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1. Introduction

Many experiments and observations in real phenomena reveal stochastic effects. One
well-known example is the Brownian motion exhibited by pollen when submerged in a
fluid and subject to collisions with the fluid molecules [1]. Stochastic behavior can be
also observed in population dynamics [2], epidemics [3, 4], motions of ions in crystals
[5], thermal noise [6], stock indices [7], option pricing [8, 9], and optimal pricing in
economics [10]. The study of stochasticity was first investigated by Einstein [11],
Smoluchowski [12] and Langevin [13], and later extended by Ornstein and Uhlenbeck
[14]. Concurrently with the development of the concepts and applications of stochastic
calculus, we witness the expanding application of fractional calculus, due to the nonlocal
properties of fractional operators [15-22]. The fractional-order operators have been
employed for designing high-performance controllers for dynamical systems [23, 24],
modeling viscoelastic materials [25, 26], realistic impact phenomena [27], etc.

Many problems in physics, chemistry, biology, finance, and engineering have been mod-
eled as fractional stochastic differential or integral equations [28-31]. Numerical methods
for simulating models based on fractional and stochastic calculus are important for under-
standing and unveiling the properties of many phenomena. In the same line of thought were
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developed numerical approaches for some classes of stochastic differential equations (SDEs)
driven by Brownian motion process, namely methods such as Monte Carlo, for stochastic
evolution equations with Riesz-fractional spatial derivative [32], meshfree, based on radial
basis functions, and Gauss-Legendre quadrature rule [33], and shifted Legendre spectral col-
location, to solve fractional stochastic integro-differential equations [34]. Moreover, explicit
discrete schemes based on the Simpson’s quadrature formula, to simulate the response of
fractional dynamic systems in noisy environments [35]. There are various approaches for
evaluating the approximate solution of SDE driven by a fractional Brownian motion process,
and we can mention methods such as mean-square dissipative [36], cardinal wavelets [37],
collocation via the hat functions [38, 39], and Euler polynomials [40].

The existence and uniqueness of solutions of fractional stochastic delay differential
equation (FSDDE) has already been tackled [41-45], but to the best authors” knowledge
there is no research on numerical methods for their solution.

Hereafter we consider the FSDDE as

§u(t) = f0.u(0)u0-0) + gle.u(t) “57 t€ (0.1 @

u(t) = (), t e [—6,0]

where 1<o<1,f:[0,T))x RxR—R and g:[0,Tf)] x R —R are measurable
functions, 0 represents the delay time, /(¢) is the history function defined on the inter-
val t € [—0,0], and w(t) denotes a Wiener process. The solutions of stochastic delay dif-
ferential equations do not follow the Markov property, and their representations are
more complex than those of stochastic differential equations. In addition, we cannot
obtain the exact analytical solution of a given FSDDE (1) and, therefore, in order to pre-
dict the behavior of sample trajectories of solutions, we need to investigate the confidence
interval (CI) of the exact solutions by means of numerical approximations [46].

This work is organized as follows. Section 2 describes the main definitions that will be
used through this study. Section 3 presents an explicit method based on linear B-spline
interpolation for discretizing a class of FSDDEs driven by Brownian motion. Section 4 dis-
cusses the convergence of the proposed algorithm for approximating the solution of (1).
Section 5 examines the performance of the novel approach for two models, namely the
Langevin and the Mackey-Glass models. Finally, section 6 draws the conclusions.

2. Preliminaries

In this paper, we assume that I>(Q, F;,P) is a probability space of all F;-measurable,
mean square integrable functions u : Q — R with

14l = E Il ),
where || - || is the standard Euclidean norm. The probability space L*(Q, F;, P) is generated by
a one-dimensional standard Wiener process w(t) : R* — R, with the following properties [47]

1. w(0) = 0;
o(t) has independent increment;

3. For every t>s>0,w(t)—w(s) follows a normal distribution with zero-mean
and (t—s)-variance.
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Definition 1 ([48]). A Gaussian white noise, 7(t), is the derivative of the Wiener pro-
cess, as follows

) = o220,

with zero expectation, E((t)) = 0, and finite variance o2, that is, Var(y(t)) = o>.

