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Multiple attribute decision making forms an important part of the decision process for both
small (individual) and large (organization) problems. When available information is
precise, many methods exist to solve this problem. But the uncertainty and fuzziness
inherent in the structure of information make rigorous mathematical models inappropriate
for solving this type of problems. This paper incorporates the fuzzy set theory and the basic
nature of subjectivity due to the ambiguity to achieve a flexible decision approach suitable
for uncertain and fuzzy environment. The proposed method can take both real and fuzzy
inputs. An outranking intensity is introduced to determine the degree of overall outranking
between competing alternatives, which are represented by fuzzy numbers. Numerical
examples finally illustrate the approach.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Multiple attribute decision-making (MADM) methods are widely used to rank real world alternatives or select the best
alternative with respect to several competing criteria. In classical MADM methods, assessments of alternatives are precisely
known [3,30,32]. Due to fuzziness and uncertainty of decision-making problems, and the inherent vagueness of human pref-
erences, however, the best expression of decision makers comes in natural language. As a result, using linguistic (fuzzy)
assessments are much more realistic than numerical values. In other words, linguistic variables, in which the values are
words or sentences from natural or artificial languages, are used in the assessment of alternatives with respect to criteria
[18,29,33,38,39].

An MADM problem can be concisely expressed in matrix format as
ð1:1Þ
where A1; . . . ;An are feasible alternatives among which decision should be made, c1; . . . ; cm are attributes with which the per-
formance of alternatives are measured, and the entry aij of decision matrix A is the rating of alternative Ai with respect to the
g prob-
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attribute cj. Furthermore, the attributes normalized weight vector w ¼ ðw1; . . . ;wmÞt should be either appraised by pairwise
comparisons or determined by decision maker’s (DM) preferences [19,23,40].

Assume that the alternatives set is denoted by K and the attributes set is denoted by !; that is, K ¼ fA1; . . . ;Ang and
! ¼ fc1; . . . ; cmg. In general terms, attributes are divided into benefit attributes and cost attributes. That is to say, ! is par-
titioned into two distinct sets !þ and !�. Then, an MADM problem can be portrayed as follows [16,28,35]:
Please
lems,
Maximize faij : j 2 !þg
Minimize faij : j 2 !�g

Subject to Ai 2 K

ð1:2Þ
In classical MADM methods, the attribute values (ratings) and weights are determined precisely. A survey of the methods
has been presented in [17]. In real life management decision situations, MADM models and methods have been proposed. So
far, a variety of applicable methods such as Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and
Analytic Hierarchy Process (AHP) have been developed for an MADM problem.

TOPSIS was developed for solving MADM problems based on the concept that the obtained solution should be nearest to
the positive ideal solution (PIS) and be remotest from the negative ideal solution (NIS). TOPSIS is a popular method and has
been widely used in the literature (Abo-Sinna and Amer [1]; Agrawal et al. [2]; Cheng et al. [9]; Mokhtarian and Hadi-Ven-
cheh [31]; Deng et al. [13]; Feng and Wang [14,15]; Chen and Liu [7]; Hwang and Yoon [19]; Jee and Kang [20]; Kim et al.
[24]; Li [27]). The method has also been extended to deal with fuzzy MADM problems. For example, Tsaur et al. [36] first
convert a fuzzy MADM problem into a real one via centroid defuzzification and then solve the non-fuzzy MADM problem
using the TOPSIS method. Chen and Tzeng [8] transform a fuzzy MADM problem into a non-fuzzy MADM using fuzzy inte-
gral. Instead of using distance, they employ gray relation grade to define the relative closeness of each alternative. Chu
[10,11] and Chu and Lin [12] also change a fuzzy MADM problem into a real one and solve the real MADM problem using
the TOPSIS method. Differing from the others, they first derive the membership functions of all the weighted ratings in a
weighted normalization decision matrix using interval arithmetics of fuzzy numbers and then defuzzify them into real val-
ues using the ranking method of mean of removals [22]. Chen [6] extends the TOPSIS method to fuzzy group decision making
situations by defining a real Euclidean distance between any two fuzzy numbers. Triantaphyllou and Lin [35] develop a fuzzy
version of the TOPSIS method based on fuzzy arithmetic operations, which leads to a fuzzy relative closeness for each alter-
native. It is argued that fuzzy weights and fuzzy ratings should result in fuzzy relative closeness. Real relative closeness pro-
vides only one possible solution to a fuzzy MADM problem, but cannot reflect the whole picture of its all possible solutions.
Wang and Elhang [37] propose a fuzzy TOPSIS method based on alpha level sets. They deal with the relative closeness as an
optimal solution to a fractional programming.

