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a b s t r a c t

Large-scale knowledge graphs containing millions of entities are very common nowadays. Querying
knowledge graphs is essential for a wide range of emerging applications, e.g., question answering and
semantic search. A star query aims to identify an entity by giving a set of related entities, which is
an important query type on knowledge graphs. Answering star queries can be modeled as a graph
query problem. Given a query graph Q , the graph query finds subgraphs in a knowledge graph G
that match Q . We face two challenges on graph query: (1) existing graph query methods usually find
subgraphs that are structurally similar to Q , which cannot measure whether a subgraph match satisfies
the semantics of Q (i.e., real query intention), leading to an effectiveness issue, and (2) querying a large-
scale knowledge graph is usually time-consuming because of the large search space. In this paper, we
propose a Top-k semantic-aware graph query method over knowledge graphs for star queries, which
provides semantically similar matches for Q instead of structurally similar matches. The semantic
similarity of a match to Q is measured by an online computed bounding match score. By using bounds,
we can efficiently prune the unpromising matches with lower semantic similarities without evaluating
all matches. Extensive experiments over three real-world knowledge graphs confirm the effectiveness
and efficiency of our solution.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the vigorous development of the internet-driven appli-
ations, massive data have been produced, including web data,
ncyclopedia data, scientific data, etc. Distilling the meaningful
nformation from these massive data has become an urgent de-
and [1]. Therefore, knowledge graphs (such as DBpedia [2],
ago [3], and Freebase [4]) have been constructed for managing
hese real-world data in recent years [5]. In a knowledge graph,
ach node and edge represent an entity with attributes and
relationship between two entities, respectively. For instance,
reebase contains more than 43.9 million entities, interconnected
y 2.4 billion relations [6]. It is important to be able to query
hese knowledge graphs and retrieve valuable information, this is
ssential for a wide range of emerging applications, e.g., question
nswering and semantic search [7].
Star query is a common but important query type on knowl-

dge graphs [8]. As observed in [9,10], most real-life queries on
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knowledge graphs are star-like, which aim to identify a target
entity, given a set of specific entities and predicates. Graph query
is a widely used method for answering star queries on knowledge
graphs [10]. For example, consider that a user wants to find all
Spanish soccer players who play for a England soccer club. One can
come up with a reasonable graph representation of this query as
a query graph Q that consists of nodes (i.e., entities) and edges
(i.e., relations), and identify subgraph matches of Q in a knowl-
edge graph G using graph query models [8,11–14]. Fig. 1(a) shows
a query graph of the above query example, and this is a typical
star query where v1 (name: England, type: Country), v4 (name:
Spain, type: Country) are specific entities, and v3 (type: Person)
is the target entity of interest, while e1 (predicate: country),
e2 (predicate: team), and e3 (predicate: nationality) are specific
predicates. Many efforts have been made to support graph query
in knowledge graphs, which can be concluded as the following
three categories.
Graph pattern matching. Graph pattern matching is typically
defined in terms of subgraph isomorphism [11,12,15,16], which is
NP-complete and often too restrictive to capture sensible matches
[17]. These methods requires all the nodes and edges in the
matches to be exactly the same as the ones in Q . As a result,
we can get some answers such as Dani_Ceballos ( 1⃝ in Fig. 1(b)),
whose nationality is Spain and plays for Arsenal. Unfortunately,
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xact matches are not enough for querying knowledge graphs,
ecause the same kind of knowledge can be represented in di-
erse graph patterns. For example, Héctor_Bellerín ( 2⃝ in Fig. 1(b))

is also a correct answer but with different graph pattern from Q .
hese subgraph isomorphism methods, however, cannot return
uch answers that approximately match the query graph Q .
Graph similarity search. In addition to subgraph isomorphism
methods, several other works can return similar matches to Q
based on different similarity metrics: (1) structural similarity [8,
13,18], (2) graph edit distance [19,20], and (3) weak semantic
similarity [14,21–23]. For structurally similarity based methods,
they assume that an entity in G is more likely to be the tar-
et entity in Q , if it is closer to the specific entity in Q . In
nother word, they only consider the distance between enti-
ies (path length) to measure the structural similarity and ig-
ore the semantics of edges that are provided by specific pred-
cates. For example, we may find Dani_Ceballos ( 1⃝ in Fig. 1(b))
nd Unai_Emery ( 3⃝ in Fig. 1(b)) as the answers except Héc-
or_Bellerín ( 2⃝ in Fig. 1(b)) through GraB [8] and NeMa [13],
ecause Dani_Ceballos and Unai_Emery have shorter distances to
pain than Héctor_Bellerín. In fact, Héctor_Bellerín should be a
orrect answer instead of Unai_Emery, because Unai_Emery is a
anager of Arsenal not a player. To be more precise, the se-
antics of predicates ‘‘manage’’ and ‘‘team’’ are ignored by GraB
nd NeMa, thus returning a wrong answer. Similar to structural
imilarity based methods, graph edit distance based methods
onsider the number of steps of transforming a subgraph match
o Q . They still lack of the ability of returning semantic similarity
nswers, because they also ignore semantics of edges. Unlike
he above methods, weak semantic similarity based methods can
eturn some semantically similar answers, but still leave us op-
ortunities for further accuracy improvement. Let us take S4 [14]
s an example, it returns the n-hop matches through string edit
istance of entities. However, a wrong answer Nemanja_Matić ( 4⃝
n Fig. 1(b)) could also be returned, if S4 sets an inappropriate
imilarity threshold (e.g., 65%). This is because the combined
tring England+Person+Serbia has a similarity of 68.4% to Eng-
and+Person+Spain. Obviously, the string edit distance cannot well
epresent the real semantics of Q . Moreover, [21,22] relies on
ome external knowledge to compute the semantic similarity. For
xample, [21] presents a query engine that integrates a set of
ransformation tables to capture semantics such as ‘‘synonym’’
nd ‘‘abbreviation’’ (e.g., the 2-hop path birthPlace+city in 2⃝ can
e transformed to its synonym, that is, the specific predicate na-
ionality in Q ). While for [22], it computes the similarity between
wo entity labels based on the additional ontology information.
ithout loss generality, both the transformation tables and on-

ology information are external knowledge, which determines the
uality of returned matches to some extent.
ther methods to query knowledge graph. Knowledge graph
earch can also be conducted by the following query forms: (1)
eywords search [24,25], (2) SPARQL search [12,26,27], and (3)
atural language search [28–30]. Most of them transform the
nput texts to query graphs for graph searching (by using above
wo types of graph query methods), so the limitations of existing
raph query methods still exist.
Despite its importance for retrieving answers that approxi-

ately match the query graph Q , none of the state-of-the-art
ork can well support the approximate graph query over knowl-
dge graphs because the following two reasons: (1) lack of con-
ideration of the semantics of the query graph Q , and (2) rely
n and sensitive to the external knowledge. For example, S4 [14]
annot return high-quality graph query results, if the quality of
xternal knowledge (instance pairs for a given query graph pro-
ided by PATTY [31]) is poor. To overcome these limitations, we

ropose a semantic-aware graph query method over knowledge

2

graphs for star queries. Unlike the existing methods, our method
provides the Top-k answers that semantically similar to Q rather
than structurally similar ones, without relying on the external
knowledge. Of course, if external knowledge (e.g., semantic rules
extracted from ontologies information) is available, we can also
incorporate it in our solution to further improve the quality [32,
33]. Note that, the exact graph query (i.e., graph isomorphism
methods) can be viewed as a special case of our approach when
our defined semantic similarity equals to 1.0. The answers are
ranked by match scores quantifying the answers’ relevance to the
given Q . Instead of ranking all the answers after computing their
exact match scores, our method presents a bounding technique
to accelerate query processing. To be more precise, we can effi-
ciently prune the low quality answers via bounding match scores
without evaluating all the candidate answers, thus returning the
Top-k answers early. We summarize the key contributions as
follows.

