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Abstract: Accurate knowledge of the instantaneous friction torque of an automotive clutch
is a key claim while achieving comfortable, automated gearshifts, improving fuel economy or
reducing wear. Nevertheless, torque sensors are not commonly used in automotive drive trains
because of their additional size and costs. Thus, to estimate the clutch torque, a detailed dynamic
model of each component integrated into a clutch system is needed.
In the following, a nonlinear dynamic model of a Dual Mass Flywheel (DMF) as autonomous
part of a clutch system is presented and verified by test bench data. A DMF is used to reduce
the cyclic irregularity of the torque generated by a combustion engine. It is typically assembled
between crankshaft and clutch. The level of detail of the modelled DMF dynamics is chosen in
a way that a real-time simulation on a car’s control unit is feasible. Using the engine speed and
the clutch torque as model inputs, the proposed model has the ability to simulate the DMF
deflection and therefore the clutch rotational speed. Resulting torques acting on the DMF’s
primary and secondary mass are reconstructed, too. If both rotation speeds of the DMF masses
(the engine and clutch speed) can be measured, this model can also be used to reconstruct the
clutch torque.

Keywords: Dual Mass Flywheel, DMF, Modelling, Model reduction, Automotive, Drive train,
Clutch

1. INTRODUCTION

The key function of an automotive clutch system is to
accomplish a temporary disengagement of the combustion
engine from the gearbox and its following drive train com-
ponents during standstill or gear changes. To ensure safety
and comfort standards, the transition between disengage-
ment and linking has to be continuous. To accomplish
this task, a basic clutch system consisting of a DMF with
symmetrically arranged arc springs is designed as outlined
in Fig. 1.

Fig. 1. Automotive clutch system with DMF (origin LUK)

The combustion engine’s crank shaft is directly linked to
the DMF. The DMF consists of a spring-damper combi-
nation attached to two masses (primary and secondary
mass). The adjustment between masses and spring-damper
is chosen in a way to realize a mechanical lowpass fil-
ter reducing the engine torque’s cyclic irregularity. The
flywheel’s secondary mass carries out a key function of
the clutch. It deals, together with the pressure plate, as
the clutch friction contact rotating with the smoothed
engine speed. The friction plate is located between these
two plates. It is fixed on the gearbox input shaft. By
squeezing the friction plate between the secondary mass
and the pressure plate or separating them, the desired
clutch torque is generated.

To set up a simulation model of the described clutch
configuration, the DMF and the clutch friction dynamics
are described, separately. Focusing on the DMF, there
exist several references proposing different models for the
DMF dynamics. Linear system descriptions are found in
Walter et al. (2007) or Walter (2008), whereas nonlinear
ones are presented in Lux (2000) or Schaper et al. (2009).
Choosing a completely different approach Nicola and Sauer
(2006) model the frequency behaviour of the DMF.

In this paper, a dynamic model of an automotive DMF
with two symmetrically arranged arc springs is proposed.
As the DMF model is part of a clutch model describing
the overall clutch system dynamics, the clutch torque is
assumed to be known. To obtain the clutch torque, friction
models as proposed in Canudas de Wit et al. (1995) or
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Dupont et al. (2002) can be used. Beside the clutch torque,
the engine speed is required as an additional model input.
It is measured with an incremental encoder.

The proposed clutch model is capable to simulate all
dominating physical effects of a DMF with symmetrically
arranged arc springs. Besides the desired oscillation damp-
ing, there are rotational slack, increasing hysteresis over
flywheel deflection as well as increasing hysteresis and
growing flywheel stiffness over rising engine speed. As the
computing complexity is reduced by the proposed model
reduction, real-time simulations on a car’s control unit are
feasible.

The following section presents an overview of the clutch
system and the DMF model’s system boundaries. There-
after the DMF model is derived in section 3, which is
divided into three parts focusing on modelling, model
analysis and model reduction. After the DMF model is
introduced, simulation results compared to test bench data
are presented in section 4. Concluding remarks are given
at the end.

