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ABSTRACT: To address the challenges of poor temperature control precision in electric vehicle battery 
and cabin, as well as high overall energy consumption, an innovative control strategy for an integrated thermal 
management system (ITMS) is proposed. Through systematic analysis of the thermal management system’s 
(TMS) dynamic characteristics and intricate coupling relationships, critical control requirements for battery 
and cabin thermal management were identified. A novel deep learning model, integrating a convolutional 
neural network (CNN) and a long short-term memory (LSTM) network, is developed. This unique architecture 
effectively extracts spatiotemporal features, enabling precise temperature trend prediction and adaptive control. 
Simulation results demonstrate significant improvements over conventional PID control. Thermal stabilization 
was reduced by approximately 40–43%. Temperature control precision was enhanced to within ±0.3°C across 
diverse operating conditions, while compressor energy consumption was significantly decreased. These 
advancements resulted in an average 2.1% increase in energy efficiency coefficient and a 1.8% improvement 
in exergy efficiency, accompanied by a substantial reduction in performance fluctuations. Simulation 
evaluations across the new European driving cycle (NEDC), worldwide harmonized light vehicles test cycle 
(WLTC), and China light-duty vehicle test cycle (CLTC) confirm the superiority of the proposed CNN-LSTM 
strategy in temperature regulation, energy utilization, and system stability. This approach provides an effective 
solution for optimizing next-generation TMS for electric vehicle.
Keywords: Electric vehicle, Integrated thermal management systems, CNN-LSTM 
1. Introduction

1.1 Motivations

Amidst escalating global energy concerns and environmental degradation, electric vehicles (EVs) have 
emerged as a promising sustainable transportation solution. Central to their successful operation in an efficient 
thermal management system (TMS)[1], [2]. While direct battery cooling offers advantages, its integration with 
the air conditioning system can present challenges[3]. Existing control strategies, including proportional-
integral-derivative (PID) control, fuzzy logic control (FLC), and model predictive control (MPC), exhibit 
limitations, such as instability, sluggish response, and temperature fluctuations[4], [5], [6]. These 
shortcomings not only impact passenger comfort but also compromise battery lifespan and overall system 
reliability[7], [8]. Moreover, conventional approaches struggle to adapt effectively to dynamic thermal loads, 
leading to suboptimal energy consumption and reduced system efficiency.
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This study introduces a novel integrated TMS control strategy utilizing a convolutional neural network 
(CNN)-LSTM architecture. By synergistically combining the spatial feature extraction capabilities of CNNs 
with the temporal prediction prowess of long short-term memory (LSTM) networks, this approach enables 
accurate temperature forecasting and precise TMS control. The efficacy of this proposed strategy is rigorously 
validated through comprehensive co-simulation studies conducted on the Amesim and MATLAB platforms. 
This study endeavors to enhance both the thermal performance and energy efficiency of EVs, offering valuable 
technical insights for future EV development.

1.2 Research review

TMS is paramount for optimal EV performance and passenger comfort. Recent research has significantly 
advanced the integrated thermal management of battery and air conditioning systems. From the perspective of 
system architecture, Guo et al. [9]introduced a novel refrigerant-based TMS with a postpositional throttle valve, 
enabling independent temperature control for both the battery and cabin while directly heating/cooling the 
battery. This design demonstrated enhanced thermal comfort and battery safety, including 15-minute battery 
preheating in winter. Similarly, Gao et al.[3]decoupled cooling and control through structural design, 
introducing a preconditioning framework that mitigated the detrimental effects of high thermal inertia on 
system performance. However, both studies lack comprehensive validation under diverse operating conditions.

In terms of control strategy optimization, Xu et al.[10]refined the control approach by implementing 
advanced algorithms for high-precision temperature control and optimized refrigerant distribution. 
Furthermore, MPC-based control strategies developed by Wang et al.[11]and He et al.[12]have been 
experimentally validated for optimizing energy consumption and thermal comfort within this integrated 
framework. While these control strategies show promise, they face challenges in real-time implementation due 
to computational complexity.