• We propose a semantic-aware graph query method over
knowledge graphs for star queries, to return semantically
similar answers instead of structurally similar ones. We
define the match score of an answer based on a knowledge
graph embedding model, to measure an answer’s semantic
relevance to a query graph.

• We present a bounding technique for computing match
scores of candidate answers, to accelerate query processing.
By using the match score bound, we can efficiently prune
the unpromising answers and return the Top-k semanti-
cally similar answers without evaluating all the possible
candidate answers.

• We evaluate the performance of our method on real-world
and large-scale knowledge graphs to confirm the superiority
on effectiveness and efficiency.

The reminder of this paper is organized as follows. In Section 2,
e first formalize the problem studied in this paper, then present
he overview of our approach. Section 3 provides the details of
ur semantic-aware graph query for star queries through bound-
ng match scores. In Section 4, we present the evaluation of our
pproach. We discuss related work in Section 5 an conclude the
aper in Section 6.

. Preliminaries and overview

We first formalize the problem studied in this paper. Then we
resent the overview of our approach. Table 1 lists the frequently
sed notations in this paper.

.1. Background

efinition 1 (Knowledge Graph [13,23]). We define a knowledge
raph as G = (V , E, L), with a node set V , edge set E, and a label
unction L, where (1) each node u ∈ V represents an entity, (2)
ach edge e ∈ E denotes a relationship between two entities, and
3) L assigns a name and a type on each node, and a predicate on
ach edge.

xample 1. We assume each node u in G is associated with a
ype and a unique name [23,30], e.g., L(u).type = Country and
(u).name = Spain. For each edge e, it has a predicate such
s L(e) = nationality. If the type of a node in G is unknown,
e employ a probabilistic model-based entity typing method to
ssign a type on it [34].

A star query aims to discover a target entity from the knowl-
dge graph G by providing specific entities and predicates. We
efine the star query graph as follows.
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Fig. 1. An example of a query graph and some subgraph matches.
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Table 1
Frequently used notations.
Notation Description

G A knowledge graph

Q ∗ A star query graph

V s
Q ∗ A set of specific nodes in Q ∗ , each vs

∈ V s
Q ∗ is a specific node

V t
Q ∗ A set of target nodes in Q ∗ , each vt

∈ V t
Q ∗ is a target node

vp The pivot node in Q ∗

φs(vs) The anchor node of a specific node vs
∈ V s

Q ∗

φt (vp) A set of answers to Q ∗

ϕ(ui, φ
s(vs)) The closeness score of an answer ui ∈ φt (vp) to φs(vs)

ϕ, ϕ The upper and lower bound of ϕ

S(ui) The match score of an answer ui ∈ φt (vp)

S, S The upper and lower bound of S

AQ ∗ The Top-k answers to Q ∗

Definition 2 (Star Query Graph [8,35]). We define a star query
graph as Q ∗

= (VQ ∗ , EQ ∗ , LQ ∗ , vp), which can be viewed as a join
of several sub-query graphs at a pivot node vp. Specifically, a sub-
query graph is defined as a graph Q = (VQ , EQ , LQ ), with a query
node set VQ , query edge set EQ , and a label function LQ , where
VQ = V s

Q ∪ V t
Q consists of two subsets of which V s

Q = {vs
} is a

set of specific nodes (both the type and name of a specific node
are known), and V t

Q = {vt
} refers to target nodes (only the type

of a target node is known). Given these sub-query graphs, we
have (1) VQ ∗ = V s

Q ∗ ∪ V t
Q ∗ , where V s

Q ∗ =
⋃

V s
Q , V

t
Q ∗ =

⋃
V t
Q ,

(2) EQ ∗ =
⋃

EQ , (3) LQ∗ = LQ , and (4) all the sub-query graphs
intersect at a same target node (called pivot node), denoted by
vp.

Example 2. Fig. 1(a) shows a star query graph consisting of two
sub-query graphs: (1) find a soccer player who plays for a England
soccer club (Q1 : ⟨v1-e1-v2-e2-v3⟩), (2) find a Spanish soccer player
(Q2 : ⟨v4-e3-v3⟩), and (3) two sub-query graphs intersect at a
same target node v3 and we call v3 a pivot node of this star query
graph.

Definition 3 (Star Query Graph Match). Given a knowledge graph
G = (V , E, L) and a star query graph Q ∗

= (VQ ∗ , EQ ∗ , LQ ∗ , vp). A
star query graph match needs to satisfy: (1) there is a injection φs:
V s
Q ∗ → V for each specific node vs

∈ V s
Q ∗ , that is, φs(vs) = u|u ∈ V

(s.t. L(u).type = LQ ∗ (vs).type, L(u).name = LQ ∗ (vs).name). We call
φs(vs) an anchor node in G, (2) there is a one-to-many relation
φt : V t

Q ∗ → V for each target node vt
∈ V t

Q ∗ , that is, φt (vt ) =

{ui|ui ∈ V } (s.t. L(ui).type = LQ ∗ (vt ).type). We call ui ∈ φt (vt ) an
candidate answer of vt , and (3) for each path vsvt in Q ∗, φs(vs)ui
u ∈ φt (vt )) must be a path in a star query graph match.
i

3

For instance, all subgraph matches shown in Fig. 1(b) are star
uery graph matches to the star query graph provided in Fig. 1(a).

efinition 4 (A candidate Answer to a Star Query Graph). Given
star query graph Q ∗

= (VQ ∗ , EQ ∗ , LQ ∗ , vp), we define an answer
of the pivot node vp, denoted by ui ∈ φt (vp), as an answer of the
star query graph Q ∗.

Example 3. In Fig. 1(b), all answers of pivot node v3 (such as
Dani_Ceballos, Unai_Emery, etc.) are candidate answers of the star
query graph in Fig. 1(a).

Given a star query graph Q ∗, we try to identify the best k
nswers to Q ∗. In this paper, we define a match score of an
nswer to quantify the semantic similarity of an answer to Q ∗.
ntuitively, an answer ui ∈ φt (vp) is better than others if ui is
loser to all anchor nodes {φs(vs)} than other answers. The term
‘closer’’ not only means the shorter distance between φs(vs) and
i, but also indicates the closer semantics of path φs(vs)ui in G to
ath vsvp in Q ∗ (ui ∈ φt (vp)). Similar to [6], we first define the
loseness score of an answer as follows, based on which we then
rovide the match score of an answer.

efinition 5 (Closeness Score). Given an answer ui ∈ φt (vp) to
star query graph Q ∗ and an anchor node φs(vs), we denote

he closeness score of ui to φs(vs) by ϕ(ui, φ
s(vs)). In this paper,

e introduce a semantic-based metric for computing ϕ(ui, φ
s(vs))

nd the details are discussed in Section 3.3.

efinition 6 (Match Score). Given an answer ui ∈ φt (vp) to Q ∗

ith the closeness score ϕ(ui, φ
s(vs)) to each anchor node φs(vs),

e define the match score of ui to Q ∗, denoted by S(ui), as the
um of all closeness scores as Eq. (1).