(2)

Definition 2 ([49]). The stochastic integral fot r({)dw({) with It0’s isometry, is defined as

E KJ; r(C)dw<C)> 2} =E U; rZ(C)dC] : (3)

where r : R x R — Ris a measurable function.

Definition 3 ([50]). The left-sided Riemann-Liouville fractional integral of order g, for
a function u(t) is defined as

oJtu(t) = F(lo) J; u() (=02, (4)

where t, 9, and { € R" and I'() denotes the Gamma function.

Definition 4 ([50]). The left-sided Caputo fractional-order derivative of order ¢ € R,
is defined as

c _ 1 ' “/(C)
ngu(t)_r(l—g)L (t_C)@dC, 0<o<1. (5)

3. Proposed numerical algorithm

In this section, we propose a new numerical technique for solving the FSDDE (1) under
the following hypothesis:

(H,) The function f(t,-,-) satisfies the Lipschitz condition in its second and third
variables

1 f(u, 0)=f (8 2, 62) | L || =i || +R || 21y =5 ], 6)
and the function g(t,-) satisfies the Lipschitz condition in its second variable:
Il g(t,un)—g(t,u2) < L || =z |, 7)

where L, R, and L are positive real constants.
(H,) The function f(-,-,0) is L? integrable, i.e.

L AL, C—8,0)1d¢ < oo,

and g(+,0) is essentially bounded, i.e.
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18-, 0)ll == ess sup |[g(s, 0)]| < o0

5€[0,00]

For the initial condition u(0) = uy € L*(Q, F;,P), the FSDDE (1) can be written as

do(t
) = w273 e 00, u-0) 407 gte ) 207 ). ®
We assume that t; =jh,j=—r,—r+1,..,—1,0,1,...,n, are regular spaced mesh
points in the interval [0, Ty], such that r = Z,n = T Land r,n € Z.

Proposition 3.1 ([51]). Let y(t) be a function in C2 [0, Tf] and ¢ > 0. Then

h? &
Tiy(t) = =—= " ajup(t) + O(h*79), 9)
0Tty (1) F(QH)]; ¥ (5)
where
(n—l)g+1—(n—g—1)(n)g, j=0
Gin = { (n—j+ 1)*"=2(n—j)*"" + (n—j—1)¢"", 1<j<n-1, (10)
1, j=mn
and the truncated error of the (9) satisfies
T8 B =I5 b)) Il < Kiee, (an

where K| = rvé\gf':g and ||y"(t)|| < M.

Lemma 3.1. The coefficients gj, in (10), 0 <@ <1, satisfy the properties:

i. The coeﬁ‘zaents Gjn,j =0,1,2,...,n—1, are positive;
ii. The sum Z 0 Ojn 1S convergent and positive.
Proof. For 1 < j < n—1, the coefficients gj, are given by
Ojn = (n=j + 1) =2(n=))""" + (n—j—1)""!
= ((n=j+ )" = (n=)" ) = ((n=)*"" = (n=j=1)*"").

Therefore, the conclusion of the mean value theorem to the continuous function g(x) =
x?T1 states that there exist points 0, € (n—j,n—j+ 1) and 0, € (n—j—1, n—j), such that

al) = (0 +1)08—(¢ + 1)0%
= (0 +1)(6{-63).

Obviously, for 0 < ¢ <1 and 60, > 0,, we obtain 67—03 >0 and, therefore, from (12),
we get g;, > 0. Furthermore, we have

(12)

> ojn=(0+ 1)n=1>0,
k=0

that completes the proof.
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Proposition 3.2. Let y(t) be a function in 1L*(Q,F, P) and for every subinterval t €
[ti, ti1] € [0, Tf), y(t) € C2[t}, tj41] and ||y”(t)|| <M, j=0,1,...,n—1. Then

oT¢ [y(t)n(1)] Zo—] () + Ohet), (13)

where 1(t) Gaussian white noise, ¢ > 1 and the truncated error of the (13) satisfies

1075 [AOnO)= (075 [AOnD]) s < Ko™ (14)

_ n’IM ] -
where K, = W= and o, is defined as (10).