Moving towards system integration, Ma et al. [13]developed an integrated TMS that effectively 
maintained optimal temperature ranges for batteries, motors, and the passenger cabin. Zhang et al. 
[14]developed a coordinated control strategy for cooling capacity allocation, resulting in a significant 
improvement in the system's coefficient of performance. Wang et al.[15] and Fei et al. [16]explored the 
potential of carbon dioxide-based TMS in conjunction with neural network-based control strategies, 
demonstrating significant enhancements in system energy efficiency and temperature control precision. 
However, these integrated approaches often struggle with system reliability and maintenance complexity.

In summary, optimizing EV TMS presents a multifaceted challenge that necessitates a multidisciplinary 
approach encompassing control theory, materials science, and thermodynamics. Future research endeavors 
should concentrate on further exploring the interdisciplinary connections between these fields to develop more 
efficient and environmentally sustainable TMS solutions.

1.3 Contributions

The paper presents the following key contributions.
(1） An innovative integrated TMS control strategy utilizing a CNN-LSTM architecture is introduced. 

This approach demonstrates exceptional capabilities in accurately predicting battery temperature trends and 
executing precise TMS control actions. Notably, the proposed strategy achieves temperature control precision 
within ±0.3°C across diverse operating conditions, representing a significant advancement over conventional 
control methods.

(2） A novel CNN-LSTM model is proposed and its performance systematically compared against 
existing state-of-the-art control algorithms. Through rigorous co-simulation conducted within the Amesim and 
MATLAB software environments, the proposed strategy demonstrates remarkable improvements in multiple 
performance metrics. Specifically, the results show a 40-43% reduction in thermal stabilization time, 
accompanied by a 2.1% increase in energy efficiency coefficient and a 1.8% enhancement in exergy efficiency. 
Additionally, the strategy achieves significant reductions in both compressor energy consumption and 
performance fluctuations, highlighting its superior control capabilities.

(3） A thorough analysis of the proposed control strategy’s potential applications reveals its capacity to 
significantly enhance the thermal management performance and energy efficiency of EVs, thereby facilitating 
their further development. 

1.4 Organization of this article
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The rest of this paper is structured as follows. Section II provides an overview of the theoretical 
foundations and relevant prior work. Section III details the construction and training process of the CNN-
LSTM model. Section IV presents the results of co-simulation experiments conducted utilizing MATLAB and 
Amesim. A comprehensive discussion of the findings presented in Sections III and IV is provided in Section 
V. Finally, Section VI concludes the paper and outlines potential avenues for future research.

2. Theoretical analysis of thermal management

2.1  System description and analysis

The integrated thermal management system (ITMS), depicted in Fig. 1, incorporates a sophisticated dual-
loop architecture that seamlessly integrates refrigerant and water-glycol coolant circuits to precisely regulate 
temperatures across all EV subsystems. The system operates in two distinct modes: summer cooling and winter 
heating, with seamless transitions facilitated by advanced control of the expansion valve (EXV) and a variable-
speed electronic pump. Key components within this system encompass a high-efficiency compressor, a 
bidirectional internal heat exchanger, a multi-functional condenser, a high-performance chiller, and a 
dedicated motor radiator. The bidirectional internal heat exchanger plays a pivotal role in both operational 
modes. In summer, it facilitates heat rejection from the hot refrigerant loop, while in winter, it enables heat 
pump operation by effectively transferring waste heat from the refrigerant cycle to the cabin heating loop, 
thereby enhancing overall energy efficiency. The chiller is directly integrated with the battery cooling system, 
providing dedicated thermal management for high-voltage batteries. In summer mode, it collaborates with the 
evaporator to effectively dissipate excess heat from the battery pack, ensuring optimal operating conditions 
and maintaining system safety. In winter mode, it preheats the battery for operation in low-temperature 
environments, utilizing waste heat recovered from other subsystems. The motor radiator actively cools the 
electric powertrain, maintaining its stability under extreme workloads. Subsequently, the system circulates the 
heat-exchanging water-glycol coolant through the conventional radiator to dissipate heat generated by the 
motor, utilizing an electronic pump to facilitate coolant circulation. The electronic pump operates dynamically, 
adjusting the coolant flow rate through the radiator based on thermal demands.