(ui) =

∑
vs∈V s

Q∗

ϕ(ui, φ
s(vs)) (1)

A greater match score indicates that an answer is more similar
o the star query graph Q ∗ than others, so the best answer is the
ne with the greatest match score. Given these definitions above,
e formalize the problem studied in this paper as follows.
op-k approximate star query. Given a star query graph Q ∗ and
knowledge graph G, we find the Top-k approximate answers AQ ∗

ased on the match score S(ui). To be more precise, the k answers in
Q ∗ must have a greater S(ui) than other answers.

Q ∗ = {argmax
ui

S(ui)} (2)

.t. |AQ ∗ | = k & ui ∈ φt (vp)
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Fig. 2. Pipeline of our method.
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.2. Overview of our approach

We present a semantic-aware graph query method over
nowledge graphs for star queries, based on bounding match
cores. Fig. 2 shows the pipeline of our method.
tep 1. We leverage a knowledge embedding model to represent
he predicates of a knowledge graph G in a vector space offline,
enoted by E = {e1...en}, where e is the predicate vector of
n edge e ∈ E. Hence, we can use the similarity between two
redicate vectors to measure the semantic similarity between
wo edges (Section 3.2).
tep 2. We take a predicate semantic space E and a star query
raph Q ∗ as the input to compute the closeness score and match
core as similarity measures to evaluate how semantically similar
n answer is to Q ∗ (Section 3.3).
tep 3. We propose a bounding technique for match score com-
utation to efficiently prune unpromising answers, improving the
fficiency of our method (Section 3.4).
tep 4. We determine the final Top-k approximate answers to Q ∗

ccording to the bounding match scores (Section 3.5). If there are
o sufficient answers (e.g., less than k) are found, then we repeat
bove operations until the best k answers are returned.

. Semantic-aware graph query through bounding match
cores

In this section, we first provide an algorithm overview of our
emantic-aware graph query method. Then we discuss four major
omponents of our approach in detail.

.1. Algorithm overview

Given a star query graph Q ∗, our semantic-aware graph query
ethod (shown in Algorithm 1) is divided to an offline and an
nline phase, respectively.

ffline phase. We capture the semantics of query edges in Q ∗ via
knowledge graph embedding model, so the predicate semantic
pace E is computed as an output (line 2). Many knowledge graph
mbedding models can be selected as the parameter model in
ine 2, we show the effect of different models on our method in
ection 4.4.
nline phase. The basic idea can be concluded as follows: (1)
e detect the candidate answers φt (vp) = {u1...un} through a
ulti-sources BFS starting from all anchor nodes Sa = {φs(vs)}

lines 5–6), (2) we calculate the bounds of closeness score of
ach answer ui ∈ φt (vp) to each anchor node φs(vs) based on
he predicate semantic space E , denoted by ϕ(ui, φ

s(vs)) (up-
per bound) and ϕ(ui, φ

s(vs)) (lower bound) (lines 7–8), (3) we
compute the bounding match score of each answer ui to a star
query graph Q ∗, denoted by S(u ) (upper bound) and S(u ) (lower
i i

4

Algorithm 1: Semantic-aware Top-k graph query
Data: Query graph Q ∗, Knowledge graph G
Result: Answer set AQ ∗

// Initialization
1 AQ ∗ = {v|v ∈ φt (vp)};
// Offline: KG embedding

2 E = {e|e ∈ E} = KGEmbedding(G, model);
// Online: Main procedure of Top-k graph query

3 Sa = getAnchorNodes(VQ ∗ );
4 while terminationCheck(AQ ∗ )! = true do

// multi-sources BFS
5 for ∀φs(vs) ∈ Sa do
6 1-step BFS iteration from φs(vs);

// Closeness score with bounds
7 for ∀ui ∈ AQ ∗ do
8 ⟨ϕ, ϕ⟩ = getClosenessScore(ui,φs(vs),E);

9 for ∀ui ∈ AQ ∗ do
// Match score with bounds

0 ⟨S(ui), S(ui)⟩ = getMatchScoreBound({⟨ϕ, ϕ⟩});

1 return AQ ∗ ;

bound) (lines 9–10), and (4) we determine the approximate Top-
k answers according to the bounding match scores (line 4) and
return them to users (line 11). We discuss the details of the fourth
step (terminationCheck(AQ ∗ )) in Algorithm 2, Section 3.5.
Remarks. In our implementation, we initialize AQ ∗ as all can-
idate answers in the knowledge graph G of which each ui ∈

Q ∗ has the same type as vp (line 1), then we identify the best
k answers from AQ ∗ through our semantic-aware graph query
method. In order to quickly initialize AQ ∗ , we build a hash index
for all types in G, each type in G is recorded as a key, and the
value refers to a list of entities in G that stored in lexicographical
order of their names and have the same type as key. Given a
star query Q ∗, we can use this hash index to retrieve all the
entities with the same type as the pivot node vp to form AQ ∗ .
Because we focus on the semantic-aware graph query method in
this paper, we skip the details of the index construction, which is
very efficient by using a distributed data processing framework,
such as Spark [36], Flink [37], etc.

In the following sections, we will introduce the details of (1)
knowledge graph embedding (offline phase), (2) similarity mea-
sure (closeness score and match score), (3) bounds of similarity
measure, and (4) termination check.

3.2. Knowledge graph embedding

In this paper, we leverage a knowledge graph embedding
model to capture the semantics of query edges in a star query
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raph Q ∗. The basic idea of knowledge graph embedding is to
represent each predicate and entity in a knowledge graph G as
n n-dimensional semantic vector, such that the original struc-
ures and relations in G are preserved in these learned semantic
ectors [5]. Briefly, it takes a knowledge graph G as input, and
eturn a predicate semantic space and an entity semantic space as
utput. We summarize the main idea of most existing knowledge
raph embedding models [38–40] as follows: (1) initialize the
ectors of head entity h, tail entity t , and predicate r in a triple

⟨h, r, t⟩, denoted by ⟨h, r, t⟩, (2) find a function g() of h, r and
ptimize g() to satisfy t ≈ g(h, r) (e.g., h+r ≈ t for TransE [39]).
s a result, we can finally obtain embeddings of a knowledge
raph.

xample 4. Fig. 3 shows an example of TransE [39]. Several
riples (⟨subject, predicate, object⟩) in a knowledge graph G are
rovided in the left part of Fig. 3. Considering the embeddings
f G in the right part of Fig. 3, where red arrows indicate the
ectors of predicates. Note that, the predicate ‘‘product’’ is more
emantically similar to the predicate ‘‘assembly’’ than the predi-
ate ‘‘language’’, because the vectors of ‘‘product’’ and ‘‘assembly’’
ave a smaller angle than the one between vectors of ‘‘product’’
nd ‘‘language’’. This can be explained as that ‘‘product’’ and
‘assembly’’ have the same head entity ‘‘Germany’’ and similar
ail entities ‘‘BMW_320’’ and ‘‘BMW_X6’’ (both tail entities have
he same type ⟨Automobile⟩, while ‘‘language’’ indicates a rela-
ionship between ⟨Country⟩ and its ⟨Language⟩ not a relationship
etween ⟨Country⟩ and ⟨Automobile⟩.

