48.7 49.5 44.4 52.8 55.3
Compressive strength at 0.95

confidence interval 36.7 44.8 47.9 39.4 38.8 44.2

Table 3. Modulus of elasticity of test samples at the age of 28 days after standard curing.

Modulus of elasticity (GPa)
Sample 1 Sample 2 Sample 3 Mean

35 29 35 33

Table 4. Mechanical properties of steel.

Material Type Diameter
(mm)

Ultimate Strength
(MPa)

Yield Strength
(MPa)

Elongation
(%)

Modulus of Elasticity
(GPa)

Prestressed steel strand 15.2 1978.4 1865.0 4.3 196.5
Ordinary steel bar 6 577.8 409.3 14.5 199.1
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3.2. Control Sectional Measurement Content

The test needs to measure the strain and displacement of the corresponding control
section and the bearing reaction force. Firstly, to accurately measure the bearing reaction
force, pressure transducers were arranged under the four bearings set up in the whole
bridge, as shown in the blue squares in Figure 1 below. The specific positions were left
right bearing A and G control section and middle bearing C and E control section, and each
bearing measured the inner and outer bearing reaction force (for example, G section bearing,
numbered G1 and G2 indicate the outer and inner reaction force, respectively). In addition,
the outer and inner deflection displacement values were measured at the span section and
the support section of the box girder with electromechanical dial indicators, as shown in
Figure 4a,b. Three instruments (D1–D3) were arranged at three equal points at the bottom
of the box girder for the span section, and two instruments (D1 and D2) were arranged
at both edges of the bottom of the box girder for the support section. In the actual test,
if the measurement points were at the edges, an auxiliary rod was welded and extended
and connected to the micrometer for measurement to prevent dropping. Finally, the strain
gauges recorded the test data for the mid-span sections (B, D and F) and the intermediate
support sections (C and E). There are 15 strain measurement points ( 1© to 15©) in the mid-
span section and concrete strain measurement points ( 1© to 11©) in the intermediate support
section. The difference between the two is that the strain in the base plate cannot be
measured in the support section due to the presence of the support. The specific point
arrangement is shown in Figure 4, and the strain gauges of the corresponding measurement
points are pasted on the surface of the girder. To achieve the measurement of the above
physical quantities, all data records of the test were collected by the Static wired acquisition
system. The data sampling frequency is 200 Hz (T = 0.005 s).
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Figure 4. Bridge model section size and detailed instrumentation plan (units: mm): (a) Section size
information, (b) Instrumentation arrangement of midspan section.

3.3. Loading Scheme and Test Conditions

As shown in Figure 5, the box girder model was loaded by the gravity loading method.
First, the prestressing load was applied by tensioning at both ends (post-tensioning method),
and the prestressing tendons were unbonded prestressing strands, i.e., no grouting was
applied in the bellows in the web. Pre-loading was carried out before the test to bring all
parts of the box girder model into the loading case and coordinate with each other. The
bridge constant load was applied using a counterweight, using single-span loading and
finally effected the superposition. The live load is also loaded utilizing counterweight
blocks, and the loading quantity is calculated according to the internal force effect of each
control section under the design load, and the load is arranged according to the influence
line to achieve the most unfavorable effect of the control section. The loaded counterweight
blocks are 2650 mm × 480 mm × 920 mm steel plate concrete blocks, each weighing 300 kg.
As shown in the loading schematic diagram of the middle span of uniform loading (loading
case 7) in Figure 5, the number of counterweight blocks is 12 × 6, the equivalent uniformly
distributed load is 2.7 kN/m, and the details of each section in the loading are given. The
loading sequence of the counterweight blocks is from the inside to the outside and from the
support to the middle of the span. The loading process is continuous and no excessively
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long pause is allowed in the middle process. The above test loading setup is mainly to
achieve the following purposes.

1. Setting up eight loading cases, as shown in Table 5, to study the effects of the model
bridge under constant load, live load and prestressing;

2. To superimpose each constant load condition to obtain the effect of the control section
of the whole bridge under constant load.

Table 5. Experimental loading case setting.

Loading Case The Contents of the Loading Case Loading Schematic Diagram

Case 1 Maximum bending moment at mid-span section F
by live load
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Figure 5. Loading device diagram (Loading case 7: Counterweight load of span C–E). The A–G
section represents the key section number of the bridge model.

4. Stressing State Analysis of Large Curvature Prestressed Concrete Curved Box Girder
Bridge with Different Loading Cases
4.1. Investigation into the Sum of GSED (Esum) with Different Loading Cases

To reflect the structural stressing state characteristics of the CPCBG curved bridge
model, the GSED values of the key points on the cross-sections under each loading case

were assembled into a matrix representing the stressing state modes Sj =

eB1 . . . eBN
. . . . . . . . .
eF1 . . . eFN


j

,

where e is the GSED value for each measurement point on the critical sections (B, C, D, E,
F and G), where N is taken as 15 for B, D and F span sections and 13 for C and E support
sections. The parameter Ej is designed to characterize the sum of GSED values of the
stressing state of the structure control section:

Ej =
N

∑
i=1

eij (5)

where eij is the GSED value of the i-th critical point at the j-th loading case. So far, the
structural work behavior modeling based on the structural stressing state analysis theory
has derived the stressing state mode Sj and its characteristic parameter Ej. The following
study of the changes in Sj and Ej with increasing load will reveal the changing characteristics
of the stressing state of the CPCBG curved bridge model.

Hence, the sum of GSED values (Ej) of the cross-sections under each loading case can
be calculated by Equation (5), and the specific values are shown in Table A2. Then, Ej is
plotted with each cross-section-variation curve to reflect the changing characteristics of
the structural stressing state. As shown in Figure 6, the magnitude of the sum of GSED
values of cross-sections reflects the deformation energy of cross-sections, and the span
cross-sections (B, D and F) are larger than the support cross-sections (C and E); meanwhile,
the Ej values of the span cross-sections in the middle loading section and the left span
cross-section are larger in loading case 3, but there are span cross-sections with smaller
Ej values due to the presence of the span spacer. The span spacer can effectively reduce
the deformation caused by indirect loading. Comparing each loading case, the Ej value
corresponding to the loaded section will be larger, while the Ej value of the adjacent section
will be smaller because the effect of loading is weakened.
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Figure 6. Sum of generalized strain energy density (GSED) for each key section with different
loading cases.

