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Abstract: The first and second laws of thermodynamics are analysed for 
viscoelastic fluid obeying Giesekus constitutive equation in concentric annulus 
under steady, laminar flow with both thermal and hydrodynamic fully 
developed conditions. Two types of boundary conditions are employed in this 
study. (a) Uniform heat flux is imposed at outer cylinder and insulated 
condition is considered for inner cylinder. (b) Both cylinders are kept at 
different constant temperatures. Governing equations in cylindrical coordinate 
system are simplified and then solved to obtain analytical expressions for 
temperature profile (Θ), entropy generation number (NS) and Bejan number 
(Be). The effect of group parameter (Br/Ω), Brinkman number (Br), Deborah 
number (De) and mobility factor (α) are discussed. Results indicate that 
entropy generation decreases with increasing De and α while an increase in Br 
and Br/Ω cause increase in the entropy generation. 
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1 Introduction 

Axial flow of non-Newtonian fluids within the annulus are frequently encountered in a 
wide range of engineering applications such as U-tube heat exchangers in the food-
processing industry for heating and cooling of liquid food stuff where the rheological 
behaviour is generally non-Newtonian and specifically viscoelastic. The rheological 
behaviour of a drilling mud in oil well drilling industry is thixotropic, shear-thinning and 
exhibits some degree of viscoelasticity. Extruders play important role in polymer 
processing and fluids employed in extruders exhibit viscoelastic behaviour. Heat transfer 
occurs during extrusion process and has major impacts on production rate as well as 
quality of the final product. Extensive literature exists regarding heat transfer of 
Newtonian and non-Newtonian fluids in annulus. Shah and London (1978) obtained an 
analytical solution for forced convection of Newtonian fluid in annular flow without 
considering viscous dissipation for different boundary conditions. Coelho and Pinho 
(2006) investigated same problem by including viscous dissipation for the imposed 
boundary conditions of flux and temperature at the walls. Manglik and Fang (1995) and 
Fang et al. (1999) studied forced convection for Newtonian and non-Newtonian fluids in 
the concentric and eccentric annulus using numerical methods without viscous 
dissipation. Jambal et al. (2005) studied Graetz problem for a power law model fluid and 
included effects of viscous dissipation and axial conduction. Research on heat transfer of 
viscoelastic fluid in annulus is rather few. An analytical solution was reported for forced 
convection heat transfer for fully developed laminar flow of the sPTT viscoelastic model 
inside a concentric annulus by Hashemabadi et al. (2005). Their study was presented for 
constant wall heat flux boundary conditions and without considering the effect of viscous 
dissipation. The same problem was handled more elaborately by Pinho and Coelho 
(2006).Viscous dissipation effect was included and solutions were presented for both 
constant heat flux and constant temperature boundary conditions at the walls. 

The second law analysis by focusing on entropy generation and its minimisation for 
systems optimisation has been employed in last several decades. In an engineering 
system at steady state, the rate of thermodynamic irreversibility ( )Ι  is equal to the lost 
useful power or lost work available (Sonntag et al., 2002) 

rev .W WΙ = −  

The system irreversibility rate is directly proportional to the entropy generation rate and 
is expressed as below (Sonntag et al., 2002): 