As shown in the above example, the smaller the angle between
wo predicate vectors is, the two predicate vectors are more
imilar, so the two predicates are more semantically similar.
herefore, an effective way to measure the semantic similarity
etween two predicates is to take the cosine similarity between
wo predicate vectors as the metric. Given the predicate semantic
pace E = {e1...en} obtained through a knowledge graph em-
edding model, we compute the cosine similarity between two
redicate vectors by Eq. (3) to measure the semantic similarity
etween two predicates, e.g., sim(nationality, birthPlace).

im(LQ (e), L(e′)) =
e · e′

∥e∥ × ∥e′∥
(3)

By using the predicate similarity defined in Eq. (3), we can
view a subgraph match to a star query graph Q ∗ in another
perspective, that is, a weighted subgraph match. Given the query
graph provided in Fig. 4(a), Fig. 4(b) and Fig. 4(c) show its sub-
graph match and weighted subgraph match, respectively. A sub-
graph match can change to a weighted subgraph match by replac-
ing predicates on edges by semantic similarities between edges,
e.g., sim(nationality, birthPlace) = 0.98, and sim(nationality, city)
= 0.92.

Therefore, the problem of identifying whether a subgraph
match is semantically similar to Q ∗ is transformed to the problem
of evaluating the semantic similarity of a weighted subgraph
match to Q ∗. In this paper, we use the closeness score of an
answer and the match score based on the closeness score as
the similarity measure to evaluate the semantic similarity of a
weighted subgraph match to Q ∗. If the answer Héctor_Bellerín
in Fig. 4(c) has greater closeness scores to both anchor nodes
England and Spain, then it has a greater match score, which
indicates that Héctor_Bellerín is likely to be a correct answer to the
query graph in Fig. 4(a). We next introduce the similarity measure
(closeness score and match score) in Section 3.3.
5

3.3. Similarity measure

Given a candidate answer ui ∈ AQ ∗ and an anchor node φs(vs)
from a knowledge graph G, we now discuss how to compute the
closeness score ϕ(ui, φ

s(vs)) between ui and φs(vs). According to
ome previous related works, the closeness score can be modeled
ased on the path length between ui and φs(vs) [6,8,13,18,35]. The
asic idea is that the shorter the path length is, the higher the
loseness score can achieve. An obvious limitation of this method
s that it is difficult to measure whether two nodes are semanti-
ally close regarding a certain predicate. Considering two possible
aths between a person and a country and a given predicate
ationality, for example, ⟨Person⟩-live_in-⟨Country⟩ and ⟨Person⟩-

birthPlace-⟨City⟩-city-⟨Country⟩. Although the former is shorter in
length, the semantic information expressed by the latter is closer
to the given predicate nationality. This motivates us to measure
the closeness score by considering both the path length and
semantics of this path. For the convenience of introduction, we
use an example shown in Fig. 5 to express our basic intuitions.
Intuition. We compute the closeness score ϕ(ui, φ

s(vs)) between
a candidate answer ui and an anchor node φs(vs) based on the
following intuitions.

• I1: Given an n-hop path between ui and φs(vs), each edge has
a predicate similarity (Eq. (3)) to one query edge in the given
query graph Q ∗, which can be viewed as a weight w of this
edge. Hence, the closeness score of ui to φs(vs) should be a
function f (w1...wn) of all predicate similarities appearing at the
path φs(vs)ui.
For example, the third subfigure in Fig. 5 shows a 2-hop path
between a ⟨Person⟩ and a ⟨Country⟩, with two predicate birth-
Place and city. Each predicate has a predicate similarity to a
given predicate nationality, that are, 0.98 and 0.92, respectively.
Note that, any single predicate similarity (0.98 or 0.92) cannot
represent the overall semantic similarity of the entire path to
nationality, and two predicate similarities must be considered
at the same time to measure how semantically similar the
birthPlace+city is to nationality.
I2: As mentioned above, the distance between ui and φs(vs) is
another factor that affects the closeness score. In fact, the close-
ness score f (w1...wn) should be sensitive to the path length,
especially when different paths show the similar meaning. To
be more precise, it is reasonable that f (w1...wn) decreased as
path length increasing. This is because the semantic informa-
tion carried by a path would attenuate during a long distance
transmission [8].
Let us consider the middle two subfigures in Fig. 5. Although
both paths show the semantic meaning that a person’s nation-
ality is a certain country, we are more likely to believe that
the second subfigure claims a 100% accurate fact compared
with the third subfigure. This is because a person who was
born in a country can have the possibility of having a different
nationality.
I3: For a knowledge graph, it is very common to have multiple
paths between ui and φs(vs). Each path has a semantic similar-
ity to the given predicate, we should consider a comprehensive
closeness score based on all paths’ semantic similarities.
As the fourth subfigure shows in Fig. 5, there are two paths
between a ⟨Person⟩ and a ⟨Country⟩. We cannot tell whether
this person is Spanish or not through any single path, but if the
two paths are considered at the same time, then the possibility
that this person is Spanish should be increased to a certain
extent. Hence, we need to consider the semantic similarities
of all paths when computing the closeness score.



Y. Wang, X. Xu, Q. Hong et al. Knowledge-Based Systems 213 (2021) 106655

o

ϕ

w
c

o
t

n

0
w
t
a
⟨

Fig. 3. An example of TransE model.
Fig. 4. An example of weighted subgraph match (semantic similarities as weights).
Fig. 5. Examples for closeness score computation.
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According to above intuitions, we calculate the closeness score
f ui to φs(vs) by Eq. (4), which considers two different cases.

(ui, φ
s(vs)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

wj∈φs(vs)ui

wj Case 1

min {max{ϕ(ul, φ
s(vs))|ul ∈ N(ui)},∑

ul∈N(ui)
ϕ(ui, φ

s(vs)|ul)} Case 2

(4)

Case 1. For the case that only one path between ui and φs(vs),
e use the weight product of all weights (product of all predi-
ate similarities) appearing at the path φs(vs)ui as the closeness
score (intuition I1). Since each weight belongs to a range [0, 1],
this closeness score is monotonically decreasing as path length
increases (intuition I2).
Case 2. While for the case that more than one path between
ui and φs(vs), we use

∑
∀ul∈N(ui)

ϕ(ui, φ
s(vs)|ul) to represent the

comprehensive closeness score of ui to φs(vs) (intuition I3), where
N(ui) is a set of neighbors of ui and ϕ(ui, φ

s(vs)|ul) indicates the
closeness score calculated based on the path φs(vs)ui through
ne neighbor node ul of ui. Moreover, in order to ensure that
he answer having shorter distance to φs(vs) has a higher score
(intuition I2), we constraint the comprehensive closeness score to
no greater than the maximal closeness score of ui’s previous-hop
eighbor, that is, max{ϕ(ul, φ

s(vs))|ul ∈ N(ui)}.

