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a b s t r a c t 

Cloud computing is a recently looming-evoked paradigm, the aim of which is to provide on-demand, pay-as- 
you-go, internet-based access to shared computing resources (hardware and software) in a metered, self-service, 
dynamically scalable fashion. A related hot topic at the moment is task scheduling, which is well known for 
delivering critical cloud service performance. However, the dilemmas of resources being underutilized (under- 
loaded) and overutilized (overloaded) may arise as a result of improper scheduling, which in turn leads to either 
wastage of cloud resources or degradation in service performance, respectively. Thus, the idea of incorporating 
meta-heuristic algorithms into task scheduling emerged in order to efficiently distribute complex and diverse in- 
coming tasks (cloudlets) across available limited resources, within a reasonable time. Meta-heuristic techniques 
have proven very capable of solving scheduling problems, which is fulfilled herein from a cloud perspective by 
first providing a brief on traditional and heuristic scheduling methods before diving deeply into the most popular 
meta-heuristics for cloud task scheduling followed by a detailed systematic review featuring a novel taxonomy of 
those techniques, along with their advantages and limitations. More specifically, in this study, the basic concepts 
of cloud task scheduling are addressed smoothly, as well as diverse swarm, evolutionary, physical, emerging, and 
hybrid meta-heuristic scheduling techniques are categorized as per the nature of the scheduling problem (i.e., 
single- or multi-objective), the primary objective of scheduling, task-resource mapping scheme, and scheduling 
constraint. Armed with these methods, some of the most recent relevant literature are surveyed, and insights 
into the identification of existing challenges are presented, along with a trail to potential solutions. Furthermore, 
guidelines to future research directions drawn from recently emerging trends are outlined, which should defi- 
nitely contribute to assisting current researchers and practitioners as well as pave the way for newbies excited 
about cloud task scheduling to pursue their own glory in the field. 
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. Introduction 

In cloud computing, to optimize one or more scheduling objectives
e.g., makespan, computational cost, monetary cost, reliability, avail-
bility, resource utilization, response time, energy consumption, etc.),
 scheduler (broker) [1,2] is developed in order to determine potential
olutions for allotting a set of available limited resources to incoming
asks/applications. In general, Johnson’s study [3] is believed to be the
istorical basis of modern scheduling approaches. Nowadays, many dif-
erent applications are built based on the scheduling concept, such as
ower system control, scheduling of multimedia data objects on the In-
ernet, as well as manufacturing printed circuit boards [2] . Distributed
omputing systems have undergone several developments since their
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ery inception in 1980 as the allocation of limited resources on these sys-
ems to tasks submitted by Internet users is one of the major applications
f modern scheduling. The emergence of cluster systems is one of these
ecent changes, in which a variety of standalone computers are com-
ined so that they have the potential to work jointly as one system [4] .
ince only local resources are used by cluster systems, grid systems have
een developed later to overcome this shortcoming by bringing together
ll heterogeneous resources available in geographically distributed ar-
as [5] . Transitioning to cloud systems [6] is a recent change in which
he strengths of both cluster and grid systems are leveraged well. 

Most problems of scheduling are either NP-hard or NP-complete
7] in which, due to the large solution space, a long time is required
o implement an optimal or sub-optimal solution within a minimal
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eriod of time. Thus, unfortunately, there is no existing polynomial
ime-scheduling algorithm that can be applied to optimize the schedul-
ng of limited resources in modern computing systems [8] . For illus-
rating the dilemma we are facing, a simple example was presented by
aillard [9] , in which around 0.02% of the candidate solutions con-
ume between 1 and 1.01 the total time needed to obtain the optimum
olution. This example shows the extreme difficulty of finding the op-
imum solution to complex problems. Consequently, pursuing a good
lgorithm has been triggered by most researchers to find out a fast yet
fficient solution to such type of scheduling problems. Two basic types
f scheduling techniques are static and dynamic techniques. But cloud
nvironments are dynamic in nature; therefore, it is essential that more
ynamic algorithms are incorporated in order to achieve breathtaking
esults in the cloud scheduling area. Contrariwise, static algorithms are
nly used when the workloads have a small variation. Thus, solving
he task scheduling problem [10,11] using deterministic methods is not
ractical. Meta-heuristic algorithms, being non-deterministic methods,
ave been offered to significantly solve this problem in a polynomial
eriod of time. 

Multiple benefits from dynamic task scheduling techniques and vir-
ualization technology can be leveraged by cloud service users and
roviders. Effective resource (task) scheduling not only reduces resource
onsumption (increases the resource utilization ratio) but also executes
ncoming tasks in minimum time (minimizes the makespan). Scheduling
f tasks has become of great importance due to the scarcity of resources
n cloud that might result from the ongoing increase in workloads at
loud datacentres. Hence, more research is needed in the nascent field
f cloud task scheduling in order to push for: a more efficient mapping of
ncoming tasks to available resources, as well as improving the Quality
f Service (QoS) parameters. The main aim of a novel scheduling tech-
ique is to evaluate the optimum set of resources available to execute
n incoming task such that a scheduling algorithm (scheduler) can then
e applied to optimize such diverse QOS parameters as cost, makespan,
calability, reliability, task rejection ratio, resource utilization, energy
onsumption, etc., and fulfill constraints, like deadline, budget, etc.,
iming at avoiding the problem of load imbalance (underutilization and
verutiliztion), while maintaining the Service Level Agreement (SLA). 

.1. Motivation behind the research 

Generally, current computer systems have two common schedul-
ng methods including exhaustive algorithms and Deterministic Algo-
ithms (DAs [12] ). DAs are faster for scheduling problems, so they are
uch preferable in practical terms than both traditional (exhaustive)

nd heuristic algorithms. However, DAs have two main disadvantages:
) they are developed not for all the data distributions, and ii) large-scale
cheduling problems cannot be tackled by most DAs. Unlike DAs and ex-
austive algorithms, meta-heuristic algorithms (or approximation algo-
ithms) find optimum solutions in a reasonable time by employing itera-
ive strategies. Meta-heuristic scheduling algorithms give better schedul-
ng results than traditional and heuristic ones as evidenced by numer-
us research results [13–15] . However, their primary interest is not
loud computing. Despite the successful application of many available
cheduling methods to diverse computing environments, like grid and
lustering computing [16] , as well as the potential direct use of some of
hese methods in cloud environments, they are not explicitly developed
or cloud. Thus, to the public, meta-heuristics may, at first glance, may
eem inappropriate as a scheduling choice for cloud tasks. Motivated by
his misbelief, this study not only introduces a systematical description
f scheduling methods in the cloud environment from a meta-heuristics
erspective, but also establishes a link between traditional/heuristic
cheduling techniques and meta-heuristic ones so as to enable cloud re-
earchers who remain passionate about traditional/heuristic scheduling
o easily shift to scheduling based on meta-heuristics. Here, it should
e pointed out that the goal of addressing both traditional and heuris-
2 
ic algorithms before debating modern heuristics (meta-heuristics) is to
acilitate the distinction between them. 

We have been also motivated by impulses stemming from peer sur-
eys in the previous literature. Task scheduling is a key aspect of cloud
omputing, which strives to maximize Virtual Machines’ (VMs’) utiliza-
ion while reducing the datacentres’ operational cost, which in turn re-
eals significant improvements in the QoS parameters and the overall
erformance. A large number of user requests can be properly handled
nd scheduled to suitable VMs with the help of a proper task schedul-
ng technique, which contributes to fulfilling the requirements of cloud
sers and service providers more efficiently. We closely examined many
eta-heuristic scheduling approaches in the literature, and it has been

ound that the application of those algorithms in cloud computing has
een triggered in a few prominent surveys [17–23] . The approach pro-
osed in each survey is described as per Table 1 . For example, some
eta-heuristic techniques for load balancing were briefly discussed and

ompared against each other based on one key parameter, makespan,
y Garg and Kumar [17] ; however, other general as well as survey pa-
ameters, like taxonomy, open issues, recent trends, etc., are not under-
aken in this work. On the other hand, only the QoS parameters and
he existing challenges of scheduling techniques in cloud environment
ere put forward by Singh et al. [24] . In a similar work, existing meta-
euristic scheduling algorithms were briefly summarized in a survey by
andhakumar and Ranjithprabhu [21] and Singh et al. [24] based on

he QoS parameters. Nevertheless, only a limited number of parame-
ers (e.g., year-wise analysis, state-of-the-art, QoS parameters, etc.) are
onsidered in all the aforementioned papers. Table 1 contains a few un-
ouched parameters. 

Moreover, in [18] and [20] , the survey techniques were improved
etter: taxonomy, graphical representation, and more QoS parameters
re considered; however, all parameters are not simultaneously ana-
yzed in the existing surveys as shown in Table 1 . Hence, the field of task
cheduling in the cloud is scarce for research and scrutinization. There-
ore, a comprehensive survey on task scheduling using meta-heuristics is
rgently needed, to be in line with the ongoing growing research in the
eld. As per Fig. 1 , meta-heuristics have rapidly evolved over the last
en years, thereby forming a strong trend in the cloud task scheduling
aradigm. In order to catch up with this growth, to the best of our knowl-
dge, a comprehensive, systematic, taxonomic review of meta-heuristic
cheduling approaches in the cloud is presented in this study. In addi-
ion, potential future trends are identified based on the existing research
hallenges faced by the selected approaches. 

.2. Our contributions 

Although meta-heuristic scheduling techniques have a significant ef-
ect on the cloud service; as far as we know, important techniques and
ackgrounds of the field are yet to be comprehensively and systemat-
cally reviewed. Accordingly, this study aims to examine and analyze
xisting cloud scheduling approaches with respect to the meta-heuristic
lgorithms and differentiate between the picked techniques in order to
nally give some pivotal issues that can be tackled in the future, along
ith some recommended emerging trends in the cloud scheduling area.

n order to make the rationale clearer, Fig. 2 is created to succinctly
escribe the structure of this study. Concisely, the present survey could
elp move the area forward by assisting young researchers and practi-
ioners to apply existing scheduling algorithms or approaches or to de-
ise new ones. This paper involves main focal points that can be summed
p as follows: 

1. Diverse existing well-known traditional, heuristic, and meta-
heuristic algorithms for task scheduling in cloud are examined and
analyzed, giving however a special emphasis to meta-heuristics. 

2. A novel classification scheme (taxonomy) as well as rigorous review
of up-to-date meta-heuristic scheduling techniques in cloud comput-
ing are presented. 
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Table 1 

Differentiating between present study and existing studies. 

Publication 

QoS-based 
comparative 
analysis 

Year-wise 
comparison 

State-of- 
the-art Taxonomy 

Graphical 
representations Open issues Future trends 

Comparison of 
simulation tools 

Garg and Kumar [17] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Kalra and Singh [18] ✗ ✗ 
√ √

✗ 
√

✗ ✗ 

Kaur and Chhabra [19] ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ 

Tsai and Rodrigues [20] ✗ ✗ 
√ √

✗ 
√

✗ ✗ 

Nandhakumar and 

Ranjithprabhu [21] 

√
✗ ✗ 

√
✗ ✗ ✗ 

√

Kapur [22] ✗ ✗ 
√ √

✗ ✗ ✗ ✗ 

Shishira et al. [23] ✗ ✗ 
√ √

✗ 
√

✗ ✗ 

Singh et al. [24] 
√

✗ 
√ √

✗ 
√

✗ ✗ 

Present study 
√ √ √ √ √ √ √ √

Fig. 1. Year-wise collected research papers on 
meta-heuristics based cloud task scheduling. 

Fig. 2. The structure of the study. 

 

 

 

 

 

 

 

 

3. Benefits and limitations/weaknesses of each state-of-the-art or
emerging meta-heuristic or hybrid scheduling approach are outlined.

4. The performance of existing approaches is assessed, based on quali-
tative QoS parameters-based metrics. 

5. Various simulation tools widely used in cloud are also presented and
compared. 
3 
6. Findings pertaining to the involved aspects are verified through an
in-depth analysis and discussions. 

7. Open issues are put forward, and future works suggested in previ-
ous researches are summarized, which might help draw a roadmap
for researches on current trends and potential future research
directions. 
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.3. Organization of the paper 

This paper is structured as: Section 2 provides a brief, albeit informa-
ive overview of the relevant literature as well as a comprehensive foun-
ation of the common resource management strategies in cloud. The
esearch methodology followed in this study is described in Section 3 ,
ncluding source of data, search criteria, study selection method, etc.
ection 4 begins with a brief introduction to traditional and heuris-
ic scheduling, followed by a taxonomy of well-known meta-heuristic
cheduling algorithms in cloud computing to interlate meta-heuristic
cheduling algorithms with their predecessors to reduce their learning
ffort, especially for those newbies to the field. A novel taxonomy of
eta-heuristic task scheduling techniques in cloud environments, along
ith their pros and cons, is introduced in Section 5 . Section 6 discusses
 comparison between simulation tools frequently used for evaluating
ovel cloud scheduling techniques. Thorough analysis and discussion of
he data-rich key findings of this review, along with its strengths and
imitations, is presented in Section 7 . Open issues and challenges as
ell as potential future trends on cloud scheduling are highlighted in
ections 8 and 9 , respectively. Finally, conclusion of the paper is drawn
n Section 10 . 

. Preliminaries 

.1. Related literature 

For several recent years, scheduling of tasks in cloud computing has
een a fertile research ground. Thus, there is an enormous number of
urveys and papers on solutions related to this area in the literature. In
hat follows, a few related works are discussed in two main respects:

) surveys that aim at exploring the updation on scheduling of cloud
asks based on meta-heuristics, and ii) seminal works by which the novel
axonomy introduced in this paper is inspired. It should be also pointed
ut that through in the following subsections, our taxonomy proposal is
lways being put to a peer with other taxonomies in the literature, in
rder to emphasize the distinction of this study, compared to others. 

.1.1. Relevant surveys 

In cloud environment, there is an ongoing much research as some
ritical research challenges are still overlooked, such as scheduling of
pplications, resource provisioning, load balancing, energy consump-
ion, etc. Research on task scheduling in cloud is still in its early stages,
o further improvements are needed. In this subsection, some review pa-
ers are discussed regarding meta-heuristic task scheduling techniques
seful for the present survey as well as relevant to our research. Al-
hough this section discusses the related survey papers in the task
cheduling domain, these surveys neither consider nor classify the vast
ajority of meta-heuristic scheduling techniques. Most of them either

ddress the meta-heuristic techniques subsidiarily or undertake a lim-
ted category of them (i.e., nature-inspired or bio-inspired). 

A cloud resource broker (scheduler) operates as an intermediary be-
ween the provider and users of the cloud service. It significantly helps
ackle the portability and interoperability challenges that hinder shar-
ng resources among interconnected clouds in cloud computing. In a
omprehensive manner, Chauhan et al. [25] analyzed diverse cloud bro-
ering techniques by presenting them in the form of a taxonomy, high-
ighting their strengths and weaknesses/limitations including trust tech-
iques, optimization, QoS parameters, pricing, and multi-criteria. These
echniques are evaluated by measuring different performance metrics.
he goal of measuring such typical metrics is similar to our goal in this
aper; however, they neither consider meta-heuristic techniques nor de-
ne a rigorous taxonomy that can include diverse scheduling problems

n clouds. 
In [26] , an extensive review of various meta-heuristic approaches

as introduced, where optimal load balancing solutions are presented
y these approaches in both grid and cloud systems. Furthermore, these
4 
echniques mainly focus on makespan, waiting time, and response time,
s well as factors of energy consumption and carbon emitting. How-
ver, this study does not trigger really major issues in cloud computing,
ike server consolidation, energy management, VM migration, resource
cheduling, SLA, etc. Moreover, no general or formal taxonomy is de-
ned in [26] . 

Finally, there are many other relevant surveys, each considering only
 certain aspect of meta-heuristic scheduling techniques in cloud. For
nstance, a literature review of swarm intelligence based scheduling so-
utions in cloud computing is found in [27] , while a survey of PSO-
ased scheduling approaches in cloud computing was conducted in [28] ,
hich also lack comprehensiveness. 

.1.2. Inspirational taxonomies 

In fact, the novel taxonomy proposed in this study is broadly or-
anized into three parts: one categorizes existing well-known meta-
euristic algorithms widely applied to cloud scheduling problem into
warm, evolutionary, physical, emerging, and hybrid algorithms, as
er Section 4 ; while the second part describes diverse meta-heuristic
cheduling approaches in cloud computing in terms of the nature of
cheduling problem (i.e., single- or multi-objective), the primary objec-
ive of scheduling (QoS parameters), the task-resource mapping scheme,
nd the scheduling constraint; finally, existing open challenges as well
s potential future research in cloud computing are inferred in the third
art, in order to shape the direction to improving task scheduling in
louds based on meta-heuristic optimization algorithms. 

Regarding the taxonomy of meta-heuristic scheduling approaches in
ection 5 , it is mainly inspired by the scheduling theory introduced
n [29] and reviewed in a few books [30,31] . A scheduling problem
hould, according to this theory, be defined in terms of the operational
odel, the optimality criterion, the resource allocation mechanism, and
igh-quality constraints. Our categories, respectively, the scheduling
roblem, QoS requirements, resource allocation criteria, and schedul-
ng constraints are triggered by this idea. These notations are existing
or decades now, in order to tackle deterministic scheduling problems
32] ; however, the application of these notations to scheduling problems
n modern cloud computing systems is difficult and unnatural because,
n these systems, the important features that fully characterize schedul-
ng problems cannot be modelled using these notations. Some examples
f such features are scheduling level, workload source and structure,
esource scaling and sharing, and the adaptability requirement. 

Thus, our taxonomy has been undergone further enhancement,
riven by the taxonomy defined in [33] to maintain the general purpose
f cloud computing systems by emphasizing the innovative scheduling
olutions. The main reason behind refining that taxonomy is that over
he last thirty years, current applications and their environments be-
ome significantly more complex. In addition, the taxonomy in [33] has
een extended in our work into four aspects. First, the notion of sin-
le and multi-objective assignments is introduced, which is indeed of
uch importance, especially with the existence of both limited resources

nd scalability issues. Second, Thakur and Goraya [33] considered more
eneralized techniques: i) swarm-based, ii) evolution-based, and iii)
tatistics-based algorithms, which are adopted to collect and analyze
eedback statistical data about energy consumption, resource utilization,
erformance, etc., for optimal distribution of the workload. In our work,
he techniques i) and ii) have been replaced by other respects which are
ocusing more both on task-resource mapping schemes and scheduling
onstraints. However, we have found that those aspects are important
nd should be further deepened to include artificial intelligence-based
cheduling methods and other kinds of prediction-based resource allo-
ation as well. Due to its scarcity in cloud task scheduling applications,
he technique iii) has been omitted, addressing rather physics-based
pproaches. To be mentioned, the differentiation between sub-optimal
i.e., heuristic, meta-heuristic, etc.) and approximate (i.e., traditional)
olutions, which was covered in [33] , has not been addressed in our
tudy, for the sake of simplicity. 
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Fig. 3. Resource management in cloud environment. 
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Finally, the last part of our broad taxonomy meant for the descrip-
ion of open challenges and recent research directions is identified as
er Sections 8 and 9 , inspired by the taxonomy proposed by Sing and
hana [34] . In their research, 110 research papers from the existing lit-
rature were studied, and only 71 out of them were recognized as the
ost relevant papers to scheduling techniques in cloud computing. In

his study, various ways including the classification of resources as well
s tracking the evolution of task scheduling were adopted to examine the
onsequences. As per the research questions, the results were analyzed
ased on a detailed classification of the task scheduling techniques, their
ubtypes, their usage ratios, as well as the desired QoS requirements.
oreover, comparisons of task scheduling algorithms, task scheduling

ools, and resource distribution policies were conducted. Moreover, ex-
sting research work is summarized in a systematic manner, and a broad
ethodical literature analysis is provided on the cloud area with regard

o resource allocation in general and resource scheduling in particular,
iming to reveal the vigorous research gaps to be bridged in future re-
earch. However, the taxonomy proposed in this study is too broad and
orked, which requires more time and concentration from readers to au-
it about the involved existing challenges and their potential solutions.
herefore, our suggested taxonomy in this regard is defined to be more
imple, specific, and well-organized to categorise and summarize exist-
ng task scheduling problems and their potential solutions. 

.1.3. Related taxonomies 

Over the last ten years, researchers and scholars proposed many dif-
erent, sometimes overlapping taxonomies, each targeting a specific as-
ect of cloud computing. Cloud task scheduling was addressed in some
articular taxonomies based on nature-inspired techniques [35,36] , bio-
nspired techniques [37,38] , QoS parameters-based techniques [39,40] ,
nd cost optimization techniques [41] . There is a common problem in
hese taxonomies; that is, they lack more generalization or comprehen-
iveness of scheduling techniques in cloud computing systems. To the
est of our knowledge, there is no existing taxonomy that may include
iverse meta-heuristic scheduling techniques available in the literature.
oreover, the aforementioned taxonomies were proposed specifically

o survey the state-of-the-art; however, their authors did not manage to
nclude related scheduling techniques. To say the least, no comprehen-
ive type of taxonomy is existing in the literature to describe diverse
cheduling techniques in the cloud clearly, rigorously too. 

In [42] , a comparative review, taxonomy, and comprehensive survey
f cloud workflow scheduling techniques were conducted in a problem-
olution manner. Some research directions were also highlighted in this
tudy for future further investigation. In this research work, the schedul-
ng problem is surveyed in three dimensions: robust, elastic, and eco-
omic scheduling, thus ignoring some vital QoS parameters, such as
akespan, energy consumption, security, etc. Moreover, the limitations

f the involved scheduling techniques are not addressed in this study. 
In a study [43] , scheduling problems and solutions were presented

n a generalized taxonomy of distributed systems. This taxonomy is spe-
ially designed to classify 109 scheduling problems along with their so-
utions. The features of a taxonomy are utilized to further cluster those
09 problems into ten groups. The taxonomy proposed in this study aims
o minimize redundant efforts from the researchers by increasing new
esearch visibility based on the prior art. However, there are still several
hallenges and limitations omitted. For example, imprecise estimation
f resource requirements may not be tolerated by existing management
olicies, calling for managing to propose new trade-offs between the
ptimality of a policy and its ability to handle insufficient information
bout incoming workloads [44] . 

In another research work by [45] , 91 papers on scheduling algo-
ithms were reviewed, 23 out of which are discussing meta-heuristic
pproaches. Various issues, like QoS parameters-based allocation tech-
iques, static and dynamic allocation strategy, etc., are discussed in this
ork based on meta-heuristic algorithms. Broader, systematic compari-
5 
on between diverse meta-heuristic algorithms as well as a comprehen-
ive review of them could be beneficial as well. 