0 gen .T SΙ =  

Thus, any reduction in the rate of entropy generation of a system, e.g., a heat exchanger 
causes the useful power wasted by the system and consequently the operating cost to 
decrease. Entropy is generated in all heat transfer systems. There are different sources to 
cause entropy generation, such as heat transfer across a finite temperature gradient, fluid 
friction effect, etc. Bejan (1996) investigated different mechanisms causing entropy 
generation in applied thermal engineering. Entropy generation number and irreversibility 
distribution ratio in fundamental convective heat transfer were introduced by Bejan 
(1979) for some example problems. Also Bejan (1982) studied the second law analysis of 
heat transfer and thermal design and its design-related concept of entropy generation 
minimisation. Mahmud and Fraser (2002, 2003a) analysed entropy generation and 
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irreversibility inside an annulus with relative rotation for Newtonian fluid. They obtained 
analytical solutions for entropy generation and Bejan numbers with isoflux and 
isothermal boundary conditions. Mahmud and Fraser (2003b) also investigated second 
law analysis of Newtonian fluid inside channel with circular cross section and two 
parallel plates by analytical method. The isothermal and isoflux boundary conditions 
were applied for the study. Also, there exists little investigation concerning entropy 
generation analysis of power law model fluid. Tasnim and Mahmud (2002a, 2002b) 
studied the first and second law analysis for Newtonian fluid in a vertical annulus by 
considering fully developed laminar flow and mixed convection heat transfer, 
analytically. Mahian et al. (2012) presented first and second laws of thermodynamics to 
show the effects of MHD flow on distributions of velocity, temperature and entropy 
generation between two concentric rotating cylinders for Newtonian fluid. The boundary 
conditions were considered to be different constant temperatures at walls and analytical 
methods were applied. Mahian et al. (2013a, 2013b) also studied the same problem for 
fully developed flow and mixed convection with isoflux and isothermal boundary 
conditions. In isoflux case, for two small deviations around the base radius ratio (Π = 2), 
namely  Π = 1.9 and 2.1, the changes in energy cost were calculated. It was found that for 
Π = 1.9 energy cost increases by 17.5% while for Π = 2.1 energy cost is reduced by 
13.6%. For non-Newtonian fluid, Yilbas et al. (2004) presented an entropy analysis in 
annulus by using perturbation approximate method. The flow was considered fully 
developed and boundary conditions were constant temperatures at the walls. Yurusoy  
et al. (2004) carried out a similar research by the same method, but viscosity of fluid was 
assumed to be temperature dependent. Entropy generation in an annular pipe with relative 
rotation was studied by Kahraman and Yurusoy (2008) for a third-grade fluid. They 
assumed constant viscosity and isoflux as boundary conditions and calculated velocity 
and temperature profiles approximately using perturbation method. Mirzazadeh et al. 
(2008) investigated first and second law analysis in purely tangential flow of non-linear 
viscoelastic fluid obeying the simplified form of Phan–Thien–Tanner (sPTT) constitutive 
equation between concentric rotating cylinders. Analytical expressions for dimensionless 
temperature, entropy generation number and Bejan number were obtained for both 
isothermal and isoflux boundary conditions. 

Although many studies on the first and second law analysis of heat transfer processes 
have been reported in literature, entropy generation analysis for viscoelastic fluid in axial 
annular flow has not yet been addressed in literature and the present study might be 
considered as a first attempt in this context. A modified model with three parameters was 
suggested by Giesekus (1982) based on molecular ideas in which stresses are considered 
as non-linear. The privilege of this model is its ability to determine the power law regions 
for coefficients of viscosity, normal stress and its flexibility to describe elongational 
viscosity as well as complex viscosity (Bird and Wiest, 1995). This model provides a 
combination of shear viscosity, shear thinning, non-vanishing normal-stress differences, 
extensional viscosity with non-exponential stress relaxation and finite asymptotic value 
and start-up curves. Thus, it could reproduce the major characteristics of polymeric 
solutions rheology. 

The main aim of this study is to present the first and second law analysis for axial 
annular flow of non-linear viscoelastic fluid obeying Giesekus model in concentric 
annulus. Two different cases of thermal boundary conditions are considered: uniform 
heat flux at outer wall and adiabatic inner wall (Case A), and constant temperature at 
walls (Case B). The governing equations are simplified and analytically solved in the 
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presence of viscous dissipation. Subsequently, the effects of elasticity, mobility 
parameter, viscous dissipation and group parameter on dimensionless temperature, 
entropy generation number and Bejan number are discussed. 

2 Governing equation 

The annulus is shown schematically in Figure 1. Ri and Ro are inner and outer cylinder 
radiuses, respectively. The annular gap is defined as  δ =  Ro − Ri. and κ is the radius ratio 

o( ).iR R  

Figure 1 Schematics of an annular duct: (a) cross section; (b) B.Cs for Case A  
and (c) B.Cs for Case B 

 
 (a) (b) 

 
(c) 

The problem is considered to be steady, laminar and fully developed both thermally and 
hydrodynamically. The no-slip condition exists at the walls. Axial heat conduction is 
assumed to be negligible, but the effect of viscous dissipation is included due to high 
viscosity of viscoelastic fluid and large velocity gradients that exist in industrial flows. It 
is assumed that temperature variations will not be high enough to impose significant 
changes in fluid properties and therefore, thermo physical properties of fluid are taken to 
be constant. 