4.2. Stressing State Distribution Model

The strain-based stressing state pattern is plotted as shown in Figure 7. The stressing
state mode of each cross-section of the curved bridge model remains slightly variable
and stable with different loading cases, with most of the measured points having low
strain levels (strain magnitude less than the concrete cracking strain εcrack = 100 µε) and
only some of the measured points having large abrupt changes/increments. As shown
in Figure 7a,b, the strain distribution mode of the control section with the partition beam
is symmetric, but the distribution model of the F control section without partition beam
in Figure 7c is asymmetric, especially in the loading case; where the load is applied on
the section without partition beam, this asymmetry is more obvious. The main reason
for this phenomenon is caused by the torsional effect of the curved bridge model, which
also causes this phenomenon at measurement points farther from the symmetry axis of
the section. The measurement points farther from the symmetry axis of the section resist
a larger overturning moment, resulting in a larger deformation, especially at the bottom
edge and web of the box girder.

In general, from the experimental strain data, the bridge model section with a par-
tition beam has a higher load-carrying capacity than the bridge model section without
a partition beam, and the strain is more coordinated between deformation and force at
the measurement points in each section. Due to the torsional effect of the curved bridge
model, the torsional stiffness is smaller than the bending stiffness. Even if the material has
the subsequent bearing capacity, the curved bridge model will have local damage under
a smaller gravity load, which shows more prominently in the inner side of the curved
bridge model. Therefore, in practical engineering, it is important to strengthen the torsional
stiffness of curved bridges, such as the reasonable setting of spacer beams. Due to the
influence of the large curvature of the curved bridge model, the area around the inner
and outer webs of the box girder must be considered vulnerable to damage, and therefore
should also be taken into account in the structural design.
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Figure 7. Strain distribution mode of the cross-section with different loading cases: (a) distribution
mode of section B—partition beam; (b) distribution mode of section D no partition beam-partition
beam; (c) distribution mode of section F-without partition beam.

4.3. Torsional Effects Constructed from Displacements

The curvature of bridge models inevitably brings about differences in vertical deflec-
tions and strains at symmetrical external and internal points on the cross-section, which
complicates the representation of bridge model mechanical properties in terms of torsional
behavior, while the differences in deflections are related to the torsional and out-of-plane
behavior of the cross-section, respectively. Therefore, it is desired to understand the effect
of curvature on torsional behavior through the torsional effect of displacement construc-
tion. The macroscopic expression of in-plane bending moment and torsion is the vertical
deformation of the cross-section, so the remaining displacement can roughly represent
the direction and degree of torsion of the cross-section by removing the effect of in-plane
bending moment on displacement [30]. Since the object of this study is a large curvature box
girder, the effect of torsion on the bridge is not negligible, so the measured displacements
are used to construct the torsion effect for analysis to verify the trend of the working state
with increasing load. For the section deflection at the inner and outer measurement points,
the measured displacement can be roughly estimated in bending deformation as shown in
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Figure 8. Camber ABCD is the base plate of the bridge model from the middle of the span
to the bearing. The straight-line CD has zero deflection at the bearing and can be regarded
as the rotation axis of camber ABCD. The bending stressing state in the cross-sectional
plane can be roughly expressed as the angle of rotation θ:

θ = arctan(
FF′

EF
) (6)

where FF’ is the deflection at point F and EF is the distance from point E to point F. Therefore,
the deflections AA and BB generated by the in-plane bending deformation of camber ABCD
at points A and B can be approximated by Equation (7):

AA′ = AD tan(θ), BB′ = BC tan(θ) (7)

where θ is the rotation angle of camber ABCD around support CD; where AD is the distance
from point A to point D and BC is the distance from point B to point C. Then, the torsional
angle φi of the box girder can be approximated as Equation (8), and the corresponding
torsional behavior Td can be expressed by Equation (9).

φi =
dAi − AA′

AF
or φi =

dBi − BB′

BF
(8)

Td =
(
dAi − AA′

)
−
(
dBi − BB′

)
(9)

where dAi and dBi are the deflections at points A and B under the i-th loading case, respectively.
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Figure 8. The in-plane bending deflections and rotational angle θ for a section.

Figure 9a shows the torsional effect of the three mid-span sections under the condition
of loading case 7, which is specified as negative in the clockwise direction. Under the
influence of a large curvature, the displacement on the outside of section D is always larger
than that on the inside, resulting in a negative torsional effect under load, and the two
adjacent sections F and B have a positive torsional direction. By comparing section B and
section F, it can be obtained that the torsional effect of section F is larger than that of section
B. This is due to the existence of the cross-sectional spacer in section B. The presence of
the cross-sectional spacer will affect the stressing state of the control section to a larger
extent. Figure 9b shows the torsional effect of the span section with different loading cases.
The torsional behavior of the mid-span section is similar in similar forms of loading cases,
such as loading cases 1, 2 and 3, 7 and 4 and 8, 5 and 6. In the mid-span loading case, the
torsional direction of the mid-span section is opposite to the torsional direction of the span
loading on both sides. Loading on the middle span makes the direction of torsion of the D
section negative, while E and F sections are positive (cases 3 and 7); loading on both side
spans makes the D section positive, while E and F sections are negative (cases 1 and 2).
In loading case 4, under the superposition of the effects of adjacent loads and own loads,
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the twisting directions of both D and F sections are shown as counterclockwise, and in
loading case 5, D and B sections are shown as clockwise and counterclockwise, respectively.
When the load is applied at the middle span, the torsional degree of the B section with the
cross-section is smaller than the torsional effect of the symmetric F section (cases 3 and 7).
On the contrary, the torsional effect of the B-section is larger if the load is applied at both
side spans (cases 1, 2; 4, 5; 6, 8).
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Figure 9. Torsional effect analysis: (a) the torsion effect for sections F, D and B for loading case 7;
(b) The torsion.

Figure 10 shows the comparison curves of θ and φi at different loading cases, and
they reflect the trend changes in the in-plane bending and torsional stressing states of the
control section. It can be seen that the trend changes in torsional and bending stressing
states at different loading cases are basically the same, and the in-plane bending and
torsional stressing states increase sharply with the increase in gravity-loaded test blocks at
subsequent loading cases.
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Figure 10. Comparison curves of θ and φ for key sections with different loading cases.