In all aforementioned works, the authors develop a hybrid fuzzy TOPSIS. TOPSIS, as will be seen in next section, seeks for a
compromise solution (alternative) that is closest to ideal solution and remotest from negative ideal solution. However, the
compromise solution of TOPSIS is not essentially the remotest from negative ideal solution. Therefore, the ranking coeffi-
cients concern only to closeness to the ideal solution (see Example 1 in sub-Section 2.1). Motivated by such a fact, this paper
proposes a method for solving fuzzy MADM.

In this paper, we develop a new approach for solving multiple attribute decision making problems based on the same
concept as TOPSIS considering both distances to the PIS and from the NIS. Furthermore, constructing the model under the
assumption of vagueness and imprecise environment enables the method to conform to real life decision situations.

This paper is organized as follows. In the following section the essential definitions and concepts, as well as, notations of
the fuzzy set theory are exhibited. Section 3 is dedicated to the proposed method and its hints. Section 4 illustrates the pro-
posed method with two numerical examples. Ultimately, discussion and conclusion are given in Section 5.

2. Preliminaries

Fuzzy sets are coherent extension of real sets and were first developed by Zadeh [41] as an aid for dealing with uncer-
tainty/imprecision and vagueness in the real world. A fuzzy set is a collection of elements in a universe of information where
the boundary of the set contained in the universe is ambiguous, vague and fuzzy. Each fuzzy set is specified by a membership
function, which assigns to each element in the universe of discourse a value within the unit interval ½0;1�. The assigned value
is called degree (or grade) of membership, which specifies the extent to which a given element belongs to the fuzzy set or is
related to a concept. If the assigned value is 0, then the given element does not belong to the set. If the assigned value is 1,
then the element totally belongs to the set. If the value lies within the interval ð0;1Þ, then the element only partially belongs
to the set. Therefore, any fuzzy set can be uniquely determined by its membership function.

Let X be the universe of discourse. A fuzzy set eA of the universe of discourse X is said to be convex if and only if for all x1

and x2 in X there always exists k 2 ½0;1� such that:
l~Aðkx1 þ ð1� kÞx2ÞP minðl~Aðx1Þ;l~Aðx2ÞÞ ð2:1Þ
where l~A is the membership function of the fuzzy set eA. A fuzzy set eA of the universe of discourse X is said to be normal if
there exists a xi 2 X satisfying l~AðxiÞ ¼ 1. Fuzzy numbers are special cases of fuzzy sets that are both convex and normal. The
membership function of a fuzzy number is piecewise continuous and satisfies the following properties:
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1. l~AðxÞ ¼ 0 outside some interval ½a; d�;
2. l~AðxÞ is non-decreasing (monotonically increasing) on ½a; b� and non-increasing (monotonically decreasing) on ½c; d�;
3. l~AðxÞ ¼ 1 for each x 2 ½b; c�,

where a 6 b 6 c 6 d belong to the real line R.

Definition 1. A fuzzy number eA is said to be positive if and only if l~AðxÞ ¼ 0 for all x < 0.
We denote the set of all real fuzzy numbers by eR. The binary operation on fuzzy numbers is shown in Definition 2.
Definition 2. If eA and eB are any two fuzzy numbers, then eC ¼ eA � eB is a fuzzy number whose membership function is
defined as [26,34]
Please
lems,
l~CðzÞ :¼ sup
z¼x�y

minfl~AðxÞ;l~BðyÞg ð2:2Þ
where � stands for the corresponding non-fuzzy binary operation.
The most commonly used fuzzy numbers are triangular and trapezoidal fuzzy numbers, whose membership functions are,

respectively, defined as
l~A1
ðxÞ ¼

x�a
b�a ; a 6 x 6 b;

d�x
d�b ; b 6 x 6 d;

0; Otherwise:

8><>: ð2:3Þ
and
l~A2
ðxÞ ¼

x�a
b�a ; a 6 x 6 b;

1; b 6 x 6 c;
d�x
d�c ; c 6 x 6 d;

0; Otherwise:

8>>><>>>: ð2:4Þ
For brevity, triangular and trapezoidal fuzzy numbers are often denoted as ða; b; dÞ and ða; b; c; dÞ. It is obvious that trian-
gular fuzzy numbers are special cases of trapezoidal fuzzy numbers with b ¼ c.