Under these conditions, energy equation for axial flow in the concentric annulus can 
be represented by the following equation: 

,p
T k Tc u r
z r r r

ρ ∂ ∂ ∂ = + Φ ∂ ∂ ∂ 
 (1) 

where k, ρ and cp are thermal conductivity, density and specific heat capacity of the fluid, 
respectively. T is temperature and Φ is the dissipation function which includes only the 
shear stress and shear rate for this flow. 
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.zr
u
r

τ ∂Φ =
∂

 (2) 

Two different cases of the thermal boundary conditions are considered. 
Uniform heat flux at outer wall and adiabatic inner wall (Case A): 

, 0,i
Tr R
r

∂= =
∂

 (3-a) 

, .o
o

qTr R
r K

∂= =
∂  (3-b) 

Constant temperatures at the walls (Case B): 

, ,i ir R T T= =  (4-a) 

o, .or R T T= =  (4-b) 

3 Analytical solution 

3.1 Fluid constitutive equation 

The Giesekus constitutive equation (without retardation time) is as follows: 

( . ) 2 ,D
t

αλ ϑττ τ τ λ η
η ϑ

+ + =  (5) 

where 

1 [ ( ) ],
2

TD u u= ∇ + ∇  (6) 

[ . ( ) . ],TD u u
t Dt

ϑτ τ τ τ
ϑ

= − ∇ + ∇  (7) 

( . ) ,D u
Dt t

τ τ τ∂= + ∇
∂

 (8) 

where τ is the stress tensor. η and λ are model parameters representing zero shear 
viscosity and zero shear relaxation time, respectively (Giesekus, 1983). Parameter α  in 
equation (5) is mobility factor that represents anisotropic Brownian motion and/or 
anisotropic hydrodynamic drag on the constituent polymer molecules (Bird et al., 1987) 
and it is required that 10 ≤≤ α  as discussed in Giesekus (1982). 

3.2 Hydrodynamic solution 

Hydrodynamic solution for this flow was presented by Moayed Mohseni and Rashidi 
(2010). Equations (9)–(11) are shear rate, shear stress and velocity profile, respectively. 
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( )
*

* *
2*

1 (2 1)De
,

1 De
rr

rz rz

rr

α τγ τ
τ

° + −
=

+
 (9) 

* *
*

* ,
2

m m
rz

m

R R r
r R

ψτ
 −

= − 
 

 (10) 

*

*

* * ,
i

r

R
u V=  (11) 

* * * *
1 2 3

1 [ ],
4

V v v vψ= − + +  

*2
*
1 *4 *2 2

8( 1)[ Br ] ,
[ 2 ( (1 ) 2)]

Av
D AC DCr r B C

α − −=
+ − + − −

 

*2 2
* 2

2 *2
*
2 3/ 2

Dr (1 )( (2 1)) Ln
(1 ) Dr

,
m

CR A
C

v
C

α
 − −+ −  

+ − =  

* 2 2 *2 *2 2 2
3

(2 1){ (1 ) Ln[ (1 ) Dr ] ,Ln [D r (1 ) ] (1 ) }v C C C C
D C
α −= + + − − − − −  

where * 4 2 2 * 2 2 2 * 2 2 2 2 2: De , : 4 3 De , :1 De , : De .m m mA R B R C R Dαψ αψ αψ αψ+ +  
In these equations De is Deborah number, defined as De Uλ δ=  and is related to the 

level of elasticity, ψ  is dimensionless group for pressure gradient and *
mR  refers to radius 

where the velocity is maximum or * 0.rzγ =  

3.3 First law analysis 

3.3.1 Solution for uniform wall heat flux boundary conditions (Case A) 

For thermally fully developed flow, following relation holds (Bejan, 1995): 

0.w

w b

T T
z T T
 −∂ = ∂ − 

 (12) 

For the case of constant wall heat flux, equation (12) reduces to: 

,w bT TT
z z z

∂ ∂∂ = =
∂ ∂ ∂

 (13) 

where Tw and Tb are wall and bulk temperatures, respectively. 
Applying energy balance over an infinitesimal element of fluid, dz, the following 

equation is obtained for fluid bulk temperature gradient in axial direction: 

2 d .o

i

Rb z
o o zrR

p

T uq R r r
z rm c

τ∂ ∂ = + ∂ ∂ ∫  (14) 
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By combining equations (1), (13) and (14) and employing dimensionless terms, following 
equation is obtained: 

* * *
* * *

1 ,r Xu Br
r r r

∂ ∂Θ  = − Φ ∂ ∂ 
 (15) 

where 

( )

*

*

*
* * *

*

*2 *2

2 d
1 ,

o

i

R

R

o i

uBr r r
rX

R R

τ ∂
∂= +

−

∫
 (16-a) 

*
* *

*

d .
d
u
r

τΦ =  (16-b) 

Mathematical expression for X is presented in the Appendix.  
The dimensionless terms are as follows: 

* * *, , ,u ru r
U U

ττ
δ η δ

= = =  

where U is average velocity over cross-section of the annulus. 
We see that Θ is dimensionless temperature and Br is dimensionless Brinkman 

number which is a measure of importance of viscous dissipation term. 