The system incorporates two EXVs for enhanced thermal control precision. The battery EXV regulates 
refrigerant flow to the battery cooling system, providing both cooling and heating as required. Simultaneously, 
the cabin EXV maintains optimal cabin climate, prioritizing passenger comfort and energy efficiency. In 
winter mode, an advanced heat pump system efficiently recovers waste heat generated by the motor and 
compressor. This recovered heat is subsequently redistributed to the cabin and battery subsystems via the 
integrated refrigerant and coolant circuits. This integrated approach minimizes energy consumption while 
ensuring optimal passenger comfort and battery performance in colder weather conditions. This advanced 
system design constitutes a significant technological advancement in EV thermal management. By 
strategically cascading heat utilization across subsystems, the system achieves exceptional energy efficiency 
and environmental adaptability. To address the complexities inherent in managing the thermal profiles of 
batteries, electric powertrains, and cabins, advanced control algorithms are implemented through electronic 
EXVs and a variable-speed pump, enabling precise thermal control. This pioneering architecture approach 
redefines the benchmark for thermal management technology in EVs.
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Fig. 1 Integrity thermal management system diagram

2.2  Design of theoretical framework for hybrid CNN-LSTM architecture

Contemporary research in TMS frequently encounters limitations when employing traditional control 
theory to accurately model and predict the dynamics of intricate systems. To overcome these challenges, this 
study proposes a CNN-LSTM model as a robust solution for ITMS. By effectively integrating the spatial 
feature extraction capabilities of CNNs with the temporal modeling prowess of LSTM networks, this model 
excels at processing multivariate spatiotemporal data. This unique architecture enables the efficient handling 
of complex control challenges, thereby enhancing the precision and adaptability of TMS systems.

CNNs are a class of deep learning models specifically designed for processing grid-structured data, such 
as images. They employ convolutional layers, which utilize multiple kernels to extract spatial features by 
computing weighted sums of local regions within the input data[17]. This architecture, characterized by local 
connectivity and weight sharing, results in efficient parameter utilization and improved computational 
performance, particularly in image processing[18]. In the context of TMS, CNNs can be effectively leveraged 
to learn and recognize distinct temperature distribution patterns within both battery systems and cabin air 
conditioning systems. This enables the generation of more comprehensive feature representations, which can 
then be utilized to inform and optimize subsequent control decisions. By analyzing temperature distributions, 
CNNs can identify regions of significant heat accumulation, thereby facilitating data-driven optimization of 
cooling strategies.

Fig. 2 Architectural diagram of CNN-LSTM model

LSTM networks, a specialized class of recurrent neural networks (RNNs), have been specifically 
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designed to address the vanishing and exploding gradient problems commonly encountered by traditional 
RNNs when processing extended sequences[19]. LSTMs incorporate gated mechanisms: input, forget, and 
output gates, to regulate the flow of information. This architectural innovation enables the network to 
effectively capture and maintain long-range dependencies within sequential data. The core mechanism of the 
LSTM architecture is mathematically represented as follows[20]:

                                                               (1)

                                                                 (2)

                                                                (3)

                                                            (4)

                                                                   (5)

                                                                      (6)
where 𝑓𝑡 denotes the forget gate output, 𝑖𝑡 signifies the input gate output, 𝑜𝑡 represents the output gate 
output, 

∼
𝐶𝑡 indicates the candidate state output, 𝐶𝑡 articulates the cell state update output, and ℎ𝑡 represents 

the hidden state update output. 𝜎 denotes the Sigmoid activation function, 𝑊𝑓 and 𝑏𝑓 signify the weights 
and bias of the forget gate, respectively, 𝑊𝑖 and 𝑏𝑖 indicates the weights and bias of the input gate, 
respectively, and 𝑊𝑜 and 𝑏𝑜 denote the weights and bias of the output gate, respectively. 𝑡𝑎𝑛ℎ indicates 
the tanh activation function, and 𝑊𝐶 and 𝑏𝐶 exemplify the weights and bias of the candidate state, 
respectively.

This study employs a CNN-LSTM architecture, combining the strengths of CNNs for spatial feature 
extraction and LSTM for temporal analysis. This integrated approach enables the model to effectively process 
spatiotemporal data, as demonstrated in previous studies[21], [22]. By initially extracting spatial features with 
CNNs and subsequently feeding these features into an LSTM for temporal modeling[23], the model effectively 
captures both spatial and temporal dynamics. This architecture proves particularly well-suited for addressing 
complexities inherent in TMS control problems.