Example 5. In Fig. 5, we show three examples for closeness
score computation. There are three soccer players whose na-
tionality might be Spain. For the first two persons, we directly
compute the closeness score as 1.0 and 0.92 × 0.98 = 0.901 (Case
1), respectively. While for the last person, there are two paths
connecting to David_Villa, so we compute the comprehensive
closeness score (Case 2) as min{max{1.0, 1.0}, 1.0×0.45+1.0×

.43} = 0.88. Note that, Davia_Villa’s wife and friend are Spanish,
hich indicates that he probably is a Spanish, too. By using
he comprehensive closeness score, we can get this probability
s 88%. Finally, we output the Top-3 answers in the order of
Dani_Cebollos, Héctor_Bellerín, David_Villa⟩.
6

nalysis. Recall the Algorithm 1, we conduct a BFS from each an-
hor node φs(vs) to find the paths to each candidate answer ui. If
we find all paths to ui from all {φs(vs)}, then we can calculate the
xact closeness score (Eq. (4)) and match score S(ui) (Eq. (1)). And
he k answers with the greatest S(ui) are returned as the Top-k
nswers. This procedure is clear and easy to implement. However,
t suffers from the efficiency issue, especially for a large-scale
nowledge graph. In a knowledge graph, the path search space
s usually large because the high connectivity among nodes. For
nstance, the average node degree in DBpedia 3.9 dataset is nearly
4, so that if we want to find all paths to an answer within 3 hops,
he possible candidate paths would be 243

= 13824 on average.
he large path search space will affect the efficiency significantly.
This motivates us to present a novel technique for bounding

loseness score and match score during runtime. Through this
ounding technique, we can determine the Top-k answers earlier
ithout calculating the exact closeness score and match score, by
fficiently pruning unpromising answers. We next introduce the
ounds of closeness score and match score in Section 3.4.

.4. Bounds of similarity measure

According to Definition 6, we compute the bounds of match
core S(ui) and S(ui) based on the bounds of closeness score

ϕ(ui, φ
s(vs)) and ϕ(ui, φ

s(vs)) as follows.{
S(ui) =

∑
vs∈V s

Q∗
ϕ(ui, φ

s(vs))

S(ui) =
∑

vs∈V s
Q∗

ϕ(ui, φ
s(vs))

(5)

In order to compute S(ui) and S(ui), we need to compute
ounds of closeness score in advance. Hence, we show how to
ompute ϕ and ϕ first.
Intuition. In Algorithm 1, we conduct a BFS from each anchor
node, so we can detect some nodes at the nth step of BFS. For
these detected nodes, the exact closeness scores are computed
by Eq. (4). Since we can finally find other undetected nodes
through further BFS steps starting from these detected nodes,
it is possible to estimate undetected nodes’ upper and lower
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ounds of closeness scores based on the exact closeness scores
f detected nodes computed at the nth step.
pper bound of closeness score. We denote a set of newly de-
ected nodes in the nth BFS step by Dn. Every node ul ∈ Dn

as an exact closeness score, denoted by ϕn(ul, φ
s(vs)). We also

ntroduce a wildcard node ux to represent all undetected answers
fter n BFS steps. Note that, there may exist a potential path from
s(vs) to ux through ul. Hence, we use ϕn(ux, φ

s(vs)|ul) to denote
the upper bound of closeness score of ux calculated at the nth BFS
tep from the detected node ul. We compute it by Eq. (6), where
m(ul) is the maximum semantic similarity of all adjacent edges of
ul.

ϕn(ux, φ
s(vs)|ul) = ϕn(ul, φ

s(vs)) · m(ul) (6)

Given a set of upper bounds of closeness score {ϕn(ux,
s(vs

j )|ul)} for all ul ∈ Dn, we calculate the upper bound of
omprehensive closeness score for ux as follows.

ϕn(ux, φ
s(vs)) = min {max{ϕn(ul, φ

s(vs))|ul ∈ Dn
},∑

ul∈Dn

ϕn(ux, φ
s(vs)|ul)} (7)

Example 6. In Fig. 6, we show an example for bounding close-
ness score. Given a knowledge graph with semantic similarities
on the edges as the input (left part), we conduct a BFS from node
u1, and try to compute the upper bound of closeness score for
nodes u4 and u5. A snapshot after the 1st BFS step is provided
in the middle part, where D1

= {u2, u3}. Since each node in D1

ave a chance to connect to arbitrary node ux|x = 4, 5, so we can
ompute ϕ1(ux, u1|ul) for each ul ∈ D1. Then we obtain the upper
bound of comprehensive closeness score of ux as ϕ1(ux, u1) =

.74. Actually, if we continue to the 2nd BFS step, then we can
et the exact comprehensive closeness score of u4 and u5 as 0.59
nd 0.74, respectively. Both of them are bounded by the upper
ound of 0.74.

ower bound of closeness score. Since we might not find a
ath from an anchor node φs(vs) to arbitrary node ux through a
etected node ul ∈ Dn at nth BFS step, we just define the lower
ound of comprehensive closeness score of ux as ϕn(ux, φ

s(vs)) =

.
ounds refinement. During the graph querying, we keep updating
he upper and lower bounds of closeness score for all candidate
odes in AQ ∗ at each BFS step. If a candidate answer ui is detected
t the nth iteration. Then we have ϕn

= ϕn
= ϕ (ϕ is the

xact score computed by Eq. (4)). After we obtain the bounds
f closeness score, we can update the bounds of match score

S and S at each BFS step (Eq. (5)). Given the bounds of match
score for each candidate answer, we can determine the Top-k
nswers through the termination check procedure. We discuss it
n Section 3.5.
onvergence of bounding matching score. We need to ensure
hat the graph querying based on the bounding matching score
s convergent, which means that the upper and lower bounds of
atch score will shrink as the number of BFS steps increases.
o be precise, the bounds of match score satisfy S

n
≥ S

n+1
and

Sn ≤ Sn+1.

emma 1. Suppose that we are now at the nth BFS step, then the
upper bound of closeness score of an arbitrary node ux, denoted by
ϕn(ux, φ

s(vs)), is bounded (≤) by the value of max{ϕn(ul, φ
s(vs))|ul

Dn
}.

roof. We prove Lemma 1 based on Eq. (7). To make the proof
ore clear, we denote max{ϕn(ul, φ

s(vs))|ul ∈ Dn
} by a symbol

, and denote
∑

ϕn(u , φs(vs)|u ) by a symbol B. We first
ul∈Dn x l

7

assume that B ≥ A, then we have ϕn(ux, φ
s(vs)) = A based on

q. (7). In another case, if B ≤ A then we have ϕn(ux, φ
s(vs

j )) =

≤ A. In summary, ϕn(ux, φ
s(vs)) ≤ A = max{ϕn(ul, φ

s(vs))|ul ∈

Dn
} holds for both cases.

Lemma 2. Given a set Dn is obtained at the nth BFS step, then
we have max{ϕn(ul, φ

s(vs))|ul ∈ Dn
} is bounded (≤) by the upper

ound of closeness score for ux calculated at the (n − 1)th BFS step,
enoted by ϕn−1(ux, φ

s(vs)).

roof. Since some of the undetected nodes (ux) in the (n-1)th
FS step will be detected in the nth BFS iteration and are recorded
n Dn, it is natural that we have ϕn−1(ux, φ

s(vs)) ≥ ϕn(ul, φ
s(vs)),

here ul ∈ Dn. Hence, ϕn−1(ux, φ
s(vs)) ≥ max{ϕn(ul, φ

s(vs))|∀ul ∈

Dn
} holds.