The torsional effect modeled by vertical displacement can visually present the torsional
distribution, torsional direction and relative magnitude of the torsional effect in the mid-
span section with different loading cases. Therefore, by comparing the torsional effects,
we can find the common torsional characteristics with different loading cases and better
understand the torsional behavior of large curvature box girder models.
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4.4. Correlation Characteristics between Torsional and Out-of-Plane Bending Stressing States

The bridge models for its large curvature, resulting in its force characteristics, have the
following general law: the coupling effect of bending and torsion, bending deformation and
torsional deformation superimposed on each other, the same span of bending girder bridge
deformation is significantly larger than the straight bridge deformation and, in general,
the external deflection is larger than the internal deflection. In the meantime, the interior
and exterior girders are not uniformly stressed, resulting in the situation of “unloading
of the interior girders and overloading of the exterior girders”. It inevitably produces
differences in vertical deflection and strain at the symmetrical interior and exterior points
on the cross-section. The differences in deflection and strain are related to the torsional
and out-of-plane stressing states in the cross-section, respectively. It is therefore expected
to understand the effect of curvature on the torsional and out-of-plane bending behavior;
therefore, the parameters T and Mout are set to characterize this behavior. Based on the
structural stressing state theory, T and Mout are characteristic parameters of the torsional and
out-of-plane bending stressing states of the cross-section, which can be roughly expressed
as Equations (10) and (11).

Mout = εd
out − εd

in (10)

T = dout − din (11)

where dout and din are the external and internal deflections of the measured section, respec-
tively, and εout and εin are the external and internal strains of the base plate, respectively.

From the curves of Mout and T in Figure 11, the relevant characteristics of the torsional
and out-of-plane bending behaviors of B, D, and F sections can be seen: (1) The characteristic
parameter T is expressed by the section displacement and can be regarded as the extrinsic
expression of the torsional stressing state. The characteristic parameter Mout is expressed by
the strain, which can be regarded as the intrinsic expression of the bending stressing state.
The change in cross-sectional stressing state can be reflected in the internal manifestation of
torsional behavior, i.e., the changing trend of the Mout and T curve in torsion and out-of-
plane bending is generally consistent with different loading cases. (2) In the meantime, the
difference between B and F sections with and without a partition beam can be seen again in
Figure 11 for loading case 6, which results in significantly greater torsion and out-of-plane
bending in the F section compared to B. The stressing state of the F section is crucial in
the mechanical performance of the whole bridge model, since it is the weakest part of the
bridge and the main role of the partition beam in a curved girder bridge is to maintain the
stability of the whole bridge. Especially, for thin web box girders, the addition of a spacer
is the best way to reduce the deformation of the section.

Materials 2022, 15, x FOR PEER REVIEW 17 of 32 
 

 

d d

out out in M  = −  (10) 

out in T d d= −  (11) 

where dout and din are the external and internal deflections of the measured section, respec-

tively, and εout and εin are the external and internal strains of the base plate, respectively. 

From the curves of Mout and T in Figure 11, the relevant characteristics of the torsional 

and out-of-plane bending behaviors of B, D, and F sections can be seen: (1) The character-

istic parameter T is expressed by the section displacement and can be regarded as the 

extrinsic expression of the torsional stressing state. The characteristic parameter Mout is 

expressed by the strain, which can be regarded as the intrinsic expression of the bending 

stressing state. The change in cross-sectional stressing state can be reflected in the internal 

manifestation of torsional behavior, i.e., the changing trend of the Mout and T curve in tor-

sion and out-of-plane bending is generally consistent with different loading cases. (2) In 

the meantime, the difference between B and F sections with and without a partition beam 

can be seen again in Figure 11 for loading case 6, which results in significantly greater 

torsion and out-of-plane bending in the F section compared to B. The stressing state of the 

F section is crucial in the mechanical performance of the whole bridge model, since it is 

the weakest part of the bridge and the main role of the partition beam in a curved girder 

bridge is to maintain the stability of the whole bridge. Especially, for thin web box girders, 

the addition of a spacer is the best way to reduce the deformation of the section. 

 
(a) (b) 

Figure 11. The trend changes of torsion and out-plane bending behaviors for sections B, D and F: (a) 

out-of-plane bending mode; (b) Torsional mode. 

5. Experimental Data Extended by the Non-Sample Point Interpolation Method 

5.1. The NPI Method Applied to CPCBG Bridge Model 

Since the measurement points in the experiment can only reflect limited working 

characteristics and the test cost is high, the experimental data cannot fully reflect the struc-

tural response mechanism and working performance of the box girder. Simultaneously, 

the estimation accuracy of existing simulations is relatively poor, especially for the inter-

polation of experimental response samples. The general simulations only focus on the 

spatial distribution and numerical values of the samples without paying attention to their 

hidden information [31]. Therefore, to overcome the above-mentioned drawbacks of tra-

ditional experiments, the new interpolation method with high accuracy and clear physical 

meaning proposed in Section 2.3 is applied here to be able to make full use of the sample 

1 2 3 4 5 6 7 8

-6

-4

-2

0

2

4

6

8

10

ε o
u
t -

 ε
in

 (
μ

ε)

Load cases

 Section B

 Section D

 Section F

0 1 2 3 4 5 6 7 8 9
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

d
o
u
t -

 d
in

 (
m

m
)

Load cases

 Section B

 Section D

 Section F

Figure 11. The trend changes of torsion and out-plane bending behaviors for sections B, D and F:
(a) out-of-plane bending mode; (b) Torsional mode.



Materials 2022, 15, 5414 17 of 30

5. Experimental Data Extended by the Non-Sample Point Interpolation Method
5.1. The NPI Method Applied to CPCBG Bridge Model

Since the measurement points in the experiment can only reflect limited working char-
acteristics and the test cost is high, the experimental data cannot fully reflect the structural
response mechanism and working performance of the box girder. Simultaneously, the
estimation accuracy of existing simulations is relatively poor, especially for the interpola-
tion of experimental response samples. The general simulations only focus on the spatial
distribution and numerical values of the samples without paying attention to their hidden
information [31]. Therefore, to overcome the above-mentioned drawbacks of traditional
experiments, the new interpolation method with high accuracy and clear physical meaning
proposed in Section 2.3 is applied here to be able to make full use of the sample information,
especially the complete information of the response data sampled in the experimental
model. In addition, accurate simulations with clear physical meaning and reasonable
consideration of all available model information can meet the accuracy requirements for
in-depth experimental analysis [28]. The extended experimental data obtained through
reliable simulations are useful for studying the stressing state of the experimental structure
and revealing some global operational characteristics. Therefore, the non-sample point
interpolation (NPI) method with explicit physical meaning is proposed to overcome the
above drawbacks [31].