Definition 3. Let ~a ¼ ða1; a2; a3Þ and ~b ¼ ðb1; b2; b3Þ be any two positive triangular fuzzy numbers. The basic fuzzy arithmetic
operations on these fuzzy numbers are defined as following [21,25].

Addition: ~aþ ~b ¼ ða1 þ b1; a2 þ b2; a3 þ b3Þ;
Subtraction: ~a� ~b ¼ ða1 � b3; a2 � b2; a3 � b1Þ;
Multiplication: ~a� ~b � ða1b1; a2b2; a3b3Þ;
Division: ~a� ~b � a1

b3
; a2

b2
; a3

b1

� �
.

Definition 4. Assume that ~x ¼ ðx1; x2; x3Þ and ~y ¼ ðy1; y2; y3Þ are any two triangular fuzzy numbers. Then the fuzzy p-distance
between these two numbers is defined as
qpð~x; ~yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
½jy1 � x1jp þ jy2 � x2jp þ jy3 � x3jp�

p

r
; p P 1: ð2:5Þ
2.1. TOPSIS: an overview

The procedure of the TOPSIS is summarized as follows:

Step 1. Calculate normalized criterion values. The normalized criterion values mij ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;mÞ of aij can be
calculated as follows:
mij :¼ aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1a2

kj

q ð2:6Þ
Step 2. Calculate weighted normalized criterion values. The weighted normalized criterion values v ij of mij can be calculated
as follows:
v ij :¼ mijwj ð2:7Þ
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where w ¼ ðw1; . . . ;wmÞ is the criteria weight vector.
Step 3. Determine the ideal solution and the negative ideal solution. Denote the ideal solution and the negative ideal solu-

tion as Aþ and A� whose weighted normalized criterion value vectors are, respectively, denoted by
v�þ ¼ v�þ1 ; . . . ;v�þm

� �
where
Table 1
The res

Desc

A1

A2

A3

Idea
Nega

Please
lems,
v�þj :¼
max
16i6n

v ij; if cj is a benefit criterion;

min
16i6n

v ij; if cj is a cost criterion:

8<: ð2:8Þ
and v�� ¼ v��1 ; . . . ; v��m
� �

where
v��j :¼
min
16i6n

v ij; if cj is a benefit criterion;

max
16i6n

v ij; if cj is a cost criterion:

8<: ð2:9Þ
Step 4. Calculate the separation measures. The separation measures of alternatives Ai from the ideal solution Aþ as well as
the negative ideal solution A� are, respectively, defined as follows:
dþi :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
v ij � v�þj
� �2

r
; i ¼ 1; . . . ; n ð2:10Þ
and
d�i :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
v ij � v��j
� �2

r
; i ¼ 1; . . . ; n ð2:11Þ
Step 5. Calculate the relative closeness coefficients to the ideal solution. The relative closeness coefficient of alternative Ai

with respect to the ideal solution Aþ are defined as follows:
ni :¼ d�i
d�i þ dþi

; i ¼ 1; . . . ;n ð2:12Þ
Step 6. Rank the alternatives. Ranking order of all alternative Ai is generated according to the decreasing order of all coef-
ficients ni.

TOPSIS seeks a compromise solution based on closeness to ideal solution and remoteness from negative ideal solution,
simultaneously. However, there exists some drawback in its logic. Consider the following example:

Example 1. Suppose the decision matrix of an MADM problem with three alternatives A1; A2, and A3 against the cost
criterion c1 and benefit criterion c2 is given as follows:
If the relative importance weight vector of criteria is w ¼ ð0:5;0:5Þ, then the weighted normalized decision matrix and
final results are presented in Table 1.