Proof. The B-linear spline s;(t), as an approximation of yj(t) in the subinterval
1

[ti, ti1] € [0,t,) = [0, T), j=0,1,...,n—1, is given by:
I—t; I—t;
YO Rs(t) = () + "y (ba), (15)
J Tl 1T
and
y//(qo)
&) = yj(t)=5(t) = —77 (=) (t=tj1);

where ¢; is an arbitrary value belonging to (£, j11).
Let &(t) be the error function in the interval (0, t,]. Therefore

E@wa[y(t)n(tﬂ—(oja[y<t>n<r>}>w||2] [H o >j<t TN >d¢||ﬂ

_E [IIWJ (-0 0o O |

Using It0’s isometry property (Definition 2), we have

Bl 8 O] (0T WO (E)]) gy

_E[FJ()J (-0 6 @) 1P

_E [%@JZ j I6=0" 651

:%(Q)EL_Z:J (ta—0)2| ”( )<c 5)(¢ —tj+1>||2dc]
o ) AU

where [[y"(¢;)[| <M.



898 B. P. MOGHADDAM ET AL.

Since ¢ > 1, we get

E [ llo72, (08 = (T8 O gy
h4M2 Jt,, (t _g)ZQ*ZdC’ _ I’l4tﬁg_1M2 nZg—1M2h29+3

=10 o 120 D(Q) 40— D)’

Hence,

1

mzmﬂﬂmm—cjmﬂﬂmm)wmmms(Zﬁgg%ﬁ5>w%:0%“ﬂ

We can apply the Propositions 3.1 and 3.2 to discretize FSDDE (8) with a smaller
step size h and we can write

oT e f(t,u(t), u(t—9))

h? = (16)
~ F(Q T 2) (f(tn, Uy, l/ln_r) + ij:O'j’nf(tj, Ll]', l/lj_r)) s
and
o7 (e a0 222 = fé;j (0o (0
0
IJ (t-0)* (G (OO (17)
F(Q 0
3 ) + St i
Therefore, from (16) and (17), we obtain
Ko
Uy = U + m(f(tm Up, Un—r) + g(tn, tn)N(tn)
n—1 (18)
+ D 0nf (5, w5, 15-0) + g (85, w)n(5)),
=0

where o, is defined as (10).

It is worth noting that in the case that f(¢,-,-) and g(¢,-) are nonlinear with respect
to their variables, to avoid solving a system of nonlinear equations, the nonlinear source
terms are discretized in the following way:

Hf(tn; Uy, un—r)_f(tm Un—1, un—r)” S L2h = O(h); (19)
g (ts ttn) =g (tn, un-1)|| < Lsh = O(h), (20)

where L, and L; are positive real Lipschitz constants for the functions f and g,
respectively.



STOCHASTIC ANALYSIS AND APPLICATIONS . 899

4. Convergence analysis

In this section, we analyze the convergence of the algorithm (18) in approximating the
solution of the FSDDE (1).

Theorem 4.1. Let u(t) € L*(Q, F,,P) be the exact solution of the FSDDE (1). Let us con-
sider that f(t,-,-) and g(t, -) satisfy H; and H; hypothesis. Furthermore, we assume that u;,
j=0,...,n, are the approximate solutions of the FSDDE (1), obtained from (18). Then

16 ()], < KORH: = O(het), (1)
where &(t,) = u(t,)—u, and K'9 is a positive and real constant value independent of h.

Proof. From (8), for the time instant ¢, € [0, Ty], we have

u(t,) = u0+ojfj(t, u(t), u(t—é))—mJ% <g(t, u(t)) da;_it)) ) (22)

We assume that &, = 0. Subtracting (22) from (18) and using the elementary
inequality

Sl <3 jul, 23)
k=1 k=1
and the Holder inequality
168 12 = E || < 2B [1187(5)I] + 216521 (24)
yields
Il =E|| U, (), w({—5))d
*@L (=) (¢, u(0))doo ()
hQ
“Tle+2) (f (tns Un—1, thn—r) + g(tn, n-1)n(tn)

2]

r@) [} G0 a0 w0

+§:"fﬁn(f( » tjs tir) + & (8, w)n(4)))

<a8||

T
!