A taxonomy of existing research into maintaining cloud resources
or optimizing the execution of Bag-of-Task (BoT) applications was pre-
ented in [46] . There are multiple independent tasks in BoT applications,
ach executed in any order on a VM. Both the commercial organiza-
ions and scientific communities frequently use this type of application.
ndeed, our taxonomy does not explicitly model the requirements to op-
rate this optimization task. When necessary, a special taxonomy must
e developed to act as a complement. However, our taxonomy alludes
o BoT operations by means of elasticity and scalability metrics, which
s very helpful for identifying scheduling problems which might need
urther resources. 

Finally, other different taxonomies were presented, in which the en-
ire spectrum of scheduling techniques is not fully covered. For exam-
le, [35] presented a qualitative review of all techniques included, con-
idering the key methods, the main goal, advantages, and limitations.
hese taxonomies involve a comparison between nature-inspired algo-
ithms using their features to quantify their level of energy efficiency
nd utilization of resources, two similarities to our taxonomy. Another
loud-related taxonomy was depicted in [39] in order to present the
cheduling solutions by classifying them based on only one of two al-
ernatives: QoS-constrained or best-effort. QoS-constrained scheduling
n [39] aims to minimize makespan under QoS constraints, like secu-
ity, load balancing, etc., while best-effort refers to solutions that target
he minimization of makespan and cost without considering other con-
traints or goals. Similar terms are used in our taxonomy to characterize
he scheduling solutions. Moreover, in the taxonomy proposed by [37] ,
he solutions are characterized as being bio-inspired. While an expanded
et of technique types is covered in our taxonomy with a higher rigor-
usness. 

.2. Resource management strategies 

As shown in Fig. 3 , different resource management strategies in
louds can be grouped into two basic paradigms: resource provision-
ng and resource scheduling [47] . Resource scheduling is further cate-
orized as per resource allocation, load balancing, resource monitoring,
nd resource mapping. In the following, the basic idea behind resource
rovisioning techniques is first discussed since, in the cloud comput-
ng paradigm, they came prior to scheduling techniques. Thereafter, the
asic concepts of scheduling techniques are taken up, along with the
orresponding motivations. 

.2.1. Resource provisioning 

Resource provisioning is defined as the act of allocating virtualized
esources to users. When a user’s request for resources is accepted by
he cloud service provider, a convenient number of VMs is created and
llocated, as per demand, to that user using a resource provisioning tech-
ique. Moreover, it is the main responsibility of resource provisioning
o ensure the fulfilment of the SLA negotiations and users’ needs based
n QoS requirements as well as map the incoming workloads or appli-
ations (cloudlets) to resources (VMs) [48] . 

Resource provisioning mainly aims to estimate the scale of an up-
oming workload/application request (demand) in order to select the
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Fig. 4. Resource provisioning plans. 
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est resources for the submitted user and allocate them to the that work-
oad. In other words, incoming tasks/applications should be served with
s minimum amount of resources as possible while maintaining a de-
irable QoS level (maximum resource utilization). Incoming request is
apped to running VMs using a resource provisioning approach so that

he services can be handled in minimum time and at the lowest cost
maximum throughput and maximum savings) while the highest profit
s generated to the service provider, without violating the SLA, too [49] .
s shown in Fig. 4 , resource provisioning techniques are majorly pro-
ided to the cloud consumers in three basic forms: 

• On-demand provisioning: It allows users to pay per resources be-
ing used based on an intermediate level plan; that is, at a given time
𝑡, if the demand for available cloud resources transcends a specified
value, then on-demand resource provisioning is evoked for provid-
ing additional resources. On-demand plan can be also used to solve
the underprovisioning problem through carving out more resources
at an additional cost. In general, allocating on-demand additional
resources requires more cost than allocating advance-reserved re-
sources to users [50] . 

• Advance reservation: On the basis of a long-term plan, this mecha-
nism enables the cloud users to pre-reserve resources for a specified
period of time. This scheme is very useful for both the Elastic Com-
pute cloud (EC2) and the federated cloud; however, it has some chal-
lenging issues including prediction of future demand and prices of
cloud resources. The underprovisioning and overprovisioning types
of problem might also arise in this approach [51] . 

• Spot instances: On the basis of a short-term plan, this mechanism
allows customers to tender unused resources based on the Amazon’s
third plan in which unused resources are offered as spot instances at
a much lower cost than on-demand provisioning and advance reser-
vation. Amazon Web Services (AWS), Google Cloud, and Microsoft
Azure, being the major cloud service providers, make this scheme
available to users. The main demerit of spot instance techniques is
the frequent variation of resources price rate based on supply and
demand [52] . 

Advantages of cloud resource provisioning: Resource provisioning
rings about numerous favors to the cloud, some of which are high-
ighted below [53] : 
6 
• Efficient resource provisioning techniques reduce makespan time
and response time for submitted workloads. 

• The issues of overprovisioning and underprovisioning can be re-
duced through the optimized utilization of resources. 

• Better resource provisioning can be brought to cloud environments
through reducing VMs’ startup delay. 

• Both the robustness and fault tolerance capabilities can be brought
using effective cloud resource provisioning algorithms. 

• Power consumption can be also reduced using a resource provision-
ing algorithm without violating the SLA. 

.2.2. Resource scheduling 

Scheduling is the art of analyzing the required QoS parameters with
he aim to determine which activity should be performed. In clouds,
cheduling is responsible for: i) selecting the most optimal VM to execute
 task using a heuristic/meta-heuristic algorithm, and ii) ensuring the
ulfillment of QoS constraints. In general, there are two ways of resource
task) scheduling. The first method is “on-demand scheduling ” in which
he resources are quickly provided for random workloads by cloud ser-
ice providers. In this manner, the problem of workload dispersal may
e raised (i.e., a single VM might process multiple tasks at a time). Con-
equently, performance degradation might be encountered, leading to
he overprovisioning sort of problem. “Long-term reservation ” is the sec-
nd method in which the underprovisioning type of problem might oc-
ur due to the ideal circumstance posed as a result of providing a larger
umber of VMs. Unnecessary wastage of time and resources might raise
he overprovisioning and underprovisioning problems that in turn in-
rease the cost of services. To handle this sort of problem, an efficient
esource provisioning technique is required to efficiently analyze and
chedule the submitted workloads. Fig. 5 depicts the process of Resource
rovisioning with Scheduling (RPS) [53] . 

The overall aim of RPS is to provision the VMs to users in such a way
hat: i) fulfills the cloud consumers’ demand without violating the SLA,
nd ii) enhances the proactive understanding of the expectations and re-
uirements of those consumers based on the size of incoming workloads.
s shown in Fig. 5 , after a proper analysis of incoming workloads, an SLA
ommitment is concluded between the service provider and the cloud
onsumer. For each workload, the required QoS parameters are iden-
ified to calculate the Fitness Function (FF QoS ) which is self-compared
n the case that QoS parameters are not considered (FF non-QoS ). After
hat, the condition is checked (assuming a minimization problem): if
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Fig. 5. Provisioning and scheduling of cloud resources. 

Fig. 6. Different strategies of scheduling in clouds. 
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he FF QoS value is less than the FF non-QoS value, then the provisioning
rocess is performed; otherwise, the workload is analyzed again after
he cloud consumer resubmits the SLA through renegotiation. 

As shown in Fig. 5 , if the resource provisioning process is success-
ully completed, a scheduling algorithm is adopted for processing the
ncoming workload within a predefined deadline and/or budget. The
oad at each resource is estimated regularly through monitoring the run-
ing resources (VMs) before making a mapping (scheduling) decision of
ncoming tasks/applications (workload) to those resources. If a VM be-
omes overutilized, then its resources are temporarily excluded from any
uture allocation. Incoming workload is mapped to available resources
nd the condition if a running VM has the capability or not to execute
he workload is tested. Based on that, the resources are allocated to the
orkload if the running resources are sufficient, and the QoS require-
ents are then evaluated; otherwise, the horizontal scalability theory is

pplied in order to extend the available resources. 
Based on the concepts of provisioning and scheduling of cloud re-

ources, various research papers (year-wise) in this regard were col-
ected to be reviewed in this study. Cloud computing has various types of
cheduling algorithms that can be categorized in terms of: static and dy-
amic, user level and system level, online and offline (batch mode), pre-
mptive and non-preemptive, etc. However, scheduling algorithms are
ainly divided into two classes: static and dynamic. Various scheduling

trategies in clouds are outlined in Fig. 6 . 

• Static and dynamic scheduling: Static scheduling algorithms re-
quire advance information about incoming tasks (i.e., task count,
task length, task deadline, etc.) and available resources (memory,
processing power, node processing capacity, etc.). Static algorithms
7 
perform better when the workload is not varying frequently and the
variation in system behavior is very little. In cloud environment,
load fluctuates constantly; so static algorithms are arguably inade-
quate for cloud computing. To implement a static algorithm is very
easy; however, in these type of algorithm, the QoS parameters are
not duly optimized, as well as high performance can be absent in
the real environment [54] . Therefore, the cloud environment was
in need of new convenient dynamic scheduling algorithms. First In
First Out (FIFO [55] ), Shortest Job First (SJF [56] ), Round Robin
(RR [57] ), etc., are a few examples of static algorithms. Contrari-
wise, dynamic algorithms need no advance information about the
node (VM) and task; however, the node requires continuous mon-
itoring. In cloud environment, these algorithms are more accurate,
efficient, and suitable as when any node becomes overloaded, the
task being executed on this node can be then consciously transferred
to an underloaded node (i.e., as the load changes at a node, whether
it increases or decreases, the algorithm behavior changes dramati-
cally) [58] . Dynamic RR [59] , Clustering Based Heterogeneity with
Duplication (CBHD [60] ), Heterogeneous Earliest Finish Time (HEFT
[61] ), Weighted Least Connection (WLC [62] ), and meta-heuristics
like Ant Colony Optimization (ACO [63] ), Particle Swarm Optimiza-
tion (PSO [64,65] ), etc., are a few examples of dynamic schedul-
ing algorithms widely applied in cloud environments. As shown in
Table 2 , both static and dynamic algorithms have their valuable ad-
vantages as well as some unavoidable disadvantages. As per the lit-
erature, dynamic task scheduling algorithm is highly recommended
for cloud environment due to the frequently oscillating nature of
workloads and system behavior in cloud computing. Hence, dynamic
algorithms, including meta-heuristics, can effectively help imple-
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Table 2 

Comparisons between static and dynamic algorithms. 

Comparison Static algorithms Dynamic algorithms 

Need an advance information 

about the incoming 

requests/tasks? 

Yes No 

When a scheduling decision is 

made? 

At compile time At runtime 

How complexity is the 

implementation? 

Low High 

Achieve optimal results for 

large-scale optimization 

scenarios? 

No Possible 

How long time needed for solving 

computational problems? 

Long time Short time 

Which types of algorithms come 

under both types? 

Traditional 

algorithms 

Meta-heuristic 

algorithms 

Finding out an optimal solution 

for multi-objective problems? 

Difficult Easy 

Which workload type is adequate? Static workload Dynamic workload 

Efficient workload balancing on 

the running VMs (nodes)? 

No Potential 

Continuous monitoring of nodes? No Yes 
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ment approximate solutions to NP-hard problems such as cloud task
scheduling. 

• User level and system level scheduling: In user level schedul-
ing, the problem of service provisioning between service providers
and consumers is tackled by the scheduler, which shows a high ef-
ficiency, especially when market-oriented virtualized resources are
delivered as a service to users. On the other hand in system level
scheduling, the resource management is taken up by the datacentres,
that in turn impacts the performance of the datacentre appreciably.

• Online (immediate) and offline (batch) scheduling: With regard
to online scheduling, the scheduler maps the customer request to
running VMs such that the scheduling process is kept stable over
time by performing a single scheduling for each task at a time. Mini-
mum Completion Time (MCT [66] ), Minimum Execution Time (MET
[67] ), Opportunistic Load Balancing (OLB [68] ), etc., are a few ex-
amples of online-mode scheduling algorithms. As for offline schedul-
ing that is also called batch mode scheduling, resources are allocated
in response to incoming application request, based on predefined
moments, which is very useful for rapid calculation of the process-
ing time when there is a larger number of incoming tasks. Min-Min
[69] , Max-Min [70] , etc., are a few examples of batch-mode schedul-
ing algorithms. 

• Preemptive and non-preemptive scheduling: With regard to the
preemptive scheduling, the tasks currently being executed could be
interrupted and consequently are properly migrated to other free re-
sources. While in non-preemptive scheduling, cloud resources cur-
rently allocated to a task can be only released when the task exe-
cution is successfully completed (i.e., task execution happens com-
pletely at the resource without interruption). In clouds, one resource
is used at a time to execute only one task (i.e., the referred interrup-
tion will never occur while executing tasks in cloud environments)
[71] . 

• Centralized and distributed scheduling: In centralized schedul-
ing, all tasks are gathered by a master processor unit and then are
sent to slave processing units where every processor takes over a
single dispatch queue [72] . On the other hand, there is no central
control unit in distributed scheduling as local schedulers are respon-
sible for: handling the incoming requests, as well as maintaining the
status of all other processors by continuously sharing updates with
them [73] . 

• Cooperative and non-cooperative scheduling: In cooperative
scheduling, all processors achieve their common goal through col-
laboration when making a scheduling decision [74] ; that is, a coop-
8 
erative scheduler uses a system tick created by a periodic timer to
schedule tasks which are later in executed sequentially through the
synergy of processors. In non-cooperative scheduling, every individ-
ual processor makes its decision independently while other proces-
sors are not affected or ever alerted [74] . 

Need for scheduling: Scheduling mainly aims to handle end-users’ in-
oming requests by finding out the best cloud resources that should im-
rove both the resource utilization rate and key performance parame-
ers (QoS parameters) [34] . Cloud computing has diverse performance
ndicators, like makespan, monetary cost, execution cost, response time,
nergy consumption, reliability, etc. An efficient task scheduling algo-
ithm must be used to analyze and improve these parameters in order to
ulfill the requirements of both end-users and service providers without
iolating the SLA. Existing scheduling algorithms cannot resolve such
roblems due to obstacles, such as dispersion of resources, dynamism,
nd heterogeneity. Thus, a scheduling algorithm is needed for equitable
nd proper distribution of heterogeneous workloads across VMs based
n the capacity of resources, with the overall aim to overcome the poten-
ial problems of overloading and underloading in cloud task scheduling.

. Research methodology 

For a deeper understanding of task scheduling techniques based on
eta-heuristics, this section presents a rigorous literature survey as well

s research guidelines on collecting meta-heuristics based cloud schedul-
ng approaches whose objective is to optimize QoS parameters in ac-
ordance with cloud consumers’ requirements. As per the survey [47] ,
ources of data, search strategy, research questions, and study selection
ethod should be thoroughly considered for creating an efficient re-

earch methodology more oriented to cloud task scheduling. Here, it
hould be mentioned that the systematic process followed in this study
s to provide researchers with more transparency in the cloud area as
ell as to facilitate the potential development of new algorithms for

cheduling of applications in cloud environments. 

.1. Sources of data 

A variety of reputed scientific databases have been inspected, includ-
ng Scopus, Web of Science (WoS), IEEE Xplore, ACM Digital Library,
pringer Link, Google Scholar, etc., and many useful, relevant research
apers were subsequently found regarding meta-heuristic scheduling
echniques in the field of cloud computing. Moreover, a list of differ-
nt research questions, along with the motivations behind them, is il-
ustrated in Table 3 , which was eventually answered by first defining
he primary studies, then applying the inclusion/exclusion criteria, and
valuating the results at the end, which is explained, in detail, through
n the following subsections. 

.2. Search strategy 

Our research started in January 2020 and research papers related to
eta-heuristic scheduling techniques in clouds were explored using a

ombination of main keywords, like meta-heuristics, meta-heuristic op-
imization, and cloud, with other keywords, such as resource scheduling,
esource allocation, task scheduling, workflow scheduling, load balanc-
ng, SLA-based scheduling, QoS parameters-based scheduling, single-,
nd multi-objective scheduling techniques in cloud computing. After ex-
ensive tests, we finally decided on the following search query, by which
 plenty of relevant quantitative and qualitative research studies have
een discovered: 

• (( “task scheduling ” OR “resource scheduling ”) AND ( “meta-heuristic
optimization ” OR “meta-heuristics ”) AND ( “cloud ” OR “cloud com-
puting ”)). 

Indeed, basic research into the scheduling issue in clouds has ac-
ually started in 2005, but after the mid of 2008, unruly development
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Table 3 

Research questions and motivations. 

No. Question Motivation 

RQ1 How much progress is task scheduling based on meta-heuristics? Cloud computing has lots of proposed meta-heuristic scheduling algorithms 

which are reported in the introduction, preliminaries, and taxonomy parts 

of this paper. 

RQ2 How meta-heuristics differ from traditional and heuristic algorithms? Meta-heuristics are characterized by distinctive characteristics in 

performance and accuracy over traditional and heuristic algorithms, as per 

Section 4 . 

RQ3 How the time and cost parameters are optimized at the same time, 

with the existence of deadline or budget as a constraint? 

Both the time and cost parameters are difficult to optimize simultaneously. 

RQ4 What is the best workload-VM allocation scheme to overcome the 

issues of overloading and underloading? 

Meta-heuristic scheduling algorithms are divided in the present study into 

four broad categories, taking a variety of aspects into account (e.g., nature 

of the scheduling problem, primary scheduling objective, task-resource 

mapping scheme, and the scheduling constraint). 

RQ5 How to implement an efficient meta-heuristic task scheduling 

approach for improving user-defined QoS parameters? 

Scheduling criteria and their success to properly optimize QoS parameters 

are used as a strong performance metric to diagnose different scheduling 

algorithms, revealing as well some open research challenges that would 

promote potential future research. 

RQ6 Why meta-heuristics are a preferred choice for task scheduling in 

cloud environment? 

RQ7 How the main QoS parameters are effectively optimized using the 

existent meta-heuristic task scheduling algorithms? 

RQ8 How the SLA changes with respect to time? It is crucial to determine the extent to which the QoS parameters are 

fulfilled and cloud resources are sufficient, when executing different 

applications. 

RQ9 What are the QoS parameters and resources most concerned with in 

the cloud task scheduling area? 

RQ10 Which meta-heuristic techniques can accomplish the task scheduling 

process most efficiently? 

This study mainly aims to acknowledge the effective role that each 

meta-heuristic approach in the litterateur has played to improve cloud 

task scheduling, based on analysis and discussion. 

RQ11 What is the simulation tool widely used for performing task 

scheduling experiments in cloud computing? 

The cloud computing field is supported with numerous versatile simulation 

tools used for performing the experiments. 

RQ12 Which research gaps are still unaddressed in meta-heuristic task 

scheduling approaches? 

One of the major aims of this review is to help researchers understand 

deeply both the current open issues and future requirements regarding 

task scheduling in cloud computing. 

RQ13 What are the current trends on meta-heuristics based scheduling 

most accessed and exciting for future research? 

The majority of current research is geared towards green computing and 

other promising trends in the field. 
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Table 4 

Inclusion/exclusion criteria to select the papers. 

Inclusion criteria Exclusion criteria 

Task scheduling in cloud computing 

is mainly addressed in the 

selected study. 

Other resource management issues 

are not fully considered in the 

selected study. 

At least one meta-heuristic 

technique for task scheduling is 

considered in the selected study. 

The selected study does not consider 

meta-heuristic techniques at all. 

The language of the selected study 

is English only. 

The language of the selected study is 

not English. 

The selected study is published in 

scholarly society as well as 

peer-reviewed. 

The selected study is not subject to a 

peer-review, like technical reports, 

descriptions, and workshops. 

Publication of the selected study is 

within a well-reputed conference 

or journal. 

Publication of the selected study is 

not in the form of books, abstracts, 

articles, keynotes, or editorials. 

i  

w  

p  

a  

h  

r  

l  

n  

a  

p
 

i  

r  

i  

c  
as taken place. Therefore, the search window was selected within the
eriod from 2011 to 2020 for spotting the relevant papers on meta-
euristic based scheduling of applications, keeping in mind that the
ollected research papers are published in reputed journals and con-
erences (e.g., IEEE, Springer, Elsevier, ACM, Inderscience, etc.). In this
ork, a quick search strategy was applied where lots of recently pub-

ished papers (2017-2020) are emphasized in order to make the study
ell-intentioned and up-to-date for the cloud research community. After

hat, publications from 2011 to 2020 were considered as overall. 

.3. Research questions and their motivations 

Research Questions (RQs) adopted in this study and pertaining to
eta-heuristics based task scheduling approaches in clouds, along with

he corresponding motivations, are outlined in Table 3 . 

.4. Study selection procedure 

As shown in Fig. 7 , the study selection criteria followed in this study
as executed by going through several reputed journals hosted by IEEE,
lsevier, Springer, Wiley, etc., and collecting various research papers
y using the keywords aforementioned in Section 3.2 . Primarily, after
eading the title of the articles, most research papers were excluded
ecause their titles are not conforming to our present survey. After that,
nvestigating their abstracts and conclusions, some research papers were
lso omitted. 

As per Fig. 7 , initially, 761 research papers were collected, but based
n the criteria identified and after a purposeful study, most articles were
creened out. All remaining papers (254) were undergone further anal-
sis, and full body of some articles were found irrelevant to our main
opic; therefore, they were also excluded. Keywords mentioned above
9 
n Section 3.2 as well as inclusion/exclusion criteria defined in Table 4
ere used to investigate the selected papers and finally, 71 research pa-
ers were settled on for our survey as shown in Fig. 7 . In fact, there
re many available pertinent research papers in the literature of meta-
euristics based cloud task scheduling; however, selected papers in this
esearch were carefully picked from within various reputed publishers,
ike Springer (conferences and journals), Elsevier (conferences and jour-
als), IEEE (conferences, journals, and transactions), ACM (conferences
nd journals), Inderscience (journals), etc., from 2011 to 2020, as de-
icted in Fig. 1 . 

All the collected papers were closely analyzed as shown in Fig. 1 , and
t has been found that most papers are published after 2012. Fig. 1 also
eveals the number of selected papers, in which an exponential growth
n research is significantly observed in the field of meta-heuristics based
loud task scheduling from 2013 to 2020. It is also noticed that the
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Fig. 7. Study selection process. 
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ajority of these papers are published in IEEE and Springer as illustrated
n Fig. 1 . 