( )
,

2
i

q

k T T
qδ
−

Θ =  (17) 

2

Br ,
2

U
q

η
δ

=  (18) 

where 

.o o

i o

q R
q

R R
=

+  (19) 

Dimensionless thermal boundary conditions will be as follows: 

* *
* 0, ,q

ir R
r

∂Θ
= =

∂
 (20-a) 

* *
* *

o* * , .
2

q i o

o

R R
r R

r R
∂Θ +

= =
∂

 (20-b) 

Dimensionless temperature profile (Θq) can be obtained by integrating equation (15). 
*

1 2Br Ln( ) ,q XU C r CΘ = − Φ + +  (21) 

* * * *
*

1 d d ,U u r r r
r

= ∫ ∫  (22-a) 
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* * * *
*

1 d d .r r r
r

Φ = Φ∫ ∫  (22-b) 

Mathematical expressions of U and Φ  are reported in Appendix. 
Since both boundary conditions are of second type, determining the value of 2C  is 

not directly possible. Hence C2 is eliminated from temperature expression by subtracting 
dimensionless inner wall temperatures ( )qiΘ  from dimensionless temperature profile.  
On the other hand, according to the dimensionless temperature definition (equation (17)), 

0,qiΘ =  and therefore qΘ  becomes as shown below: 

**

*

1 *( ) Br( ) Ln ,
ii

q RR
i

rX U U C
R

 
Θ = − − Φ − Φ +  

 
 (23) 

C1 can be obtained by applying dimensionless boundary conditions (equations (20-a) and 
(20-b)) as follows: 

* * * *1 * *

d dBr
d di i

i r R r R

UC R X
r r= =

 Φ= − 
 

 (24-a) 

or 

* * * *

* *

1 * * *

d dBr .
d d 2o o

i o
o r R r R

o

R RUC R X
r r R= =

 +Φ= − + 
 

 (24-b) 

Mathematical expression of *d dU r  and *d drΦ  are presented in the Appendix. 

3.3.2 Solution for constant wall temperature boundary conditions 

Dimensionless temperature and Brinkman number are as follows: 

* ,i
T

o i

T T
T T

−
Θ =

−
 (25) 

( )
2

Br .
o i

U
K T T

η=
−

 (26) 

Viscoelastic fluids normally have high viscosity and therefore low Reynolds number  
such that the advection term ( )u T z∂ ∂  in energy equation can be neglected. Thus, 
dimensionless form of energy equation becomes: 

*
* *

* * *

1 Br 0Tr
r r r

 ∂Θ∂ + Φ = ∂ ∂ 
 (27) 

By integrating equation (27), dimensionless temperature profile will be as follows: 
* *

3 4Br Ln( ) .T C r CΘ = − Φ + +  (28) 
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By using the following boundary conditions, C3 and C4 can be obtained. 
* * *0 at ,T ir RΘ = =  (29-a) 

* * *1 at ,T or RΘ = =  (29-b) 

* * * *

3 * *

1 Br | |
,

Ln[ ]
o ir R r R

o i

C
R R

= =
+ Φ −Φ

=  (30-a) 

* * * *
* *

4 * *

Ln[ ] | Br | 1 Ln[ ]
.

Ln[ ]
i o

o ir R r R

o i

R R
C

R R
= =

Φ − Φ +
=  (30-b) 

3.4 Second law analysis 

According to Bejan (1996), the volumetric rate of entropy generation is defined as 

( )2
2 .G

ii

kS T
TT
Φ′′′ = ∇ +  (31) 

By substituting Φ from equation (2) into equation (31), GS ′′′  is reduced to following form: 

2 2

2

dd d .
d d d

zr z
G

ii

uk T TS
r z T rT

τ    ′′′ = + +         
 (32) 

Dimensionless entropy generation rate is called entropy generation number (Ns) and it is 
equal to ratio of volumetric entropy generation to characteristic entropy transfer rate. The 
characteristic entropy generation rates for two cases of boundary conditions are as 
follows: 

( ) 22

., ,2 2 2
IsothermalIsoflux

4 , o i
G c G c

i i

K T TqS S
KT Tδ

 − ′′′ ′′′= =   
    

 (33) 

The axial coordinate is normalised as * 2 Re Prz z δ=  with Reynolds and Prandtl 
numbers defined as Re 2Uρ δ η=  and Pr ,pc kρ=  respectively. Also dimensionless 
temperature for longitudinal temperature gradient (d d )T z  is expressed as 