2. CLUTCH MODEL OVERVIEW

The examined clutch system (Fig. 1) consists of an auto-
mated clutch linked with a DMF. Its simplified mechanical
setup is built up as shown in Fig. 2. It consists of two iner-
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Fig. 2. Schematic clutch model with submodel (I) “DMF
model” and submodel (II) “clutch friction model”

tias J1 and J2. J1 represents the equivalent inertia of the
DMF primary side. It includes the inertia of the flywheel’s
primary mass together with the crankshaft and engine
inertias. The rotation speed of the inertia J1, named ϕ̇ES

for engine speed, is measured by an incremental encoder.
J2 is the equivalent inertia of the flywheel’s secondary mass
in addition to the clutch’s primary inertia. Its respective
rotation speed is called clutch speed ϕ̇CS . In contrast
to the engine speed, the clutch speed is not measured.
The last rotating part is the gearbox input shaft with its
measured speed ϕ̇IS . Existing torques are labeled with T
where TE , TF,pri, TF,sec and TC are the symbols for the
engine, flywheel primary, flywheel secondary and clutch
torque.

Using the law of angular momentum conservation, the
differential equations of motion for the inertias J1 and J2

are

J1ϕ̈ES = TE − TF,pri (1)

J2ϕ̈CS = TF,sec − TC . (2)

A close description of the flywheel torques TF,pri and TF,sec

of submodel (I) follows in the next section presenting the

DMF model. As mentioned above, the clutch torque of sub-
model (II) is assumed to be known. Additionally, it should
be mentioned that simulating Eq. (1) is not necessary, as
the engine speed is already known by measurements. For
the sake of completeness, its equation of motion will be
focused further, anyhow.

3. DMF MODEL

Schaper et al. (2009) introduced a dynamic DMF model
capable to simulate the dominating physical effects of a
DMF with symmetrically arranged arc springs. This model
consists of a complex sub model for the arc springs and
their friction behaviour. As the required step seize for a
stable forward integration has to be smaller than 100 µs,
real-time simulations on a car’s control unit will exceed
the available control unit’s computing power. However, the
main ideas of this model are the basis for the presented
DMF model.

Both masses of the DMF are modelled as inertias having
two stoppers each to pick up the arc springs. Each spring
gets fragmented into N segments and N − 1 lumped
masses as depicted in Fig. 3. As the DMF is symmetrically,

Fig. 3. Simplified sketch of the DMF

only one arc spring is considered in the following. The
second one is assumed to behave identically. To transfer
torque from one inertia to the other, the spring has to be
deflected within the arc spring tunnel and has to touch
the stoppers. The damping characteristic of the DMF is
caused by sealings between the primary and secondary
flywheel mass and by the friction forces resulting from
the spring coils sliding through the tunnel. Due to the
modelled fragmentation of the arc springs, friction is
simulated for the N − 1 lumped masses. By modelling
the friction and acceleration forces of the lumped masses,
non-homogeneous deflections of the spring segments are
reproduced.

3.1 Modelling

The following flywheel model assumes the arc spring to
be fragmented into two parts (N = 2) and therefore one
lumped mass. The lumped mass mS1 is symmetrically
arranged between both spring segments (S01 and S1N).
The characteristics of the spring segments are identically.
A schematic sketch of the spring model is depicted in Fig.4.
As the model consists of only one mass, the lumped mass
mS1 equals the arc spring mass mS . The non-fragmented
arc spring characteristic has to be modelled by the two
spring segments. In case of a nonlinear spring characteris-
tic, a piecewise linearization of the spring stiffness is used.
This results in a spring model where the spring segments
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Fig. 4. Sketch of nonlinear spring model

are assumed to be made up of M parallel arranged linear
sub springs with descending nominal lengths. Compared
to the piecewise linearized, non-fragmented arc spring stiff-
nesses cS,j and related nominal lengths ΦS,j, the sub spring
stiffnesses and lengths are 2cS,j and 1

2
ΦS,j respectively,

with

ΦS,1 < . . . < ΦS,M , j = 1, . . . , M. (3)

The sub spring ends which are not connected to the
lumped mass are free. Its positions are labelled with ΦS0,j

for the first and ΦSN,j for the second spring segment.

Using this spring model, the resulting schematic setup
of the examined DMF is illustrated in Fig. 5. Torsions

Fig. 5. DMF schematical setup

generated by the sub springs consisting to the first spring
segment are labeled with TS01,j and those consisting to the
second with TS1N,j respectively. TF,S1 denotes the friction
torque between the lumped mass and the primary inertia.
Relative angular positions are labeled with φ∗ and refer to
the absolute angular position of the primary inertia ϕES .