Fig. 2 depicts the CNN-LSTM architecture employed for spatiotemporal data processing within the ITMS 
framework. The initial stage involves the processing of test data, followed by its input into a CNN module 
consisting of two sequential blocks of convolutional and pooling layers. This hierarchical design facilitates 
multi-scale feature extraction, capturing both local and global spatial patterns within the thermal data. 
Subsequently, a flattened layer transforms the 3D spatial features into a 1D vector, ensuring compatibility with 
the subsequent LSTM module. The LSTM layer, equipped with gating mechanisms, effectively captures 
temporal dependencies, enabling accurate prediction of dynamic variables, including temperature fluctuations, 
current variations, and voltage changes. Finally, a fully connected layer with learnable weights maps the high-
dimensional LSTM features into task-specific representations. This non-linear mapping enables accurate 
prediction of critical thermal management parameters. The output layer generates the final predictions, 
providing valuable insights for real-time control decisions. This modular architecture allows for end-to-end 
training while maintaining a distinct separation between spatial and temporal feature processing, thereby 
enhancing model interpretability and optimization flexibility. By integrating the hierarchical feature extraction 
capabilities of CNNs with the temporal modeling capabilities of LSTMs, this framework provides a robust 
solution for addressing complex, multivariable thermal management challenges. This ultimately contributes 
to improved battery safety, enhanced energy efficiency, and enhanced passenger comfort.

In conclusion, the CNN-LSTM model, demonstrating exceptional spatiotemporal feature extraction and 
prediction capabilities, provides a robust theoretical foundation for ITMS[24]. Future research endeavors 
should concentrate on optimizing the model’s architecture and training methodologies. This may involve 
incorporating attention mechanisms or exploring multi-task learning frameworks to further enhance prediction 
accuracy and real-time performance[25]. Furthermore, by integrating operational data from real-world TMS 
applications and continuously refining the CNN-LSTM model, more reliable technical support can be 
effectively provided for the intelligent control of TMSs in the context of new energy vehicles.

3. CNN-LSTM model: construction and training

 1( , )t f t t ff W h X b  

 1( , )t i t t ii W h X b  

 1( , )t o t t oo W h X b  

 
:

t C t -1 t CC = tanh(W g h ,X +b )

1t t t t tC f C i C   


t t th = o tanh(C )
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This section provides a detailed description of the CNN-LSTM model architecture, encompassing data 
acquisition protocols, variable preprocessing techniques, and optimization strategies. Specific model 
parameters are included to facilitate reproducibility.

3.1  Model construction

The proposed CNN-LSTM architecture employs a two-stage pipeline. In the initial stage, a CNN 
component, consisting of two convolutional layers with 32 and 64 filters respectively, extracts spatial features 
from diverse input parameters, encompassing light intensity, battery system electrical characteristics, and 
thermal measurements. Subsequently, a 64-neuron LSTM layer processes these extracted features to identify 
temporal patterns, as show in Fig.3.

Fig. 3 Diagram of CNN and LSTM layer

3.2  Data acquisition

This investigation utilizes a comprehensive dataset acquired through a rigorous series of summer trials 
conducted in the Turpan region of Xinjiang, a location characterized by an extreme continental desert climate. 
The experimental campaign, spanning from June to August 2024, encompassed ambient temperatures ranging 
from 25 to 55°C and relative humidity levels between 10% and 30%, thereby providing optimal conditions for 
TMS evaluation.

Data acquisition employed a high-precision measurement system. Electrical parameters, such as current 
and voltage, were sampled at 10 Hz with ±0.1% accuracy. Thermal measurements were recorded at 1 Hz with 
±0.5°C accuracy, and solar radiation intensity was monitored at 1 Hz with ±1 W/m2 accuracy. The EXV 
positions were tracked at 10 Hz with a 0.1% resolution, and compressor rotational speed was measured at 10 
Hz with ±1 rpm accuracy. Data collection adhered to rigorous scientific protocols and industry best practices 
to ensure data integrity and reliability. All testing was performed at professional facilities under the supervision 
of experienced engineers utilizing state-of-the-art equipment. Vehicles were subjected to a range of 
environmental conditions, including high temperatures and extreme aridity, to simulate real-world operational 
scenarios.

To safeguard proprietary information and intellectual property, the specific identity of the collaborating 
automotive company will remain undisclosed. All data utilization has been duly authorized by the company 
and strictly adheres to the provisions of the applicable data usage agreements and confidentiality obligations.