( ) 2 ,ink T T qδ′′Θ = −  where Tin represents the inlet temperature. By using characteristic 
entropy generation rate and dimensionless quantities, equation (32) can be expressed as 

2 2 *
*

2 * * *

1 Br d .
Pe ds C R F

uN N N N
z r r

τ
′′∂Θ ∂Θ   = + + = + +    Ω∂ ∂   

 (34) 

In equation (34), Ω is dimensionless temperature difference which is defined as iT T∆  
for isothermal condition and 2 iq k Tδ  for isoflux condition. Also ratio Br Ω  is called 
group parameter, which determines relative importance between viscous dissipation  
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and heat conduction effects. Pe is Peclet number which determines relative importance 
between convection and diffusion and for the viscoelastic fluid, it is of order 3000 
(Coelho et al., 2002). On the right-hand side of equation (34), the first term (NC) is 
entropy generation due to axial conduction heat transfer; second term (NR) represents 
entropy generation due to heat transfer in radial direction and the last term (NF) accounts 
for entropy generation due to fluid friction. It should be noted that, NC is inversely 
proportional to square of Peclet number and since Pe is quite large (≈3000) for 
viscoelastic fluids, the axial conduction effect (NC) in entropy generation number (Ns)  
is negligible (Mahmud and Fraser, 2003b). This has also been reported by Bejan (1979) 
which reported entropy generation for Pe >> 4 by heat transfer due to axial conduction is 
negligible. 

The contribution of heat transfer and fluid friction can be obtained by using 
dimensionless temperature, shear stress and velocity profile. 

Contributions of heat transfer for two cases of boundary conditions are as follows: 

* * * *

2

* * * ,
1 Br | |dBr

d Ln[ ]
o ir R r R

RT
o i

N
r r R R

= =
 + Φ − ΦΦ = − +  
 

 (35) 

* * * *

2

* * * * .
d d d dBr
d d d di i

i i
Rq r R r R

R RU UN X
r rr r r r= =

 Φ Φ= − − − 
 

 (36) 

Since flow and thermal fields are independent, fluid friction contributions would be 
similar for both isothermal and isoflux boundary conditions. 

( )
2 2* ** *

* 2 2 * 2 2 2
* * * *

2
2**

* 2 2 2
* *

11 De 2 1
4Br .

14 1 De
4

m m
m m

m m

F

m
m

m

R Rr rR R
r R r R

N
R rR
r R

ψ α α ψ

αψ

    
 − − − −        =

Ω   
 − −    

 (37) 

3.5 Fluid vs. heat transfer irreversibility 

To investigate irreversibility distribution, Bejan number (Be) which is ratio of entropy 
generation due to heat transfer to total entropy generation (Paoletti et al., 1989), could be 
defined as 

Be .R

R F

N
N N

=
+

 (38) 

It is clear that Bejan number varies from 0 to 1. When Be = 0, entropy generation will be 
dominated by fluid friction effects and for Be = 1 entropy generation is dominated by 
heat transfer. For Be = 1/2, heat transfer and fluid friction have equal contribution to the 
entropy generation. 
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3.6 Global entropy generation 

The volumetric average entropy generation rate ([Ns]av) is defined as follows: 

[ ]ave

1 1d d d d .S S SN N N r r zθ= ∀ =
∀ ∀∫ ∫  (39) 

Dimensionless form of equation (39) is as below: 

[ ]
*

**2 *2ave

2 d .o

i

R

S SR
o i

N N r r
R R

=
− ∫  (40) 

By substituting entropy generation number (Ns) into equation (40), the average entropy 
generation rate could be obtained. However, due to the complexity of integration process, 
handling of this integral does not seem to be possible analytically. Thus, commercial 
software based on Gauss–Kronrod numerical method was employed for determining this 
value. 

3.7 Validation 

If α and De in the Giesekus equation are set as zero the model will become  
Newtonian. Therefore, it is expected that by choosing very small values for α  
and De, the results obtained for viscoelastic fluid to be similar to those of Newtonian 
fluid. This way, one can verify the accuracy of obtained equations for viscoelastic  
fluid. 