φ∗ = ϕ∗ − ϕES (4)

Those are the relative angular positions φS0,j and φSN,j

of the free sub spring ends, the relative deviation of the
DMF φF defined with

φF = π + ϕCS − ϕES = π + φCS (5)

and the relative position of the lumped mass labeled with
φS1. The lumped mass equivalent inertia JS1 is calculated
according to the Huygens-Steiner theorem:

JS1 = mS1

(

rS,i + rS,o

2

)2

(6)

Here rS,i and rS,o are the arc spring inside and outside
radius.

The constants ΦFE and ΦFC are the half widths of the
engine and clutch stoppers respectively.

Setting up the dynamic equations for the inertias and using
Eq. (1), (2) and (5) results in

J1ϕ̈ES = −2
∑

j

σE
0,jTS01,j + 2

∑

j

σE
N,jTS1N,j

. . . + TE − 2TF,S1 + TSeal (7)

J2(ϕ̈ES + φ̈F ) = −2
∑

j

σC
0,jTS01,j + 2

∑

j

σC
N,jTS1N,j

. . . − TSeal − TC (8)

JS1(ϕ̈ES + φ̈S1) =
∑

j

TS01,j −
∑

j

TS1N,j + TF,S1, (9)

with TSeal representing the sealing friction and damping
between the primary and secondary inertia. In the follow-
ing, Eq. (7)-(9) are described in detail.

σ-functions The σ∗

∗
-functions indicate whether the j-th

sub spring touches the first σ∗

0,j or second σ∗

N,j engine

σE
∗,j or clutch σC

∗,j stopper. σ∗

∗
= 0 denotes that the sub

spring does not touch the respective stopper, whereas for
σ∗

∗
= 1 the sub spring is in contact with the stopper. In

addition to a pure switching behaviour between 0 or 1,
there is a smooth transition in the region where the sub
spring is able to touch two stoppers simultaneously. This
transition region, which size is parametrized with ΦFT ,
enables to split up the torque of the sub springs acting
on the primary and secondary inertia. The σ-functions are
defined as follows:

σE
0,j =















0 ΦFE + ΦFT ≤ φS0,j

−
φS0,j − ΦFE − ΦFT

ΦFT

ΦFE < φS0,j < ΦFE + ΦFT

1 φS0,j ≤ ΦFE

(10)

σC
0,j =































0 φF + π + ΦFC < φS0,j

1 +
φS0,j − ΦFE − ΦFT

ΦFT

φS0,j ≤ φF + π + ΦFC ∧

. . . φS0,j < ΦFE + ΦFT

1 φS0,j ≤ φF + π + ΦFC ∧

. . .ΦFE + ΦFT ≤ φS0,j

(11)

σE
N,j =























0 φSN,j ≤ π − ΦFE − ΦFT

φSN,j − π + ΦFE + ΦFT

ΦFT

π − ΦFE − ΦFT < φSN,j ∧

. . . φSN,j < π − ΦFE

1 π − ΦFE ≤ φSN,j

(12)

σC
N,j =































0 φSN,j < φF + ΦFC

1 −
φSN,j − π + ΦFE + ΦFT

ΦFT

φF + ΦFC ≤ φSN,j ∧

. . . π − ΦFC − ΦFT < φSN,j

1 φF + ΦFC ≤ φSN,j ∧

. . . φSN,j ≤ π − ΦFC − ΦFT

(13)

Spring segments For calculating the sub spring torques it
has to be considered that one end of the sub springs is
free. Therefore the springs can not be stretched but only
be compressed by the stoppers. The positions of the free
sub spring ends, named as sub spring boundary conditions,
are

φS0,j = max

{

ΦFE , φF − π + ΦFC , φS1 −
ΦS,j

2

}

(14)

φSN,j = min

{

π − ΦFE , φF − ΦFC , φS1 +
ΦS,j

2

}

. (15)

Under consideration of these boundary conditions, the sub
spring torques result in
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TS01,j = −2cS,j

(

φS1 − φS0,j −
ΦS,j

2

)

(16)

TS1N,j = −2cS,j

(

φSN,j − φS1 −
ΦS,j

2

)

. (17)

Lumped mass friction The hysteresis of the DMF model is
mainly evoked by the spring friction. Using the Coulomb
friction model it is set up as follows:
TF,S1 =










−TF,S1,maxsign
(

φ̇S1

)

φ̇S1 6= 0

−TF,S1,maxsign (TS1,stick) φ̇S1 = 0 ∧ TF,S1,max < |TS1,stick|

−TS1,stick φ̇S1 = 0 ∧ TF,S1,max ≥ |TS1,stick| .