3.3  Input and output variables

Precise control of the battery system EXV, cabin EXV, and compressor rotational speed is crucial to 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5134166

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



simultaneously optimize battery performance, safety, and passenger thermal comfort. To facilitate rapid 
response to battery system thermal management demands, the system employs dual EXVs and a refrigerant 
receiver. The model incorporates the following input variables: solar radiation intensity (Sunload), battery 
system current (BatCurrent), battery system voltage (BatVol), ambient temperature (AmbTemp), cabin 
temperature (CabTemp), and battery temperature (BatTemp). The output variables comprise battery system 
EXV opening (BatEXV), cabin EXV opening (CabEXV), and compressor rotational speed (ComSpd). To 
mitigate the influence of disparate variable magnitudes on model learning and training efficiency, 
normalization is applied to all variables except for EXV openings. The normalization formula is presented 
below:

                                                         (7)

where 𝑋norm represents the normalized value, 𝑋 denotes the original value, 𝑋𝑚𝑖𝑛 signifies the minimum 
value within the data series, and 𝑋𝑚𝑎𝑥 specifies the maximum value within the data series.

The normalization formula specifically for EXV opening is presented below:

                                                              (8)

where 𝐾norm denotes the normalized value, 𝐾 signifies the original value, and 𝐾𝑚𝑎𝑥 corresponds to the 
value at 100% EXV opening.

3.4  Optimization algorithms and activation functions

The Adam optimization algorithm is widely recognized for its efficiency and stability in training deep 
learning models[26], [27]. This study employs the Adam algorithm to optimize the CNN-LSTM model. By 
calculating exponentially decaying averages of the first and second moments of the gradients, Adam adaptively 
adjusts the learning rate for each parameter, facilitating dynamic balance during training[28], [29]. 
Furthermore, by incorporating both momentum and variance of gradients, Adam typically exhibits faster 
convergence compared to traditional stochastic gradient descent (SGD)[30].

Activation functions enable neurons to learn and map features to the model's output in a functional form. 
The ReLU function was selected as the activation function for this model. Model parameter settings are 
summarized in Table 1.
Table 1

CNN-LSTM model hyperparameters

Parameter Value

Number of kernels in the first convolutional layer 32

Number of kernels in the second convolutional layer 64

Number of convolutional layers 2

Batch size 128

Stride 1

Number of LSTM layers 1

Number of fully connected layers 1

Number of neurons in the LSTM cell 64

min
norm

max min

X XX
X X






norm
max

KK
K



This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5134166

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Maximum number of iterations 290

3.5  Training process and validation

The CNN-LSTM model exhibited distinct optimization characteristics throughout its training, 
demonstrating three primary convergence phases, as depicted in Fig. 4. The first 50 epochs demonstrated a 
distinct descent phase, characterized by a consistent decay rate of 0.092 per epoch, with concurrent 
convergence patterns in both training and validation losses. Subsequently, an intermediate stabilization phase 
emerged, characterized by damped oscillations with an amplitude reduction from 0.04 to 0.01 and featuring 
three characteristic intersection points between training and validation curves. This phase suggests inherent 
self-regularizing properties within the model. Finally, the model entered a convergence phase with remarkable 
stability, exhibiting minimal divergence between training and validation metrics and terminal loss fluctuations 
confined within 0.001.

Fig. 4 Training and validation loss curves for the CNN-LSTM model

Validation results for battery EXV control exhibited exceptional predictive accuracy within an 800-
second operational window, as illustrated in Fig. 5(a). The model demonstrated precise tracking of valve 
positions within a range of 115 to 161 units, achieving an R2 coefficient exceeding 0.998 and maintaining a 
mean absolute deviation of 0.5 units. This performance encompassed accurate representation of both transient 
and steady-state behaviors, thereby indicating robust control capabilities across a diverse range of operational 
conditions.

Validation results for cabin EXV control, as depicted in Fig. 5(b), exhibited three distinct operational 
periods, each characterized by unique dynamic behavior. An initial adaptation phase (0–200 seconds) was 
observed, featuring minor prediction oscillations around 145 units and effectively mitigating early-stage 
uncertainties. This was followed by an intermediate period (200–600 seconds) characterized by complex three-
stage behavior patterns within an operational range of 134 to 166 units, demonstrating high-fidelity tracking 
during rapid transitions. Finally, a terminal period (600–800 seconds) emerged, exhibiting controlled descent 
characteristics with a mean absolute error below 1.5 units and demonstrating sophisticated non-linear response 
patterns.