Equations (16-a), (22-a), (22-b), (36) and (37) for Newtonian fluid are derived as 
follows: 

( )
( )( )

( )

*

*

2*
* *

*

*2 *2

*
2 *2 *2 *2 * 2 *2 * 2

*

*2 *2

2Br d
1

Br 4 4 Ln
11 ,
8

o

i

R

R

o i

i
i o i m o m

o

o i

ur r
r

X
R R

RR R R R R R
R

R R

ψ

 ∂
 ∂ = +
−

  
− − + +     = −

−

∫

 (41) 

*
* * * * *2 *2 *2 * 2 * 2

* *

1 1d d 4 8 8 Ln ,
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( )* * * * *4 *2 * 2 * 4 2 *
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1 1d d 8 8 Ln ( ) ,
64 m mr r r r r R R r
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ψΦ = Φ = − +∫ ∫  (42-b) 
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 (43) 
2* *

* 2 2
* *

Br .m
F m

m

R rN R
r R

ψ
 

= − Ω  
 (44) 

Table 1 compares Nsq and Beq with various r values for Newtonian fluid and viscoelastic 
fluid with 0.05α =  and De = 0.01. Results confirm the accuracy of obtained equations  
for the Giesekus model employed in this study. 

Table 1 Comparison of Nsq and Beq for Newtonian and viscoelastic fluids at Br/Ω = 1,  
Br = 1 

=*r  1 1.2 1.4 1.6 1.8 2 

(Newtonian)sqN  48.0208 26.0367 1.6472 9.2008 28.2869 30.4271 

( 0.05 De 0.01)sqN α = =  48.0205 26.0214 1.6451 9.1969 28.2752 30.4222 

Be (Newtonian)q  0 0.50447 0.54299 0.76410 0.55233 0.01848 

Be ( 0.05 De 0.01)q α = =  0 0.50445 0.54286 0.76410 0.55232 0.01849 

4 Results and discussions 

Figure 2 presents effects of Deborah and Brinkman numbers on dimensionless 
temperature distribution for both isoflux and isothermal boundary conditions. For large 
Deborah numbers, fluid is heated up with a uniform slope from colder wall to the warmer 
wall. However, for smaller Deborah numbers temperature profiles show a maximum 
value within the annular gap. Increasing Brinkman and decreasing Deborah have the 
same effect on temperature profile. In other words, increasing both Brinkman and 
Deborah have opposite effects on temperature profile, because by increasing Brinkman 
the internally generated heat by viscous dissipation increases, but when Deborah 
increases due to shear-thinning behaviour of fluid, internally generated heat decreases.

  In the case of isoflux (Figure 2(a)), internal heat generation by viscous dissipation  
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at large Brinkman or small Deborah is stronger near the walls and is expected; because 
according to viscous dissipation function (equation (2)), both shear stress and velocity 
gradient attain their maximum values adjacent to the walls. Therefore, the difference 
between annular fluid temperature and wall temperature increases by increasing 
Brinkman or decreasing Deborah and the temperature profiles show a maximum. 

Figure 2 Dimensionless temperature profile with variation De for α = 0.1, Br = 0.01  
(no symbols) and Br = 1 (O): (a) isoflux case and (b) isothermal case 

 
 (a) 

 
 (b) 
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Maximum point in Figure 2(b) is due to the magnitude of internally generated heat.  
This value rises by increasing Brinkman or decreasing Deborah and causes higher fluid 
temperatures but since the boundary conditions are constant temperatures at the walls, the 
fluid temperature would eventually become higher than the warmer wall temperature and 
a maximum temperature will occur near the warmer wall. The maximum point is 
important because entropy generation due to heat transfer is zero (Be = 0) at this point. 

Figure 3 shows effect of group parameter (Br/Ω) on entropy generation numbers  
(NST, NSq). As can be seen from Figure 3(a) and (b), entropy generation number increases 
by increasing group parameter because by increasing Br/Ω , entropy generation rate due 
to fluid friction (NF) increases (see equation (34)). 

Entropy generation reaches high values in regions close to the walls and becomes 
more pronounced towards the inner wall. This is because maximum viscous dissipation 
occurs in this region. When Br/Ω = 0, the effect of fluid friction contribution (NF) is 
removed from entropy generation rate and it only becomes influenced by heat transfer 
contribution (NR). For this reason NSq becomes zero at inner wall (see Figure 3(b)) 
because inner wall temperature gradient is zero for isoflux conditions (see Figure 2(a)). 

Effect of Brinkman number on entropy generation number is shown in Figure 4. 
Parameters α, De and Br/Ω  are assumed constant. As a result, for any specified radial 
location in annulus NF will be unchanged and only variations of NR will change entropy 
generation number. It is seen that increasing Brinkman number increases entropy 
generation number for both isoflux and isothermal cases because increasing Brinkman 
number increases temperature gradient (see Figure 2). For isothermal conditions  
(Figure 4(a)), entropy generation profiles coincide in central region of the annulus.  
This is because temperature gradients in central region are almost equal for different 
Brinkman numbers (see Figure 2(b)). 