(18)

The magnitude of the maximal friction torque TF,S1,max

and the sum of torques acting on the sticking lumped mass
TS1,stick are calculated by:

TF,S1,max = µ rS,oFN,S1 (19)

TS1,stick =
∑

j

TS01,j −
∑

j

TS1N,j − JS1ϕ̈ES , (20)

where µ labels the friction coefficient of the arc spring in
the arc spring tunnel. FN,S1 represents the normal force
pushing the lumped mass to the primary inertia. Three
different influences are considered acting radially on the
lumped mass and therefore generating the normal force.
These are the centrifugal force FNC,S1, the redirection
force FNR,S1 and a bias therm FNB,S1. Therefore FN,S1

results in

FN,S1 = FNC,S1 + FNR,S1 + FNB,S1. (21)

Last one includes the force which is necessary to bend a
uncompressed flat spring into an arc shape.

The centrifugal force acting on the lumped mass is

FNC,S1 = mS1

(

rS,i + rS,o

2

)

(

ϕ̇ES + φ̇S1

)2

. (22)

By neglecting the lumped mass relative angular velocity,
which is much slower than the engine speed, it can be
simplified to

FNC,S1 ≈ mS1

(

rS,i + rS,o

2

)

ϕ̇2

ES . (23)

The arc spring redirection force depends on the springs de-
flection and torque transfer. Concentrating the redirection
forces of both spring segments to the lumped mass results
in

FNR,S1 =
4

rS,i + rS,o

∑

j

TS01,j sin

(

φS1 − φS0,j

2

)

. . . +
4

rS,i + rS,o

∑

j

TS1N,j sin

(

φSN,j − φS1

2

)

.

(24)

The bias therm FNB,S1 is a constant force.

Sealing friction and damping Further reasons for energy
dissipation are sealing friction and damping. To model
those energy dissipations, the LuGre friction model (see
Canudas de Wit et al. (1995) with Canudas de Wit (1998)
and Barahanov and Ortega (2000)) is used. TSeal is defined
as follows:

TSeal = σ0,SealϕB,Seal + σ1,Sealϕ̇B,Seal + dSealφ̇F (25)

ϕB,Seal is the friction model internal state which can
be considered to be a rotational bristle deflection. Using
this analogy, σ0,Seal and σ1,Seal are the bristle stiffness
and damping respectively, whereas dSeal is the damping
coefficient for the flywheel deflection. The bristle deflection
dynamics is

ϕ̇B,Seal = φ̇F −
σ0,Seal

TSeal,max

∣

∣

∣
φ̇F

∣

∣

∣
ϕB,Seal, (26)

with a constant maximum sealing friction torque TSeal,max.

Parametrization Tab. 1 contains reasonable parameters
for a DMF model, which obviously depend on the type
of combustion engine and clutch system installed.

Table 1. Parameters for the presented DMF
model

Parameter Parameter

J1 = 0.30 kg m2 ΦS,j = {2.83, 2.11} rad

J2 = 0.12 kg m2 cS,j = {96.0, 322.3} Nm

rad

mS = 0.40 kg µ = 0.08 -

rS,i = 0.113 m σ0,Seal = 573 Nm

rad

rS,o = 0.135 m σ1,Seal = 1.0 Nm s

rad

ΦF E = 0.13 rad dSeal = 2.8 Nm s

rad

ΦF C = 0.10 rad TSeal,max = 5.0 Nm

ΦF T = 0.03 rad FNB,S1 = 290 N

3.2 Model analysis

Computing power is still a limiting factor for simulations
on a car’s control unit. In order to find a reasonable
simulation step size h, the model dynamics are analyzed.
Having a linear model, a good indication for the step size is
obtained by calculating the model time constants T gained
by the model eigenvalues λ. Choosing the step size ten
times faster than the shortest time constant results in

h =
1

10
min {T} =

1

10
min

{

1

|Re(λ)|
,

2π

|Im(λ)|

}

. (27)

Doing so will lead to simulation results capable to re-
produce the modelled dynamics accurately 1 . Re(λ) and
Im(λ) are the eigenvalue real and imaginary parts respec-
tively. To apply this method for nonlinear models, a model
linearization is needed.