Validation results for compressor speed control, as illustrated in Fig. 5(c), further substantiated the 
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model's capabilities within an operational range of 5900–6080 rpm. The prediction system maintained error 
margins below 5 rpm while exhibiting exceptional accuracy during dynamic transitions. This performance 
validates the model's robust capacity to handle varying load conditions and complex system dynamics.

Fig. 5 Predictive performance of dual-EXV positions and compressor speed within the TMS

Comprehensive validation results unequivocally demonstrate superior control capabilities across multiple 
parameters. The model consistently exhibited high-fidelity performance with sub-1% error margins during 
steady-state operations, accurately capturing dynamic system behaviors while maintaining reliable long-term 
prediction stability. These characteristics were particularly evident in the system's adaptability to varying 
operational conditions and its robust performance during rapid state transitions, characterized by minimal 
latency in control adjustments.

The model’s predictive capabilities were rigorously validated through extensive testing and analysis, 
demonstrating its suitability for practical thermal management applications. These findings provide a strong 
foundation for subsequent system implementation and optimization efforts. The demonstrated performance 
metrics strongly suggest significant potential for enhancing the efficiency and control precision of TMSs in 
real-world scenarios.

This validation phase unequivocally demonstrates the model’s readiness for practical implementation, 
surpassing the performance of conventional control methodologies. Subsequent chapters will delve into the 
practical implementation of this validated model within TMSs, evaluating its performance across diverse 
operating conditions and real-world scenarios.

4. Simulation experiments

A co-simulation framework integrating MATLAB and Amesim was developed to simulate the vehicle’s 
TMS. Control strategies were implemented within the MATLAB environment, while the TMS model was 
constructed using Amesim. A hierarchical structure facilitated the integration of these sub-models, enabling 
the capture of complex thermal interactions between subsystems. The battery thermal model and cabin model 
exchanged data at each time step through the refrigeration cycle model, serving as the primary coupling 
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interface. To ensure both numerical stability and computational efficiency, a variable time-step solver was 
employed, with a maximum step size of 0.1 seconds and a minimum step size of 0. 01 seconds.

The system and its constituent components were meticulously designed and selected to align with the 
research objectives. This culminated in the development of both a comprehensive numerical model and an 
experimental setup for the TMS. The numerical model integrates detailed heat transfer mechanisms and fluid 
dynamics while maintaining a computationally tractable level of complexity. The specifications of the 
experimental system components are presented in Table 2.
Table 2 

Parameters of the numerical model and experimental system

Components Parameters Unit

Refrigerant R134a /

Type: Electric scroll /

Displacement: 45 cc/rev cc/rev

Speed range: 1000–7000 rpm

Compressor

Max. cooling capacity: 8 kW

Material: Aluminum /

Type: Parallel flow /

Size (L*H*T) fin area: 695 × 437 × 16 mm

Number of passes: 4 /

Number of tubes for each pass: 26, 18, 12, 7 /

Fin thickness: 0.09 mm

Condenser

Fin pitch: 2.6 mm

Material: Aluminum /

Type: Plate-fin /

Size(L*H*T) fin area: 259.6 × 216.2 × 38 mm

Number of passes: 4 /

Number of tubes for each pass: 19, 19,19,19 /

Fin thickness: 0.06 mm

Evaporator

Fin pitch: 2.8 mm

An accurate representation of the passenger cabin and battery system within the system model is crucial 
for the successful construction of a simulation model.

4.1  Design of Cabin model

A 3D computational fluid dynamics (CFD) offers a comprehensive understanding of temperature fields 
and heat flux distributions within vehicle cabins. Concurrently, the computational demands of CFD models 
pose significant obstacles for real-time control applications[31]. To overcome these limitations, this study 
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employs a simplified lumped-parameter approach. A 1D model is utilized to characterize the cabin's thermal 
behavior[32], treating it as a single thermodynamic system containing moist air. The following key 
assumptions underpin this model [33]:

The analysis assumes the three simplifications: (1) the constant thermophysical properties of all structural 
materials, including the roof and windows; (2) the uniform spatial geometry and temperature distribution, 
neglecting geometric complexities and spatial thermal variations; and (3) the constant air density and specific 
heat capacity under operating conditions.