As indicated in Table 1 the compromise solution, the alternative A2, has the least distance to ideal solution, D�þ2 ¼ 0:058,
but it is not the remotest from negative ideal solution, since D��1 ¼ 0:383 > 0:378 ¼ D��2 . Nonetheless, this drawback is the
major motivation for FIR method.
ults for Example 1 using TOPSIS.

ription variables Weighted normalized criterion values TOPSIS results

c1 c2 D�þi D��i ni Rank

0.096 0.228 0.114 0.383 0.771 2
0.105 0.285 0.058 0.378 0.867 1
0.479 0.342 0.383 0.114 0.229 3

l solution 0.096 0.342
tive Ideal solution 0.479 0.228
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3. Proposed method: the fuzzy inferior ratio method

Our method focuses on rating and selecting from a set of alternatives in the presence of vagueness and multiple conflict-
ing attributes. It determines a compromise solution (or ranking list) based on the concept that the chosen alternative should
be the closest to the PIS and the farthest away from NIS, simultaneously. Differences between each alternative and the both
PIS and NIS are measured with an extension of weight Minkowski L1 metric.

In this paper, it is assumed that the alternatives set K ¼ fA1; . . . ;Ang and the attributes set ! ¼ fc1; . . . ; cmg are finite and
that the MADM problem is expressed concisely in matrix format as follows:
Please
lems,
ð3:1Þ
where ~aij ¼ að1Þij ; a
ð2Þ
ij ; a

ð3Þ
ij

� �
denotes fuzzy triangular numbers.

Step I: Normalizing the decision matrix
Multiple attributes are usually incommensurable. Therefore, the decision matrix eA has to be normalized so that
the units and dimensions of attribute values are eliminated. To avoid complicated normalization formula used
in classical TOPSIS, obtain the normalized fuzzy decision matrix via the linear scale transformation as
following:
~mij :¼
að1Þij

âð3Þj

;
að2Þij

âð3Þj

;
að3Þij

âð3Þj

 !
; i ¼ 1; . . . ; n ð3:2Þ
if j 2 !þ, where âð3Þj ¼max16i6nað3Þij , and
~mij :¼
�að1Þj

að3Þij

;
�að1Þj

að2Þij

;
�að1Þj

að1Þij

 !
; i ¼ 1; . . . ; n ð3:3Þ
if j 2 !�, where �að1Þj ¼min16i6nað1Þij . So, the fuzzy normalized decision matrix is:
ð3:4Þ
In decision making process, different attributes have different importance. Suppose the attributes weight vector
~w ¼ ð ~w1; . . . ; ~wmÞt , whose entries are positive triangular fuzzy numbers.

Step II: Determination of PIS and NIS, as well as, evaluation of the alternative distances to each of them
Denote Aþ as PIS whose normalized attribute value vector is defined as
~g ¼ ð~g1; . . . ; ~gmÞt ð3:5Þ
where
~gj :¼ max
16i6n

mð1Þij ;max
16i6n

mð2Þij ;max
16i6n

mð3Þij

� �
; j ¼ 1; . . . ;m
In real situations, the MADM problem is often described by several conflicting (or competing) attributes and there may exist
no solution (alternative) satisfying all attributes simultaneously. Thus, Aþ may not be a feasible alternative, i.e. Aþ R K.
Otherwise, Aþ is an optimal solution of the MADM problem. In this paper, without loss of generality, we assume that Aþ R K.
Difference between an alternative Ai ði ¼ 1; . . . ;nÞ and PIS Aþ is measured as follows:
dpðAi;A
þÞ :¼

Xm

j¼1

1
3

X3

k¼1

wðkÞj gðkÞj � mðkÞij

� �h ip
 !1=p

ð3:6Þ
where p P 1 is a distance parameter distinguished by DM according to the practical situations and decision making require-
ments.
The smaller dpðAi;A

þÞ the better Ai. Let’s denote
dpðAþÞ ¼ min
16i6n

dpðAi;A
þÞ; ð3:7Þ
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hence the alternative Ai that satisfies dpðAþÞ ¼ dpðAi;A
þÞ is closed to PIS. However, such an alternative may not always be the

farthest away from NIS.
Denote A� as the NIS whose normalized attribute value vector is defined as
Please
lems,
~b ¼ ð~b1; . . . ; ~bmÞ
t