1. The NPI is a new and effective interpolation method that directly interpolates the
experimental data field, utilizing conventional shape functions and finite element
(FE) simulations. The interpolation method based on thin-plate splines (TPS) obtains
the numerical shape function of the sampled points by finite element simulation of
a specific thin plate model. Then, the data of non-sampled points are obtained by
interpolation of the numerical shape function and the sampled data, and the NPI is
constructed as follows. First, to introduce this method vividly, the D cross-section
of the experimental model is used as an example. As shown in Figure 12a, ANSYS
software is used to build the finite element model of the box girder cross-section, and
shell unit 181 is used for the concrete slab with a thickness of 5 mm and a unit area
of 10 × 10 mm2. Beam element 188 is used to model the common and prestressed
reinforcement in the cross-section. Its thickness is also 5 mm, and its area is the actual
area. Additionally, it is assumed that the connection between the reinforcement and
concrete is rigid, and the prestressing reinforcement is pre-tensioned in advance. The
strain data of 15 critical measurement points on the cross-section are used as a sample
interpolation to predict the strain field of the critical section in span D.

2. As shown in Figure 12a, the non-sample point shape functions N1-N15 are obtained
from the 15 control points in the established coordinate system, and the measured
point strain data are used as the coefficients of control points 1©–15©. The calculation
of the interpolation function can be found in the literature [2,28,32].

3. The 15 interpolation points on the box girder section were used to obtain the z-axis
deflection Uz. To interpolate the Uz response field, a shape function can be derived
from a generalized finite element simulation of the same physical quantities. Uz = 1 is
applied at one measurement point on the z-axis and minimum constrained rigid body
displacements in the x and y directions are applied at the other measurement points.
Then, the simulated Uz field is solved by a static finite element method to obtain
the shape function for a given measurement point. It can be described by a discrete
vector N1 = {N1(x1), N1(x2), . . . , N1(xk), . . . , N1(xn)}, where N1(xk) is the value of
the element node xk as a function of the total number of element nodes (n = 1612) of
the box girder model studied in this paper, and the numerical shape function Ni (i = 4,
6, 13) is shown in Figure 12b–d.

4. Static analysis is performed to obtain the overall strain field. Without considering large
deformation or elastoplasticity, the displacement field constructed by Castigliano’s the-
orem is independent of the loading path and can be linearly superimposed according
to the simulation results, which have a clear physical meaning.
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The above method is used to extend the limited experimental data of the box girder
model, which overcomes the shortcomings of the traditional finite element simulation
that simply validates the structural analysis and cannot effectively use the experimentally
collected data. The numerical interpolation function is obtained from the numerical simu-
lation of a specific physical model. The strain field of the model section is expressed as a
linear combination of partial coefficients (measured point strain data) and interpolation
functions (displacement field), which can be expressed as.

D =
m

∑
i=1

ui Ni, Ni =
[
Ni(x1, y1), Ni(x2, y2), · · ·Ni

(
xj, yj

)
, · · ·Ni(xn, yn)

]
(12)

where D is the strain field of the entire cross-section, m is the number of strain measurement
points (m = 15 in this case), Ni is the interpolation function obtained based on the i-th control
point, Ni (xj, yj) is the value of the function of element nodes (xj, yj), and n is the total
number of element nodes (n = 1612).

Therefore, the NPI method applied here can be used to extend the limited experi-
mentally measured strains on the cross-section to realize the strain field and internal force
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distribution patterns of the structure. This method can meet the requirements of in-depth
experimental analysis and reveal the overall/local working characteristics of the structure.

5.2. Comparison of the Stress Distribution Curves Obtained by the Two Methods

Before applying the NPI method for interpolating stress/strain fields with constructing
internal forces, it is necessary to evaluate the accuracy and precision of the NPI method.
Herein, the strain data at different locations expanded by the NPI method are used for
analysis. The comparison between the NPI method and the experimentally measured
strains is given in Figure 13a,b. Here, the comparison of the transverse distribution of
strains in the top and bottom plates for different spanwise sections (B, D, and F sections)
is indicated. In the case of condition 7, the strain distribution of the bottom plate of the
mid-span section is more uniform, and the strains measured by the NPI interpolation
method and the test are more consistent, which proves that the NPI method is still very
effective in interpolating the strain field.
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Figure 13. Comparison curve of strain distribution modes of test data and NPI method: (a) Strain
distribution mode of bottom plate measurement point; (b) Strain distribution mode of the top plate
measurement point; (c) Comparison of GSED sums for different methods. The A–G section represents
the key section number of the bridge model.
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The above verifies that the strain study of each location of the box girder model can be
effectively analyzed by using the strain data unfolded by the NPI method. Additionally,
here, the corresponding stress values are calculated by the constitutive relationship of the
materials. Thus, the sum of the GSED values of the NPI interpolated cross-sections can be
expressed by the following Equations (13) and (14) [33].

eij =
∫ ε j

0
σidεi (13)

Esum =
N

∑
i=1

eij Ai (14)

where eij is the GSED value of the i-th element in the j-th loading case; σi is the normal
stress of the i-th element; εi is the normal strain of the i-th element; Esum is the sum of GSED
of all control sections in the j-th loading case by the NPI method; N is the total number of
elements; Ai is the area of the i-th element.

In Figure 13c, for comparison, the Esum of experimental strain data is based on
Equations (2) and (3) to calculate the sum of experimental GSEDs, while the Esum based
on the NPI method is used to calculate the sum of GSEDs of the whole interpolated cross-
section, using Equations (13) and (14) for comparative analysis of Esum variation trends
with different loading cases. Therefore, the proposed NPI method is applied with the exper-
imental strain-based method to calculate the Esum variation curves for different operating
conditions for comparison. The ones in Figure 13c reflect similar variation trends and
characteristics. (1) The variation trends of the summed GSED curves obtained by the two
methods are consistent. (2) The GSED sum curves of the box girder model show different
structural deformation energies in different loading cases, and both methods reflect the
maximum structural deformation energy in loading case 3, which can be understood as
belonging to the most unfavorable loading mode of the case. (3) Both sets of curves show
that the sum of GSED (energy curve) can reflect the structural deformation state as a whole
based on a limited number of key measurement points with different loading cases. There-
fore, this proves that the structural stressing state analysis based on the NPI method can
reveal the working characteristics of a curved box girder.

5.3. Evaluation of the Comprehensive Accuracy of the NPI Method

The above validation provides a comparative study of the interpolation accuracy
of strains at different locations of the box girder model. Here, the overall validation is
performed from two aspects.

The first aspect is the strain validation of the same measurement points with dif-
ferent loading cases, as shown in Figure 14a, which validates two measurement points
(points 2 and 7) of the mid-span section (section D) of the box girder. The idea of validation
is to construct the strain field of the mid-span section with the remaining 13 measurement
points (excluding the two points to be validated), obtain the interpolated strain data of the
two points to be validated, and then compare the interpolated strain with the test strain of
the measurement points. The error δij at the j-th loading case and the average error of the
key point δ can be calculated by Equations (15) and (16).