Figure 3 Effect of group parameter on the entropy generation for Br = 1, De = 1 and α = 0.1:  
(a) isothermal case and (b) isoflux case 

 
 (a) 
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Figure 3 Effect of group parameter on the entropy generation for Br = 1, De = 1 and α = 0.1:  
(a) isothermal case and (b) isoflux case (continued) 

 
 (b) 

Figure 5 shows effect of Deborah number on entropy generation number for isothermal 
case. Drop in NST by increasing fluid elasticity is due to shear thinning behaviour of the 
Giesekus fluid. Increase in elasticity causes temperature gradient and viscose dissipation 
effect to decrease. Therefore, entropy generation decreases. 

Figure 4 Effect of Brinkman number on the entropy generation for Br/Ω = 1, De = 1 and α = 0.1: 
(a) isothermal case and (b) isoflux case 

 
 (a) 
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Figure 4 Effect of Brinkman number on the entropy generation for Br/Ω = 1, De = 1 and α = 0.1: 
(a) isothermal case and (b) isoflux case (continued) 

 
 (b) 

Figure 5 Effect of Deborah number on the isothermal entropy generation for Br/Ω = 1, Br = 5 
and α = 0.1 

 

Figure 6 presents effect of mobility factor on entropy generation number for isoflux case. 
Influence of mobility factor is similar to the effect of Deborah number because mobility 
factor can indirectly be related to concentration of polymer, e.g., α = 0 represents dilute 
solutions, while α = 0.5 represents highly concentrated solutions (Bhatar et al., 2005). 
Hence, elasticity is directly related to mobility factor. 
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Figure 6 Effect of mobility factor on the isoflux entropy generation for Br/Ω = 1, Br = 5  
and De = 1 

 

Figure 7 shows effect of group parameter on Bejan number (BeT). As it is shown in this 
figure for Br/Ω = 0, Bejan number is at its maximum value (BeT = 1), which indicates 
that there is no contribution of fluid friction to entropy generation. As Br/Ω increases, 
Bejan number decreases that implies rise in the fluid friction contribution to entropy 
generation. Also for all values of group parameter, Bejan number profiles exhibit  
a maximum and a minimum within the annular gap which are 1 and 0, respectively.  
The radial locations of extreme points are independent of group parameter values.  
The minimum point in Bejan numbers is due to existence of the maximum  
point in temperature profile which implies zero temperature gradient (∂ΘT/∂r* = 0) and 
consequently NR and BeT both become zero. This minimum point occurs at r*

min ≈ 1.895 
in Bejan profile for all values of group parameter. The radial location of maximum point 
in Bejan profile is always at r*

max ≈ 1.445. This point is in fact R*
m which refers to the 

radius where shear stress is zero and consequently dissipation function becomes zero  
(see equation (2)). Therefore, at this point fluid friction contribution (NF) is removed 
from total entropy generation and subsequently BeT becomes equal to 1. 

Effect of Brinkman number on BeT is shown in Figure 8. Maximum point in Bejan 
profile (BeT = 1) is similar to Figure 7 which occurs at R*

m = 1.445 for all values of 
Brinkman number because this point is related to flow field and is independent of thermal 
parameters. But, it is seen that minimum point (BeT = 0), i.e., where ∂ΘT/∂r* = 0,  
in Bejan profile is not fixed and for smaller values of Br it shifts towards the outer wall. 
Also Bejan profiles intersect each other in the neighbourhood of r* = 1.663, where 
contribution of heat transfer to entropy generation is similar for all Brinkman numbers. 

Bejan number (BeT) is plotted in Figure 9 as a function of radial distance for different 
values of Deborah number. In this case, locations of minimum and maximum points vary 
with different values of Deborah number because elasticity level of fluid influences both 
flow and thermal fields. Fluid friction as well as heat transfer contribution to entropy 
generation decrease from inner wall to *

mR  in a manner which makes Bejan number to 
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rise. But as can be seen from the figure, for Newtonian fluid profile unlike the other 
profiles, Bejan number reduces from the inner wall until it reaches to r* = 1.267 which 
means that fluid friction contribution to entropy generation increases.

 
This is because 

decrease of temperature gradient in Newtonian fluid is quickly than viscous dissipation 
decrease in this region (see Figure 2(b)) which implies that ratio of numerator to 
denominator of Bejan fraction is being reduced. 