ð3:8Þ
where
~bj :¼ min
16i6n

mð1Þij ; min
16i6n

mð2Þij ; min
16i6n

mð3Þij

� �
; j ¼ 1; . . . ;m
A� may not almost be a feasible alternative, i.e. A� R K. Otherwise, A� is an inferior solution of the MADM problem. Simi-
larly, without loss of generality we assume that A� R K.
Difference between an alternative Ai ði ¼ 1; . . . ; nÞ and NIS A� is also measured as follows:
dpðAi;A
�Þ :¼

Xm

j¼1

1
3

X3

k¼1

wðkÞj mðkÞij � bðkÞj

� �h ip
 !1=p

ð3:9Þ
The bigger dpðAi;A
�Þ the better Ai. Therefore, the alternative satisfies
dpðA�Þ ¼max
16i6n

dpðAi;A
�Þ ð3:10Þ
is farthest away from NIS.
Step III: The compromise solution

In this study, we seek an alternative satisfying both Eqs. (3.7) and (3.10). So, let
fpðAiÞ :¼ dpðAi;A
�Þ

dpðA�Þ
� dpðAi;A

þÞ
dpðAþÞ

; i ¼ 1; . . . ;n: ð3:11Þ
Evidently, fpðAiÞ measures the extent to which the alternative Ai closes to PIS and is far away from NIS, simultaneously.
Proposition 1. fpðAiÞ 	 0 for i ¼ 1; . . . ;n.
Proof. According to Eqs. (3.7) and (3.10), for any i ¼ 1; . . . ;n we have
dpðA�ÞP dpðAi;A
�Þ & dpðAi;A

þÞP dpðAþÞ
thus,
dpðAi;A
�Þ

dpðA�Þ
	 1 & � dpðAi;A

þÞ
dpðAþÞ

6 �1
which yields to
fpðAiÞ ¼
dpðAi;A

�Þ
dpðA�Þ

� dpðAi;A
þÞ

dpðAþÞ
	 1þ ð�1Þ ¼ 0: �
We put the alternatives into order with respect to the decreasing values of fi. The bigger fpðAiÞ, the better Ai, viz.,
A� :¼ Ai : i : fpðAiÞ ¼ max
16k6n

fpðAkÞ
	 
� �

: ð3:12Þ
If there exists an alternative, namely Ak, satisfying
dpðAk;A
�Þ ¼max

16i6n
dpðAi;A

�Þ & dpðAk;A
þÞ ¼ min

16i6n
dpðAi;A

þÞ ð3:13Þ
simultaneously, viz.,
dpðA�Þ ¼ dpðAk;A
�Þ & dpðAþÞ ¼ dpðAk;A

þÞ ð3:14Þ
then fpðAkÞ ¼ 0 and Ak is a compromise solution (i.e. alternative) that is closest to PIS Aþ and farthest away from NIS A�

simultaneously. Hence, the ratio
IRpðiÞ :¼ fpðAiÞ
min16i6nfpðAiÞ

ð3:15Þ
cite this article in press as: A. Hadi-Vencheh, M. Mirjaberi, Fuzzy inferior ratio method for multiple attribute decision making prob-
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suggests the ‘‘inferior ratio’’ for both attributes of the shortest distance from PIS and farthest away from NIS. It is perspicuous
that IRpðiÞ is a value within the interval ½0;1�.

Remark. Unfortunately, the provided ranking method does not result in a linear order, so ties may happen. To solve this
problem, a possibility to overcome the drawback of possible ties would be the use of different approaches to measure
proximity. In this sense, for instance, restricted equivalence functions based on distances could be of interest, since a whole
family of different distances can be provided, see [4,5]. It would also be possible to consider the notion of penalty function [33].
4. Numerical examples

In this section, we examine two numerical examples using the proposed fuzzy method. These examples are taken from
Chen [6] and Triantaphyllou and Lin [35] for the purpose of comparison. The values of pð¼ 2;3;7;29Þ have been chosen
randomly.