. Categorization of cloud task scheduling schemes 

.1. Traditional scheduling 

So-called task scheduling can be expressed as a problem in which
 given set of 𝑛 tasks { 𝑇 1 , 𝑇 2 , … , 𝑇 𝑛 } are to be assigned to a range of
vailable 𝑚 machines { 𝑀 1 , 𝑀 2 , … , 𝑀 𝑚 } , on which those tasks will run,
aking into account the optimization of one or more predefined objec-
ive functions or measures. On the one hand, when 𝑚 = 1 , (i.e., one
nd only one machine exists), the scheduling problem is then called
 single-processor (single machine) scheduling problem. On the other
and, when 𝑚 > 1 , (i.e., more than one machine exists), the schedul-
ng problem is called a multi-processor (parallel machine) scheduling
roblem. For evaluating the performance of different scheduling algo-
ithms, their variants as well as multiple objective functions includ-
ng makespan, flowtime, tardiness, and lateness, have been widely ap-
lied in the scheduling community. For further measurement methods,
1] and [10] are two helpful citations to readers. 

To make the idea more concrete, a simple example is illustrated in
ig. 8 where a set of six tasks is given and the results of their allocation
o both a single and parallel machine are revealed, along with the com-
letion time ( 𝑐 𝑗 ) and due day ( 𝑑 𝑗 ) of each task as shown in Fig. 8 (a).
peaking of a single-processor (single machine), Fig. 8 (b) shows the re-
ults; that is, in the case that 𝑚 = 1 and 𝑛 = 6 , if makespan is defined as
he objective function, then the solution (1 , 6 , 5 , 2 , 4 , 3) gives a comple-
ion time 𝑐 max = 12 ; otherwise, if the objective function is reformulated
o indicate (represent) the number of tardy/late tasks (jobs that did not
eet their due time), then 𝑈 𝑡𝑜𝑡 = 1 for the same solution. In the case of
arallel machines, Fig. 8 (c) gives the results where, if the objective func-
ion of makespan is adopted while 𝑚 = 2 , then the solution (1 , 6 , 5 , 2 , 4 , 3)
ives 𝑐 = 7 . However, Fig. 9 (a) reveals that more improvement in 𝑐 
max max 

10 
s possible, saying that the total completion time ( 𝑐 𝑗 ) of all the incoming
asks ( 𝑛 ) is 12 and 𝑚 = 2 , a potential 𝑐 max is equal to ( 12∕2 = 6 ). Based
n the adjustments of the combinations ( 𝑇 4 and 𝑇 3 ) attempted by most
tudies on the critical path ( 𝑇 1 , 𝑇 4 , and 𝑇 3 ) [75] , Fig. 9 (b) gives an exam-
le that illustrates a more potential reduction in 𝑐 max from 7 to 6. These
iverse scenarios emphasizes that a given problem can be made to con-
orm to any case in question by adapting the given objective function
nd constraints. 

Many problem domains are widely applying the scheduling
aradigm. In terms of traditional scheduling, a taxonomy of problems
as technically presented in several studies [3,76,77] with respect to

he features of tasks (i.e., weight, due date, release date, and process-
ng time), machines (i.e., single or multiple), as well as many other de-
ails, such as online vs. offline, batch vs. non-batch, precedence vs. non-
recedence, sequence-dependent vs. sequence-independent, preemption
s. non-preemption, etc. Typically, scheduling problems are differen-
iated and described by employing these constraints. All scheduling
roblems addressed in [77] were presented based on a three-fold no-
ation, 𝛼∕ 𝛽∕ 𝛾. In this notation, the machine type is described by 𝛼
i.e., single or parallel machine), the processing characteristics and con-
traints are determined by 𝛽 (i.e., sequence-dependent or sequence-
ndependent), and finally, the value of measures is referred to by

(e.g., makespan or number of late jobs). In [76] , scheduling was
lassified based on the length of scheduling time into several levels:
hort-range, middle-range, long-range planning/scheduling, and reac-
ive control/scheduling. Furthermore, in [1] , a large amount of de-
ails about traditional scheduling algorithms are presented in a com-
rehensive survey replete with constructive comments from various
erspectives. 

.2. Heuristic scheduling 

Here, we do not need to be reminded that the main purpose of this
tudy is to address meta-heuristic scheduling algorithms in cloud com-
uting. However, it would be so helpful if we delve a bit deeper into
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Fig. 8. Illustration of how to allocate a set of submitted tasks to a range of available machines. 

Fig. 9. Explanation of how to enhance the 
scheduling results shown in Fig. 8 (c). 
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he root algorithms: heuristics. Heuristic algorithms depend on the na-
ure of the problem and perform very well with certain problems while
resent low performance with others. Usually, an exact solution is pro-
ided by heuristics in an acceptable time with a specific kind of prob-
em; however, they stumble in regard to hard optimization problems. In
loud environments, lots of heuristic algorithms have been proposed to
olve the scheduling problems concerning workflow and independent
asks/applications. By observing the prime keywords in each selected
rticle, some of the mainstream heuristic algorithms that have proven
hemselves in cloud computing are profoundly distinguishable, as per
able 5 , into different categories, such as Min-Min [78] , Max-Min [78] ,
irst Come First Serve (FCFS [79] ), Heterogeneous Earliest Finish Time
HEFT [61] ), Shortest Job First (SJF [80] ), Round Robin (RR [81] ), Min-
mum Completion Time (MCT [66] ), and Sufferage [82] : 

• Min-Min is a basic heuristic algorithm in which the task (shortest
task) that will be executed within the minimal time is picked out of
all the submitted tasks and mapped to a VM that will spend minimum
completion time. This process continues until all tasks are success-
fully scheduled, thereby increasing the total makespan as the com-
pletion time of each individual task increases. This approach handles
small tasks fluently, and large tasks have to wait until smaller ones
are executed first. The overall system throughput is highly improved
with this algorithm; however, the starvation problem might occur on
heavy tasks. 

• Max-Min is a bit like Min-Min, but in Max-Min, the longest task is
chosen firstly and assigned to the most appropriate VM that should,
among all the available VMs, execute the task within the minimum
completion time. Compared to Min-Min, in Max-Min, the throughput
is higher while makespan is less. 

• FCFS assigns the incoming task based on its arrival time. It assigns
the task whenever it arrives, to available resources, thus reducing
the complexity and waiting time. 

• HEFT is basically a list-based scheduling heuristic in which a task-
priority list is firstly built so that optimal allocation decisions are
then made locally for each task based on the task’s estimated com-
pletion time. 

• SJF is associated with the next CPU burst for every task’s length. The
task with the shortest length is assigned to a CPU whenever this CPU
is available. IF there are two tasks with the same CPU burst time,
then FCFS is incorporated for making a proper scheduling decision. 
11 
• RR triggers at the arrival time to immediately allocate available re-
sources to the incoming task; however, the resources are provisioned
to the task for a certain amount of time (time quantum). Then, if
more execution time is still required, the task is preempted, queued,
and awaiting for its execution to be resumed later. 

• MCT schedules the tasks based on their expected minimum execu-
tion time. However, the task may not necessarily have its MCT on
the same VM. 

• Sufferage is a heuristic technique in which a resource is mapped
immediately with a task which would likely suffer the most accord-
ing to a “sufferage ” threshold value which is associated with its ex-
pected completion time. In sufferage, each task’s completion time
on each resource is first computed. Second, the difference between
two consecutive MCTs for each task is calculated and referred to as
the suffrage value. Finally, a resource with the minimum execution
time is provisioned to the task with the maximum suffrage value,
all resources’ execution times are updated, and the above steps are
recurring until all the tasks are scheduled successfully. Despite its
perfect performance in many cases, this strategy has a shortcoming
if multiple tasks have the same sufferage value, where the first in-
coming task is simply selected and first executed without considering
other tasks, which may arise a starvation problem. 

Although heuristics are obsolete, they are still under considera-
ion by many researchers. As shown in Table 5 , heuristic algorithms
ave revealed significant performance based on diverse scheduling ap-
roaches addressed in the literature. Amongst them, it is worth noting
hat the SJF algorithm reveals outperformance in terms of independency
56,83,84] and cooperation [85–87] . Moreover, as per Table 5 , it is re-
arkable that there is no preponderant heuristic approach over all se-

ected studies as each of the approaches involved is adaptable and thus
an excel in accordance to the nature of the scheduling problem ad-
ressed. Finally, the most notable is that there is no even one heuristic
lgorithm that has outperformed the involved meta-heuristics, which
urther emphasizes our felicitous choice of meta-heuristics to be the fo-
us of attention in this study. 

Less popular, evolving heuristic algorithms that have successfully
een applied to task scheduling problems in cloud environments include
reedy Randomized Adaptive Search Procedure (GRASP [109,110] ),
ranch & Bound (BB [111] ) algorithm, Load-Balanced Min-Max (LBMM
112] ), etc. 
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Table 5 

Summary of some promising heuristic approaches for task scheduling in cloud computing. 

Research Technique(s) applied Compared against Nature of tasks Advantages Weaknesses/challenges 
Testing 
environment 

Min-Min 

Chen et al. [88] User-Priority Aware 

Load Balancing 

Min-Min (PA-LBMM) 

Min-Min and LBIMM Independent ∙ Low makespan 

∙ High resource utilization 

∙ Ignoring deadline 

∙ Slow task execution due 

to rescheduling 

Simulation 

(MATLAB) 

Amalarethinam 

and Kavitha [89] 

Reschedule-based 

Enhanced Min-Min 

(REMM) 

Min-Min and LBMM Independent ∙ Low makespan 

∙ High resource utilization 

∙ Ignoring priority and cost 

∙ Slow task execution due 

to rescheduling 

Simulation (N/A) 

Max-Min 

Mao et al. [90] Elastic Cloud-aware 

Max-Min (ECMM) 

Max-Min and RR Independent ∙ Low makespan 

∙ Low response time 

∙ High resource utilization 

∙ Potential resource 

overutilization/ 

underutilization 

Simulation 

(CloudSim) 

Karuppan et al. 

[91] 

Priority-Based 

Max-Min (PBMM) 

SJF and RR Independent ∙ Low execution time 

∙ High resource utilization 

∙ Not considering 

emerging dynamic tasks 

∙ High potential of 

over-/under-utilized 

resources 

Simulation 

(CloudSim) 

FCFS 

Saeed et al. [92] Native FCFS RR and Throttled Independent ∙ Low response time 

∙ Low energy consumption 

∙ Wretched supremacy Simulation 

(CloudAnalyst) 

HEFT 

Dubey et al. [93] Modified HEFT HEFT and CPOP [94] Workflow 

scheduling 

∙ Low overload 

∙ Low makespan 

∙ Non-continuous 

monitoring of nodes 

∙ Load imbalance 

Simulation 

(CloudSim) 

Zhou et al. [95] Fuzzy 

dominance-based HEFT 

(FDHEFT) 

𝜀 -Fuzzy PSO [96] , 

NSPSO [97] , SPEA2 ∗ 

[98] , and MOHEFT [99] 

Workflow 

scheduling 

∙ Low makespan 

∙ Low CPU runtime 

∙ Low monetary cost 

∙ Cost and time overheads 

due to unmanaged 

communication and 

storage 

Simulation 

(jMetal [100] ) 

and real 

environment 

Tong et al. [101] HEFT with Q -Learning 

(QLHEFT) 

HEFT_D, HEFT_U, and 

CPOP [102] 

Workflow 

scheduling 

∙ Low makespan 

∙ High throughput 

∙ Suitable for 

heterogeneous 

environments 

∙ Static task scheduling 

∙ Single objective 

(makespan) 

Simulation 

(WorkflowSim) 

SJF 

Alworafi et al. [83] Improved SJF SJF and FCFS Independent ∙ Low makespan 

∙ Low response time 

∙ Potential starvation 

∙ Potential load imbalance 

Simulation 

(CloudSim) 

Nazar et al. [56] Modified SJF RR and Throttled Independent ∙ Low execution time 

∙ Low response time 

∙ The same monetary cost 

∙ The same response time 

in clusters 

Simulation 

(CloudAnalyst) 

Seth and Singh 

[84] 

Dynamic 

Heterogeneous SJF 

(DHSJF) 

SJF and FCFS Independent ∙ Low makespan 

∙ Low energy consumption 

∙ Not considering 

dependent tasks 

∙ Potential starvation 

Simulation 

(CloudSim) 

RR 

Devi et al. [57] Improved Weighted RR 

(IWRR) 

Static RR and WRR Independent ∙ Low response time 

∙ High resource utilization 

∙ Poor ability to balance 

the workload 

Simulation 

(CloudSim) 

Prassanna and 

Venkataraman 

[103] 

Threshold-based 

Multi-objective 

Memetic Optimized RR 

(T-MMORRS) 

MGA [104] and DPRA 

[105] 

Workflow 

scheduling 

∙ High scheduling 

efficiency 

∙ Low makspan 

∙ Low energy consumption 

∙ Imbalanced load Simulation 

(CloudSim) 

MCT 

Mehdi et al. [106] datacentre Load and 

Power consumption 

(DLP) 

Green algorithm [107] 

and RR 

Independent ∙ Low power consumption 

∙ High task distribution 

ratio 

∙ Potential starvation Simulation 

(GreenCloud) 

Sufferage 

Krishnaveni and 

Janita [108] 

Completion 

Time-based Sufferage 

Algorithm (CTSA) 

Min-Min, Enhanced 

Min-Min, and 

Sufferage 

Independent ∙ Low makespan 

∙ High resource utilization 

∙ Not considering cost Simulation 

(CloudSim) 

Krishnaveni and 

Prakash [82] 

Execution Time-based 

Sufferage Algorithm 

(ETSA) 

Min-Min, Enhanced 

Min-Min, and 

Sufferage 

Independent ∙ Low makespan 

∙ High resource utilization 

∙ Balanced load 

∙ Not considering cost, 

storage cost, and 

deadline 

Simulation 

(CloudSim) 

Hybrid 

Elmougy et al. [85] SJF and RR with 

Dynamic Quantum 

(SRDQ) 

SJF, RR, Time Slice 

Priority-Based RR 

(TSPBRR), SJF, and RR 

with Static Quantum 

(SRSQ) 

Independent ∙ High throughput 

∙ Low response time 

∙ Potential starvation 

∙ Load imbalance 

Simulation 

(CloudSim) 

Alworafi et al. [86] Hybrid 

Shortest-Longest Job 

First (HSLJF) 

SJF, LJF, and RR Independent ∙ Low makespan 

∙ Low response time 

∙ High resource utilization 

∙ High throughput 

∙ Not considering cost 

∙ Load imbalance 

Simulation 

(CloudSim) 

Caranto et al. [87] User-priority SJF-RR 

(SJFRR) 

SJF and RR Independent ∙ Low waiting time 

∙ Low average turnaround 

time 

∙ Low coping with context 

switching 

N/A 

12 
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Fig. 10. Categorization of the meta-heuristic algorithms applied in cloud task scheduling. 
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.3. Meta-heuristic scheduling 

Over the past two decades, meta-heuristic algorithms have gained
uge circulation because of their effectiveness in solving complex and
arge computational problems. Meta-heuristic algorithms have some
seful features like: i) they are not problem dependent, ii) the search
pace is efficiently explored by these algorithms for finding a sub-
r near-optimal solution to NP-complete problems, and iii) meta-
euristics are usually non-deterministic and based on approximation.
eta-heuristic algorithms are applicable and are esteemed for solving

roblems of different fields, with highly acceptable performance, by
irtue of their instinctual independence of the problem to be solved
113,114] . Meta-heuristic strategies are commonly used as effective
ethods to solve NP-hard optimization problems, with high efficacy. 

Meta-heuristic = Heuristic + Randomization. 
Cloud environment is currently supported by various meta-heuristic

lgorithms which are adopted to obtain sub-optimal (approximate) so-
utions to NP-complete problems in a short time. Among many others,
he process of task scheduling typically takes a long time for finding an
ptimal solution, especially with the large solution space. Thus, it is an
ppropriate fit for NP-complete problems. 

This subsection describes a taxonomy of the mainstream meta-
euristic optimization algorithms applied successfully in the literature
o solve task scheduling problems in cloud environments. The aims
re to summarize and analyze the state-of-the-art, well-known meta-
euristics for solving task scheduling problems in cloud computing to
ollow the research trends [115] . In a related context, some emerg-
ng and hybrid meta-heuristic algorithms are also discussed. As shown
n Fig. 10 , diverse meta-heuristic scheduling techniques in the litera-
ure fall within one of three broad categories: swarm, evolutionary, and
hysical algorithms, based on the collective intelligence of large popula-
ions/swarms with simple behaviors for communication and interaction,
he mechanism of biological evolution, and physical processes, respec-
ively. In addition, two general categories (i.e., emerging algorithms and
ybrid algorithms) are also involved to represent both novel and hybrid
eta-heuristics, respectively. Generally, meta-heuristic algorithms are
esigned based on the mathematical models of various intelligent bio-
ogical processes (e.g., genetic crossover, symbiosis, etc.) and activities
e.g., swarm foraging, bird flocking, etc.) occurring in nature, and ad-
usted and applied according to a given problem so that the resulting
tatistical data can be later interpreted, with respect to cloud service
erformance metrics, such as load balancing, resource utilization, power
onsumption, etc., to make optimal use of available cloud resources.
or different swarm, evolutionary, physical, emerging, and hybrid algo-
ithms, the frameworks and procedures are similar; however, the meth-
ds to initialize the population and evaluate the initial fitnesses of its
gents, the strategies to generate new solutions, the iterative steps are
sually different. 
13 
.3.1. Swarm algorithms 

Swarm intelligence algorithms [116] , such as ACO [117] , Artificial
ee Colony (ABC [118] ), Bacterial Foraging Optimization (BFO [119] ),
nd PSO [120] , are developed based on mathematical models inspired
y the activities as well as collective, cooperative behavior of differ-
nt species, such as ants, honey bees, bacteria, and birds, respectively,
hich live in groups and collaborate for searching and gathering food.
his being said, most conclusions in this manuscript implies the current

arge, rapidly growing bibliography of swarm intelligence. However, we
oncentrate our discussion on the-state-of-art meta-heuristics, such as
CO, ABC, BFO, and PSO, since they are arguably the first methods that

ell within the swarm intelligence umbrella, and due to their relative
aturity and higher prominence, especially with complex large-scale
roblems in the context of cloud computing [121] . 

Ant Colony Optimization (ACO): The natural behavior of ants in
CO helps significantly find the best traverse between the colonies and

he food source [122] . In 1992, this approach was originally proposed
s the “ant system ” [117] . The ants evacuate the pheromones as they
ove on their path. When time goes by, pheromones shape the shortest
athways and the intensity of the pheromone allows to determine the
hortest route to the food supply. Indeed, the ACO is inspired by the
nts’ behavior of how to detect the shortest path between the anthill
nd the food source location [122] . In ACO-based cloud scheduling, the
asks are denoted by ants, and whole information about frequent use
s well as the load on each resource can be indicated by the concen-
ration of pheromones. Furthermore, the cloud resources (VMs) can be
epresented by food sources. 

Artificial Bee Colony (ABC): The ABC algorithm was originally pro-
osed by Lucic and Teodorovic [118] . This algorithm mimics the bees’
ehavior on how to search and forage food. The ABC uses the effec-
ive concept to produce solutions from scratch in the execution step.
he ABC has two alternatives, forward- and backward-pass. In forward-
ass, every bee visits all solution components and reverts to the hive
fter making a partial solution [123] . Before the backward pass, the
ees surround each other in a group, using their newly acquired minor
ndividual solutions to start to retreat. In ABC-inspired cloud scheduling,
he beehive describes the cloud environment, the tasks are illustrated by
ach artificial bee colony, while the VMs symbolize food sources. Bees
earching food is the same as loading tasks to VMs, and looking for bet-
er sources of food can be imagined as finding the suitable low-load VMs
o which incoming tasks are to be assigned. 

Bacterial Foraging Optimization (BFO): The BFO was invented
y Muller et al. [119] in 2002. The BFO is inspired by the collective
ehavior of bacteria (e.g., M.xanthus and E.coli), on how they forage.
pecifically, the BFO is primarily based on the chemotaxis behavior of
acteria, in which they move towards or away from particular signals
ased on their ability to discern chemical gradients (e.g., nutrients) in
he surrounding environment. This algorithm uses an information pro-
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essing strategy, where cells are allowed to collectively and stochasti-
ally swarm toward optima. In order to achieve this, a series of three
rocesses is sequentially applied to a group of simulated cells [124] :
) ‘chemotaxis’, where cells are brought closer together to derate their
ost, and cells move, one at a time, along the manipulated cost surface
the majority of algorithm work), ii) ‘reproduction’, where the upcom-
ng generation can get benefits from only those cells that revealed high
erformance over their lifetime, and iii) ‘elimination-dispersal’, where
ew samples of cells are generated randomly and incorporated, with a
ow probability, for each cell after discarding old ones. In BFO-based
loud scheduling, the BFO is used to find an approximate solution to
omplex problems, where each cell can represent a cloud task mapping,
he nutrients may express the resources (VMs), and the search space
imensionality can be represented by the number of cells (cloud tasks).

Particle Swarm Optimization (PSO): In 1995, Eberhart and
ennedy [120] employed the social behavior of particles to prompt the
SO algorithm. The PSO strives to solve an optimization problem by
rst generating a random set of potential solutions (particles). Then,
ach particle moves through the search space at its allocated elemen-
ary velocity. In each iteration, the velocity of each particle is regulated
sing both the best case of this particle and the case of the entire popula-
ion’s best solution (best particle). To balance the utilization, both local
nd global search methods are used in this technique. This optimization
ethod has acquired a great popularity due to its simplicity and useful-
ess in working out a diverse set of applications at a low computational
ost [125] . Accordingly, it has been also adapted to solve scheduling
roblems in clouds. In cloud scheduling techniques based on PSO, the
umber of tasks is the aspects of the solution (the particle) and each po-
ition can symbolize a set of candidate VMs similarly to the allocation
rocess between incoming tasks and available VMs. 

.3.2. Evolutionary algorithms 

Evolutionary algorithms (EAs), an algorithmic branch denoted as
volutionary computation [126] , are typically used for large space prob-
ems whose sample space is not clearly defined. In EAs, the optimal
olution is found by developing an incipient group of candidate solu-
ions. Basically, the key mechanisms responsible for biological evolu-
ion (e.g., genetic crossover, selection, and mutation) are mathemati-
ally modelled to design EAs like Genetic Algorithms (GAs [127] ). Like
ther meta-heuristics, EAs generate an optimal solution to a particular
roblem by following an iterative fashion. 