δij =|
ε

p
ij − εe

ij

εe
ij
| ×100% (15)

δ =
1
N

N

∑
i

δij (16)

where, δij is the error between the interpolated and experimental results at the i-th measure-
ment point in the j-th loading case, and εe

ij and ε
p
ij is the experimental strain and interpolated
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strain at the i-th point in the j-th loading case, respectively. n is the total number of strain
measurement points, and here N = 15.
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Figure 14. Strain data error results of the Middle midspan D section for CPCBG bridge model with
different loading cases: (a) Comparison curve between test data and NPI method for points 2 and 7;
(b) Error of cross-checking for all measuring points.

As shown in Figure 14a, the experimental strain curve and the interpolated strain
curve vary with different loading cases, indicating that the two curves agree satisfactorily
and even partially overlap each other in different loading cases. Additionally, in loading
case 6, the two curves start to diverge slightly, but the difference between them is also small
and within an acceptable range.

The second aspect is cross-validation. Here, the leave-one-out (LOO) cross-validation
method [34] was used, i.e., in the j-th loading case (j = 1–8), all the test strain data of the
measurement points excluding the i-th measurement point to be validated were used to
perform interpolated strain, i.e., the NPI method was used to construct the cross-sectional
strain field, and the error analysis was performed using the interpolated data of the i-th
measurement point to be validated, and the test data. Figure 14b shows the validation
errors of all 15 measurement points with different loading cases. The overall error ranges
from 0% to 15%, with an average error of 7.576%. The error results are relatively small
and can fully meet the needs of engineering applications. Meanwhile, the error results are
relatively large in loading cases 6 and 8. Due to the small strains at some control section
measurement points, the small differences between εe

ij and ε
p
ij are amplified by the too-small

denominator in Equation (15), i.e., the error analysis is more sensitive when the strains are
small. In general, the average value of the error of the D control section is relatively small
for each loading case.

The above analysis and comparison fully satisfy the application requirements and the
NPI method can be used to extend the experimental data accurately enough to go deeper
into the potential characteristics of the stressing state of the box girder model.

5.4. Strain and Stress Fields Extended by the NPI Method

To properly evaluate the stressing state of the CPCBG, firstly, the strains in the non-
measured region of the cross-section were calculated by interpolating the limited exper-
imental strain data to obtain the strain field of the control section and the stress field
based on the intrinsic relationship. Herein, the above-mentioned NPI principle is used for
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programming modeling calculations. Finally, the calculated contour maps of the strain and
stress fields of the mid-span section are plotted.

For the strain field, as shown in Figure 15, a set of diagrams is used to represent the
variation law of the stressing state for different loading cases, all of which indicate the
strain state of the D control section in the middle of the span, which visually describes the
various characteristics of the stressing state of the box girder structure. The symbols of
each group of diagrams are specified as positive for tension and negative for compression.
The strain values of the control sections under loading cases 1, 2, 3, 4, 6 and 8 are in the
same range interval, and the values of the contour diagrams of the uniform control sections
determined by the color cards are equidistant. In general, the blue and red areas in the
middle of the concrete top and bottom slabs are varied for different loading cases because
the span D control section is subjected to tension on the upper or lower side with different
loading cases, which also follow the principle of mechanical influence lines. For example,
the blue and red areas of the span D control section in loading cases 5 and 8 are in the
opposite situation. In addition, in loading case 7, the tensile and compressive strains change
sharply at the intersection of the bottom flange and web on both sides of the box girder.
The outermost side reaches the cracking strain, which is due to the large curvature of the
box girder structure, and the torsional deformation is more likely to lead to the failure
of the bottom two sides of the box girder, which also intuitively reveals the mechanical
response of the three-box chamber box girder to the torsional problem. This also indicates
that the local location of the box girder is in an unstable state of stress, and therefore is a
potential risk, so this part should be given enough attention and reinforced appropriately
during investigations.
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Figure 15. Stress field of the cross-section in midspan D with different loading cases.

For the stress field, in Figure 16, the contours are marked by lines of different colors
indicating 3.6 MPa (black), 0 (white), and −62.5 MPa (red), and the corresponding values
represent the nominal ultimate tensile stress, the location of the neutral axis, and the
ultimate compressive stress of the concrete, respectively. On the whole, the stress contours
behave more uniformly under various loading cases, and the stress contours only become
dense at local locations, which also indicates that the three-box chamber box girder, as
a reasonable structural section form, can effectively involve all parts in coordinating the
stresses. In loading case 7, there is also an obvious twisting problem in the middle of the
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top plate and both sides of the bottom plate in the strain field, which shows the stress
concentration. In the case of loading case 6 and loading case 7, the tensile and compressive
positions are just opposite, which is the different torsional direction of the span D control
section in the CPCBG model under the two different loading cases; the span D control
section in loading case 6 is twisted to the outside, while the span D control section in
loading case 7 is twisted to the inside. The stress field in case 5 is smaller in Figure 16
because the effect of the left GE span and the middle EC span is offset due to the principle
of the mechanical influence line.
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Figure 16. Strain field of the cross-section in midspan D with different loading cases.

Meanwhile, to compare the change characteristics of the working performance of
different sections of the box girder under the same loading case, Figure 17 depicts the
change in strain field before and after different control sections in the case loading case
6. Firstly, the contours of the strain fields of the support C and E sections are close to
horizontal, as the torsional deformation of the box girder support section is limited by the
support, showing that the box girder support section is still in a horizontal state, while
the tensile and compressive tension of the top and bottom plates of the support C and E
sections are just opposite, the E section is close to the loading position, and its stressing
state is also far from the stressing state of the C section. For the span B, D and F sections,
the contour of the strain field is no longer horizontal, and the overall strain on both sides is
greater than the strain in the middle, which shows the torsional effect. With the F section as
the control section in case of loading case 6, the bottom flange of the box girder and the
web intersection are still the location of the sudden change in stress, which also shows the
resistance to the maximum torsional effect here and should be given enough attention.

5.5. Modeling of Axial Forces and Bending Stressing States

After the interpolated strains of the entire control section are obtained by the NPI
method, the internal forces of the control section can also be obtained using the integration
principle and the physical meaning of the internal forces. A characteristic parameter with
obvious physical meaning and an accurate description of the stressing state is constructed
here. Equations (17)–(19) calculate the axial force (Nj), in-plane bending moment (Min

j ) and
out-of-plane bending moment (Mout

j ) of the control section.
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Nj =
∫

A
σdA = ∑

A
σi Ai (17)

Min
j =

∫
A

σy dA = ∑
A

σiyi Ai (18)

Mout
j =

∫
A

σx dA = ∑
A

σixi Ai (19)

where j is the j-th loading case, i is the i-th node within the control section, σi is the normal
nominal stress at the i-th node, Ai is the area of the i-th node, and xi, yi are the horizontal
and vertical distances from the n-th node to the neutral axis of the section.