Eigenvalues of the linearized model The basis for calcu-
lating the eigenvalues of the linearized DMF model are
Eq. (8) and (9). Assuming the engine speed to be constant
and neglecting all friction torques, the equations of motion
result in

J2φ̈F = −2
∑

j

σC
0,jTS01,j + 2

∑

j

σC
N,jTS1N,j − TC (28)

JS1φ̈S1 =
∑

j

TS01,j −
∑

j

TS1N,j. (29)

As a further assumption, the acting clutch torque is
positive, constant and its magnitude high enough that all
M sub springs are touching a stopper. This configuration
leads to the shortest time constants possible as the arc

1 This is just a common indication for the step size. Besides the

step size, stability and convergence of the simulation are influenced

by the system eigenvalues and the used numeric integration method.
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spring stiffness is at its maximum. Using this assumption,
the σ-functions and sub spring boundary conditions are

σC
0,j = 0, σC

N,j = 1 (30)

φS0,j = ΦFE , φS1 =
φF

2
, φSN,j = φF − ΦFC . (31)

Inserting them in Eq. (28) and (29), together with the
equations defining the sub spring torques (Eq. (16), (17)),
leads to

J2φ̈F = −2
∑

j

cS,jφF + 4
∑

j

cS,j

(

ΦFC +
ΦS,j

2

)

− TC

(32)

JS1φ̈S1 = −4
∑

j

cS,jφS1 + 2
∑

j

cS,jφF . (33)

These second order differential equations, representing
undamped oscillators, consist of the following eigenvalues:

λJ2

1,2 = 0 ± i

√

2
∑

j cS,j

J2

, λJS1

1,2 = 0 ± i

√

4
∑

j cS,j

JS1

(34)

Converting the eigenvalues to time constants T, which
represent the duration of a whole oscillation, and inserting
the DMF model parameters results in

TJ2 =
2π

√

2

∑

j
cS,j

J2

≈ 75 ms, TJS1 =
2π

√

4

∑

j
cS,j

JS1

≈ 10 ms.

(35)

By analysing the eigenvalues of both equations of motion,
it is seen that the dynamics representing the spring motion
is about 7.5 times faster than these representing the
secondary flywheel mass motion. Using Eq. (27), the
recommended, maximal sample time will be 1 ms.

3.3 Model reduction

As the spring motion dynamics is much faster than the
secondary flywheel’s inertia dynamics, the quasi-steady-
state approximation is applied to the faster dynamics.
This model reduction technique assumes that the lumped
spring mass reaches its equilibrium in a time scale much
faster than the step size. Therefore, only its steady-
state position, but not the overall dynamics, influences
the simulation results. Using this model reduction, the
recommended step size rises to 7.5 ms without losing
simulation accuracy significantly.

Quasi-steady-state approximation To compute the lumped
mass steady-state position φS1,ss, Eq. (9) is utilized with

φ̈S1 and φ̇S1 appointed to zero.

JS1ϕ̈ES =
∑

j

TS01,j,ss −
∑

j

TS1N,j,ss + TF,S1 (36)

Each variable recomputed after the steady-state calcula-
tion is indicated by the additional index ∗ss. If there is
no additional index added, this variable either does not
depend on the lumped mass position or the position before
steady-state calculation is used. Solving Eq. (36) for φS1,ss

leads to the wanted equilibrium. Due to the lumped mass
friction, a case distinction is necessary.

• Case I: TF,S1,max ≥ |TS1,stick|

• Case II: TF,S1,max < |TS1,stick|

In the case where the maximal friction torque is larger or
equal the sum of torques acting on the sticking lumped
mass, the mass will not move.

φS1,ss = φS1 (37)

Therefore it rests in its position which equals the steady-
state position and no further calculations are necessary.