Genetic Algorithm (GA): The GA, a population-based method of
ptimization, was first proposed in 1975 by Holland [128] and later up-
raded by Khanli et al. [129] based on the evolutionary model inspired
y nature. Looking closer at GA, every chromosome (individual in the
opulation) contains a string of genes which substantially represents a
otential solution. A fitness function is also provided in order to check
hether the chromosome is suitable or not for the environment. The

hromosomes are chosen on the basis of fitness value, and then the op-
rations of crossover and mutation are performed to produce new off-
prings (new potential solutions) which are used to compose the new
opulation. The fitness function is then used to evaluate the quality of
ach offspring. This process is repeated until the production of an ade-
uate umber of offsprings [130] . In cloud scheduling techniques based
n the GA, the genes being swapped into the chromosomes to produce
ew offsprings can be considered as tasks to be assigned to VMs to run
n them. The mapping sector simply includes the indices of the VMs on
hich tasks are to be run. 

Differential Evolution (DE): The DE, a kind of optimization algo-
ithm whose real vector coding is in continuous space, has the ability to
erform a parallel and random search with the existence of simple, less-
ontrolled parameters. This algorithm was firstly developed in 1995 by
torn and Price [131] . The basic idea of DE is similar to that of GA; that
s, the mutation operation generates new individuals, then the crossover
nd selection operations are performed through a constant iterative evo-
ution to find the global optimal solution. The DE implements the mu-
14 
ation operation using the difference strategy, which differs from the
A by enhancing the algorithm’s ability to search based on the popu-

ation characteristics. The DE algorithm proves significantly advanta-
eous over many other algorithms in solving hard engineering prob-
ems including task scheduling in cloud environment. In cloud schedul-
ng techniques based on the DE, 𝐷-dimensional parameter vectors may
epresent 𝐷 tasks to be executed alternately and evaluated on a set of
vailable VMs [132] . 

.3.3. Physical algorithms 

These methods are basically inspired by the laws of physics. The
nspirational physics-based environments range from complex dynamic
ystems, like avalanches, to metallurgy, music, as well as the interplay
etween evolution and culture. These algorithms are generally stochas-
ic with a mixture of global and local (neighborhood-based) search
ethods, which makes solvers inspired by them remarkable to tackle
ard task scheduling optimization problems in cloud environments. 

Simulated Annealing (SA): SA was originally introduced by Kirk-
atrick [133] in 1984. Due to belonging to meta-heuristics, it is cur-
ently one of the most preferred algorithms. The SA process simulates
he annealing process of materials, in which minimum energy and larger
rystals are used to cool a metal crystallically so as to strengthen the
etal structure. The annealing process involves two main aspects: pre-

ise temperature control and controlled cooling rate. SA was influen-
ially practiced in diverse areas [134] . For example, many hard com-
inatorial optimization problems were worked out by the SA through a
ontrolled random simulation of the way how temperature is dropped in
ertain thermodynamics systems. In cloud scheduling based on the SA,
he number of tasks can represent the dimensions of the solution set,
hile the stable temperature may denote an efficient mapping reached
etween an incoming task and a suitable VM. 

Harmony Search (HS): Geem et al. [135] implemented the HS as an
volutionary algorithm. In this algorithm, the cycle of musical improvi-
ation is imitated, where each produced harmony is a possible solution.
nitially, the harmony memory in HS stores a stochastic population of
armonies. Then, new solutions are implemented based on three prin-
iples: tone adjustment, random selection, and harmony memory con-
ideration [136] . Due to being genetic, the HS falls under the vulnerary
lgorithms. The procedure of HS includes harmony memory, random se-
ection, sound volume regulation, and bandwidth. The harmony mem-
ry level dictates whether new responses will be accepted or not. For
ore effective use of this memory, a parameter is used to help extract

ll possible selections from the harmony memory. The HS is also ap-
lied to the cloud scheduling problem, where each composed harmony
an represent a potential task-VM allocation, and the competence level
s well as the execution length of allocated tasks are highly based on
ow efficient is the transfer of submitted tasks to existing resources. 

.3.4. Emerging algorithms 

In recent years, many novel meta-heuristic algorithms have been de-
ised (apart from the discussed above) to be applied to different complex
ptimization problems in cloud computing, and they can be simply cate-
orized among the three classes heading the three previous subsections.
ere are some of those emerging algorithms: Cuckoo Search Algorithm

CSA [137] ), Cat Swarm Optimization (CSO [138] ) algorithm, Firefly
lgorithm (FA [137] ), Tree Growth Algorithm (TGA [139] ), Whale Op-

imization Algorithm (WOA [140] ), and Moth Search Algorithm (MSA
141] ), which are considered as swarm algorithms; Lion Optimization
lgorithm (LOA [142] ), Chemical Reaction Optimization (CRO [143] ),
nd Multi-Agent Optimization (MAO [144] ) algorithm, which are con-
idered as evolutionary algorithms; and Gravitational Search Algorithm
GSA [145] ) and Tabu Search (TS [146] ), which are considered as phys-
cal algorithms. Indeed, those state-of-the-art algorithms are specially
ddressed since they have shown significant success in the literature
hrough the studies picked for this review. 
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Fig. 11. Categorization of meta-heuristics based approaches in cloud task scheduling. 
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.3.5. Hybrid algorithms 

Two or more scheduling algorithms are combined in the hybrid
cheduling algorithms in order to solve the task scheduling problem
n the cloud environment. The underlying idea of hybrid algorithms
s to leverage the strengths of diverse algorithms by hybridizing them
nto one algorithm in order to boost the performance in terms of ei-
her the computational time or the quality of the result or both. Hy-
rid scheduling algorithms include three different common kinds of
ombinations made by combining: i) single-solution based algorithm
ith population-based algorithm, ii) two population-based algorithms,
r iii) a heuristic/meta-heuristic algorithm with another heuristic/meta-
euristic algorithm or technique. In this study, many different hybrid
lgorithms are discussed within the taxonomy introduced in Section 5 .
oreover, a thorough analysis and discussion on those algorithms are

ut forward within the different aspects analyzed in Section 7 . 

. Taxonomy of meta-heuristic task scheduling approaches in 

loud computing 

According to the QoS standard requirements, the aim of task schedul-
ng varies from one application to another. Consequently, a large num-
er of researches have been conducted in the context of meta-heuristics
ased task scheduling. To deeply and more clearly understand the meta-
euristic task scheduling approaches in cloud computing, a novel, rigor-
us taxonomy is provided as Fig. 11 , using a variety of major methods
ollowed in the literature. These methods are divided in this section
nto four main groups in terms of the nature of the scheduling prob-
em, the primary objective of scheduling, the task-resource mapping
15 
cheme, as well as the scheduling constraint. The referred scheduling
lgorithms are also categorized into dependent tasks (realistic workflow
cheduling) and independent tasks, based on the relation between the
ncoming tasks/applications. In addition, they are also labelled as tra-
itional/heuristic or meta-heuristics (swarm, evolutionary, physical, or
ybrid), based on the type of scheduling algorithm (scheduler). For per-
ormance evaluation, each technique evoked in every selected study is
upposed to have been compared against many/multiple other peer al-
orithms, which are also outlined in the tables provided in what follows
hrough in this section. 

.1. Nature of scheduling problem 

Since there is always a trade-off between optimization objectives,
here is a need to create an optimization model that fulfills the objec-
ives by finding the best optimal solution. In a single objective optimiza-
ion, it is possible to determine the optimality of a particular solution
n comparison with another existing one. While in Multi-objective Op-
imization Problems (MOPs), it is not possible to do it directly. Further-
ore, in single objective optimization problems, a single optimal solu-

ion is picked up for predefined objectives, while MOPs normally use a
areto dominance relation technique [147] for creating a comparison
odel that is used to replace a single optimal solution with a range of

lternatives, thus providing various, numerous trade-offs between the
bjectives. For performance evaluation, only one solution must be se-
ected from many Pareto optimal solutions provided in MOPs. By spot-
ing their key characteristics, an overview of the mechanisms in some
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f the selected studies is presented in the rest of this section, based on
ingle and multi-objective optimization methods. 

.1.1. Overview of the selected mechanisms 

Single objective: Most existing methods in cloud computing con-
ider only the CPU and memory requirements when it comes to task
cheduling, without even addressing the makespan requirement. For
etting better performance, Mandal and Acharyya [148] introduced a
ovel method using FA to schedule submitted tasks in clouds, aiming
o reduce makespan. They prove the superiority of their algorithm by
omparing the results with the CSA and SA. In this work, the authors fo-
used on the single objective of minimizing the makespan time, ignoring
ther parameters, such as monetary cost, scalability, and availability. 

With the same single objective of minimizing the makespan time to
xecute the applications submitted, Elaziz et al. [149] proposed a hybrid
ask scheduling algorithm by bringing two meta-heuristic algorithms,
he MSA and DE algorithms, together as a hybrid algorithm, namely,
SDE. Using the concepts of Lévy flight and phototaxis, the exploration

nd exploitation capabilities are provided by MSA; however, the MSA
xploitation capability is limited, so DE algorithm is used for local search
o overcome the limitation of MSA by providing better exploitation capa-
ility. CloudSim toolkit is used in this study for three experimental series
hat demonstrate that the hybrid MSDE algorithm outpaces the state-of-
he-art heuristic and meta-heuristic scheduling algorithms in terms of
akespan and the throughput of the system. However, resource utiliza-

ion, energy consumption, scalability, and availability are not consid-
red. 

Multi-objective: Task scheduling in a distributed heterogeneous
omputing environment can be identified as a non-linear, multi-
bjective, NP-hard optimization problem that strives to optimize cloud
esource utilization and satisfy the QoS requirements. In this regard,
amezani et al. [150] developed a comprehensive multi-objective
odel with conflicting objective functions to minimize task execu-

ion/transferring time and cost, depending on the speed and accuracy of
he PSO algorithm. The proposed model is implemented and evaluated
y extending the Jswarm package to multi-objective (MO-Jswarm) us-
ng the Cloudsim toolkit. The proposed optimization model achieves the
est trade-off solution and the highest QoS in comparison with existing
ask scheduling approaches. However, energy consumption as well as
ask priority & type are not undertaken. 

Once again, Ramezani et al. [151] extended the objectives to include
ask queue length and power consumption by proposing two algorithms:
ulti-Objective PSO (MOPSO) and Multi-Objective GA (MOGA). In the

roposed algorithms, the optimal task allocation among VMs is deter-
ined by extending the Cloudsim toolkit to apply the task scheduling

lgorithms of MOPSO and MOGA. The experimental results have shown
hat MOPSO has a higher efficiency and reliability on determining the
est scheduling scheme with the highest QoS in the shortest possible
ime in terms of task queue length (VMs’ workload), task execution cost,
ask transfer time, and power consumption. However, the priority of
asks and their types remains unresolved. Moreover, further criteria of
LA need to be covered. 

In [152] , Zuo et al. proposed a multi-objective ACO-based optimiza-
ion method referred to as (PBACO) to achieve two objectives: optimiz-
ng both the scheduling Performance and the user’s Budget. They con-
ider the two constraints of makespan and the user’s budget to prevent
he ACO algorithm from stucking into the local optimum by evaluat-
ng the costs and providing feedback, in a timely manner, on the qual-
ty of the solution. Experimental results have shown a higher perfor-
ance of this multi-objective optimization method than similar meth-

ds in terms of makespan, cost, deadline violation rate, and resource
tilization. However, energy consumption, availability, and scalability
re not minded. 

Achieving a reasonable trade-off among energy consumption, re-
ource utilization, and QoS requirements is a challenging problem, espe-
ially with diverse tasks in the heterogeneous environment. Therefore,
16 
e et al. [153] took into account both transmission time and processing
ime of tasks in a proposed strategy called Adaptive Multi-objective Task
cheduling (AMTS) based on the PSO. The PSO-based AMTS algorithm
ses the Small Position Value (SPV) rule to convert its continuous po-
ition values to a discrete task permutation. Experimental results have
hown a better quasi-optimal solution obtained by the PSO-based AMTS
lgorithm in terms of average cost, task completion time, and energy
onsumption. However, service availability and scalability are not as-
umed. 

An innovative algorithm in cloud computing called Multi-Objective
SO (MOCSO) was introduced by Madni et al. for dealing with the
roblem of Infrastructure as a Service (IaaS)-related resource schedul-
ng [154] . The proposed algorithm aims at reducing the cloud user cost
nd minimizing the makespan time, contributing to generating more
rofit/revenue to cloud providers as well as achieving maximum uti-
ization of resources. Nevertheless, energy consumption, resource uti-
ization, availability, and scalability are not analyzed in this work. 

.1.2. Summary of the scheduling approaches reviewed based on the 

ature of scheduling problem 

Some of the selected articles have been studied and constructively
ommented in the previous subsection, along with their advantages and
eaknesses, based on the nature of the scheduling problem focused in

he study. A summary comparison between those articles, featuring their
ost important merits and compelling demerits, is illustrated in Table 6 .

.2. Primary objective of scheduling 

For getting a high performance, at least one objective function is
eeded when a task scheduling process is performed. The most popu-
ar objectives can be summarized as: makespan, monetary cost, compu-
ational cost (i.e., consumption of CPU, memory, storage, GPU, band-
idth, etc.), reliability and availability, elasticity or scalability, energy

onsumption, security, resource utilization, and throughput. By high-
ighting their main features, a comparison between some of the selected
rticles is introduced in the rest of this section, based on the primary
cheduling objective pursued in each study. 

.2.1. Overview of the selected mechanisms 

Makespan: At cloud datacentres, inefficient task scheduling may re-
uce revenue as a result of resource underutilization. In this context, to
erform efficient scheduling of tasks on cloud, the makespan needs to
e reduced. In a study, Raju et al. [160] proposed a hybrid algorithm of
CO and CSA as a resource scheduling policy to reduce makespan. The
ybrid algorithm might help reduce the makespan or completion time
s it allocates the required resources optimally in such a way that the
ubmitted jobs are executed on time. However, fault tolerance, resource
tilization, and scalability are not undertaken. 

For solving the optimization problem of workload scheduling in
loud computing, Khalili and Babamir [161] presented a single objective
SO algorithm. Different inertia weight strategies are combined with
he PSO algorithm in order to minimize the makespan. The results have
hown an improvement in the makespan obtained from the combination
f Linearly Decreasing Inertia Weight (LDIW) with PSO. In the same con-
ext, Gabi et al. [162] introduced a conventional CSO task scheduling
echnique incorporated with an LDIW equation in order to overcome the
ntrapment problem arising from the local search in the technique. On
loudSim simulator tool, this technique minimizes the makespan time
y performing an efficient task mapping to VMs based on enhanced con-
ergence speed. However, all other QoS parameters than makespan are
ot touched. 

In [163] , Malik and Jain discussed an HS-based scheduling approach,
iming to fulfill the user requests in terms of the minimum execution
ime (i.e., minimum makespan) and efficient using of resources (i.e., re-
ource utilization). However, the priority of tasks, energy consumption,
vailability, and scalability are not included in this work. 
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Table 6 

Categorization of the techniques reviewed based on the nature of the scheduling problem, along with their advantages and weaknesses. 

Research 
Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm Nature of tasks Advantages Weaknesses/challenges 

Testing 
environment 

Single objective 

Mandal and Acharyya 

[148] 

FA , CSA , and SA 

Meta-heuristic (swarm 

and physical) 

Each other 

Meta-heuristic (swarm 

and physical) 

Independent ∙ Low makespan ∙ Low reliability Simulation (GCC 

compiler) 

Elaziz et al. [149] Hybrid (MSA with DE) 

Meta-heuristic (swarm 

and evolutionary) 

SJF, RR, MSA, WOA, 

and PSO 

Heuristic and 

meta-heuristic (swarm) 

Independent ∙ Low makespan 

∙ High throughput 

∙ High time complexity Simulation 

(CloudSim) 

Multi-objective 

Ramezani et al. [155] MOPSO 

Meta-heuristic (swarm) 

Three PSO variants and 

method in [156] 

Meta-heuristic (swarm) 

Independent ∙ Low execu- 

tion/transferring time 

∙ Low execution cost 

∙ Low reliability 

∙ High energy 

consumption 

Simulation 

(CloudSim) 

Ramezani et al. [151] MOPSO/MOGA-based 

algorithm 

Meta-heuristic (swarm 

and evolutionary) 

Improved PSO 

[157–159] and each 

other 

Meta-heuristic (swarm 

and evolutionary) 

Independent ∙ Low response time 

∙ Low makespan 

∙ High throughput 

∙ Low energy 

consumption 

∙ Low reliability Simulation 

(CloudSim) 

Zuo et al. [152] PBACO 

Meta-heuristic (swarm) 

Min-Min, FCFS, and 

ACO 

Heuristic and 

meta-heuristic (swarm) 

Independent 

and workflow 

scheduling 

∙ Low makespan 

∙ Low monetary cost 

∙ High resource 

utilization 

∙ Minor deadline 

violation 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) and 

real environment 

He et al. [153] PSO 

Meta-heuristic (swarm) 

GA 

Meta-heuristic 

(evolutionary) 

Independent ∙ Low makespan 

∙ Low monetary cost 

∙ Low energy 

consumption 

∙ High resource 

utilization 

∙ Low availability 

∙ Low scalability 

Simulation 

(CloudSim) 

Madni et al. [154] CSA 

Meta-heuristic (swarm) 

Min-Min, ACO, PSO, 

and GA 

Heuristic and 

meta-heuristic (swarm 

and evolutionary) 

Workflow 

scheduling 

∙ Low makespan 

∙ Low monetary cost 

∙ High resource 

utilization 

∙ Low reliability 

∙ Low availability 

Simulation 

(CloudSim) 
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On a modern cloud datacentre architecture, Sharma and Garg
164] tackled an energy-efficient task scheduling problem by propos-
ng a novel hybrid Harmony-Inspired GA (HIGA) scheme for real-world
cientific workflows. Without the need for many iterations, HIGA intel-
igently senses the local and global search space through combining the
A exploration capability and HS exploitation capability, thereby pro-
iding quick convergence. The objectives in this work are conceived for
educing the makespan, the computing energy, the energy consumed by
he resources, and the execution overhead associated with a scheduler.
owever, only the independent tasks are considered in this study. More-
ver, execution time estimation for real-time tasks is not incorporated. 

Monetary cost: In [165] , Meena et al. proposed a Cost-Effective
A (CEGA); that is, while striving to meet the deadline, the work-
ow execution cost decreases in the cloud computing environment.
ew schemes of crossover, mutation, population initialization, and en-
oding operators of GA are developed to achieve the desired goal.
n the case of a small number of tasks, CEGA gives a good solu-
ion, whereas in high complexity applications, it consumes a higher
akespan. 

An efficient load scheduling aims to optimize the load between VMs
nd tasks in cloud computing. Therefore, a load scheduling approach
ased on New PSO (NPSO) was proposed by Chaudhary et al. [166] , in
hich a new cost evaluation function is used to minimize the monetary

ost needed for processing the tasks on VMs. However, this approach
acks realism in application and a sufficient comparison with a reason-
ble number of existing techniques. 

Han et al. [167] proposed an algorithm, namely, HDEA based on a
revalent DE meta-Heuristic algorithm as well as several optimization
olicies to optimize task scheduling in the cloud environment in terms
f monetary cost and turnaround time, depending on two methods for
17 
enerating the initial population by adopting a parameter adjustment
trategy and building a new mutation strategy and several local search
ethods to obtain better solutions. However, the scheduling of depen-
ent tasks is not addressed in this work. 

Nasr et al. [168] combined the CRO and ACO algorithms in a single
ybrid algorithm, namely, CR-AC, for solving the workflow scheduling
roblem under a deadline constraint with the purpose to reduce mon-
tary cost and time complexity. However, important factors, such as
nergy consumption, fault tolerance, and security, are not examined in
his study. 

Distributed Green Clouds (DGCs) are adopted by more and more
arge-scale enterprises in recent years for managing their core busi-
ess applications effectively in terms of monetary cost. However, this
equires maximization of DGCs’ profit, given the spatial differences in
evenues, prices of power grid and Internet service provider bandwidth,
nd renewable energy. In this regard, Yuan and Bi [169] designed a
rofit maximization problem as a constrained non-linear optimization
rogram and managed to tackle it using a hybrid meta-heuristic algo-
ithm (PSO with GA and SA). In this way, the profit is optimized based
n a Profit-Aware Spatial Task Scheduling (PASTS) method by schedul-
ng all tasks smartly within their response time limits. Throughput is
ptimized in this scheme, as well. However, availability, energy con-
umption, and fault tolerance are not examined. 

Computational cost (CPU, memory, storage, GPU, bandwidth,

tc.): The total execution time can be minimized by provisioning a
arge amount of resources, but this might cause scheduling overheads,
esource underutilization, and execution cost to increase. Therefore, Wu
t al. [170] presented a market-oriented resource scheduling technique
ased on ACO, PSO, and GA, considering the task-level and service-level
ynamic resource scheduling, where a task is assigned to a VM, and a
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ask is assigned to a service, respectively. This approach optimizes the
akespan and CPU time as well as reduces the overall running cost of
atacentres; however, allocation of resources to global tasks does not
erform optimally in this method. In addition, availability, throughput,
nergy consumption, and fault tolerance are not inspected. 

In [171] , Thaman and Singh devised a new hybridization of a novel
euristic Nearest Neighbor (NN) with a variant of the meta-heuristic
SO, namely, Nearest Neighbor Cost-Aware PSO (NNCA_PSO). Alloca-
ion of tasks to resources is achieved by the heuristic NN through a
eduction in variance between the execution time characteristics of re-
ources and the completion time requirements of tasks. The NN schedul-
ng algorithm, as alone, proves highly effective over other traditional
euristics for a set of independent tasks. The proposed NNCA_PSO
lso reveals higher performance than other cost-aware PSO variants.
his research work addresses multiple related cloud issues to execution
ost, makespan, resource utilization, and energy consumption. How-
ver, availability, scalability, and fault tolerance are not tackled. 