g 73y o) + ]Z;aj,nﬂtj, )

1 tn o—1
‘@ j (ta—0)"g(L (D)) deo (0)

(gt 0 (0) + 303806 )0(5)
j=0

—I—ZE[

h@
(o +2)
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The first term on the right-hand side of the upper inequality is

' <tn—z>9*1f<c, u(C), u(Z—8))de

Ellé 61 = E|| 5

h()

- trlaun s Un—r + Oin u‘,u-,,
F(Q—I—Z)(f( 1 ]Z()]f 10 ))

H

|

and using (23) and the Holder inequality, one can show that

E{167(t) 1] < sE[H ﬁj () (8, ), () de

g 2ol ) s o) |

3nh¥ &, )

Py JZ%E[IV o), u(ty = 0)) = (b, )|

+h7291E[|Lf<t u(ty), u(ty — 8)) — f (b, thn u_>||2]
FZ(Q—l—Z) ny n)y n ny Un—1, Un—r

By means of Lipschitz conditions and after some simplications, we obtain

2
2 pfp2te 3nh2 1L <M2h4> 3k 2
2 n 2 2 2 12
t, <3 § JL2+R W2
E[Hgf( )”]— (F(Q+1)> (0 +2) RS et

From Lemma 3.1, we have

=0

-

n—1 n—
ot < (Zajn)_ (0 + 1)n¢—1)* = L,. (25)

Therefore

2

E[||£f(tn)||2]<3<< "2+QM> NR— <L2+R2)M2+2L>max{h4+2‘~’,h2+2@}
T \\I(e+1)) 2I*(e+2) I (0+2)

(0) 1,242
<Kf h ,

(26)

Li(L*+R*)M?+ Fz(irz)) is a constant independent of j

0 e 2
where K; ) =3((mey?

T(o+1) 212 (ng+2)
and h.
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Subsequently, for the second-term, we obtain

Bl = | s [ (-0 gteut)don

h@ n—1 :|
T T A tnaun tn + Ojn tau
F(g—f—Z)(g( )n( ]zo:]g] i

n

<3| %j (14— 1) g, u(t) ()~ Z gt u(t)n(t

2]

o

n 3E[H Zajn (8, u(8)) — g6 5))n(5)

+ m[H (8(tns (1)) — &ty 1)) () }

0+2)
3n29 1M2h20+3
~ 420 - )IP(o)
3nh%
Fz (e+2)
320
(o +2)

o2 E[|In()] P E[ et (1)) — g(6,))I
+ E[||n<rn>\|21E[||<g<tn,um)) — gt )],

Therefore, by means of the Lipschitz conditions, E [||n(t)||2} = 1 and (25), after some
simplications, we obtain

3n 20—1M2h2g+3 3L h2g+1 n—1
Eo(tn L
BI6:01F] < 3010t e 1) (nZa " )

20 1M2 i
<3 +
~ 420 - 1)IP0) T(e+2)

(nL; + Lg)) max{h?¢*3 pret}

Hence

E|[16()I| < KR, (27)

whder; K‘ég) =3( 4(2’5:31\1422 ORBE (Lg oy (nL; + L3)) is also another constant independent of j
and h.

From (24), we have

NE )12, < 2Kf(@)h29+2 42k @ e,
and
()], < KOhet = 0(Retd), (28)
where K(© = (2K K@ + ZK(Q))
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1.0
0.9
0.8
0.7
0.67

u(t)
0.5

wy

0.4
031 [——— 0=0.55
| |[———— 0=0.75
021 4=095
0 i 2 3 4 5 0 1 2 3 4 s
t t
(a) FDDE-Langevin (b) FSDDE-Langevin

Figure 1. Numerical solutions of (31) with the proposed algorithm for 6 = 0.1,k = 0.5, 1=1, 9 =
{0.55,0.75,0.95}, and step size h=0.02.

5. Applications

In this section, the computational performance of the proposed method is analyzed in
the perspective of the mean of the expected absolute error (||&y||,,,) and the experi-
mental convergence order (ECO) defined as

yz 1 - N 2N |2 %
1Enlne =D (B[l - u2¥17)), 29)
k=1
and
ECO = log, N2l : (30)
18l

where u} and u2} are approximate values of u(#), N represents the number of interior
mesh points, and h = % denotes the uniform step size. All the numerical experiments
are calculated with the stats package under Maple v18 running in an Intel (R) Core
(TM) i7-7500U CPU @ 2.70 GHz machine.