Figure 18a shows the force submodel of axial force (Nj), with different loading cases.
The axial force in tension and compression of the control section also has a large difference,
in general, limited by the number of loaded test blocks. The same loading case also shows
the maximum axial force at the loaded section. Figure 18b shows the force submodel of
the in-plane bending moment (Min

j ); here, the direction mainly shows each side of the top
plate and bottom plate in tension and compression. Figure 18c shows the force submodel
of out-of-plane bending moment (Mout

j ), which can be used to represent the stressing state
of the torsional moment, where the direction is mainly expressed as the force on the inside
and outside of the box girder. As shown in Figure 18, by comparing the three different
force sub-modal diagrams under the same loading case, it is confirmed which force sub-
modal control each control section is subject to; for example, considering loading case 7,
by comparative analysis, it is found that control section D is more susceptible to in-plane
bending moment, while for loading cases 6 and 8, control section F is more susceptible
to out-of-plane bending moment. This is because loading case 7 is symmetrically loaded
while loading cases 6 and 8 are unilaterally loaded, which also indicates that torsional
rollover is more likely to occur in this case.

The above situation shows that the axial internal force and out-of-plane bending
moment mode can control the stressing state of the section with different loading cases,
and the bending effect is still the main controlling factor of the box girder in general. Under
symmetric loading, the out-of-plane torsional effect is not the main influencing factor of
structural force, rather it is in-plane bending; under asymmetric loading cases, the out-of-
plane torsional effect gradually becomes the main influencing factor of large curvature box
girder force.
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Figure 18. Investigation into box girder model internal forces with different loading cases:
(a) sectional axial force; (b) sectional in-plane bending moment; (c) sectional in-plane bending mo-
ment. The A–G section represents the key sectionnumber of the bridge model.

6. Conclusions

Eight different loading case stacking experiments of curved prestressed concrete
box girder (CPCBG) bridges were conducted and GSED parameters and strain fields
were constructed based on the structural stressing state theory and non-sample point
interpolation method to reveal the working state and invisible mechanical properties of the
CPCBG structures.

• The GSED obtained from the measured strain data is used to indicate the stressing
state pattern of the structure based on the structural stressing state theory. The strain
distribution mode of the bridge model, the various internal force values of the cross-
section and the torsional effect under different loading cases are analyzed. It is found
that the strain, deformation and force in the cross-section of the girder model with
a partition beam are more coordinated than those of the bridge model without a
partition beam.

• The torsional effect was constructed from the measured deflections, the out-of-plane
pure torsional model from the rotational deflection and the in-plane bending model
from the sinking deflection, both of which comprise the torsional effect of the curved
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beam, and the torsional effect maintained some coordination with the inboard and
outboard strains. The presence of a partition beam affects the magnitude of internal
forces such as axial forces; the overall stress level of the section with a partition beam
is higher and more unevenly distributed than that of the section without a partition
beam, and the torsional characteristics of the section with partition beam are different,
but there is a significant improvement in the torsional effect of the section.

• Due to the presence of the torsional effect in the curved bridge model, the torsional
stiffness is significantly smaller than the bending stiffness, and the torsional damage
becomes the main factor. The curved bridge model also shows local damage under
the action of a smaller stack load, which is more prominent in the inner side of the
curved bridge model. The spacer beam has the function of maintaining the stability of
the whole bridge in curved girder bridges. Especially for thin web box girders, adding
spacers is the best way to reduce section deformation.

• An NPI method with clear physical meaning, based on reasonableness and accuracy,
intuitively reflects the strain and stress fields. Torsional deformation easily leads to
the outermost side of the bottom of the box girder and is the first to reach the cracking
strain of the concrete. The damage to both sides of the box girder at local locations
indicates that the structure is in an unstable stressing state, which intuitively reveals
the torsional mechanical response of the three-box chamber box girder under the
influence of a large curvature.

• The axial internal force and out-of-plane bending moment modes can reflect the
force state of the cross-section, and, in general, the bending effect is still the main
controlling factor of the box girder. In the symmetric loading case, in-plane bending
is still the main influencing factor of structural forces, which has greater similarity
with the general linear box girder forces; however, the out-of-plane torsional effect
gradually becomes the main influencing factor of large curvature box girder forces
under asymmetric loading.

The above study shows that the proposed NPI method and the torsional effect con-
structed by the structural stressing state theory can reveal the basic mechanical proper-
ties of the CPCBG bridge model. In conclusion, a clear perspective is adopted to ana-
lyze the mechanical properties of curved bridge models under different stacking condi-
tions, which explores a new method for bridge engineering and provides a reference for
engineering practice.
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Appendix A

a. Experimental background: the unique bending-torsion coupling nature of bent
girder bridges leads to their complex force characteristics, (manuscript table 294 lines). To
further understand bent girder bridges, the manuscript focuses on a typical prestressed
concrete bent box girder bridge with a flat curve radius of 12 m designed according to a
scale of 1:6 as a prototype for a cross-river bridge project ramp quadruplex bridge as the
engineering background for research and analysis.

b. Experimental setup: Shao (2017) [29] designed and tested a large curvature pre-
stressed concrete three-span continuous curved box girder bridge model according to the
scale of 1:6 and set eight load conditions (manuscript Table 5) to study the effects of the
model bridge under constant load, live load, and prestressing, and tested the support
reaction force, displacement and strain of the control section of the bridge under the above
load conditions, respectively. They superimposed each constant load. The effects of the
control section of the whole bridge under constant load are obtained by superimposing the
conditions (manuscript table, line 386–388).

c. Experimental purpose: To study the force characteristics of small radius large span
curved girder bridges through model tests of small radius large span curved girder bridges,
to analyze their working characteristics with the test results, to further reveal the unseen
bridge working characteristics, and, finally, to verify the validity of the model results
calculated by the NPI method.

d. Equipment used in the test: The results to be measured in this test have a strain and
displacement of the control section, the bearing reaction force. To achieve the measurement
of the above physical quantities, resistive strain gauges, percentage displacement gauges,
CL-YB-20T/2T resistive pressure ring, and a static strain acquisition system were used.
Their quantities are shown in the following table.

Table A1. Summary of test equipment.