Theorem 1. Given a certain undetected node ux, the upper bound
of closeness score of ux that computed at each BFS step is decreasing
as more BFS steps processed. To be precise, we have ϕn(ux, φ

s(vs)) ≤

ϕn−1(ux, φ
s(vs)).

roof. According to Lemma 1, we have ϕn(ux, φ
s(vs)) ≤

max{ϕn(ul, φ
s(vs))|ul ∈ Dn

}. According to Lemma 2, we have
ϕn−1(ux, φ

s(vs)) ≥ max{ϕn(ul, φ
s(vs))|ul ∈ Dn

}. Hence,
ϕn(ux, φ

s(vs)) ≤ ϕn−1(ux, φ
s(vs)) holds.

heorem 2. The graph querying based on the bounding match score
s convergent.

roof. Since the upper bound of closeness score ϕ monotonically
decreases as the BFS step increases (Theorem 1), the upper bound
of match score S is also monotonically decreasing according to
Eq. (5) (S

n
≥ S

n+1
). Moreover, the lower bound of closeness

score ϕ is monotonically increasing because it will increase to
the exact value ϕ from 0 when an answer is detected. Hence,
the lower bound of match score S is monotonically increasing too
(Sn ≤ Sn+1). Therefore, the upper and lower bounds of match
score will shrink as the BFS step increases until S = S = S, which
ndicates that the graph querying based on the bounding match
core is convergent.

emarks. Our bounding technique can be viewed as a prune
trategy for computing the match score. The computational com-
lexity is dominated by three parameters, that are, the number
f anchor nodes for a given query graph, denoted by m, the
verage degree of each explored node, denoted by d, and the
pper bound of the path length between a candidate answer and
n anchor node, denoted by n. Since graph queries usually exhibit
trong access locality [41] and most answers could be found in
n n-bounded space of a given anchor node, thus we assume n
s a upper bound of the path length. As a result, we have the
omputational complexity in the worst case as O(m ·dn). By using
ur bounding technique, the efficiency can be improved without
aterializing the entire path between a candidate answer and
ach anchor node, which means we can terminate the match
core computation early once a certain condition is satisfied.
e next introduce such terminate condition and discuss how to

eturn the Top-k answers based on the bounding match score in
etail.

.5. Termination check

The termination check, as shown in Algorithm 2, determines
hether the Top-k answers are identified. Assume that we al-
eady compute upper and lower bounds of the match score
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Algorithm 2: terminationCheck(AQ ∗ )
Data: Answer set AQ ∗

Result: Return true if find k answers or false otherwise
1 Get the kth largest lower bound of match score S(uk);
2 for ∀ui ∈ AQ ∗ do
3 if S(ui) < S(uk) then
4 AQ ∗ .remove(ui);

5 if |AQ ∗ |= k then
6 return true;
7 else
8 return false;

Table 2
The bounds of closeness score for nodes u6, u7, u10 in Fig. 7.
ux ϕ2(ux, u1) ϕ2(ux, u1) ϕ1(ux, u9) ϕ1(ux, u9)

u6 0.67 0.67 0.87 0
u7 0.327 0 0.9 0.9
u10 0.327 0 0.3 0.3

(S and S) for each candidate answer in AQ ∗ , the Top-k termination
heck consists of two main steps:
tep 1. We find the kth largest S(uk) among all candidates (line

1). S(uk) is the lower bound of match scores of the Top-k answer.
n another word, the match score of each Top-k answer must be
reater than or equal to S(uk).

Step 2.We remove all candidates having S(ui) less than S(uk) from
Q ∗ , because they definitely are not the Top-k answers (lines 2–
). The termination check stops when |AQ ∗ | = k. Otherwise, the
pper/lower bound should be further refined (lines 5–8).

xample 7. Fig. 7 shows an example of Top-2 answers graph
uery. In the left part, it is a knowledge graph with semantic
imilarities on the edges. We aim to find Top-2 answers from
hree candidates (AQ ∗ is initialized as {u6, u7, u10}) by conducting
wo BFS from two anchor nodes u1 and u9, respectively. The
olid lines and nodes represent the edges and entities that have
een detected in the BFS, and the dash lines and nodes represent
he undetected parts of the graph. In the 2nd BFS step from the
nchor node u1, we have D2

= {u5, u6}. While in the 1st BFS iter-
tion from the anchor node u9, we have D1

= {u7, u8, u10}. Given
2 and D1, the upper and lower bounds of closeness score for
andidates u6, u7, u10 are provided in Table 2. Given these bounds
f closeness score, we then compute the bounds of match score
or all candidates as ⟨S(u6), S(u6)⟩ = ⟨1.54, 0.67⟩, ⟨S(u7), S(u7)⟩ =

1.227, 0.9⟩, and ⟨S(u10), S(u10)⟩ = ⟨0.627, 0.3⟩. Therefore, we
an obtain the Top-2 answers u6 and u7 without exploring the
hole graph.

. Experimental study

We present experiment results over real-world knowledge
raphs to evaluate (1) effectiveness and efficiency, (2) user study,
nd (3) effect of KG embedding models.
 t

8

.1. Experimental setup

atasets. We used three real-world knowledge graphs as
atasets. (1) DBpedia [2] is an open-domain knowledge base,
hich is constructed from Wikipedia. (2) Freebase [4] is a knowl-
dge base mainly composed by communities. Since we assume
hat each entity has a name, we used a Freebase-Wikipedia map-
ing file [42] to filter 5.7M entities, each entity has a name from
ikipedia. (3) YAGO2 [3] is a knowledge base with information

rom the Wikipedia, WordNet and GeoNames. In this paper, we
nly used the CORE portion of Yago (excluding information from
eoName) as our dataset.
uery workload. We used three query workloads to construct

the query graphs. (1) QALD-4 [43] is a benchmark for DBpedia.
It provides answers for each query. (2) WebQuestions [44] is a
benchmark for Freebase. It provides a set of questions, denoted
by a quadruple ⟨qText, freebaseKey, relPaths, answers⟩. We took
the entities and relations from freebaseKey and relPaths to form
query graphs. (3) RDF-3x [45] contains queries for YAGO dataset.
It provides SPARQL expressions, but does not provide the an-
swers. To obtain the validation set, we imported YAGO2 to the
graph database Neo4j [46] and executed the queries through a
sparql-plugin.
Metrics. We adopted three metrics to measure the effectiveness.
Precision (P) is the ratio of correctly discovered answers over
all discovered top-k answers. Recall (R) is the ratio of correctly
discovered answers over all correct answers. In addition, we also
employed F1-measure to combine the precision and recall as
F1 =

2
1/P+1/R . For the efficiency, we used the average response

time T of all queries as the metric.
Moreover, we used the average performance improvement

ratio (p%) to evaluate how much our approach outperforms oth-
ers competitors in the terms of effectiveness metrics as Eq. (8),
where mk−m′

k
m′

k
is the performance improvement ratio for each k

k = {20, 40, 100, 200}),mk is the metric value of our method and
m′

k is the one for others (mk could be the P , R and F1 at arbitrary
k). We also evaluate the speedup of our method to measure the
efficiency improvement.

p% =

∑
k

mk − m′

k

m′

k
(8)

Comparing methods. Since the latest work S4 [23] shows that
it outperforms NeMa [13], gStore [12] and BLINK [47], so we
compared our approach (named Bound) with S4. Besides, we
compared with p-hom [48] and GraB [8], the former considers the
ode similarity and the latter considers the structural similarity
or graph query. Moreover, we compared with QGA [25], which
s a keyword-based graph query method.