Model 5.1. The fractional stochastic delayed dynamics in terms of a stationary probability
density for the fractional stochastic delay Langevin differential equation can be stated as
follows

do(t)
dt

1
, 5<Q<L0<t<n’ (31)

CPu(t) = —ru(t—9) + 1
1, t €[—0,0]

u(t) =

where the parameters Kk and T are positive coefficients and 0 is the delay time. The model
(31) was studied in [52, 53] with ¢ =1 for describing the statistical physics of vehicu-
lar traffic.

Figure 1 exhibits the stochastic effect on the fractional stochastic delay Langvin differ-
ential equation for 6 =0.1, =1, k = 0.5 with ¢ = {0.55,0.75,0.95}, and step size
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Table 1. Model 1: Comparison of the ||&||,,, ECO, and CPU-time (sec) for ¢ = {0.55,0.75,0.95},
with 6 = 0.1,k = 0.5, =1, and step sizes h = {0.02,0.01,0.005} at T = 5.

0 h 116 || s ECO CPU—time(s)
0.02 1.4078 x 1073 1,678 4228
0.55 0.01 2.0344 x 107> 2.345 16.287
0.005 6.9554 x 107° 2.243 68.001
0.02 1.9985 x 1073 1.589 4228
0.75 0.01 7.8944 x 107° 2.551 16.193
0.005 2.3130 x 107¢ 2.451 68.422
0.02 2.7068 x 1073 1.511 4181
0.95 0.01 2.3562 x 1076 2.814 16.115
0.005 1.5370 x 107° 2.528 67.439

Table 2. Model 1: Approximation values of the mean, STD, 95% Cl, first and third quartiles, skewness
and kurtosis of the 50 simulated trajectories, with 6 = 0.1,k = 0.5, t=1, and h=0.02 and ¢ =
{0.55,0.75,0.95}, at Ty = 5.

Statistical indicators 0.55 0.75 0.95
Mean 0.363 0.238 0.105
Median 0.363 0.236 0.105

First quartile 0.348 0.227 0.094

Third quartile 0.373 0.246 0.113
Kurtosis 2.792 3.500 3.253
Skewness 0.485 0.696 0.611

STD 2.091x1072 1.829 x 1072 1.788x1072
95% Cl [0.322, 0.404] [0.202, 0.274] [0.070, 0.140]

0.9

0.8

0.7

u(t) u(t)

0.64

0.5

0.4

0 i 2 3 4 5
t t

Figure 2. (Left) Numerical solution of (31) over 50 trajectories. (Right) The red line is the arithmetic
mean of the process and the black lines illustrate 95% Cl areas obtained with 6 = 0.1,k = 0.5,
t=1, 0 = 0.55, and step size h=0.02 over the 50 trajectories of (31).

h=0.02, in the interval [0, 5]. Table 1 presents the performance indices ||& y||,,., ECO and
CPU-time (sec) with several step sizes h for ¢ = {0.55,0.75,0.95} in the interval
t € [0,5]. Table 2 lists the approximation values of the mean, median, first and third quar-
tiles, kurtosis, skewness, standard deviation (STD) and 95% CI of the 50 simulated trajec-
tories with 6 = 0.1, for ¢ = {0.55,0.75,0.95} at Ty = 5. Figure 2 (Left) depicts the
numerical simulation results of 50 trajectories of the vehicular traffic dynamic for u(t). In
addition, the black lines in the right graph of Figure 2, represent the 95% CI area of the 50
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u(t) u(t)

(a) FDDE-Mackey—Glass (b) FSDDE-Mackey-Glass

Figure 3. Numerical solutions of (32) with the proposed algorithm for k=1, A=2, 6=5,1=2, 9 =
{0.55,0.75,0.95}, and step size h=0.02.