Instrument Resistive Strain Gauges Static Strain Gauge Kit Displacement Gauges Resistive Pressure Ring

Machine type BQ120-60AA BE120-1AA JM3813 JM3812 JM3815 YH-50 YH-1000L CL-YB-20T CL-YB-2T
Number 80 77 1 4 4 15 4 8 4

e. Principles of design use: Shao (2017) [29] designed and tested a large curvature
prestressed concrete three-span continuous curved box girder bridge model according to a
scale of 1:6, and the above tests satisfied the requirements of geometric similarity, boundary
conditions, and physical conditions. All parts of the bridge (construction, mechanical
calculation of prestressing tendon beam configuration, bearing configuration requirements,
and structural durability design) meet the bridge design code requirements.

f. The loading conditions follow the procedures.

(1) The prestressing load was applied using unbonded prestressing strands, tensioned at
both ends.

(2) Pre-loading was carried out before the test to bring all parts of the box girder model
into working condition and coordinate with each other.

(3) The constant load of the bridge was applied by the counterweight, and the coun-
terweight blocks were 26.5 cm × 48 cm × 92 cm steel plate concrete blocks, each
weighing 300 kg. Due to a large number of counterweights, single-span loading was
used here, and the effects were superimposed at the end, which reduced the number
of counterweights and reduced the difficulty of the test, and also ensured the smooth
conduct of the test.

(4) The live load is also loaded utilizing counterweight blocks, and the loading quantity
is calculated according to the internal force effect of each control section under the
design load, and the load is arranged according to the principle of influence line to
achieve the most unfavorable effect of the control section. The loading sequence of
counterweight blocks is from the inside to the outside and from the support to the
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middle of the span. The loading process is continuous and does not allow too long a
pause in the middle process.

g. The way of collecting data and other information.
The measured data are strain and displacement of the control section, bearing reaction

force and strain gauges of the corresponding measurement points are pasted on the surface
of the beam, displacement gauges are arranged to the key position, and pressure transducers
are arranged under the bearing to measure the bearing reaction force. To realize the
measurement of the above physical quantities, instruments such as resistive strain gauges,
electronic displacement gauges, and resistive pressure rings are used, and the data at the
output are connected to a static wired collection system for collection (the JM3813 static
strain acquisition box) with a data sampling frequency of 200 Hz (T = 0.005 s).

h. What inference or effect is obtained.
(a) The test main beam shows a torsional effect, which is mainly manifested as follows:

transverse pattern of bearing and span displacement: large outer displacement, small inner
displacement; the transverse pattern of bearing reaction force: large outer bearing reaction
force, small inner bearing reaction force.

i. How to further analyze the data.
The following types of data are mainly obtained through the test: bearing reaction

force, the strain of web and top plate of branch section, the strain of web and top plate of
span section, displacement of bearing and span section.

(1) Bearing reaction force is used for the transverse law of bearing reaction force.
(2) The strains of each key section are used for the study of the sum of GSED (Esum),

stressing state distribution and NPI interpolation calculation, etc.
(3) The displacements of each key section are used to construct the torsional effect.

Appendix B
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Table A2. Sum of generalized strain energy density GSED for each section with different loading
cases (Ej).

Ej (J/m3)
Loading Case

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Key cross
sections

B 1470.2 2784.1 2451.3 2839 2990.2 35.7 122.7 35.7
C 45 52.6 11.1 6.5 6.6 13.1 351.2 9.7
D 61.1 63.2 2580.5 175.2 349.2 82.6 1966.7 88.4
E 6.1 19.6 2.2 7.4 8.3 155.6 305.7 155.6
F 52.7 45 3.5 49 36.4 1400.2 110.5 1400.2

References
1. Heins, C.J.E.J. Box girder bridge design-State of the art. Eng. J. 1978, 15, 126–142.
2. Shi, J.; Xiao, H.; Zheng, K.; Shen, J.; Zhou, G. Essential stressing state features of a large-curvature continuous steel box-girder

bridge model revealed by modeling experimental data. Thin-Walled Struct. 2019, 143, 106247. [CrossRef]
3. Geisser, S. A predictive approach to the random effect model. Biometrika 1974, 61, 101–107. [CrossRef]
4. Xu, Q. Linear Elastic Theory and Ultimate Load Carrying Capacity Analysis of Thin-walled Curved Beams. Ph.D. Thesis, Zhejiang

University, Hangzhou, China, 2002. (In Chinese).
5. Huang, H.; Liu, B.; Zhang, Y.; Tian, X. Bearing reaction test and analysis of prestressed concrete curved girder bridge. In

Proceedings of the 8th International Symposium on Test and Measurement, Chongqing, China, 23–26 August 2009. (In Chinese).
6. Timoshenko, S.; Gere, J. Theory of Elastic Stability; McGraw-Hill Book Company: New York, NY, USA; Toronto/London und

Kogakusha Company: Tokyo, Japan, 1961.
7. Hall, D.H. Curved Steel Box-Girder Bridges: State-of-the-Art. J. Struct. Div. 1978, 104, 1719–1739.
8. Yoo, C.H. Flexural-torsional stability of curved beams. J. Eng. Mech. Div. 1982, 108, 1351–1369. [CrossRef]
9. Pi, Y.-L.; Trahair, N. In-plane inelastic buckling and strengths of steel arches. J. Struct. Eng. 1996, 122, 734–747. [CrossRef]
10. Gupta, T.; Kumar, M. Flexural response of skew-curved concrete box-girder bridges. Eng. Struct. 2018, 163, 358–372. [CrossRef]
11. Choudhury, D.; Scordelis, A.C. Structural Analysis and Response of Curved Prestressed Concrete Box Girder Bridges; National Research

Council, Transportation Research Board: Singapore, 1988.
12. Kataria, N.P.; Jangid, R. Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and

isolation system. Adv. Struct. Eng. 2016, 19, 1103–1117. [CrossRef]
13. Khan, E.; Lobo, J.A.; Linzell, D.G. Live load distribution and dynamic amplification on a curved prestressed concrete transit rail

bridge. J. Bridge Eng. 2018, 23, 04018029. [CrossRef]
14. Khaloo, A.R.; Kafimosavi, M. Enhancement of flexural design of horizontally curved prestressed bridges. J. Bridge Eng. 2007, 12,

585–590. [CrossRef]
15. Moreira, L.S.; Sousa, J.B.M., Jr.; Parente, E., Jr. Nonlinear finite element simulation of unbonded prestressed concrete beams. Eng.