The swarm intelligence-based load scheduling is stochastic, self-
ollective, decentralized, random, collective, intelligent, adaptive, and
ore dependent on bio-inspired mechanisms than conventional mecha-
isms. Proceeding from this fact, Chaudhary and Kumar [172] proposed
 Hybrid Genetic-GSA (HG-GSA), a new load scheduling technique, for
educing the total cost of computation, including both execution cost
nd transfer cost through achieving the maximum resource utilization.
owever, this method does not consider makespan, energy consump-

ion, availability, scalability, and fault tolerance. 
Reliability and availability: Increasingly, applications are regu-

arly deployed to the cloud environment due to its increasing popularity
nd high reliability. Among such applications, the most common exam-
le is web 2.0 applications. These applications require to be highly avail-
ble and able to run for longer periods of time uninterruptedly (or even
ndefinitely). Therefore, a multi-objective scheduling algorithm was pro-
osed by Frincu and Craciun [173] to achieve the mapping of applica-
ion component instances to cloud resources in an efficient way through
imultaneously optimizing three goals: i) resource usage is maximized,
i) application runtime cost is minimized through the optimal mapping
f the component to a node by continually rescheduling of tasks if the
ode is still overloaded or underloaded, and iii) application availabil-
ty is maximized by the even spreading of component instances across
he allocated nodes. This algorithm is designed for efficiently deploying
pplications through picking out the best among public cloud providers
r selecting a combination of them. Thus, hybrid cloud is not the best
nvironment for this algorithm. Furthermore, energy consumption, scal-
bility, monetary cost, and throughput are not contemplated. 

In another work, Faragardi et al. solved the task scheduling problem
sing an SA algorithm hybridized with TS, hence making improvements
n the native algorithms: In 2012, by using a non-monotonic cooling
chedule [174] ; and in 2013, by supplying the algorithm with more
ystematic memory to prevent cycling by storing the recently visited so-
utions [175] . In this method, the system reliability is maximized, but
ithin a high execution time. Additionally, energy consumption, scala-
ility, monetary cost, and throughput are not undertaken. 

For conducting a reliability examination on cloud services, Cui et al.
176] managed to use the Markov model and the Queuing theory to
resent the scheduling problem of tasks in the cloud. Various objects,
uch as flow time, makespan, and reliability, are taken as targets of the
ptimization problem. The GA-based Chaotic Ant Swarm (GA-CAS) al-
orithm is proposed in this research for scheduling the tasks. An im-
roved convergence rate is achieved by the proposed algorithm in terms
f makespan, flowtime, and reliability. However, energy consumption,
calability, monetary cost, and throughput are not regarded. 

Elasticity or scalability: In [177] , a Cloud Scalable Multi-objective
SO-based SA (CSM-CSOSA) algorithm was carried out by Gabi et al.,
n one parallel workload and one dataset to fulfill the QoS require-
ents as well as the optimization problem constraints. For extending

his study, in another study by Gabi et al. [178] , a task scheduling model
18 
as built, solved on CloudSim framework using the CSM-CSOSA, and
nally evaluated in terms of scalability, execution cost, and execution
ime. However, availability and energy consumption constraints are not
alued. 

For enhancing the scheduling process, Pradeep and Jacob [179] com-
ined CSA with HS effectively into an CHSA to improve the optimization
rocess by formulating a new multi-objective function for minimizing
emory usage, energy consumption, cost, and penalty while maximiz-

ng credit. Herein, the CSA performance is improved by the HS algorithm
or optimizing the task execution on VMs. However, throughput, fault
olerance, scalability, and availability are not addressed int this study. 

Cloud computing enables a dynamic and efficient provision of dis-
ributed, scalable, and elastic resources to end-users from a finite pool
f physical and virtual resources through scheduling of loads, based on
nhanced versions of TGA. For example, an approach named dynamic
earch TGA (dynsTGA) was introduced for reducing the total cost and
ransfer time [180] . However, execution time, energy consumption, and
onetary cost are not minded. 

Energy consumption: The parameters of deadline and budget were
ainly identified as objectives in most of the traditional scheduling algo-

ithms; however, researchers have recently taken the energy consump-
ion seriously as a contribution to expanding the green cloud space. In
atacentres, many efficient technologies including Dynamic Voltage and
requency Scaling/Dynamic Voltage Scaling (DVFS/DVS) technology (a
eoteric advance in processor’s design), resource hibernation, and mem-
ry optimization were utilized for reducing the energy consumption of
rocessors and makespan using a bi-objective hybrid GA [181] . Fur-
hermore, authors in [182] proposed a hybrid workflow scheduling al-
orithm; namely, Multi-Objective Discrete PSO based on DVFS (DVFS-
ODPSO). In this work, performance metrics, such as makespan, cost,

nd energy consumption, are optimized in a discrete space and a set of
on-dominated Pareto optimal solutions are produced. However, scala-
ility, security, total cost, and availability are not deemed a priority in
his study. 

Recently, a new multi-objective task scheduling approach was de-
ised based on some Pareto-based methods. Amongst them, Tao et al.
183] proposed a hybrid GA based on Case Library and Pareto Solution
CLPS) to implement solutions to the optimization problem of reducing
oth the makespan and energy consumption. However, this approach
oes not contemplate scalability, monetary cost, and availability. 

To reduce energy consumption, Meshkati et al. [184] presented a
ybrid ABC and PSO Scheduling Framework (HSF) for reducing active
odes by turning off the unused nodes in addition to managing the VMs
lacement on physical nodes. Furthermore, in [185] , Goyal and Chahal
roposed an FA-inspired method to perform cloud load balancing. In
his research, the brightness function expresses the load function. Less
right firefly is assumed to mean, have a lighter load; and the firefly
ith more light is assumed to mean the load is high. Each of the vir-

ual nodes are assigned a threshold value that should not be exceeded
y the node when it is under processing. The results have demonstrated
mprovement in throughput, minimization in energy consumption, and
aximization in response time. However, this approach considers only

ndependent tasks. In addition, scalability, fault tolerance, and reliabil-
ty are not accepted in the proposed system. 

Security: In [186] , Abdulhamid et al. proposed a Global League
hampionship Algorithm (GBLCA) technique to globally schedule scien-
ific applications in the cloud. A remarkable development rate between
4.44% and 46.41% has been shown by this algorithm on the makespan.
oreover, the time it takes (i.e., response time) for securely scheduling

he applications is reduced. However, total execution cost, energy con-
umption, scalability, and fault tolerance are not put forward. 

A security-cost-aware scheduling approach was proposed in
187] based on a PSO technique which addresses the constraints of risk
ate and deadline so as to minimize the monetary cost. Nevertheless,
nergy consumption, scalability, makespan, and fault tolerance are not
iscussed. 
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In a study, Wen et al. [188] proposed a GA-based privacy-aware
ulti-objective workflow scheduling algorithm in which a range of
areto trade-off solutions are provided to cloud customers, including
oth execution time and monetary cost. However, energy consumption,
esource utilization, scalability, and fault tolerance are not valued. 

Sujana et al. [189] presented Smart PSO (SPSO) and Smart Variable
eighborhood PSO (SVNPSO) algorithms to find an optimized schedule

or achieving a trade-off between the security and the minimum possible
ost and makespan to execute scientific workflows in the cloud environ-
ent, thereby achieving maximal resource utilization. However, energy

onsumption, scalability, and fault tolerance are not validated. 
Recently, Thanka et al. [190] proposed an Improved Efficient ABC

IE-ABC) algorithm for meeting the security and QoS targets in the cloud
nvironment. The ABC algorithm is modified for proving both a security-
ware scheduling and an efficient service while the task is mapped to
he most suitable VM, based on the QoS policies and the critical se-
urity level of the user. In each datacentre, a hive table is maintained
or reducing the security risk, task migration, makespan, cost, and VMs’
oad balancing. However, fault tolerance, scalability, resource utiliza-
ion, and energy consumption are not minded in this work. 

Resource utilization: For more reliable resource allocation in
louds, Javanmardi et al. [191] proposed a hybrid model based on
he GA as well as fuzzy theory. Two chromosomes for each incom-
ng task/application are generated. Both chromosomes include the job
ength, but additionally, the first chromosome includes CPU speed
hereas the second includes the bandwidth of resources. To override

raditional crossover operator of an offspring, the fuzzy theory is used
ith these chromosomes. However, how the fuzzy theory is exploited

or reducing execution time and cost is unclear. In addition, energy con-
umption, availability, security, and scalability are not acceptable. 

In a study, Kumari and Jain [192] proposed a new approach com-
ined of PSO with a Max-Min strategy to overcome the PSO limitation
f taking a longer time for conversion to the global optimal solution.
his approach is mainly compromised for minimizing the makespan and
aximizing the resource utilization in the optimization problem of task

cheduling. However, energy consumption, security, availability, scala-
ility, and fault tolerance are not regarded. 

In another research work, Rani and Suri [193] incorporated the GSA
nd ACO into a single hybrid task scheduling algorithm to solve the load
alancing problem. Thanks to this combination, the ACO no longer has
arly convergence. In this paper, VMs are considered as potential food
ources, and the concept of pheromone is exploited for finding the best
M. The GSA is utilized for updating the pheromone. The results reveal a
alanced distribution of load achieved through relieving the overloading
n VMs. This algorithm achieves load balancing by distributing the load
airly across all VMs as well as improving the task completion time,
hereby reducing resource consumption. However, energy consumption,
ecurity, scalability, and fault tolerance are not evoked. 

Finally, Chen et al. [194] applied a recently introduced meta-
euristic, WOA, for cloud task scheduling using a multi-objective opti-
ization model. An advanced approach called Improved WOA for Cloud

IWC) is proposed to further improve the search capability of WOA. The
roposed IWC achieves better accuracy and convergence speed, com-
ared to existing meta-heuristic algorithms, in searching the optimal
cheduling plans and improving the efficiency of the cloud system in
erms of both system load and resource utilization for both small- and
arge-scale tasks. However, exploration-exploitation balance in IWC may
e further improved. Workflow scheduling is not considered, as well. 

Throughput: To get the maximal throughput, instead of migrating
he entire overloaded VM, a novel model called Task-based System Load
alancing (TBSLB) was validated by Ramezani et al. using the PSO as a
cheduler algorithm in order to migrate the running tasks from an over-
oaded VM to another homogeneous one, thereby achieving an optimal
loud load balancing. This algorithm includes also a model that opti-
izes task migration in order to reduce both the transfer and execution

imes of a task. The results have shown less time taken by this load bal-
19 
ncing technique than traditional methods. In this method, the idle PMs
re not selected such that the energy consumption is kept low. Hence,
his method boosts the load balancing, decrease energy consumption,
nd reduces the execution and migration times, thereby increasing the
hroughput. However, only the homogeneous environment and indepen-
ent tasks are considered. Furthermore, security, availability, and fault
olerance are not touched. 

For estimating the load on VMs, Shobana et al. proposed an ABC-
ased preemptive task scheduling technique using the bandwidth and
rocessor as decision metrics [195] . In this method, the scout bees col-
ect the information while searching a food source, and if suitable nectar
ource is found, information is sent to onlooker bees. The tasks are ex-
cuted immediately after the task scheduling process is exclusively and
ompletely performed. Indeed, the bees’ information including task pri-
rity, number of tasks, and location of VMs is updated by the onlooker
ees on an appropriate set of VMs. It is assumed that the summation of
ll VMs’ loads on a PM matches the entire load on each of the other PMs
s much as possible. The proposed algorithm imitates the honeybees’
oraging behavior for minimizing the makespan. Also, the priorities of
asks are examined and exploited in this algorithm with the aim of reduc-
ng latency and increasing overall efficiency. The proposed method uti-
izes resources efficiently for improving the response time for end-users.
owever, the proposed technique considers only independent tasks. In
ddition, low reliability is presented, as well as energy consumption,
ecurity, availability, and fault tolerance are not included. 

Finally, a new resource scheduling technique based on a Gradient De-
cent (GD) approach hybridized with the CSA was proposed by Madni
t al. [196] for resolving and optimizing the resource scheduling in
louds. All entities in the CSA are searching the same way. However, this
tandard search activity is not always helpful in finding a good solution
o a particular problem, especially with the existence of the dilemmas of
ocal optima and premature convergence. To overcome this weakness,
he CSA is improved using the GD approach by enhancing the conver-
ence rate, aiming to allocate an incoming task to a specific VM that
nsures the lowest execution time, thereby increasing resource utiliza-
ion for cloud providers while fulfilling the cloud users’ demand with
ess delay. Evaluating the performance against existing meta-heuristic
pproaches as well as load balancing, makespan, and throughput are
erified in this approach. However, the performance metrics of resource
tilization and energy consumption are not investigated. 

.2.2. Summary of the scheduling approaches reviewed based on the 

rimary scheduling objective 

Some of the selected articles have been studied and constructively
ommented in the previous subsection, along with their advantages and
eaknesses, based on the primary scheduling objective in the study. A

ummary comparison between those articles, including their remarkable
erits and compulsory demerits, is illustrated in Table 7 . 

.3. Task-resource mapping scheme 

Static, dynamic, AI-based, and prediction-based mapping of cloud
esources to incoming tasks is performed in order to efficiently use the
vailable resources based on the cloud environment condition and the
ubmitted workload. As is well-known, resources and workloads carry
ncertainty in their characteristics; in addition, they are moldable in na-
ure. Thus, the above-mentioned allocation schemes are developed and
ncorporated to handle QoS requirements and mitigate SLA violations.
he most popular mapping schemes, along with their features, are dis-
ussed in the following subsection. 

.3.1. Overview of the selected mechanisms 

Static: Static scheduling requires prior information regarding the
asks for making a schedule decision before a task starts to ex-
cute. Babu and Krishna [214] proposed a resource provisioning
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Table 7 

Categorization of the techniques reviewed based on the primary scheduling objective, along with their advantages and weaknesses. 

Research 
Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm Nature of tasks Advantages Weaknesses/challenges 

Testing 
environment 

Makespan 

Raju et al. [160] Hybrid (ACO and CSA) 

Meta-heuristic (swarm) 

ACO 

Meta-heuristic (swarm) 

Independent ∙ Low makespan 

∙ High throughput 

∙ Low energy 

consumption 

∙ Low reliability 

∙ Low resource 

utilization 

Real 

environment 

Khalili and Babamir 

[161] 

PSO with LDIW 

Meta-heuristic (swarm) 

FCFS 

Heuristic 

Independent ∙ Low makespan 

∙ High resource 

utilization 

∙ Low reliability 

∙ Low throughput 

Simulation 

(CloudSim) 

Gabi et al. [162] CSO with LDIW 

Meta-heuristic (swarm) 

CSO & PSO with LDIW 

Meta-heuristic (swarm) 

Independent ∙ Low makespan 

∙ High resource 

utilization 

∙ Low scalability 

∙ High computational 

cost 

Simulation 

(CloudSim) 

Malik and Jain [163] HS 

Meta-heuristic 

(physical) 

N/A 

N/A 

Independent ∙ Low makespan ∙ Low reliability 

∙ Low scalability 

∙ High energy 

consumption 

Simulation 

(CloudSim) 

Sharma and Garg [164] Hybrid (GA with HS) 

Meta-heuristic (physical 

and evolutionary) 

Min-Min, Max-Min, 

HEFT, PSO, HS, and GA 

Heuristic and 

meta-heuristic (swarm, 

physical, and 

evolutionary) 

Independent 

and workflow 

scheduling 

∙ Low makespan 

∙ Low energy 

consumption 

∙ Low reliability 

∙ Low availability 

Simulation 

(CloudSim with 

MATLAB) 

Monetary cost 

Meena et al. [165] GA 

Meta-heuristic 

(evolutionary) 

IC-PCP [197] , RCT 

[198] , RTC [198] , and 

PSO [199,200] 

Heuristic and 

meta-heuristic (swarm) 

Workflow 

scheduling 

∙ Low monetary cost 

∙ Minor deadline 

violation 

∙ Low scalability Real 

environment 

Chaudhary et al. [166] NPSO 

Meta-heuristic (swarm) 

PSO 

Meta-heuristic (swarm) 

Independent ∙ Low monetary cost ∙ Low reliability Simulation 

(CloudSim) 

Han et al. [167] HDEA 

Meta-heuristic 

(evolutionary) 

DE and SOS [201] 

Meta-heuristic 

(evolutionary) 

Independent ∙ Low monetary cost 

∙ Low makespan 

∙ Low reliability Simulation 

(CloudSim) 

Nasr et al. [168] Hybrid (ACO with CRO) 

Meta-heuristic (swarm 

and evolutionary) 

ACO, modified PSO, 

CRO, and CEGA 

Meta-heuristic (swarm 

and evolutionary) 

Workflow 

scheduling 

∙ Low monetary cost 

∙ Low makespan 

∙ Minor deadline 

violation 

∙ Low reliability Simulation 

(CloudSim) 

Yuan and Bi [169] Hybrid (PSO with GA 

and SA) 

Meta-heuristic (swarm, 

evolutionary, and 

physical) 

EcoPower [202] and 

TRS [203] 

N/A 

Independent ∙ Low monetary cost 

∙ High throughput 

∙ Low energy 

consumption 

∙ Low bandwidth 

∙ Low reliability 

∙ High makespan 

Real 

environment 

Computational cost (CPU, memory, storage, GPU, bandwidth, etc.) 

Wu et al. [170] ACO, PSO, and GA 

Meta-heuristic (swarm 

and evolutionary) 

Each other 

Meta-heuristic (swarm 

and evolutionary) 

Workflow 

scheduling 

∙ Low computational 

cost 

∙ Low makespan 

∙ Low scalability 

∙ Low reliability 

Real 

environment 

Thaman and Singh 

[171] 

Hybrid (PSO with NN) 

Meta-heuristic (swarm) 

and ML 

PSO 

Meta-heuristic (swarm) 

Independent ∙ Low computational 

cost 

∙ Low monetary cost 

∙ Low makespan 

∙ Low response time 

∙ High resource 

utilization 

∙ Low energy 

consumption 

∙ Low reliability 

∙ Low scalability 

Simulation 

(MATLAB) 

Chaudhary and Kumar 

[172] 

Hybrid (GSA and GA) 

Meta-heuristic (physical 

and evolutionary) 

PSO, LIGSA-C, and 

Cloudy-GSA [204] 

Meta-heuristic (swarm 

and physical) 

Independent ∙ Low computational 

cost 

∙ High resource 

utilization 

∙ Minor SLA violation 

∙ High total cost 

∙ Low scalability 

Simulation 

(CloudSim) 

Reliability and availability 

Frincu and Craciun 

[173] 

GA 

Meta-heuristic 

(evolutionary) 

RR 

Heuristic 

Independent ∙ High availability 

∙ Low computational 

cost 

∙ High resource 

utilization 

∙ High fault tolerance 

∙ Low scalability 

∙ Low reliability 

∙ High complexity 

Real 

environment 

( continued on next page ) 

20 
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Table 7 ( continued ) 

Research Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm 

Nature of tasks Advantages Weaknesses/challenges Testing 
environment 

Faragardi et al. 

[174,175] 

Hybrid (SA with TS) 

Meta-heuristic 

(physical) 

Branch & Bound, SA, 

and GA 

Heuristic and 

meta-heuristic (physical 

and evolutionary) 

Independent ∙ High reliability 

∙ High scalability 

∙ High execution time Simulation (C + ) 

Cui et al. [176] Hybrid (chaotic ACO 

and GA) 

Meta-heuristic (swarm 

and evolutionary) 

ACO, GA, and GSA (GA 

& SA) 

Meta-heuristic (swarm, 

evolutionary, and 

physical) 

Independent ∙ High reliability 

∙ Low makespan 

∙ High fault tolerance 

∙ High resource 

utilization 

∙ High complexity 

∙ Unbalanced load 

Simulation 

(MATLAB) 

Elasticity or scalability 

Gabi et al. [177,178] Hybrid (SA with CSO) 

Meta-heuristic (physical 

and swarm) 

GA, ACO, and PSO 

Meta-heuristic (physical 

and swarm) 

Workflow 

scheduling 

∙ High scalability 

∙ Low makespan 

∙ Low monetary cost 

∙ High throughput 

∙ Low reliability Simulation 

(CloudSim) 

Pradeep and Jacob 

[179] 

Hybrid (CSA with HS) 

Meta-heuristic (swarm 

and physical) 

CSA, (CSA with GSA), 

and HS 

Meta-heuristic (swarm 

and physical) 

Independent ∙ High scalability 

∙ Low makespan 

∙ Low computational 

cost 

∙ Low monetary cost 

∙ Low energy 

consumption 

∙ Low throughput Simulation 

(CloudSim) 

Strumberger et al. 

[180] 

dynsTGA 

Meta-heuristic (swarm) 

Min-Min, FCFS, PSO, 

GA , SA , Cloudy-GSA , 

and TS 

Heuristic and 

meta-heuristic (swarm, 

evolutionary, and 

physical) 

Independent ∙ High scalability 

∙ Low transfer time 

∙ Low computational 

cost 

∙ Low reliability 

∙ Low throughput 

Simulation 

(CloudSim) 

Energy consumption 

Mezmaz et al. [181] Hybrid (ECS [205] with 

GA) 

Heuristic and 

meta-heuristic 

(evolutionary) 

ECS [205] 

Heuristic 

Independent ∙ Low energy 

consumption 

∙ Low makespan 

∙ Low scalability 

∙ Low reliability 

Real 

environment 

Yassa et al. [182] PSO 

Meta-heuristic (swarm) 

HEFT 

Heuristic 

Workflow 

scheduling 

∙ Low energy 

consumption 

∙ Low makespan 

∙ Low monetary cost 

∙ Low reliability 

∙ Low security 

Simulation (N/A) 

Tao et al. [183] Hybrid (GA with CLPS) 

Meta-heuristic 

(evolutionary) 

Existing enhanced GAs 

Meta-heuristic 

(evolutionary) 

Independent ∙ Low energy 

consumption 

∙ Low makespan 

∙ High stability 

∙ Low reliability 

∙ Low scalability 

Simulation 

(MATLAB) 

Goyal and Chahal 

[185] 

FA 

Meta-heuristic (swarm) 

PSO 

Meta-heuristic (swarm) 

Independent ∙ Low energy 

consumption 

∙ Low response time 

∙ High throughput 

∙ Low reliability Simulation 

(CloudSim) 

Meshkati et al. [184] Hybrid (ABC and PSO) 

Meta-heuristic (swarm) 

FFD [206,207] , ABC, 

and PSO 

Heuristic and 

meta-heuristic (swarm) 

Independent ∙ Low energy 

consumption 

∙ Low makespan 

∙ High throughput 

∙ Minor SLA violation 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) 

Security 

Abdulhamid et al. 