In the second case, the mass will move. As this move-
ment changes the sub spring boundary conditions, uncom-
pressed sub springs may get compressed or the other way
round. Without extensive computations, the sub spring
steady-state configuration is not predictable. One way to
get to the unique equilibrium is to compute the steady-
state position with each sub spring configuration possible
and selecting the physically right one afterwards. This
results in the following 5M −2 proposed equilibria φ̃S1,ss,i

φ̃S1,ss,i =

. . . +

∑

j

(

σ̃E
0,j,ss,i + σ̃C

0,j,ss,i

)

(

max {ΦFE , φF − π + ΦFC} +
ΦS,j

2

)

cS,j

∑

j

(

σ̃E
0,j,ss,i + σ̃C

0,j,ss,i

)

cS,j +
∑

j

(

σ̃E
N,j,ss,i + σ̃C

N,j,ss,i

)

cS,j

. . . +

∑

j

(

σ̃E
N,j,ss,i + σ̃C

N,j,ss,i

)

(

min {π − ΦFE , φF − ΦFC} −
ΦS,j

2

)

cS,j

∑

j

(

σ̃E
0,j,ss,i + σ̃C

0,j,ss,i

)

cS,j +
∑

j

(

σ̃E
N,j,ss,i + σ̃C

N,j,ss,i

)

cS,j

. . . +
TF,S1 − JS1ϕ̈ES

2
∑

j

(

σ̃E
0,j,ss,i + σ̃C

0,j,ss,i

)

cS,j + 2
∑

j

(

σ̃E
N,j,ss,i + σ̃C

N,j,ss,i

)

cS,j

,

(38)

with

σ̃E
0,j,ss,i + σ̃C

0,j,ss,i ∈ {0, 1}, σ̃E
N,j,ss,i + σ̃C

N,j,ss,i ∈ {0, 1}

(39)

and

ΦS,1 < . . . < ΦS,M , j = 1, .., M, i = 1, .., 5M − 2.
(40)

Here, σ̃∗

∗,i are the proposed sub spring boundary condi-
tions. To select the physically right equilibrium, each pro-
posed steady-state position has to be inserted in Eq. (10)-
(13), which leads to 5M − 2 different results σ̂∗

∗,ss,i, repre-
senting possible stiffness configurations. The correct and
unique equilibrium I, which is part of the proposed equi-
libria, satisfies the two following conditions:

σ̂E
0,j,ss,I + σ̂C

0,j,ss,I = σ̃E
0,j,ss,I + σ̃C

0,j,ss,I (41)

σ̂E
N,j,ss,I + σ̂C

N,j,ss,I = σ̃E
N,j,ss,I + σ̃C

N,j,ss,I (42)

With

j = 1, .., M, I ∈ i i = 1, .., 5M − 2. (43)

Therefore the lumped mass steady-state position and the
steady-state sub spring boundary conditions result in

φS1,ss = φ̃S1,ss,I , σ∗

∗,j,ss = σ̂∗

∗,j,ss,I . (44)

Inserting φS1,ss in Eq. (14)-(17) leads to the steady-state
positions of the free sub spring ends ϕS∗,j,ss and steady-
state torques TS∗,j,ss, needed to compute Eq. (36).

Example This short example presents how to appoint the
5M − 2 possible sub spring configurations. Choosing M to
two results in the truth table Tab. 2, displaying all configu-
rations possible by combinational logic. Physically possible
configurations are numbered. The others are marked with
x. Physically impossible solutions are these where a sub
spring with higher number of the same spring fragment
touches a stopper without all other sub springs with
lower numbers of the same fragment touching the stopper,
too. This is because of the sub springs are ordered by
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Table 2. Possible sub spring configurations

i * 1 x 2 3 4 x 5 x x x x 6 7 x 8

σE
0,1,ss,i

+ σC
0,1,ss,i

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

σE
0,2,ss,i

+ σC
0,2,ss,i

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

σE
N,1,ss,i

+ σC
N,1,ss,i

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

σE
N,2,ss,i

+ σC
N,2,ss,i

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

falling nominal length. Only one exception exists which
is physically possible but is no correct solution for any
steady-state. The case where no sub spring is touching
any stopper, marked with *, can never be a steady-state
solution for case II, where the lumped mass moves at the
beginning.