Example 2. Reconsider the example investigated by Chen [6] in which a software company desires to hire a system analysis
engineer among three candidates, A1; A2, and A3 evaluated by a committee of three decision makers (DMs) against five
benefit attributes, i.e. emotional steadiness ðc1Þ, oral communication skills ðc2Þ, personality ðc3Þ, past experience ðc4Þ and
self-confidence ðc5Þ. The relative importance weights of the five attributes are described using linguistic variables such as
Low, Medium, and High as defined in Table 2. The ratings (i.e. attribute values) are also characterized by linguistic variables
such as Poor, Fair, and Good, as defined in Table 3. The three DMs express their opinions on the importance weights of
the five attributes and the ratings of each candidate with respect to each attribute independently. Tables 4 and 5 show the
original assessment information provided by the three DMs, where aggregated fuzzy numbers are obtained by averaging the

fuzzy opinions of the three DMs (see Table 6). That is, ~wj ¼ ~wð1Þj þ ~wð2Þj þ ~wð3Þj

� �.
3, where ~wðkÞj indicates the relative

importance weight given by the kth DM. The results are presented in Table 7 which gives the ranking of A2 
 A3 
 A1, where
the symbol 
means ‘‘is superior’’ or ‘‘preferred to’’. It is easy to see that Chen’s approach leads to the same ranking as ours.
Table 2
Linguistic variables for the relative importance weights for five attributes.

Linguistic variable Fuzzy number

Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)
Very high (VH) (0.9, 1.0, 1.0)

Table 3
Linguistic variables for attribute values.

Linguistic variable Fuzzy number

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very good (VG) (9, 10, 10)

Table 4
The relative importance weights of the five criteria by three DMs.

Attributes DM1 DM2 DM3 ~wj

c1 H VH MH (0.70, 0.87, 0.97)
c2 VH VH VH (0.90, 1.00, 1.00)
c3 VH H H (0.77, 0.93, 1.00)
c4 VH VH VH (0.90, 1.00, 1.00)
c5 M MH MH (0.43, 0.63, 0.83)
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Table 6
Normalized data matrix for Example 2.

Attributes c1 c2 c3 c4 c5

~wj (0.70, 0.87, 0.97) (0.90, 1.00, 1.00) (0.77, 0.93, 1.00) (0.90, 1.00, 1.00) (0.43, 0.63, 0.83)

A1 (0.00, 0.44, 0.89) (0.00, 0.40, 0.73) (0.00, 0.43, 0.77) (0.40, 0.89, 1.00) (0.00, 0.19, 0.50)
A2 (0.12, 0.58, 0.97) (0.72, 1.00, 1.00) (0.47, 0.86, 1.00) (0.60, 1.00, 1.00) (0.26, 0.54, 0.83)
A3 (0.12, 0.51, 0.81) (0.36, 0.73, 0.93) (0.36, 0.64, 0.92) (0.00, 0.56, 0.89) (0.22, 0.50, 0.83)

Table 7
Numerical results for Example 2.

p Values Ai dpðAi;A
þÞ dpðAi;A

�Þ fpðAiÞ IRpðiÞ Rank

p ¼ 2 A1 3.49 2.88 �1.80 1.00 3
A2 4.94 1.15 0.00 0.00 1
A3 4.00 2.31 �1.20 0.67 2

p ¼ 3 A1 3.45 2.88 �1.60 1.00 3
A2 4.69 1.23 0.00 0.00 1
A3 3.92 2.31 �1.04 0.65 2

p ¼ 7 A1 3.60 3.03 �1.42 1.00 3
A2 4.62 1.38 0.00 0.00 1
A3 4.04 2.44 �0.89 0.63 2

p ¼ 29 A1 3.80 0.15 �1.36 1.00 3
A2 4.74 1.01 0.00 0.00 1
A3 4.28 2.60 �0.84 0.62 2

Table 8
Fuzzy weights and fuzzy decision matrix for Example 3.

cj c1 c2 c3 c4

~wj (0.13, 0.20, 0.31) (0.08, 0.15, 0.25) (0.29, 0.40, 0.56) (0.17, 0.25, 0.38)

A1 (0.08, 0.25, 0.94) (0.25, 0.93, 2.96) (0.34, 0.70, 1.71) (0.12, 0.24, 0.92)
A2 (0.23, 1.00, 3.10) (0.13, 0.60, 2.24) (0.03, 0.05, 0.09) (0.12, 0.40, 1.48)
A3 (0.15, 0.40, 1.48) (0.13, 0.20, 0.88) (0.62, 1.48, 3.41) (0.24, 1.00, 3.03)

Table 5
Ratings of three candidates with respect to the five criteria by the three DMs.