[186] 

GBLCA 

Meta-heuristic 

(evolutionary) 

Min-Min, Max-Min, 

ACO, and GA 

Heuristic and 

meta-heuristic (swarm 

and evolutionary) 

Independent ∙ High security 

∙ Low makespan 

∙ Low response time 

∙ Low scalability Simulation 

(CloudSim) 

Li et al. [187] PSO 

Meta-heuristic (swarm) 

N/A 

N/A 

Workflow 

scheduling 

∙ High security 

∙ Low monetary cost 

∙ Minor deadline 

violation 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) and 

real environment 

Wen et al. [188] GA 

Meta-heuristic 

(evolutionary) 

MOPSO [208] and 

NSGA-II [209] 

Meta-heuristic (swarm 

and evolutionary) 

Workflow 

scheduling 

∙ High security 

∙ Low makespan 

∙ Low monetary cost 

∙ High energy 

consumption 

Simulation 

(CloudSim) 

Sujana et al. [189] SPSO and SVNPSO 

Meta-heuristic (swarm) 

HEFT [102] , PEFT 

[210] , PSO, and RDPSO 

[211] 

Heuristic and 

meta-heuristic (swarm) 

Workflow 

scheduling 

∙ High security 

∙ Low monetary cost 

∙ Low computational 

cost 

∙ Low makespan 

∙ High resource 

utilization 

∙ High complexity 

∙ Low reliability 

Simulation 

(WorkflowSim) 

( continued on next page ) 
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Table 7 ( continued ) 

Research Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm 

Nature of tasks Advantages Weaknesses/challenges Testing 
environment 

Thanka et al. [190] IE-ABC 

Meta-heuristic (swarm) 

ABC, ACO, and GA 

Meta-heuristic (swarm 

and evolutionary) 

Independent 

and workflow 

scheduling 

∙ High security 

∙ Low makespan 

∙ Low monetary cost 

∙ Low migration time 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) 

Resource utilization 

Javanmardi et al. [191] Hybrid (GA with fuzzy) 

Meta-heuristic 

(evolutionary) 

ACO and MACO 

algorithms [212] 

Meta-heuristic (swarm) 

Independent ∙ High resource 

utilization 

∙ Low makespan 

∙ Low computational 

cost 

∙ Low reliability 

∙ High complexity 

Simulation 

(CloudSim) 

Kumari and Jain [192] Hybrid (PSO and 

Max-Min) 

Meta-heuristic (swarm) 

and heuristic 

Hybrid PBCOPSO (ABC 

and ACO) [213] 

Meta-heuristic (swarm) 

Independent ∙ High resource 

utilization 

∙ Low makespan 

∙ High energy 

consumption 

∙ High monetary cost 

Simulation 

(CloudSim) 

Rani and Suri [193] Hybrid (ACO with GSA) 

Meta-heuristic (swarm 

and physical) 

ACO and GSA 

Meta-heuristic (swarm 

and physical) 

Independent ∙ High resource 

utilization 

∙ Low makespan 

∙ High throughput 

∙ High monetary cost 

∙ Low reliability 

Simulation 

(CloudSim) 

Chen et al. [194] IWC 

Meta-heuristic (swarm) 

WOA, PSO, and ACO 

Meta-heuristic (swarm) 

Independent ∙ High resource 

utilization 

∙ Low computational 

cost 

∙ Low monetary cost 

∙ High scheduling 

overhead 

∙ Not considering 

workflows 

Simulation 

(MATLAB) 

Throughput 

Ramezani et al. [150] PSO 

Meta-heuristic (swarm) 

Traditional methods 

N/A 

Independent ∙ High throughput 

∙ Low makespan 

∙ Low energy 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) 

Shobana et al. [195] ABC 

Meta-heuristic (swarm) 

N/A 

N/A 

Independent ∙ High throughput 

∙ Low makespan 

∙ Low response time 

∙ Low reliability 

∙ Low scalability 

Simulation 

(CloudSim) 

Madni et al. [196] Hybrid (CSA with GD) 

Meta-heuristic (swarm) 

and heuristic 

ABC, ACO, PSO, CSA, 

LCA , GA , and SA 

Meta-heuristic (swarm, 

evolutionary, and 

physical) 

Workflow 

scheduling 

∙ High throughput 

∙ Low makespan 

∙ High complexity 

∙ Low security 

∙ High energy 

consumption 

Simulation 

(CloudSim) 
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A  
echanism inspired by the behavior of the ABC algorithm to im-
rove resource utilization, increase the system throughput, and re-
uce queuing time by improving the load balancing among VMs
nd balancing the tasks’ priorities on those VMs. For a task in
he queue, the queuing time and execution time are lesser; how-
ver, the proposed approach does not validate the dependent tasks.
dditionally, energy consumption, security, and availability are not
crutinized. 

Matos et al. [215] proposed a solution based on a combination of:
eta-heuristic GA, to minimize the number of required VMs by 20%

nd reduce the task processing time (makespan); and a static algorithm
alled Maximum Resource (MR), to resolve the set partitioning problem.
owever, the proposed algorithm presents a small limitation when the

ize of tasks increases by about 30%. In addition, energy consumption,
onetary cost, reliability, and fault tolerance are not regarded. 

Dynamic: Dynamic scheduling can occur during task execution and
oes not require knowledge of all task properties. This is useful for han-
ling the fluctuating demands of cloud users, especially when maximiz-
ng the resource utilization is a higher priority than reducing the execu-
ion time [216] . 

Indeed, all meta-heuristic scheduling approaches are dynamic in na-
ure [217] . However, in this subsection, some researches are addressed
ased on both the dynamic cloud environment and/or the dynamic
cheduling scheme mentioned in the prime keyword of the selected ar-
icles. ACO-based and Variable Neighborhood PSO (VNPSO)-based dy-
amic scheduling algorithms were proposed by Islam and Habiba [218] .
everal mathematical models and explanations of meta-heuristics are
ntroduced to analyze an effective security-aware scheduling strategy.
eanwhile, the empirical results demonstrate the overall superiority of

he proposed algorithm over other existing algorithms in terms of five
asic metrics: security constraints, throughput optimization rate, mone-
22 
ary cost, and CPU utilization. However, energy consumption, monetary
ost, and reliability are not considered. 

In [219] , a dynamic workflow scheduling technique was proposed
y Rahman et al. in grid and cloud computing environment for reduc-
ng the scheduling overhead and minimizing the workflow execution
ime. In this approach, a task-to-service mapping scheme is built using
he GA algorithm combined with a Dynamic Critical Path (DCP) algo-
ithm, in which the task with the longest execution path (critical path)
s dynamically determined posterior to scheduling the incoming tasks.
owever, this approach does not consider using the GA to obtain a bet-

er solution while workflow execution is running. In addition, no exper-
mental research is presented for the suggested technique. In addition,
o evidence is provided on the algorithm’s ability to handle incoming
orkflows during runtime. However, in normal, GA is given a while to
ake a better schedule for the newly incoming workflows generated by
 list-based heuristic. Nevertheless, energy consumption and reliability
re not undertaken in this approach. 

Furthermore, in [220] , Alla et al. proposed a novel model for task
cheduling based on Dynamic Dispatch Queues Algorithm (DDQA) and
SO rules. The proposed structure reduces the queue length and mini-
izes the waiting time of tasks. The makespan is minimized while re-

ource utilization is maximized in this method. The proposed algorithm
roves better than other current policies in cloud computing scenario in
erms of load balancing. However, its scheduling time is long. Moreover,
nergy consumption, reliability, and monetary cost are not examined. 

In [221] , Haghighi et al. proposed a virtualization technique with re-
ard to resource management. For this, a hybrid technique is proposed
ased on a micro-genetic algorithm and K-means for dynamic allocation
f tasks. The proposed approach reduces makespan and offers a reason-
ble trade-off between the QoS of datacentres and energy consumption.
dditionally, the number of VM migrations is reduced in this approach.
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owever, security, fault tolerance, reliability, and dynamic scheduling
f workflows are not spotted. 

Finally, Hemasian-Etefagh et al. [222] introduced a dynamic
cheduling framework using an optimized version of WOA that rep-
esents a new conception of Grouping whales, called GWOA. GWOA
s used as a cloud computing scheduler for the high workload to in-
rease the throughput and response time while reducing the execu-
ion time in the cloud computing environment by pre-overcoming the
remature convergence problem and pre-improving both the exploita-
ion and exploration of the WOA. With a CEC2017 function set in
ATLAB and the CloudSim simulator, the results indicate that GWOA

chieves significant improvement rate in the execution time, response
ime, and throughput compared to other four existing algorithms. How-
ver, other parameters, such as energy consumption, SLA violation, com-
utational cost, and migration, are not involved in the optimization of
cheduling. 

Artificial intelligence (AI)-based: AI-based scheduling is a highly-
echnical and specialized methodology that supports the creation of
n intelligent technique working and reacting, like humans, to sched-
le and assign resources with different aspects, including intelligent
nd autonomous systems, nature-inspired intelligent systems, opera-
ional research systems, agent-based systems, neural networks, Machine
earning (ML), and expert systems [223] . In AI, the failure and er-
or rates are virtually zero, as well as greater accuracy and precision
re guaranteed for the resource allocation and scheduling in the cloud
ramework. 

An ML algorithm runs on computer systems in order to learn complex
elationships and make the right decisions accordingly. In cloud com-
uting, ML algorithms have been evoked to predict the resources’ status
ased on their future load and security. Kumar and Patel [224] used
n ANN-based PSO model to map the incoming requests to resources
sing an ANN model; and to get the job done faster, PSO was used as
 scheduling algorithm. The proposed mechanism achieves the goals of
ncreasing reliability and availability, minimizing monetary cost, com-
utational cost, and makespan, and handling the overloading problem.
owever, the ANN architecture needs improvements for making the net-
ork faster. Moreover, the PSO algorithm requires some modifications

or minimizing the prediction error and increasing both the accuracy
nd the search speed. 

With the increasing demand for cloud technology, the cloud load
eeds to be efficiently balanced for delivering a seamless QoS-based
ervice to the different users of cloud. To tackle such issues, a novel
ybridized load balancing technique based on the ANN and K-means
ethods was introduced by Negi et al. to calculate the load of an op-

imized VM in cloud systems based on the Back Propagation Network
BPN) methodology [225] . Further, these optimized VMs’ loads are clus-
ered into overloaded and underloaded by using an improved K-means
ethod. Besides, a PSO-based task scheduling approach is used to assign
ynamic tasks to the underloaded VMs. With the CloudSim tool, there is
 significant improvement in cloud metrics, such as makespan, transmis-
ion time, and resource utilization. However, many other performance
arameters are not regarded. 

In [226] , Gao et al. proposed an algorithm combined of: an improved
A, to find a set of optimal nodes used to execute the requested tasks

n order to maximize the resource utilization; and a decentralized MOA,
o minimize the bandwidth cost. When compared to NSGA-II and na-
ive GA, the proposed algorithm outpaces in terms of robustness, con-
ergence time, and solution quality as the incoming tasks increases.
owever, only two algorithms are used for validating the proposed
ethod, which increases doubts about the effectiveness of the proposed

pproach. Moreover, the flaws regarding network links (i.e., switches
nd routers), security, fault tolerance, scalability, and energy consump-
ion are not well spotted. 

ML has been widely employed for energy-aware task scheduling
roblems, particularly for predicting resource consumption as well
s figuring out the schedule itself. In this regard, Sharma and Garg
23 
227] proposed an ANN-based scheduler that, for a given task, predicts
he best computing resources by taking the current cloud environment
tate and the incoming task as two inputs. GA is used to generate a large
ataset of up to 18 million training instances used for training the neural
etwork based on the BPN, resulting in a 99.9% output accuracy. The
esults have shown a decrease in makespan and energy consumption
hile reducing both the execution overhead and the number of active

acks. However, workflow applications are not incorporated. Forecast-
ng the temperature effects when making scheduling decisions are not
aken into account, too. 

Prediction-based: Prediction-based scheduling is associated with
he behavior of methods and various measures while allocating re-
ources. Sometimes, predicting the influential resource requirements
nd users’ demand for the future, using automatic resource allocation or
esource reservation techniques is deemed substantial for effective task
cheduling and optimized resource allocation in the cloud environment
228,229] . 

Hu et al. [230] proposed a Prediction-based ACO classification al-
orithm (PACO) that acts based on the principle of task priority to
chedule tasks to VMs, taking different QoS parameters into consider-
tion. Accordingly, the proposed algorithm classifies the arriving jobs
nto two species: compute-intensive and network-intensive. The solu-
ion provided by PACO involves both the makespan and the computa-
ional cost with a more improved rate of about 3.33% than the ACO.
owever, PACO does not perform well if there are a large amount of
osts and VMs. Furthermore, the total cost and makespan needs more
ignificant improvement. Furthermore, the impact of intensive tasks on
he network is not taken into account. 

Most Internet of Things (IoT) devices have sensors that generate a
ontinuous stream of data that in turn calls for further research efforts
nto the cloud area. Within this framework, in [231] , Vashishth et al.
resented a predictive approach to task scheduling, aiming to increase
he reliability and efficiency of the cloud system while processing big
ata on the cloud by using ML classifiers, such as K-Nearest Neighbor
KNN), Random Forest (RF), and Naïve Bayes, as tools for predicting
he VM best suited for a task in a testing dataset. Herein, the PSO is
sed to generate a dataset used to train the classifiers. The proposed
cheme performs the task allocation job almost 10 times faster than
he traditional algorithms, in terms of processing time and allotment
ime; however, the PSO algorithm outpaces in terms of resource uti-
ization. As a drawback, workflow scheduling is not included in this
ork. 

For federated cluster environments, Gabaldon et al. [232] pre-
ented a novel approach combining PSO and Fuzzy-based GA (MPSO-
GA) to solve a scheduling problem with parallel applications, aim-
ng to minimize both the makespan and total energy consump-
ion. This algorithm is characterized by a weighted blacklist used
o effectively represent the resource heterogeneity, computational re-
ource availability, communication resources dispute, and the ap-
lication requirements. However, scalability and throughput are not
inded. 

Finally, Li et al. [233] proposed a time-series-based fluctuation-
ware workflow scheduling approach based on the prediction theory.
n their study, the fluctuant (time-varying) VMs’ performance is taken
p, and an Auto-Regressive Moving Average model (ARIMA) is subse-
uently properly used to predict VMs’ future performance, on which
he GA depends to perform cost-effective schedules at runtime, thereby
chieving lower makespan and low SLA violation rate. Nevertheless,
nergy consumption, scalability, and reliability are not analyzed in this
pproach. 

.3.2. Summary of the scheduling approaches reviewed based on the 

ask-resource mapping scheme 

Some of the selected articles have been studied and constructively
ommented in the previous subsection, along with their advantages
nd weaknesses, based on the task-resource mapping scheme adopted
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n scheduling. A summary comparison between those articles, featur-
ng their most notable merits and inevitable demerits, is illustrated in
able 8 . 

.4. Scheduling constraint 

Deadline, priority, budget, and fault tolerance constraints are signif-
cant factors in the cloud scheduling field as they might have a negative
nfluence on the SLA if there are a large number of applications unable
o meet these constraints. In the following, the selected mechanisms in
his regard are discussed, along with their key traits. 

.4.1. Overview of the selected mechanisms 

Deadline: In [200] , Rodriguez and Buyya evoked the issue of re-
ource scheduling and provisioning to fulfill the resource management
emands required by scientific workflows in cloud systems. PSO meta-
euristic optimization technique is used for minimizing the total ex-
cution time while meeting the user-defined deadline constraint. The
roposed approach incorporates basic cloud principles, such as hetero-
eneity, scalability, and resource utilization. However, this work lacks
arallel computations. Furthermore, availability, reliability, and energy
onsumption are not validated in the proposed model. 

Visheratin et al. [247] put forward a new hybrid algorithm, LDD-LS
Levelwise Deadline Distributed Linewise Scheduling) and IaaS Cloud
artial Critical Paths (IC-PCP) algorithm, to initialize CDCGA (Cloud
eadline Coevolutional Genetic Algorithm) for scheduling scientific
orkflowa in hard-deadline constrained clouds under user-specified
oS constraints, like cost or makespan. The major goal of LDD-LS is

o make workflow lines and calculate each line’s computational time.
onsecutively, the overall deadline is set across the workflow lev-
ls. Though, two different heterogeneous populations are generated in
DCGA. One population represents the sorted list of task identifiers,
hereas the other population includes the sorted list of computational

apabilities of resources, concluding that the CDCGA implementation is
etter than LDD-LS; however, it is possible to observe that throughput,
calability, and fault tolerance are not anaylzed in this scheme. 

Wu et al. [248] proposed two deadline-constrained algorithms, Prob-
bilistic Listing (ProLis) as well as an L-ACO, to minimize the makespan
f workflow scheduling in the cloud environment. With the help of the
roLis algorithm, a deadline is distributed to each task, the tasks are
anked, and each task is sequentially allocated its adequate resources so
s to be executed according to the QoS requirements. Moreover, ACO is
mployed by L-ACO to build various task-order lists for finding effective
cheduling solutions that minimize the makespan under the deadline
onstraint and at the lowest cost. However, both the performance vari-
tion and start-up/boot time of VMs are not undertaken in this study. 

Maurya and Tripathi [249] applied, besides two heuristic algorithms,
wo meta-heuristic algorithms, PSO and CSO, to the BoT and workflow
cheduling problems for minimizing the makespan and execution cost
f applications in cloud systems while meeting deadline constraints.
s overall, the CSO algorithm performs better than other algorithms

n terms of cost optimization. However, real cloud computing environ-
ents need to be triggered in the future for more reliability. Further-
ore, neither energy consumption, scalability, fault tolerance, over-
ead, nor availability are investigated in this approach. 

Priority: A Bi-Criteria priority-based PSO (BPSO) was proposed by
erma and Kaushal, taking the deadline and budget constraints into
ccount to reduce the makespan and execution cost while scheduling
orkflow tasks in clouds [250] . The bottom level defined in the HEFT
lgorithm is used to assign priority for each workflow task so that the
SO can perform then according to these priorities. All particles have
tness values used to constantly indicate their performances and veloc-

ties in order to keep track of the particles’ flight more realistically. The
ptimization process utilizes the experience of the neighboring parti-
les, too. The proposed algorthms have shown a promising performance.
owever, only two algorithms, Budget Constrained HEFT (BHEFT) and
24 
he standard PSO, are used as counterparts for performance evaluation
urposes. In addition, workload, reliability, and energy consumption are
ot minded. 

Milan et al. [251] proposed a scheduling algorithm based on BFO to
educe the idle time of VMs. In the proposed method, each bacterium
enerated by the greedy algorithm shows a solution that indicates the
est position as well as represents the bacteria cost. So, tumble and
ove are the two main steps to be used, and bacteria eventually fol-

ow these steps during the foraging process. The proposed algorithm
educes the running time, makespan, energy consumption, and degree
f imbalance. However, this method is still not ideal enough for reduc-
ng the makespan and energy consumption. In addition, reliability is not
egarded. 

Budget: Verma and Kaushal [252] relied on a Budget Constrained
riority-based GA (BCHGA) to perform workflow scheduling over the
loud resources in order to, within a predefined budget, optimize the
xecution costs. For increasing the diversity of the population, prior-
ty is assigned to each task in the workflow using bottom level and
op level approaches. The proposed algorithm is evaluated based on
ealistic workflows and it shows more promising performance than
he standard GA, the only algorithm used in the comparison. This
ethod does not touch the metrics of scalability, reliability, and energy

onsumption. 
Wang et al. [253] proposed a budget-constrained scheduling algo-

ithm based on PSO for scheduling of workflows in the cloud environ-
ent. In this algorithm, the makespan is minimized while preserving the
ser’s budget. AS the number of iterations and particles increases, the al-
orithm will be more reliable to achieve better performance. However,
nding the best solution might take a long time. Moreover, availability,
calability, energy consumption are not evaluated. 

Fault tolerance: Guo and Xue [254] discussed a Cost-Effective Fault-
olerant (CEFT) scheduling algorithm that should meet a given deadline

n cloud systems. In the case of hardware failure, either permanent or
ransient fault tolerance is provided by this approach to tasks by ap-
lying the Primary/Backup (P/B) approach, which contains two dupli-
ated copies of each task. Herein, the tasks are independent of each
ther and do not carry any precedence order, as well as the iterative
ethod is followed in this approach for optimizing the proposed re-

ource allocation technique more effectively. In every iteration, VM is
elected for the upcoming task by using the PSO algorithm. The itera-
ive approach is used in this method for reducing the execution cost of
he task. Also, reliability is guaranteed. Nevertheless, this scheme might
ause overheads to the system as well as require much computational
esources to be available because of its iterative nature. Additionally,
akespan, scalability, and energy consumption are not evaluated in this
ork. 

Abdulhamid et al. [255] devised a CheckPointed LCA (CPLCA) mech-
nism for task allocation in the cloud system. The authors use a task mi-
ration scheme to handle the execution failures of independent tasks.
PLCA is used to schedule the failed tasks on an underloaded VM.
inimal makespan, minimal average response time, secure fault tol-

rance, and reliability metrics are produced by the CPLCA scheme.
urthermore, in the event of failure, restarting the task from the ini-
ial point is avoided by using a checkpointing technique that saves the
tate of a task at regular intervals. However, the task execution is sus-
ended at the time of this regularly repeated checkpointing process,
hereby increasing the overhead and reducing the throughput of the
ystem. 

Abdulhami et al. [256] presented a fault-tolerant dynamic cluster-
ng LCA (DCLCA) approach to the scheduling of independent tasks in
he cloud. The objective of this technique is fault reduction in the case
f job failure. The devised technique is designed on the basis of using
lasticity and resource utilization as QoS objectives. This technique uses
afka technology, replication protocol, and reactive mechanism. The
xperimental results validate the superiority of the proposed strategy
n terms of reducing the fault rate and makespan. This technique has a
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Table 8 

Categorization of the techniques reviewed based on the task-resource mapping scheme, along with their advantages and weaknesses. 