.2. Effectiveness and efficiency evaluation

ffectiveness. In this test, we compared our method Bound with
ther competitors in the terms of P , R and F1-measure. We
how the results in Figs. 8–10(a, b, c) for a varied k (from k =

0 to k = 200). Observe that, Bound is better than others in
he precision metric. This is because our method can find the
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Fig. 7. Case study for Top-2 answers graph query.
Fig. 8. Effectiveness and efficiency over DBpedia.
Fig. 9. Effectiveness and efficiency over Freebase.
Table 3
The p% of precision and speedup of average response time (DBpedia).
Top-k Bound vs. others (p% of P) Bound vs. others (speedup of Time)

Grab S4 QGA p-hom GraB S4 QGA p-hom

k = 20 0.177 0.525 0.175 1.536 3.995 1.939 8.223 12.676
k = 40 0.184 0.388 0.494 2.047 4.038 2.349 8.598 12.728
k = 100 0.142 0.211 1.070 2.293 3.914 2.928 9.379 10.345
k = 200 0.119 0.047 1.411 1.896 4.998 2.952 9.995 9.737
AVG 0.156 0.293 0.787 1.943 4.236 2.542 9.049 11.372
9
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Fig. 10. Effectiveness and efficiency over Yago.
semantically similar answers by considering the semantics of the
query edges. Let us take the result over DBpedia as an example
to discuss the differences of different methods. Among the other
methods, GraB can achieve a better precision for a smaller k
(k = {20, 40, 100}). This is because there are lots of ground
truths in QALD-4 benchmark are defined within 2-hop,1 and GraB
uses the path length to indicate the similarity of an answer to
the query graph, so it can find more correct answers for the
cases of a smaller k. For S4, we show the average precision result
of different cases taking different prior knowledge as the input.
We note that its precision is relatively lower than Bound, this
is because the precision of S4 are significantly affected by the
quality of input prior knowledge. S4 performs well in the cases
with a high-quality input prior knowledge (the prior knowledge
covers the majority of predefined schemas in a knowledge graph),
but performs poorly in other cases. S4 is better than GraB for
k = 200, because many multi-hops answers are found for k =

200, and GraB cannot ensure that they are semantically similar
to the query graph. Moreover, QGA can only find 1-hop answers,
resulting in a rapid reduction in precision as k increases. And p-
hom ranks all answers only based on the node similarity, so that
many multi-hops wrong answers could be ranked in the Top-k list
instead of some 1-hop right answers, leading to a lower precision.

Furthermore, we can see the similar trend in the recall and
F1-measure. Note that, recall and F1-measure are very small for
k = {20, 40}, because of the size of validation set is usually larger
than k. For example, the query Q117 from QALD-4 has 596 correct
answers, so that the recall is very small when we set k = 20 (at
most 20

596 = 3.35%).
Efficiency. In this test, we evaluated the efficiency of all methods
for a varied k (from k = 20 to k = 200). The results are given
n 8–10(d), we can find that the response time for all methods
ncreases with the increasing of k. This is natural that a larger
earch space is usually required for achieving more answers.
owever, our Bound method is the most efficient, because we
se the bounding technology to efficiently prune the unpromising
andidates during runtime. Among other methods, S4 is better
han others, because it uses a summarizing graph to accelerate
he query processing. GraB and p-hom perform worse than S4, be-
ause their search space becomes too large to converge quickly as
he increasing of k. Moreover, QGA takes more time on the query

1 For example, there are 234 out of 596 answers of Q117 are 1-hop.
10
graph assembly, which significantly affects the overall efficiency.
From this result, we can conclude that our Bound is more scalable
to the value of k.
Performance improvement. In the above tests, we can see that
our Bound outperforms other methods in both effectiveness and
efficiency metrics. Tables 3–5 provides the details of the per-
formance improvement on precision and speedup of the average
response time. For example, as shown in Table 3, we achieve at
least 15.6% improvement on average for precision. And we are at
least 2.5 times faster than other methods.

4.3. User study

Since our method returns the Top-k answers to users, we
wanted to know if the users are satisfied with the highly-ranked
answers (even though the answers are already in the validation
set). In other words, we expect that an answer, which is more
familiar to the user, must have a higher rank returned by our
method. Therefore, we conducted a user study through the Baidu
Data CrowdSourcing Platform2 to evaluate the correlation between
the Top-k answers returned via our method and the users’ prefer-
ences. Similar to [49], we used the Pearson Correlation Coefficient
(PCC) as the metric to measure such correlation. We did the test
according to the steps in [49]. We selected 12 queries from the
workloads in this user study. For each query, we set k as the size
of validation set. Given Top-k answers, we divided them into sev-
eral groups according to the match scores, and then generated 30
random pairs of these answers. In order to avoid evaluating two
answers with the same match score, we selected answers in a pair
from different groups. We presented each pair to 10 annotators
and asked for their preference between the two answers (Table 6
for example). Given an answer pair ⟨Opel_Super_6, BMW_320⟩,
our method provides the rankings as 62 and 10 for both answers.
If more higher ranked answers (e.g., BMW_320) are preferred
by more users (shown with ✔), then we can say that the Top-k
answers and users’ preferences are positively correlated.

Finally, we obtained 12*30*10 = 3600 opinions. For each
query, we constructed two lists X and Y based on these opinions
to represent our method and annotators’ preference of 30 answer
pairs. For each answer pair, the value in X is the difference
between the two answers’ ranks given by our method (e.g., X1 =

2 https://zhongbao.baidu.com/?language=en

https://zhongbao.baidu.com/?language=en
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Table 4
The p% of precision and speedup of average response time (Freebase).
Top-k Bound vs. others (p% of P) Bound vs. others (speedup of Time)

Grab S4 QGA p-hom GraB S4 QGA p-hom

k = 20 0.056 0.131 0.015 1.519 1.873 1.103 4.820 5.914
k = 40 0.043 0.201 0.111 2.545 2.153 1.405 6.825 6.736
k = 100 0.331 0.276 0.382 2.668 2.069 1.567 9.068 6.231
k = 200 0.095 0.007 0.427 2.029 2.535 1.535 7.211 5.054
AVG 0.131 0.154 0.234 2.187 2.158 1.403 6.981 5.984
Table 5
The p% of precision and speedup of average response time (Yago).
Top-k Bound vs. others (p% of P) Bound vs. others (speedup of Time)

Grab S4 QGA p-hom GraB S4 QGA p-hom

k = 20 0.181 0.111 0.090 1.025 1.728 1.144 5.592 3.747
k = 40 0.133 0.091 0.213 0.819 1.941 1.363 6.102 4.451
k = 100 0.118 0.079 0.221 0.934 3.037 1.784 6.376 4.655
k = 200 0.051 0.011 0.102 0.832 3.208 2.359 6.592 6.901
AVG 0.121 0.073 0.157 0.903 2.478 1.662 6.166 4.939
m
m

5

g
G

Table 6
An example of answer pairs for user study (Q117 in QALD-4)
Answer1 Our rank User Answer2 Our rank User

Opel_Super_6 62 BMW_320 10 ✔

Volkswagen_Passat 72 ✔ 30_PS 26

Table 7
Pearson Correlation Coefficient (PCC) between our method and Baidu’s
annotators.
Query PCC Query PCC Query PCC Query PCC

Q1 0.42 Q4 0.71 Q7 0.63 Q10 0.67
Q2 0.51 Q5 0.69 Q8 0.34 Q11 0.65
Q3 0.56 Q6 0.68 Q9 0.41 Q12 0.74

52 for the first row in Table 6), and the value in Y is the difference
etween the numbers of annotators preferring the two answers
e.g., Y1 = 8 for the first row in Table 6, if 9 annotators prefer
MW_320 and 1 annotator prefers Opel_Super_6). Given the lists
and Y , we then can calculate the PCC for each query as follows.