Attributes Candidates DMs

DM1 DM2 DM3

c1 A1 MG G MG
A2 G G MG
A3 VG G F

c2 A1 G MG F
A2 VG VG VG
A3 MG G VG

c3 A1 F G G
A2 VG VG G
A3 G MG VG

c4 A1 VG G VG
A2 VG VG VG
A3 G VG MG

c5 A1 F F F
A2 VG MG G
A3 G G MG
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Example 3. Reconsider the example investigated by Triantaphyllou and Lin [35], in which three alternatives A1 � A3

are evaluated against four benefit attributes c1 � c4. The fuzzy weights and the fuzzy decision matrix are duplicated in
Table 8 (see Table 9). The results are recorded in Table 10. The IRpðiÞ values, presented in Table 10, lead to the ranking of
A3 
 A1 
 A2.
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Table 9
Normalized data matrix for Example 3.

Attributes c1 c2 c3 c4

~wj (0.13, 0.20, 0.31) (0.08, 0.15, 0.25) (0.29, 0.40, 0.56) (0.17, 0.25, 0.38)

A1 (0.00, 0.01, 0.09) (0.00, 0.04, 0.25) (0.03, 0.08, 0.28) (0.00, 0.01, 0.10)
A2 (0.01, 0.06, 0.31) (0.00, 0.02, 0.19) (0.00, 0.00, 0.01) (0.00, 0.02, 0.18)
A3 (0.03, 0.02, 0.14) (0.00, 0.00, 0.07) (0.05, 0.17, 0.56) (0.01, 0.08, 0.38)

Table 10
Numerical results for Example 3.

p Values Ai d2ðAi;A
þÞ d2ðAi;A

�Þ f2ðAiÞ IRpðiÞ Rank

p ¼ 2 A1 0.47 0.95 �0.75 0.96 2
A2 0.48 0.98 �0.78 1.00 3
A3 0.85 0.73 0.00 0.00 1

p ¼ 3 A1 0.53 0.90 �0.66 0.92 2
A2 0.53 0.94 -0.72 1.00 3
A3 0.92 0.73 0.00 0.00 1

p ¼ 7 A1 0.63 0.88 �0.58 0.82 2
A2 0.61 0.95 �0.71 1.00 3
A3 1.04 0.73 0.00 0.00 1

p ¼ 29 A1 0.70 0.90 �0.57 0.77 2
A2 0.67 1.01 �0.74 1.00 3
A3 1.12 0.76 0.00 0.00 1
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5. Discussion and conclusion

The present method is based on an aggregating function representing closeness to the ideal solution and being far away
from the negative ideal solution simultaneously, whereas the TOPSIS is characterized for considering ideal and nadir solu-
tions. The proposed method introduces the inferior ratio to reflect some balance between the shortest distance from the ideal
solution and the farthest distance from the negative ideal solution. The relative importance of the distances from the positive
ideal solution and the negative ideal solution, which has been considered in our method, is a major concern in real life deci-
sion making. In contrast, the TOPSIS is based on the concept that the chosen alternative should have the shortest distance to
the positive ideal solution and the farthest distance from the negative ideal solution. However, such a chosen alternative may
not always guarantee to be the remotest from the negative ideal solution. Moreover, the TOPSIS introduces two reference
points, i.e. the positive ideal solution and the negative ideal solution, but it does not consider the relative importance of
the distances from these points. The proposed method and the TOPSIS use different normalization methods to eliminate
the units and dimensions of attribute functions. In contrast to the TOPSIS, the normalized attribute values in our method
do not depend on evaluation units and dimensions of attribute functions. The above comparative analysis from two aspects
of the theory and numerical computation shows that the proposed method has some advantages over the TOPSIS.

In this paper, we have developed a method for solving multiple criteria decision making problems incorporating the basic
nature of subjectivity due to ambiguity with concepts of objectivity based on aggregating decision functions. An inferior ratio
was proposed to indicate the outranking intensity, as well as, the optimum scale due to closeness to the ideal point and being
remotest from the negative ideal point, simultaneously. Considering the fuzzy nature of concepts, the flexibility of our method
can increase under vague conditions.
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