Research 
Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm Nature of tasks Advantages Weaknesses/challenges 

Testing 
environment 

Static 

Babu and Krishna 

[214] 

ABC 

Meta-heuristic (swarm) 

Weighted RR (WRR), 

FCFS, and Dynamic 

Load Balancing (DLB) 

[234,235] 

Heuristic 

Independent ∙ Low makespan 

∙ High throughput 

∙ Low queuing time 

∙ High priority 

fulfillment 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim) 

Matos et al. [215] Hybrid (GA with MR) 

Meta-heuristic 

(evolutionary) and 

heuristic 

FCFS and PSO 

[155,199] 

Heuristic and 

meta-heuristic (swarm) 

Workflow 

scheduling 

∙ Low makespan ∙ Low scalability 

∙ High computational 

cost 

Simulation 

(CloudSim) 

Dynamic 

Islam and Habiba 

[218] 

ACO and VNPSO 

Meta-heuristic (swarm) 

SARDIG [236] and 

SAREG [237] 

Heuristic 

Independent ∙ High security 

∙ High throughput 

∙ Low monetary cost 

∙ Minor deadline 

violation 

∙ Low reliability Simulation 

(CloudSim) 

Rahman et al. [219] Hybrid (GA and DCP) 

Meta-heuristic 

(evolutionary) and 

heuristic 

Min-Min, Max-Min, 

HEFT, Myopic [238] , 

GRASP [239] , and GA 

Heuristic and 

meta-heuristic 

(evolutionary) 

Workflow 

scheduling 

∙ Low makespan 

∙ High fault tolerance 

∙ Low reliability Simulation 

(GridSim) 

Alla et al. [220] Hybrid (PSO with 

DDQA) 

Meta-heuristic (swarm) 

and heuristic 

FCFS and PSO 

Heuristic and 

meta-heuristic (swarm) 

Independent ∙ Low makespan 

∙ High resource 

utilization 

∙ High load balancing 

∙ High scheduling time 

∙ Low reliability 

Simulation 

(CloudSim) 

Haghighi et al. [221] Hybrid (GA with 

K-means) 

Meta-heuristic 

(evolutionary) and ML 

PSO and GA 

Meta-heuristic (swarm 

and evolutionary) 

Independent ∙ Low makespan 

∙ Low energy 

consumption 

∙ Minor SLA violation 

∙ Low VMs migrations 

∙ Low reliability Simulation 

(CloudSim) 

Hemasian-Etefagh 

et al. [222] 

GWOA 

Meta-heuristic (swarm) 

WOA, improved WOA 

(CWOA), PSO, and Bat 

Algorithm (BA) 

Meta-heuristic (swarm) 

Independent ∙ Low makespan 

∙ High throughput 

∙ High energy 

consumption 

∙ Terrible SLA violation 

∙ High computational 

cost 

Simulation 

(CloudSim) 

Artificial intelligence based 

Kumar and Patel [224] Hybrid (PSO with 

ANN) 

Meta-heuristic (swarm) 

and ML 

N/A 

N/A 

Independent ∙ Low makespan 

∙ Low monetary cost 

∙ Low computational 

cost 

∙ High reliability 

∙ Low makespan 

∙ Low-performance 

ANN architecture 

∙ Low PSO-based 

search speed 

Simulation (N/A) 

Negi et al. [225] Hybrid (PSO with ANN 

and K-means) 

Meta-heuristic (swarm) 

and ML 

Max-Min, Min-Min, 

RR, and FCFS 

Heuristic 

Independent ∙ Low makespan 

∙ High resource 

utilization 

∙ Low reliability Simulation 

(CloudSim) 

Gao et al. [226] Hybrid (GA with MAO) 

Meta-heuristic 

(evolutionary) 

GA and NSGA-II 

Meta-heuristic 

(evolutionary) 

Independent ∙ Low makespan 

∙ High resource 

utilization 

∙ Low bandwidth 

∙ Low reliability 

∙ Low scalability 

Simulation (N/A) 

Sharma and Garg [227] Hybrid (GA with ANN) 

Meta-heuristic 

(evolutionary) and ML 

MinMIN-MINMin 

[240] , linear regression 

[241] , and GA 

Heuristic and 

meta-heuristic 

(evolutionary) 

Independent ∙ Low makespan 

∙ Low energy 

consumption 

∙ Low scalability 

∙ Low reliability 

Simulation 

(CloudSim with 

MATLAB) 

Prediction based 

Hu et al. [230] PACO 

Meta-heuristic (swarm) 

ACO 

Meta-heuristic (swarm) 

Independent ∙ Low makespan ∙ Low scalability Simulation 

(CloudSim) 

Vashishth et al. [231] PSO 

Meta-heuristic (swarm) 

KNN, RF, and Naïve 

Bayes 

ML techniques 

Independent ∙ High resource 

utilization 

∙ High makespan Simulation 

(CloudSim and 

Java-ML) 

Gabaldon et al. [232] Hybrid (MPSO with 

FGA) 

Meta-heuristic (swarm 

and evolutionary) 

FCFS, CBS [242] , JPR 

[243] , Min-Min, MOGA 

[244] 

Heuristic 

Workflow 

scheduling 

∙ Low makespan 

∙ Low energy 

consumption 

∙ Low scalability 

∙ Low throughput 

Simulation 

(GridSim) 

Li et al. [233] Time-series-based GA 

Meta-heuristic 

(evolutionary) 

PSO + ARIMA [245] , 

Non-predictive PSO 

[200] , and 

Non-predictive GA 

[165,246] 

Meta-heuristic (swarm 

and evolutionary) 

Workflow 

scheduling 

∙ Low makespan 

∙ Low monetary cost 

∙ Minor SLA violation 

∙ Low fault tolerance 

∙ Low scalability 

∙ High complexity 

Real 

environment 

25 
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Table 9 

Categorization of the techniques reviewed based on the scheduling constraint(s), along with their advantages and weaknesses. 

Research 
Technique(s) applied 
Type of algorithm 

Compared against 
Type of algorithm Nature of tasks Advantages Weaknesses/challenges 

Testing 
environment 

Deadline 

Rodriguez and Buyya 

[200] 

PSO 

Meta-heuristic (swarm) 

IC-PCP [197] and 

Scaling Consolidation 

Scheduling (SCS) [257] 

Heuristic 

Workflow 

scheduling 

∙ Minor deadline 

violation 

∙ High scalability 

∙ High resource 

utilization 

∙ Low reliability 

∙ Low elasticity 

Simulation 

(CloudSim) 

Visheratin et al. [247] CDCGA 

Meta-heuristic 

(evolutionary) 

IC-PCP [197] and 

LDD-LS 

Heuristic 

Workflow 

scheduling 

∙ Minor deadline 

violation 

∙ Low makespan 

∙ Low monetary cost 

∙ Low efficiency Real 

environment 

Wu et al. [248] ACO and ProLis 

Meta-heuristic (swarm) 

and heuristic 

IC-PCP [197] and PSO 

[200] 

Heuristic and 

meta-heuristic (swarm) 

Workflow 

scheduling 

∙ Minor deadline 

violation 

∙ Low makespan 

∙ Low monetary cost 

∙ Low scalability Simulation (Java) 

Maurya and Tripathi 

[249] 

PSO and CSO 

Meta-heuristic (swarm) 

IC-PCP [197] and SCS 

[257] 

Heuristic 

Independent 

and workflow 

scheduling 

∙ Minor deadline 

violation 

∙ Low makespan 

∙ Low monetary cost 

∙ Low reliability Simulation 

(CloudSim) 

Priority 

Verma and Kausha 

[250] 

BPSO 

Meta-heuristic (swarm) 

BHEFT [258] and PSO 

Heuristic and 

meta-heuristic (swarm) 

Workflow 

scheduling 

∙ High priority 

fulfillment 

∙ Minor deadline 

violation 

∙ Low makespan 

∙ Low monetary cost 

∙ Low load balancing Simulation (Java) 

Milan et al. [251] BFO 

Meta-heuristic (swarm) 

PSO [259] , hybrid (GA 

and ACO) [260] , 

Symbiotic Organism 

Search (SOS) [261] , 

and GA [262] 

Meta-heuristic (swarm 

and evolutionary) 

Independent ∙ High priority 

fulfillment 

∙ Low makespan 

∙ Low energy 

consumption 

∙ Low reliability Simulation 

(CloudSim) 

Budget 

Verma and Kaushal 

[252] 

BCHGA 

Meta-heuristic 

(evolutionary) 

GA 

Meta-heuristic 

(evolutionary) 

Workflow 

scheduling 

∙ High priority 

fulfillment 

∙ Low monetary cost 

∙ Minor budget 

violation 

∙ Low reliability Simulation (Java) 

Wang et al. [253] PSO 

Meta-heuristic (swarm) 

Multi-objective List 

Scheduling (MOLS) 

[263] 

Heuristic 

Workflow 

scheduling 

∙ Minor budget 

violation 

∙ Low makespan 

∙ High scalability 

∙ High response time Simulation (Java) 

Fault tolerance 

Guo and Xue [254] PSO (CEFT) 

Meta-heuristic (swarm) 

Min-Min, CEFTNI (CEFT 

without Iteration), and 

CEFTNR (CEFT without 

Rescheduling) 

Heuristic and 

meta-heuristic (swarm) 

Independent ∙ High fault tolerance 

∙ Low monetary cost 

∙ Minor deadline 

violation 

∙ Low makespan 

∙ Low resource 

utilization 

∙ High overhead 

Real 

environment 

Abdulhamid et al. 

[255] 

CPLCA 

Meta-heuristic 

(evolutionary) 

ACO, LCA and GA 

Meta-heuristic (swarm 

and evolutionary) 

Independent ∙ High fault tolerance 

∙ Low makespan 

∙ Low response time 

∙ High security 

∙ High reliability 

∙ High overhead 

∙ Low throughput 

Simulation 

(CloudSim and 

CloudAnalyst) 

Abdulhamid et al. 

[256] 

DCLCA 

Meta-heuristic 

(evolutionary) 

Max-Min [264] , MTCT 

[265] , ACO [266] , and 

NSGA-II [267] 

Heuristic ad 

meta-heuristic (swarm 

and evolutionary) 

Independent ∙ High fault tolerance 

∙ Low makespan 

∙ High elasticity 

∙ High resource 

utilization 

∙ Low reliability Simulation 

(CloudSim) 
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ajor issue; that is, it does not consider the throughput of the system,
xecution cost, energy consumption, and reliability. 

.4.2. Summary of the scheduling approaches reviewed based on the 

cheduling constraint 

Some of the selected articles have been studied and constructively
ommented in the previous subsection, along with their advantages and
eaknesses, based on the scheduling constraint(s) adopted in the study.
 summary comparison between those articles, featuring their most im-
ortant merits and inescapable demerits, is illustrated in Table 9 . 
26 
. Simulation tools and their comparison 

Some experiments might compromise the end-user QoS; therefore,
t is practically not easy to experiment new techniques in a real envi-
onment. Cloud computing has some prominent simulation tools meant
or analyzing new scheduling algorithms as well as evaluating their per-
ormance in different scenarios over cloud environments. Fig. 12 de-
icts that CloudSim simulation toolkit is the popular tool most used for
ask scheduling, whose existing programmatic classes which can be ex-
ended in accordance with the algorithm requirements in order to eval-
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Table 10 

Comparison between simulation tools most widely used for task scheduling in clouds. 

Tool Platform 

Language/ 
Script Graphical support 

Communi- 
cation 
model 
support 

Support 
windows en- 
vironment 

Energy con- 
sumption 
modelling 
support 

Output result 
format Availability 

GridSim [268] N/A Java No Limited Yes No Text Open source 

CloudSim [269] SimJava (GridSim) Java Limited (via 

CloudAnalyst) 

Limited Yes Limited Text Open source 

CloudAnalyst [270] Java SE, Swing, and 

SimJava (CloudSim) 

Java Full Limited Yes Limited PDF Open source 

EMUSim [271] Emulation (AEF) 

and CloudSim 

Java Limited (via NEPI) Limited No Limited Text Open source 

NetworkCloudSim 

[272] 

CloudSim Java No Full Yes Yes Text Open source 

WorkflowSim [273] CloudSim Java No Limited Yes Limited Text Open source 

GreenCloud [107] NS2 C + /OTcl Limited (via Nam) Full No Yes Dashboard 

plots 

Open source 

GroudSim [274] N/A Java Limited No Yes No Java API, Tracer 

handlers, and 

Filters 

Open source 

iCanCloud [275] OMNET and MPI C + Full Full Yes In progress Text Open source 

Fig. 12. Percentage of simulation, implementation, and real environment 
among the testing tools. 
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ate such diverse QoS parameters as makespan, monetary cost, compu-
ational cost, reliability, availability, scalability, energy consumption,
ecurity, and throughput, with includible constraints, like deadline, pri-
rity, budget, and fault tolerance, by following one of the different task-
esource mapping schemes. Using a simulator for performance valida-
ion of a new algorithm has main advantages including: 

• Time efficiency: Implementing applications requires much less time
and effort. 

• Applicability and flexibility: Minor programming and deployment ef-
forts are required to model application services and test their perfor-
mance in heterogeneous environments. 

Prominent simulation tools available in cloud computing, such as
ridSim, CloudSim, CloudAnalyst, EMUSim, NetworkCloudSim, Work-
owSim, GreenCloud, GroudSim, and iCanCloud, are summarized and
ompared in Table 10 in terms of different parameters including base
latform, programming language, graphical support, communication
odel support, output result format, availability, and the support level
rovided by the simulator. Looking closely at Table 10 , it can be ob-
erved that the graphical support in most of the simulators is limited,
hich would require more effort from researchers and practitioners in
rder to implement a new technique or approach. It is also noted that
27 
nergy consumption modelling support is generally very limited, while
bsent in some simulators, which calls for more implementations in this
espect to strongly bring about this feature in the current simulators,
specially with the increasing demand of green computing. Moreover,
t would be very beneficial to extend the format of the output results
o include common formats (e.g., csv, xml, etc.). Finally, the most no-
able is that all simulators are open source, which enables scholars or
ractitioners to easily implement new features or improve existing ones
n the simulation tools, in a response to the diverse requirements of
he cloud community. As shown in Fig. 12 , simulation toolkits (partic-
larly, CloudSim) are used as a testing environment in almost 69% of
he selected studies, whereas 16% of the studies depend on implemen-
ation. It can be also seen that 15% of testing are conducted in a real
nvironment. 

. Analysis and discussions 

This section comprehensively summarizes and analyzes the meta-
euristic approaches for task scheduling in cloud computing. The dis-
ussions are held based on diverse aspects, including the presented tax-
nomy, types of algorithms, overall objectives and constraints, key sub-
reas, practical impact, and strengths and limitations of the review. 

.1. The presented taxonomy 

Meta-heuristic task scheduling approaches presented in Section 4 are
nalyzed in this subsection. 

.1.1. Nature of scheduling problem 

Some of the selected studies have been reviewed in Section 5.1 , based
n the nature of the scheduling problem. Fig. 13 depicts the single and
ulti-objective approaches covered by these studies. As it is possible to

bserve, the most commonly used meta-heuristic methods of schedul-
ng based on the nature of the scheduling problem are swarm-based
70%) in which PSO (30%) and CSA (20%) have the highest proportions
s shown in Fig. 13 (a). Evolutionary (10%), physical (10%), and hy-
rid (10%) algorithms have further equal weightage for the optimizing-
cheduling process. ACO (10%), FA (10%), GA (10%), and SA (10%)
ave also a significant effect on the performance of the scheduling ap-
roaches from the perspective of single and multi-objective approaches.
s depicted in Fig. 13 (b), PSO was applied exclusively, most remarkably

n multi-objective approaches. It is also noted that there are generally
ore scheduling schemes associated with multi-objective approaches
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Fig. 13. Usage ratio of the single and multi-objective approaches among the selected studies. 

Fig. 14. Usage ratio of the QoS parameters (primary scheduling objectives) among the selected studies. 
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han single objective ones, thereby promoting further future incorpora-
ion of multi-objective techniques for more reliable scheduling of tasks
n the cloud environment. 

.1.2. Primary objective of scheduling 

Some of the selected studies have been reviewed in Section 5.2 ,
ased on diverse primary scheduling objectives. Fig. 14 depicts the dif-
erent scheduling objectives primarily considered in these studies. As
t is possible to see, the most commonly applied meta-heuristic meth-
ds of scheduling based on a primary scheduling objective are hybrid
lgorithms (43%), as shown in Fig. 14 (a), which are used most fre-
uently for particularly achieving the two objectives of resource uti-
ization and energy consumption as shown in Fig. 14 (b). In the case
f swarm-based techniques, note that the PSO (18%) was applied most
idely with the security objective. Further weightage for the optimizing-

cheduling process is given to swarm (40%), evolutionary (15%), and
hysical (3%) algorithms. As depicted in Fig. 14 (b), makespan, mone-
ary cost, computational cost, energy consumption, and security have
ore related schemes than other scheduling objectives. In order to gen-

rate higher profits, service providers take resource utilization seriously
s a factor. Proper resource provisioning to the incoming applications
ould highly increase resource utilization. As discussed in the related
axonomy, the issues surrounding appropriate resource allocation and
rovisioning have been elaborated by many researchers. However, it
s evident that resource utilization is closely related to the problem of
ncreased energy consumption. To overcome this, merging of the work-
28 
oads on the VMs might significantly reduce the energy consumption
y either switching off the free VMs or dedicating them for use with
ew application demands. Thus, calculating future resource consump-
ion may aid the reduction of VM migrations as well as bring further
evenue to cloud service providers. 

.1.3. Task-resource mapping scheme 

Some of the selected studies have been reviewed in Section 5.3 based
n the task-resource mapping scheme. Fig. 15 depicts task-resource
apping schemes covered by these studies. Once again, hybrid algo-

ithms (56%) are observed to seize the highest percentage among meta-
euristic scheduling approaches by paying the most attention to the
ask-resource mapping schemes, as shown in Fig. 15 (a). Further weigh-
age for the optimizing-scheduling process is given to swarm (38%) and
volutionary (6%) algorithms. ACO (13%) and PSO (13%) in swarm-
ased techniques as well as GA (6%) in evolutionary techniques have
 significant relative effect on the performance of the scheduling ap-
roaches from the perspective of task-resource mapping schemes. It is
ood to mention that researchers have not triggered physical algorithms
n this regard. As depicted in Fig. 15 (b), dynamic scheduling has the
reatest usage, which indicates the effectiveness and efficiency of this
cheme. It is also observed in this respect that, in general, hybrid algo-
ithms are the most commonly used among meta-heuristic methods, but
xclusively with AI-based scheduling schemes. 
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Fig. 15. Usage ratio of the task-resource mapping schemes among the selected studies. 

Fig. 16. Usage ratio of the constrained approaches among the selected studies. 
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.1.4. Scheduling constraint 

Some of the selected studies have been reviewed in Section 5.4 , based
n the scheduling constraint in these studies. Fig. 16 depicts various
onstrained approaches. Once again, it is possible to notice that the
onstrained approaches mainly depend on swarm algorithms (67%) in
hich PSO (42%) has the highest proportion as shown in Fig. 16 (a).
urther weightage for the optimizing-scheduling process is given to the
volutionary algorithms (33%). GA (17%) and LCA (17%) in evolution-
ry algorithms as well as ACO, BFO, and CSO in swarm algorithms
ave the same effect (8%) on the performance of scheduling under
onstraints. It is worth mentioning that researchers, once again, have
ot evoked physical algorithms. As depicted in Fig. 16 (b), deadline is
he constraint most emphasized by meta-heuristic techniques, especially
SO. Moreover, it is clear that fault tolerance is also a widely adopted
onstraint. 

.1.5. Overall taxonomy 

As shown in Fig. 17 , the total number of approaches undertaking a
rimary scheduling objective (QoS parameter) represents 51% of the
aximum meta-heuristic approaches addressed in this study. In the
rimary-objective-based scheduling techniques, the primary focus is on
he monetary cost and computational cost with the same proportion of
%, as well as makespan, energy consumption, and security with 6%
or each. However, other objectives were paid less attention. Moreover,
esource elasticity or scalability, system reliability, and throughput fea-
29 
ures are not considered by most of the work. It is worth mentioning here
hat the undesirable sequence of resource failures could be reduced by
eveloping an efficient scheduling technique. The failure probability of
 task or a resource can be minimal when making a scheduling decision,
y integrating the scheduling framework with a failure prediction mod-
le based on such intelligent methods as data mining, statistics-based,
L-based, etc. 

Furthermore, Fig. 17 reveals that deadline (6%) and fault tolerance
4%) are the most frequently adopted constraints in the problem of cloud
cheduling. For deadline constrained applications, users would prefer
educing the execution time. Similarly, the fault tolerance needs to be
aximal in mission-critical applications or systems. 

.2. Types of algorithms 

Meta-heuristic techniques are still in their early stage as the com-
only used techniques in the literature, such as ACO, PSO, GA, etc., are

et to be duly utilized to determine the best possible fit in the cloud task
cheduling paradigm. Our selected studies aim mainly at empowering
he knowledge of researchers by providing them with some basic con-
epts and advances in the field. It is not an easy task to solve a particular
cheduling problem using a meta-heuristic technique, instead, the user’s
hoice and expertise can be better exploited. Categorization of diverse
ask scheduling meta-heuristic techniques in clouds into swarm, evo-
utionary, physical, emerging, and hybrid approaches, along with their
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Fig. 17. Overall usage ratio of the diverse approaches to cloud task scheduling among the selected studies. 

Fig. 18. Overall usage ratio of the meta-heuristic algorithms covered by the selected studies. 
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elevant overall usage proportions are depicted in Fig. 18 . Speaking of
he hybrid and swarm techniques whose major close total usage ratios
re 44% and 41%, respectively, PSO is remarked as the most active algo-
ithm among them. Sometimes, other meta-heuristic or even heuristic
pproaches are hybridized with those algorithms. The search strategy
nd convergence speed of meta-heuristic techniques differs, depending
n the fact that the system overall performance can be further boosted
sing a hybrid version. Similarly, in evolutionary techniques (13% over-
ll usage), most researchers applied the GA. Considering physical tech-
iques (13% overall usage), no approach is dominant; however, the HS
nd SA have low, equal weightages. As it is also possible to observe in
ig. 18 , PSO and GA have been applied the most among meta-heuristic
cheduling approaches in the cloud, independently and in hybridization.
t is also very notable that the emerging meta-heuristic algorithms had
uch less attention by researchers in all taxonomy aspects addressed in

his study. 
30 
.3. Overall objectives and constraints 

The primary objectives and popular constraints covered by the task
cheduling approaches presented in the selected papers have been trig-
ered within Section 5 . Table 11 illustrates a side-by-side assessment
f those approaches based on the overall involved objectives (QoS pa-
ameters) and constraints to be considered while scheduling. Findings
n Table 11 reveal that makespan as an objective and deadline as a con-
traint are comparable keys in the meta-heuristic approaches for task
cheduling in clouds. However, the measures of reliability, scalability,
ecurity, computational cost, and budget were not deemed necessary
n some studies despite their significant impact on the cloud service.
ll in all, according to Table 11 , in which all selected studies are illus-

rated, the highest and lowest scores of each involved technique are also
pparent. It is interesting to notice that the highest score is shared be-
ween makespan and monetary cost as objectives as well as deadline as



E
.H

.
 H

o
u
ssein

,
 A

.G
.
 G

a
d
,
 Y

.M
.
 W

a
zery

 et
 a

l.
 