1.0
0.99

0.8
u(® w()

0.7

0.6

0.5 T T T T 3 0.5 T T T T 3
0 1 2 3 4 5 0 1 2 3 4 5

t t
Figure 4. (Left) Numerical solution of (32) over 50 trajectories. (Right) The red line is the arithmetic
mean of the process and the black lines illustrate 95% Cl areas obtained with k=1, 1=2, 6=5,

1=2, ¢ = 0.75, and step size h=0.02 over the 50 trajectories of (32).

trajectories numerical solutions of the fractional stochastic delay Langevin differential
equation. The red line represents the point-by-point sample mean of the trajectories.

Model 5.2. Consider the fractional stochastic delay Mackey-Glass equation with a multi-
plicative noise input

1

CPu(t) = ————— —ru(t) + tu(t) ——, §<Q<1,0<t<Tf7 (32)

u(t) = 0.5, t€[-0,0]
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Table 3. Model 2: Comparison of the ||&y||,,, ECO, and CPU-time (sec) for ¢ = {0.55,0.75,0.95},
with k=1, 2=2, 6=5,1=2, T =5, and step sizes h = {0.02,0.01,0.005}.

0 h 116 || s ECO CPU—time(s)
0.02 1.7086 x 107* 2217 4.649
0.55 0.01 5.6688 x 107> 2123 17.581
0.005 1.9059 x 10~° 2.052 73.601
0.02 8.6360 x 10~° 2392 4446
0.75 0.01 2.5560 x 10~° 2.295 17.503
0.005 7.6148 x 107¢ 2226 73.040
0.02 4.5792 x 10~ 2.554 4477
0.95 0.01 1.1915 x 1072 2462 17.643
0.005 3.2668 x 107° 2.385 72618

Table 4. Model 2: Approximation values of the mean, STD, 95% Cl, first and third quartiles, skewness
and kurtosis of the 50 simulated trajectories, with k=1, A=2, §=5, 1=2, and h=0.02 and ¢ =
{0.55,0.75,0.95}, at Ty = 5.

Statistical indicators 0.55 0.75 0.95
Mean 0.898 0.944 0.985
Median 0.897 0.941 0.983

First quartile 0.875 0.923 0.971

Third quartile 0.919 0.954 0.998
Kurtosis 2.792 3.349 3.608
Skewness 0.532 0.758 0.768

STD 3.062x1072 2.682 x 1072 2.617x1072
95% Cl [0.838, 0.958] [0.891, 0.996] [0.934, 1.037]

where A, k, and T are positive constants and 0 is the delay time. The model (32) was ana-
lyzed in [54] with ¢ =1 for describing the stochastic growth of density of blood cells.

Figure 3 depicts the numerical simulations of the fractional stochastic delay
Mackey-Glass differential equation with different values of noise, 7=0 and 7=2, and
fractional orders, ¢ = {0.55,0.75,0.95}, for k=1, =2, 6=5, and h=0.02. Figure 4
(Left) shows the simulation results of 50 trajectories of (32). In the right plot of Figure 4,
the black lines represent the 95% CI area of the 50 trajectories numerical solutions of (32).
The red line corresponds to the point-by-point sample mean of the trajectories. Table 3
gives the ||€y]|,,, ECO and CPU-time (sec) with several step sizes of h for ¢ =
{0.55,0.75,0.95}, in the interval ¢ € [0, 5]. The numerical results reveal that for all values
of ¢ the approximation errors decrease by reducing the step size, but the CPU-times
increases as expected. Moreover, Table 4 shows the approximated values of the mean,
median, first and third quartiles, kurtosis, skewness, standard deviation (STD), and 95%
CI of the 50 simulated trajectories for several fractional orders at Ty= 5.

6. Conclusion

In this paper, an explicit technique for solving a class of fractional stochastic delay dif-
ferential equations driven by Brownian motion was proposed. Under the Lipschitz con-
dition and the properties of the Gaussian white noise, the convergence order of the
algorithm was investigated. The new method allows the inclusion of stochasticity and
delays in the dynamical models. The effects of stochasticity and delay were illustrated
with the Langevin and Mackey-Glass models. Specifically, 95% confidence intervals of
the Langevin and Mackey-Glass model’s stochastic responses were effectively evaluated.
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