CC =
E(XY ) − E(X) · E(Y )√

E(X2) − E(X)2 ·

√
E(Y 2) − E(Y )2

(9)

The PCC value shows the degree of correlation between the
ranks given by our method and the preferences given by an-
notators. According to [50], the value range of PCC is [−1, 1]
and a PCC value in the ranges of [0.5, 1.0], [0.3, 0.5) and [0.1,
0.3) indicates a strong, medium and small positive correlation,
respectively. Table 7 shows that our method achieved strong
and medium positive correlations with the annotators on 9 and
3 queries, respectively, out of total 12 queries, which indicates
that the users are satisfied with the semantically similar answers
identified via our method. In another word, a high ranked answer
is also much more likely to be preferred by more users.

4.4. Effect of knowledge graph embedding models

In this test, we evaluate the effect of different knowledge
graph embedding models on the effectiveness and efficiency met-
rics. Since the results over three knowledge graphs show the sim-
ilar trends, we only show the result over DBpedia. Here, we con-
sider three very common knowledge graph embedding models,
TrasE [39] and its two extensions TransD [40] and TransH [38].
Fig. 11(a-c) shows the effectiveness results for three models. Note
that, the effectiveness results are less affected by the embedding
11
models. So we can say our method is scalable for the three
models. This is because our method is more concerned with
whether the model correctly expresses the semantic relationship
of two predicates, rather than whether the semantic similarity
between two predicates is more accurate. For example, predi-
cate manufacturer is a semantically similar predicate to assembly
in all models (e.g., with semantic similarity at least 90% in all
models), then the automobiles are manufactured in Germany will
be returned as the results with higher probability than other
automobiles designed by German designer. It does not matter
if the semantic similarity of ⟨manufacturer, assembly⟩ is 93% or
95%, both value would return automobiles are manufactured in
Germany as the answers. This is because we always have manu-
facturer is more similar to assembly than designer in all models.
Moreover, Fig. 11(d) shows the effect of different models on
the efficiency. The processing time is less affected by the Trans
models for each k. In a summary, we only need to select the
odel with the fastest training speed regardless of the effect of
odels on the effectiveness and efficiency.

. Related work

According to how previous approaches search knowledge
raph, we categorize related work as follows.
raph pattern matching. Graph pattern matching is typically

defined in terms of subgraph isomorphism [11,12,15,16], which is
NP-complete and often too restrictive to capture sensible matches
[17]. These methods requires all the nodes and edges in the
matches to be exactly the same as the ones in Q . Therefore,
we cannot find the approximately similar matches through these
methods.
Graph similarity search. Many efforts have been made for the
graph similarity search based on different similarity metrics: (1)
structural similarity [8,13,18,51], (2) graph edit distance [19,20],
and (3) weak semantic similarity [14,21–23]. kGPM [51] stud-
ies Top-k graph query for cyclic and complex queries. It allows
an edge-to-path mapping, but restricts that the vertex/edge la-
bels specified in the query graph Q should be exactly matched.
Besides, Ness [18] and NeMa [13] utilize h-hop neighborhood
indexing to unify both the label matching cost and neighborhood
matching cost. But it is difficult to predefine a reasonable h
for every query and suffer from high index building overhead.
GraB [8] is a recent work which utilizes the bound-based Top-
k detection mechanism to obtain the answers without indexing.
However, these approaches are difficult to find the semantically
similar matches to the given query graph. Moreover, KMatch [22]

and SLQ [21] can be viewed as concept-level semantic similarity
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Fig. 11. Effect of knowledge graph embedding models.
query. KMatch is an ontology based sub-graph query which can
estimate the similarity between two vertex labels. SLQ presents a
query engine that integrates the distance based structural trans-
formation and ontology based semantic transformation, but it
is hard to deal with more complicated cases. To make use of
more specific semantic information, Zheng et al. propose S4 [23]
to accept some semantic instances as external knowledge and
mine the semantic meaning equivalent query pattern. All above
approaches do not consider the real knowledge semantics in
the query processing, leaving the opportunity for effectiveness
improvement.
Query-by-examples. Query-by-Example (QBE) aims to allow users
to express their search intentions with examples. GQBE [49]
and Exemplar [52] are proposed for searching matches that are
same as their counterparts from the examples. Moreover, [53,54]
are proposed to pose exemplars characterized by tuple patterns,
and identify answers close to exemplar. Our approach can ex-
tend these QBE methods by returning more semantically similar
answers to the given exemplar queries.
Other methods to query knowledge graph. The knowledge graph
search can also be conducted by the following query forms: (1)
keywords search [24,25], (2) SPARQL search [12,26,27], and (3)
natural language search [28–30]. Most of these methods trans-
form the input texts to query graphs for graph searching, so our
graph query approach can be used to improve their performance.

Since we present a novel semantic similarity metric to mea-
sure how a subgraph match is semantically similar to the given
query graph Q , a literature review on semantic similarity metrics
is required an provided as follows.
Corpus-based semantic similarity. Corpus-based approaches
[55–58] leverage the information extracted from large corpora
such as Wikipedia to measure the semantic similarity [59]. Some
works exploit concept associations such as Pointwise Mutual
Information [55] or Normalized Google Distance [56]. While other
works represent the words with low-dimensional vectors, such as
Word2Vec [57], GLOVE [58]. These approaches work well for the
text corpora but cannot be easily extend to support knowledge
graphs. This is because a knowledge graph is maintained as a big
graph, we not only need to consider contextual information but
also structural features when measuring the semantic similarity.
Knowledge-based semantic similarity. Knowledge-based appro-
aches use the semantic information contained in the knowledge
graph to measure the semantic similarity between concepts, en-
tities, and predicates. A commonly used semantic information
12
is the semantic distance between concepts (e.g., the path be-
tween two concepts), the shorter the path is, the ore similar they
are [60–64]. Another line of literature represents each entity and
predicate in a knowledge graph as an n dimensional semantic
vector (i.e., knowledge graph embedding), such that the original
structures and relations in the knowledge graph are preserved
in these learned semantic vectors [38–40]. To the best of our
knowledge, in this paper, we are the first to combine both the
distance-oriented and embedding-based semantic similarities to
measure how semantic similarity an answer is to the given query
graph.

6. Conclusions and future work

In this paper, we proposed a semantic-aware graph query
method over knowledge graphs for star queries, which can pro-
vide matches that semantically similar to a given query graph Q
rather than structurally similar matches. The semantic similarity
of a match to Q is measured by a bounding match score that
is computed online. By using bounds, we can efficiently prune
the unpromising matches that have low semantically similarities
earlier without evaluating all possible candidate matches, im-
proving the efficiency of our approach. The experimental results
on three real-world knowledge graphs confirm the effectiveness
and efficiency of our approach. In the future, we shall take our
solution to star queries on knowledge graphs as a building block
to support: (1) more complex queries with different graph shapes,
and (2) aggregate queries which focus on some statistical function
(e.g., SUM, AVG, MAX/MIN, etc.) on the returned factoid answers.
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