S
w

a
rm

 a
n
d
 E

vo
lu

tio
n
a
ry
 C

o
m

p
u
ta

tio
n
 6

2
 (2

0
2
1
)
 1

0
0
8
4
1
 

Table 11 

A side-by-side comparison between the presented scheduling approaches based on the objectives and constraints of scheduling. 

Algorithm(s) Reference Objectives (QoS parameters) Constraints 

Makespan 
Monetary 
cost 

Computational 
cost 

Reliability and 
availability 

Elasticity or 
scalability 

Energy 
consumption Security 

Resource 
utilization Throughput Deadline Priority Budget 

Fault 
tolerance 

Swarm 

ABC [190] 
√ √

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ 

[195] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

[214] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ 
√

✗ ✗ 

ACO [152] 
√ √

✗ ✗ ✗ ✗ ✗ 
√

✗ 
√

✗ ✗ ✗ 

[170] 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[218] ✗ 
√

✗ ✗ ✗ ✗ 
√

✗ 
√ √

✗ ✗ ✗ 

[230] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[248] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

BFO [251] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 

CSA [148] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[154] 
√ √

✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

CSO [162] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

[249] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

FA [148] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[185] ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

PSO [155] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

[151] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

[153] 
√ √

✗ ✗ ✗ 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ 

[161] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

[166] ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[170] 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[182] 
√ √

✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[187] ✗ 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ 

[189] 
√ √ √

✗ ✗ ✗ 
√ √

✗ ✗ ✗ ✗ ✗ 

[150] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

[200] ✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ 
√

✗ ✗ ✗ 

[218] ✗ 
√

✗ ✗ ✗ ✗ 
√

✗ 
√ √

✗ ✗ ✗ 

[231] ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

[249] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

[250] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√ √

✗ ✗ 

[253] 
√

✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ 

[254] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

TGA [180] ✗ ✗ 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

WOA [222] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

[194] ✗ 
√ √

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

( continued on next page ) 
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Table 11 ( continued ) 

Algorithm(s) Reference Objectives (QoS parameters) Constraints 

Makespan Monetary 
cost 

Computational 
cost 

Reliability and 
availability 

Elasticity or 
scalability 

Energy 
consumption 

Security Resource 
utilization 

Throughput Deadline Priority Budget Fault 
tolerance 

Evolutionary 

DE [167] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA [151] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

[165] ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

[170] 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[173] ✗ ✗ 
√ √

✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 
√

[188] 
√ √

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ 

[233] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

[247] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

[252] ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√ √

✗ 

LCA [186] 
√

✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ 

[255] 
√

✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 
√

[256] 
√

✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 
√

Physical 

HS [163] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

SA [148] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Hybrid 

ABC and PSO [184] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

ACO with CRO [168] 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ 

ACO and CSA [160] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

ACO and GA [176] 
√

✗ ✗ 
√

✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 
√

ACO with GSA [193] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√ √

✗ ✗ ✗ ✗ 

CSA with GD [196] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

CSA with HS [179] 
√ √ √

✗ 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

ECS with GA [181] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA with ANN [227] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA with CLPS [183] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA and DCP [219] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

GA with fuzzy [191] 
√

✗ 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

GA with HS [164] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA with K-means [221] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GA with MAO [226] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

GA with MR [215] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

GSA and GA [172] ✗ ✗ 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

MSA and DE [149] 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

PSO with ANN [224] 
√ √ √ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

PSO with ANN and 

K-means 

[225] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

PSO with DDQA [220] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

PSO with GA [232] 
√

✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ ✗ ✗ 

PSO with GA and SA [169] ✗ 
√

✗ ✗ ✗ 
√

✗ ✗ 
√

✗ ✗ ✗ ✗ 

PSO and Max-Min [192] 
√

✗ ✗ ✗ ✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ ✗ 

PSO with NN [171] 
√ √ √

✗ ✗ 
√

✗ 
√

✗ ✗ ✗ ✗ ✗ 

SA with CSO [177,178] 
√ √

✗ ✗ 
√

✗ ✗ ✗ 
√

✗ ✗ ✗ ✗ 

SA with TS [174,175] ✗ ✗ ✗ 
√ √

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
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 constraint, whereas the lowest score is shared between reliability as
n objective and budget as a constraint, for all selected studies. Finally,
t can be concluded that, for effective cloud task scheduling, all factors
re vital and crucial. 

From the previous two subsections, it implies that more research is
equired and optimal solutions to diverse scheduling problems can be
urther found out based on the referred techniques. This precise inves-
igation provides researchers interested in the area of cloud scheduling
ith a roadmap, along with a guideline on how to effectively improve

he cloud service using meta-heuristic techniques. 

.4. Key sub-areas 

To accustom the art followed by authors in order to show up their
orks, we have thoroughly, while writing this paper, analyzed many
apers from different fields and journals, which eventually emerged this
iterature work. Literature prominence was brought to this work through
arious research perspectives by categorizing previous studies into five
istinct sub-areas with respect to: 

i) meta-heuristic scheduling algorithms, 
ii) nature of scheduling problem, 
ii) primary objective of scheduling, 
v) task-resource mapping scheme, and 
v) scheduling constraint. 

Further, various meta-heuristic algorithms for task scheduling are
ategorized in Section 4.3 into swarm, evolutionary, physical, emerg-
ng, and hybrid algorithms as well as comprehensively summarized in
able 11 . However, the focus of attention in this survey is categoriz-

ng diverse task scheduling approaches from different perspectives, in-
luding the nature of the scheduling problem, the primary objective of
cheduling, the task-resource mapping scheme, and the scheduling con-
traint, which have been discussed in Section 5 , as well as comprehen-
ively summarized in Tables 6–9 , respectively. Also, open challenges
elated to the respective spheres of research are highlighted. However,
ssues regarding task failure prediction, temperature, bandwidth/speed,
oad balancing, and storage while task scheduling are not triggered in
his work due to the limited length of the paper. 

.5. Analysis of practical impact 

During this survey, one of the challenging tasks was the analysis of
he effectiveness of existing researches. However, their practical impact
as been taken very seriously by looking at the quality rank (quartile)
ssigned by Scopus to each journal. Table 12 shows the distribution of
he selected articles in the literature per top 24 ranked journals. Addi-
ionally, publisher, quartile rank, as well as the country of each journal
re listed. Compared to other journals, the ASCJ involves most authors
n the area of task scheduling. It is also notable that most of the studies
n the task scheduling domain were published in diverse major confer-
nces. Among the 71 recent technical studies picked from the literature
or this study, 32 articles were published in major journals as shown in
able 12 . 

.6. Strengths of the review 

This research process strives to supply further useful information
bout a reasonable number of diverse task scheduling approaches un-
er the umbrella of cloud computing, along with their merits and de-
erits, as illustrated in tables of Section 5 ( Tables 6–9 and Table 11 ).

n addition, the discussions associated with them, being the limelight of
his review, would empower the researchers’ knowledge of various task
cheduling strategies in the cloud area. Moreover, the period from 2011
o 2020 was surveyed in order to really show up the volume of work
one in the different approaches comprehensively. 
33 
.7. Limitations of the review 

Conducting a high-quality systematic review is the main objective of
his study; however, some limitations were imposed. Hence, after col-
ecting and analyzing the relevant data on task scheduling in cloud com-
uting, the limitations of this review were spotted as follows: 

• Research validity: To rely heavily on Google Scholar, among many
others, as an electronic database does not significantly guarantee
that all selected studies are applicable to data extraction, for a va-
riety of reasons, for example, searching with wrong or irrelevant
keywords. 

• Approach scope: Only the meta-heuristic algorithms are mainly fo-
cused as prominent approaches to tackle the NP-hard problem of
task scheduling in clouds. 

• Differentiation: While searching different scholarly databases, which
meta-heuristic approach as well as what QoS parameters perform the
best are not clearly defined. 

• Comprehensiveness: Not all constraints and QoS parameters are ad-
dressed (e.g., load balancing, storage, bandwidth, etc., are not con-
sidered). Moreover, other promising aspects, such as realistic appli-
cations, are not duly analyzed. 

• Evaluation of techniques: No algorithm exact accuracy is clearly de-
fined. 

. Open issues and challenges 

On the basis of pay-per-use, cloud computing has achieved a lot of
rogress with regard to the implementation of scalable computing in-
rastructures. However, many current issues and challenges still need
oth more analysis and discussion. Looking closely at existing research
nto cloud task scheduling, generally, this area has diverse open issues
till pending. Based on the existing literature, open challenges and is-
ues surrounding task scheduling in cloud computing can be identified
s follows: 

.1. Resource scheduling 

Cloud resource scheduling includes such diverse challenges as het-
rogeneity, uncertainty, and dispersion of resources, which cannot be
esolved by using traditional resource management approaches. There-
ore, a large focus and priority should be paid to these cloud features in
rder to make cloud applications and services more reliable. Resource
cheduling aims to map the right workloads, at the right time, to the
ost suitable resources so the resources are utilized in the best way

y those applications in a balanced manner. In other words, workload
hould take up the minimal amount of resources that will, however,
e well utilized in order to get the minimal task length (maximize the
hroughput of the system) while maintaining a desirable QoS level. This
rea still needs more effort to be devoted by researchers into developing
ew convenient solutions. 

.2. Quality of service (QoS) 

A service provider provisions the amount of resources required by
 cloud service to fulfill its QoS requirements. Consequently, an SLA
aradigm is designed to regularly detect SLA violations that in turn
ecide whether compensation or penalty is awarded. Thus, service
roviders are required to dynamically provision an adequate amount
f resources to avoid or even mitigate SLA violations. 

.3. Service level agreements (SLAs) 

In cloud computing, the interaction between the computing environ-
ent and the cloud consumer needs to be minimal while accomplishing,

n accordance with the SLA, the QoS requirements described by users.
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Table 12 

Distribution of articles per journals. 

No. Publisher Country 2018 Q factor Journal name Number of articles 

1 Elsevier Netherlands Q1 Applied Soft Computing (ASC) 4 

2 IEEE United States Q1 IEEE Acess (IA) 3 

3 Elsevier Netherlands Q1 Future Generation Computer Systems 

(FGCS) 

2 

4 Elsevier Netherlands Q1 Engineering Science and Technology, 

an International Journal 

1 

5 IEEE United States Q1 IEEE Transactions on Cloud Computing 1 

6 IEEE United States Q1 IEEE Transactions on Parallel and 

Distributed Systems 

1 

7 IEEE United States Q1 IEEE Systems Journal 1 

8 Springer Netherlands Q1 Journal of Grid Computing 1 

9 Elsevier Netherlands Q1 Knowledge-Based Systems 1 

10 Public Library of Science United States Q1 PLoS ONE 1 

11 Springer Netherlands Q2 Cluster Computing (CC) 3 

12 Springer Netherlands Q2 Journal of Supercomputing (JS) 3 

13 Springer Germany Q2 Arabian Journal for Science and 

Engineering (AJSE) 

2 

14 IEEE China Q2 China Communications 1 

15 Wiley Online Library United States Q2 Concurrency Computation Practice 

and Experience 

1 

16 IET United Kingdom Q2 IET Communications 1 

17 Inderscience United Kingdom Q2 International Journal of Grid and 

Utility Computing 

1 

18 Elsevier United States Q2 Journal of Parallel and Distributed 

Computing 

1 

19 Springer Germany Q2 Neural Computing and Applications 1 

20 Elsevier Germany Q2 Soft Computing 1 

21 Elsevier United States Q2 Sustainable Computing: Informatics 

and Systems 

1 

22 Springer Netherlands Q2 World Wide Web 1 

23 Springer Netherlands Q3 Wireless Personal Communications 

(WPC) 

2 

24 Springer Netherlands Q3 International Journal of Parallel 

Programming 
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hus, an autonomic infrastructure-based effective strategy which, in ad-
ance, detects SLA violation, is a research issue by which performance
egradation could be avoided. 

.4. Self-management service 

In this case, a cloud provider aims to allocate and release cloud re-
ources so the deployment charge is minimal while fulfilling the Service
evel Objectives (SLOs). These methods usually include: i) request man-
gement at each level by forecasting the required number of application
nstances using an application performance model (ML approach) spe-
ially created to fulfill the QoS requirements, ii) a performance model
sed to occasionally define resource requirements for the expected forth-
oming demand, and iii) estimating of future resource requirements so
hat resources are assigned automatically later when requested by end-
sers. The proactive model is one of such self-managing methods that
ccasionally allocate resources by analyzing the expected demand be-
ore resources are even requested [276] . On the other hand, the reactive
ethod responds also to various instant demands before accessing the
emand periodic forecast [276] . 

.5. Energy management 

One of the major problems in cloud computing is improving the en-
rgy efficiency. It has been assessed that 53% of the entire operational
pendings go to powering and refrigeration of datacentres. In 2006, in
he USA, nearly 1.5% of the total energy produced were consumed by
atacentres, as well as the yearly growth proportion is estimated at
8%. Therefore, decreasing energy consumption is an urgent task given
o IaaS providers. Reducing energy cost in datacentres is not the only
oal, but also government rules and environmental standards should
34 
e adhered. There are two other methods used to decrease power con-
umption by switching off the idle systems: energy-aware server consol-
dation and energy-efficient task scheduling. Existing scheduling tech-
iques have a main issue to achieve an acceptable trade-off between
pplication performance and energy consumption. 

.6. Dynamic scalability 

For cloud workloads, resource scaling and scheduling are needed for
oosting the performance of an application within deadline or budget
onstraints. How much cloud resources should be acquired, and how
hould they be allocated to and released from the computing activities
or optimizing the application performance within the deadline or bud-
et constraints? The capability of dynamic acquiring or releasing of re-
ources in response to demand is referred to as dynamic scalability. In a
atacentre, dynamic resource management should mainly aim to fight
gainst the waste of resources arising from underutilization. In addi-
ion, the aims of such a process should include tackling the problem of
igh response time, which may result in overutilization as well as vi-
lation of SLA between the service providers and recipients. Initially,
he cloud workload (e.g., batch data processing, application server, web
erver, file server, transactional database, etc.) should be thoroughly
nderstood for designing such a successful cloud platform. Then, the
loud consumer applications should be designed carefully to boost the
caling advantage. Thus, processes like dynamic infrastructure scaling,
inimizing the response time of flexible demand, and maximizing the

hroughput of requests, can all be together achieved. An IT resource is
ifficult to be well-prepared to fulfill its all processing requests. Overuti-
ization and underutilization are two troublesome dilemmas surround-
ng IT resources as a result of the ongoing demand around cloud re-
ources. 
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.7. Reliability 

Service provider faces a main challenge in determining the method
f delivering a responsive service that fulfills the users’ diverse require-
ents while meeting the QoS parameters. Amongst many others, relia-

ility is one of the most challenging cloud computing issues as cloud ser-
ice providers currently want to provide their services to end-users with
igh performance, high quality, and low processing time while making
aximum profit. 

.8. Security 

The resources in distributed environments are virtualized and di-
ersificated; therefore, security became a complicated process in cloud
omputing. Accordingly, resource monitoring, resource management,
nd resource security have emerged as eminent issues in cloud com-
uting. Discrete PSO method was used to tackle the impact of security
hreats on the scheduling of workflows [277] . In this approach, a cloud
odel is used to quantify the security of tasks and VM resources. In ad-
ition, the user’s satisfaction degree with the security of the allocation
rocess of tasks to the virtual resources is generally estimated by mea-
uring the similarity of the security cloud. Thus, the objectives of com-
letion time and cost are combined with security. Likewise, the schedul-
ng strategy can be figured out in some way to protect and secure the
onfidential and private information of the submitted applications. 

.9. Scheduling based on emerging meta-heuristic approaches 

Several optimization problems were worked out using different
eta-heuristic techniques, such as Whale Optimization Algorithm

WOA) [140] , Imperialist Competitive Algorithm (ICA) [278] , Bat Algo-
ithm (BA) [279] , Harris Hawks Optimization (HHO) [280] , Grey Wolf
ptimizer (GWO) [281] , and Wind Driven Optimization (WDO) algo-

ithm [282] . For task scheduling in cloud computing, WOA [222] , ro-
ust algorithms like ICA [283] , as well as BA [284] have already been
pplied. Building on past experiences, HHO, GWO, and WDO algorithms
ay also have the potential to solve various cloud task scheduling prob-

ems. Consequently, these algorithms as well as other emerging promi-
ent algorithms can be adapted more creatively to individually or collec-
ively optimize such diverse scheduling objectives as energy optimiza-
ion, load balancing, scalable VM migration, etc. 

.10. Others 

Speaking of scheduling in clouds, users usually pay close attention to
oth the execution time and the service price for workflow applications.
ervice consumers aim to use resources at the minimum monetary cost
nd makespan. In [285] in which a workflow is scheduled in grid com-
uting, a trade-off factor was developed to compromise the cost and ex-
cution time as per user’s preference. In cloud environment, the impor-
ance of the trade-off factor is exponentially increasing, especially with
he presence of the heterogeneity and scalability of resources. There-
ore, it is very beneficial to contemplate time-cost trade-off. Moreover,
orkflow size and task size have a potential impact on the scheduling
erformance, which can be also further tackled in future research. 

. Future trends 

As it can be observed from the various selected state-of-the-art
cheduling techniques in this study that all issues (challenges) cannot
e resolved using a single algorithm. For example, one algorithm may
ocus on energy, cost, time, and QoS parameters while these parame-
ers are totally ignored by another which regards different parameters,
uch as resource utilization, availability, response time, and scalability,
tc. These limitations should be triggered in future research, along with
xploiting new opportunities arising from recent developments in the
35 
eld [286–288] . Other several limitations of existing techniques can be
vercome by devoting further research efforts into the following aspects:

• Priority of users: Cloud is ultimately a business model; thus, during
the execution of submitted applications, the prioritization of cloud
consumers should be taken into consideration. 

• Green computing: Energy-aware task scheduling needs extensive re-
search so that computing resources can be used more user- and
environment-friendly by reducing the use of contaminated materi-
als. 

• Resource controlling: Key mechanisms, such as monitoring task mi-
gration, VM migration, memory or CPU utilization, etc., should be
handled in a more controlled manner. 

• Workload prediction: There is a need for more effective workload
estimation techniques to predict the scale of upcoming workload,
thereby increasing both the throughput and resource utilization. 

• Network Bandwidth: Generally, network bandwidth has not received
enough attention in the majority of current techniques, although dis-
regarding it might cause communication delay, data loss, general
network failure, etc. 

• Fog computing: Traditional elastic cloud suffers from issues regarding
security and delays which can be solved based on the new trend of
fog computing which provides a higher level of heterogeneity and
decentralization. 

• Failure prediction: Resource failures including resource missing, stor-
age failure, network failure, hardware failure, software failure, com-
puting failure, database failure, overflow, underflow, and timeout
can be predicted using diverse ML techniques. 

• Failure management: The features regarding the management of task
migration and failure have been tackled by a few scheduling algo-
rithms; therefore, future research should address those features for
maintaining the availability and constancy of the system. 

• IoT: Managing the IoT devices and multimedia contents are critical
recent trends on task scheduling in cloud. 

• Next generation computing: Nano-computing-based/Quantum, non-
traditional architecture is an attractive environment that should be
involved in the next generation cloud. 

0. Conclusions and recommendations 

In general, solving a given scheduling problem using a meta-heuristic
lgorithm is very similar to launching a robot in a huge maze. The speed
t which the robot locates the exit depends extremely on its search abil-
ty (vision) and decision ability (intelligence). Unfortunately, the opti-
um solution is not always what we get, especially with the existence

f large and complex regions. Thus, the balance between intensification
nd diversification should be pursued in order to further enhance the
uality of scheduling solutions. To this end and in order for the audience
f this paper to deeply understand the meta-heuristic techniques delin-
ated herein from a scheduling perspective in clouds, traditional and
euristic scheduling approaches were first introduced in order to differ-
ntiate them from their successive competitors, meta-heuristics. Then,
 novel taxonomy was depicted to comprehensively and systematically
ategorize various prominent meta-heuristic scheduling approaches in
he cloud, in terms of the nature of the scheduling problem, the primary
bjective of scheduling, the task-resource mapping scheme, and the
cheduling constraint, taking into consideration the strengths and short-
omings of each approach. Based on the comparative analytics of the
elected studies, it should be noted that PSO, GA, and ACO algorithms
ave been used by researchers to perform most of the work. Moreover,
akespan, monetary cost, and resource utilization are the most active

esearch areas. From another perspective, single objective scheduling,
n general, reliability, scalability, and throughput objectives, in particu-
ar, budget and priority constraints, and AI-based and prediction-based
apping schemes have gained less researchers’ attention; hence, they
rgently need to be into the thick of future research. 
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Moreover, this study mainly aimed to vividly promote a breadth of
he basic concepts of meta-heuristic task scheduling techniques in the
loud computing area, that should provide researchers and practitioners
ith tips on how to find out the nature of their scheduling problem,
etermine their primary QoS parameters, discover the appropriate task-
esource mapping scheme, and specify the scheduling constraints most
uitable for the problem, without breaching the SLA, for the potential of
eveloping a novel scheduling algorithm. At the end, some simulation
ools used in the field of cloud computing for implementing and testing
ew algorithms are briefly discussed and compared. 

Succinctly, as of the end of this study, some concerns are posed. We
o not say, however, that our study addressed all of these concerns and
esponds to them. Rather, we managed closely to help bridge the gap
etween meta-heuristic scheduling algorithms and their application to
loud task scheduling, which might help pave the way for further en-
ancements to the cloud service. This study also put forward various
pen research issues, along with future contemporary trends. An excit-
ng area for future research involves selecting as the most appropriate
esource (VM) as possible for incoming tasks/applications in order to
ptimize the process of task scheduling. For example, integration with a
calable architecture in accordance with user-defined QoS requirements
an be suggested as a potential serious solution to this issue. Also, an
utonomic QoS-based scheduling framework can be developed to help
ndustrialists and researchers be more aware of the area of resource
cheduling and optimization, especially with the advent of the era of
ig Data and the IoT. 
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