4. MODEL VALIDATION

To show the capability of the proposed DMF model,
three simulations are presented. The first one is a quasi-
stationary deflection simulation with rising DMF rotation
speed. The second one simulates a damped oscillation of
the DMF to validate its dynamics. The last one describes a
combustion engine start and vehicle drive away simulation.
Measurement data is recorded on a clutch and gearbox test
bench using electric motors to simulate the combustion
engine and the vehicle torque during driving. The test
bench configuration is displayed in Fig. 6.

Fig. 6. Clutch and gearbox test bench configuration

For simulation the whole DMF model including Eq. (1)
and (2) is used. The measured engine torque and the
simulated clutch torque serve as model inputs. To get the
clutch torque, a clutch friction model is necessary. The
used one bases on the elasto-plastic friction model (see
Dupont et al. (2000), Dupont et al. (2002)) having the
input shaft speed and the clutch normal force as further
inputs. As the clutch is completely closed during the first
two experiments, there does not occur any clutch slip.
Therefore the clutch model degenerates to a stiff spring-
damper combination with linear deflection and damping
characteristic in these experiments. For model validation,
the simulated speed and rotational position of the engine
shaft ωES,sim and ϕES,sim are compared with its respec-
tive measurement data ωES,meas and ϕES,meas.

Quasi-stationary deflection The first simulation presents
(see Fig. 7) the resulting stationary DMF deflection φF

over engine torque for different gearbox input shaft speeds.
Therefore the engine torque is specified as a slowly rising
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Fig. 7. Deflection simulation with varying input shaft
speed

and falling ramp between ± 300 Nm and the input shaft
speed is chosen to be constant. It can clearly be seen
that the dominating physical effects of a DMF, which
are rotational slack, increasing hysteresis over flywheel
deflection as well as growing stiffness over rising engine
speed, are simulated by the DMF model.

Damped oscillation The DMF dynamics is validated by a
second simulation. It shows the progress of oscillation after
an abrupt change of engine torque. Therefore the input
shaft is blocked against rotation. As depicted in Fig. 8,
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Fig. 8. DMF oscillation experiment

the engine torque is increased up to 150 Nm. After reaching
the desired torque, the electric motor is switched off. This
results in a damped oscillation of the engine inertia evoked
by the prestressed DMF. After the oscillation is abated,
the same experiment is executed in opposite direction.
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It can be seen, that the simulated engine shaft speed and
position matches the measured one very well. This includes
the section where the DMF gets deflected, as well as the
region where the oscillation takes place. At t ≈ 21 s, a
fast change of the engine shaft position occurs without
any significant variation of the engine torque. Here the
modelled and actual rotational slack of the DMF can
be compared. A zoomed plot of the oscillation region is
presented in Fig. 9.
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Fig. 9. Zoomed section of DMF oscillation experiment

Engine start and drive away The last validation experi-
ment is displayed in Fig. 10. It shows simulation results of a
combustion engine start and vehicle drive away simulation.
For simulation, the engine torque is composed of two parts.
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Fig. 10. Engine start and vehicle drive away simulation

Part one is the engine’s mean torque. It is overlaid by
an unbiased oscillation which is part two. The oscillation
frequency depends on the actual engine speed and its am-
plitude rises with increasing engine’s mean torque. After
engine start and reaching idle speed the clutch gets closed
(t = 1 s). As soon as the clutch begins to transmit torque,
the vehicle starts to move.

Comparing engine speed with clutch speed, it can be seen
that the clutch speed oscillation is smoothed by the DMF.
This results in a reduced oscillation amplitude of the
transmitted clutch torque after synchronisation (t > 1.7 s)
which is much lower than the initial combustion engine’s
torque irregularity.

5. CONCLUSION

The DMF dynamics have been modelled by a nonlinear
system. It consists of the equations of motion of both
DMF masses described by the law of angular momentum
conservation. To simulate the torque acting on the DMF
masses, a detailed model of the DMF arc springs and its
frictional behaviour have been presented. As the spring
model dynamics consist of time constants much faster
than those of the DMF masses, a model reduction is
advantageous. To reduce the model complexity, the quasi-
steady-state approximation has been used for the arc
spring dynamics. The reduced model is capable to describe
all dominating physical effects of a DMF. Simulations
on a car’s control unit are feasible as the computational
complexity is low. To validate the DMF model, simulation
results have been compared with test bench data.
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