Figure 7 Effect of group parameter on the isothermal Bejan number for Br = 1, De = 1  
and α = 0.1 

 

Figure 8 Effect of Brinkman number on the isothermal Bejan number for Br/Ω = 1, De = 1  
and α = 0.1 
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Figure 9 Effect of Deborah number on the isothermal Bejan number for Br/Ω = 1, Br = 1  
and α = 0.1 

 

Figure 10 shows effects of group parameter and Brinkman number on average entropy 
generation for isothermal case ([NST]ave). It is seen that [NST]ave increases by increasing 
Br/Ω and Br. Because by increasing Br/Ω, entropy generation rate due to fluid friction 
(NF) rises and by increasing Brinkman number heat transfer contribution to entropy 
generation (NR) increases. 

Figure 10 Variation of average entropy generation for isothermal case vs. the Br and different 
values of Br/Ω at α = 0.1 and De = 1 
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Figure 11 shows distribution of [NST]ave as function of Deborah number at different 
mobility factors which is again related to the shear thinning behaviour of fluid where by 
increasing fluid elasticity, contribution of fluid friction as well as heat transfer to entropy 
generation decreases. Also, in comparison with Newtonian fluid the magnitude of 
average entropy generation rate decreases more than 50% when Deborah number 
approaches 0.5. 

Figure 11 Variation of average entropy generation for isothermal case vs. the De and different 
values of α at Br/Ω = 1 and Br = 1 

 

5 Conclusions 

First and second laws of thermodynamics have been analytically investigated for axial 
annular flow of non-linear viscoelastic fluid obeying the Giesekus constitutive equation. 
It was concluded that, for low Brinkman numbers or large Deborah numbers temperature 
profile has a uniform slope, but by increasing Brinkman or decreasing Deborah 
temperature profiles show a maximum. The entropy generation number (NS) rises  
by increasing group parameter (Br/Ω) and Brinkman number (Br) but decreases by 
increasing Deborah number (De) and mobility factor (α). Also, high values of Entropy 
generation occur at inner wall. All Bejan number profiles show a minimum point (Be = 0) 
and a maximum point (Be = 1) inside the annular gap. The minimum point occurs  
due to existence of a peak in temperature distribution (∂ΘT/∂r* = 0). The maximum  
point is due to disappearance of viscous dissipation effect and its location is always  
at R*

m. The maximum and minimum values of Bejan number indicate that entropy 
generation is dominated only by heat transfer and fluid friction, respectively. Magnitude 
of average entropy generation rate decreases more than 50% when Deborah number 
approaches 0.5. 
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Nomenclature 

Be Bejan number 
Br Brinkman number 
C Integration constant 
cp Specific heat at constant pressure, J/kg.K 
De Deborah number, De =  λU/δ 
k Thermal conductivity, Watt/m.K 
NC Entropy generation number; axial conduction contribution 
NF Entropy generation number; fluid friction contribution 
NR Entropy generation number; radial heat transfer contribution 
NS Entropy generation number; total 
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Pr Prandtl number, ρcp/k 
q Heat flux, Watt/m2 
r  Radial coordinate, m 
Ri Radius of inner cylinder 

Ro Radius of outer cylinder 

Rm Radius where velocity is maximum 
Re Reynolds number, ρU2δ/η 

GS′′′ Entropy generation rate, Watt/m3.K 

,G cS′′′ Characteristic entropy generation rate 

t Time, s 
T Fluid temperature, K 
u Velocity, m/s 
U Average velocity 
z Axial coordinate, m 
Greek symbols 

α Mobility factor 

δ Annular gap, δ = Ro – Ri 

γ  Shear rate tensor, s–1 

η Zero-shear viscosity, Pa.s 

λ Zero-shear relaxation time, s 

ρ Fluid density, kg/m3 

τ Stress tensor, Pa 

ψ Dimensionless group for pressure gradient 

κ Radius ratio 

Ω Dimensionless temperature difference 

Φ Viscous dissipation function 

θ Tangential coordinate 

Θ Dimensionless temperature for isoflux boundary conditions 

ϑ Convected derivative 

∀ Volume of the annular gap (m3) 

Subscripts 
ave Average value 
b Bulk value 
in Inlet 
i Inner wall 
o Outer wall 
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q Isoflux boundary condition 
T Isothermal boundary condition 
w Wall value 
Superscripts 
* Refers to dimensionless quantities 
T Transpose of tensor 
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Appendix (continued) 
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Appendix (continued) 
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