Struct. 2018, 170, 167–177. [CrossRef]
16. Cheng, B. Theoretical Study on the Calculation of Anti-Overturning Capacity of Single Column Pier Curved Bridge. Master’s

Thesis, Zhejiang University, Hangzhou, China, 2016. (In Chinese).
17. Yin, L. Analysis for Thin-Walled Box-Section Beam Bridge in Bending and Torsional. Master’s Thesis, Hebei University of

Engineering, Handan, China, 2010. (In Chinese).
18. Samaan, M.; Kennedy, J.B.; Sennah, K. Impact factors for curved continuous composite multiple-box girder bridges. J. Bridge Eng.

2007, 12, 80–88. [CrossRef]
19. Pi, Y.-L.; Bradford, M.A.; Trahair, N.S. Inelastic analysis and behavior of steel I-beams curved in plan. J. Struct. Eng. 2000, 126,

772–779. [CrossRef]
20. Yoo, C.H.; Kang, Y.J.; Davidson, J.S. Buckling analysis of curved beams by finite-element discretization. J. Eng. Mech. 1996, 122,

762–770. [CrossRef]
21. Liu, X.; Zhou, C.; Feng, D.; Fan, X.; Xie, S. Experimental study on interlayer shear properties of ERS pavement system for

long-span steel bridges. Constr. Build. Mater. 2017, 143, 198–209. [CrossRef]
22. Kang, J.; Wang, X.; Yang, J.; Du, Y. Strengthening double curved arch bridges by using extrados section augmentation method.

Constr. Build. Mater. 2013, 41, 165–174. [CrossRef]
23. Shanmugam, N.; Thevendran, V.; Liew, J.R.; Tan, L. Experimental study on steel beams curved in plan. J. Struct. Eng. 1995, 121,

249–259. [CrossRef]
24. Li, Y.; Yu, Z.; Wu, Q.; Liu, Y.; Wang, S.J.M. Experimental-Numerical Study on the Flexural Ultimate Capacity of Prestressed

Concrete Box Girders Subjected to Collision. Materials 2022, 15, 3949. [CrossRef]
25. Kim, S.-J.; Kim, J.-H.J.; Yi, S.-T.; Md Noor, N.B.; Kim, S.-C. Structural performance evaluation of a precast PSC curved girder

bridge constructed using multi-tasking formwork. Int. J. Concr. Struct. Mater. 2016, 10, 1–17. [CrossRef]
26. Yang, Z.Y.; Zhao, Y.; Liu, Z.S. Research on Stretching Order of Tendons in PC Curved Box Girder Bridge. Adv. Mater. Res. 2011,

219–220, 487–491. [CrossRef]

http://doi.org/10.1016/j.tws.2019.106247
http://doi.org/10.1093/biomet/61.1.101
http://doi.org/10.1061/JMCEA3.0002908
http://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(734)
http://doi.org/10.1016/j.engstruct.2018.02.063
http://doi.org/10.1177/1369433216634477
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001236
http://doi.org/10.1061/(ASCE)1084-0702(2007)12:5(585)
http://doi.org/10.1016/j.engstruct.2018.05.077
http://doi.org/10.1061/(ASCE)1084-0702(2007)12:1(80)
http://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(772)
http://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(762)
http://doi.org/10.1016/j.conbuildmat.2017.03.144
http://doi.org/10.1016/j.conbuildmat.2012.11.115
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(249)
http://doi.org/10.3390/ma15113949
http://doi.org/10.1007/s40069-016-0160-9
http://doi.org/10.4028/www.scientific.net/AMR.219-220.487


Materials 2022, 15, 5414 30 of 30

27. Sali, J.; Mohan, R.P. Parametric Study of Single Cell Box Girder Bridge under Different Radii of Curvature. Appl. Mech. Mater.
2017, 857, 165–170. [CrossRef]

28. Seo, J.; Rogers, L.P.; Hu, J.W. Computational seismic evaluation of a curved prestressed concrete I-girder bridge equipped with
shape memory alloy. Eur. J. Environ. Civ. Eng. 2020, 24, 1881–1900. [CrossRef]

29. Shao, S. The Research on Force of the Curved Bridge with Small Radius Big Span. Master’s Thesis, Dalian University of
Technology, Dalian, China, 2017. (In Chinese).

30. Shi, J.; Li, W.; Zheng, K.; Yang, K.; Zhou, G. Experimental investigation into stressing state characteristics of large-curvature
continuous steel box-girder bridge model. Constr. Build. Mater. 2018, 178, 574–583. [CrossRef]

31. Xiao, H.; Luo, L.; Shi, J.; Jiang, H.; Wu, Z. Stressing state analysis of multi-span continuous steel-concrete composite box girder.
Eng. Struct. 2021, 246, 113070. [CrossRef]

32. Shi, J.; Zheng, K.; Tan, Y.; Yang, K.; Zhou, G. Response simulating interpolation methods for expanding experimental data based
on numerical shape functions. Comput. Struct. 2019, 218, 1–8. [CrossRef]

33. Sorensen, S.; Scordelis, A. Computer Program for Curved Prestressed Box Girder Bridge; Report No. Uc SESM80-10; University of
Califomia: Berkeley, CA, USA, 1980.

34. Tian, X. Discussing on the Design Theory of Curved Girder Bridge. Fujian Archit. Constr. 2005, 5, 356–358. (In Chinese)

http://doi.org/10.4028/www.scientific.net/AMM.857.165
http://doi.org/10.1080/19648189.2018.1492972
http://doi.org/10.1016/j.conbuildmat.2018.05.155
http://doi.org/10.1016/j.engstruct.2021.113070
http://doi.org/10.1016/j.compstruc.2019.04.004

	Introduction 
	Analysis Method of the Stressing State of Box Girder Model 
	Retrospective for the Computational Theory of Curved Bridges 
	Modeling and Theory of Stressing States of Curved Box Girder Bridges 
	The Method of Non-Sample Point Interpolation 

	Experimental Bridge Model 
	Configuration of CPCBG Bridge 
	Control Sectional Measurement Content 
	Loading Scheme and Test Conditions 

	Stressing State Analysis of Large Curvature Prestressed Concrete Curved Box Girder Bridge with Different Loading Cases 
	Investigation into the Sum of GSED (Esum) with Different Loading Cases 
	Stressing State Distribution Model 
	Torsional Effects Constructed from Displacements 
	Correlation Characteristics between Torsional and out-of-plane Bending Stressing States 

	Experimental Data Extended by the Non-Sample Point Interpolation Method 
	The NPI Method Applied to CPCBG Bridge Model 
	Comparison of the Stress Distribution Curves Obtained by the Two Methods 
	Evaluation of the Comprehensive Accuracy of the NPI Method 
	Strain and Stress Fields Extended by the NPI Method 
	Modeling of Axial Forces and Bending Stressing States 

	Conclusions 
	Appendix A
	Appendix B
	References