A comprehensive heat transfer framework models the thermal interactions between the cabin and its 
environment. This framework encompasses both external environmental heat exchange and internal air-
material interactions[34]. Table 3 details the physical specifications of the experimental cabin, while Table 4 
summarizes the governing equations and heat transfer relationships.
Table 3
Cabin parameters and specifications

Components Parameters Unit

Cabin volume 4.35 m3

Cabin initial relative humidity 40% /

Wall thermal capacity 7000 J/°C

Internal exchange surface 16.2 m2

External exchange surface 16.2 m2

External temperature 38 °C

External pressure 1.013 barA

External relative humidity 40% /

Solar flux 1000 W/m2

Solar flux absorption coefficient 0.8 /

Internal aerodynamic coefficient 20 /

Passengers’ water production 0 g/hr

Table 4

Computational model of cabin dynamics

Components Computational equations

External heat transfer ℎ𝑒𝑥𝑡 = ℎ𝑐𝑜𝑛𝑣𝑒𝑥𝑡𝑆𝑒𝑥𝑡(𝑇𝑊 ― 𝑇𝑒𝑥𝑡)

Internal heat transfer ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑛𝑣𝑖𝑛𝑡𝑆𝑖𝑛𝑡(𝑇𝑊 ― 𝑇𝑖𝑛𝑡)

Solar radiation ℎ𝑠𝑜𝑙𝑎𝑟 = 𝛼 ∙ 𝑆𝑒𝑥𝑡 ∙ 𝑞𝑠𝑜𝑙𝑎𝑟

which

𝑑(𝑇𝑊)
𝑑𝑡 =

(ℎ𝑠𝑜𝑙𝑎𝑟 ― ℎ𝑒𝑥𝑡 ― ℎ𝑖𝑛𝑡)
𝑚 × 𝐶𝑝

ℎ𝑓𝑜𝑟𝑐𝑒𝑑 = (0.037 × 𝑅𝑒0.8 ― 871) × 𝑝𝑟1/3 ×
𝜆
𝐷
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ℎ𝑓𝑟𝑒𝑒 = [0.68 + 0.67 × 𝑅𝑎0.25/(1 + (0.492/𝑝𝑟)0.5625)4/9] ×
𝜆
𝐷

𝑅𝑒 = 𝑉 ×
𝐷
𝑣

𝑝𝑟 =
𝜇 × 𝐶𝑝

𝜆

𝑅𝑎 =
𝑔 × 𝛽 × (𝑇𝑊 ― 𝑇𝑓) × 𝐷3

𝑣2 × 𝑝𝑟

4.2  Design of Battery model

Heat generation within battery systems arises from four primary sources: chemical reactions, Joule heating, 
side reactions, and polarization effects[35]. The total heat generation rate (Q) can be expressed as:

                                                            (9)
where 𝑄𝑟 represents the chemical reaction heat (J), 𝑄𝑗 denotes the Joule heat (J), 𝑄𝑠 indicates the side 
reaction heat (J), and 𝑄𝑝 signifies the polarization heat (J).

A comprehensive battery modeling framework has been developed to address the inherent coupling 
between thermal and electrical dynamics within battery systems[36]. This integrated approach synergistically 
combines thermal and electrical models to accurately capture the intricate interdependencies within the battery.

The electrical characteristics of the battery are accurately represented by an equivalent circuit model. This 
model effectively captures both the external dynamic responses and the internal electrochemical processes 
within the battery[37]. Notably, the model incorporates interdependent relationships between key parameters, 
namely the open-circuit voltage and internal resistance, which exhibit variations as functions of state of charge, 
temperature, and operating current, as presented in Eq. (8). Rigorous validation of the model parameters 
against manufacturer-supplied specifications (Table 5) ensures accurate performance across diverse operating 
conditions.

Thermal behavior is modeled utilizing the well-established Bernardi formulation, which accurately 
quantifies the internal heat generation term within the energy conservation equation [38]. The governing 
equations for specific heat balance subsequently describe the thermal dynamics. To enhance the fidelity of the 
heat transfer model, a spatially discretized approach is employed, dividing the battery into three longitudinal 
sections[39]. This discretization strategy efficiently accounts for the inherent thermal inertia observed in 
practical heat transfer phenomena:

𝜌𝐶𝑝
∂𝑇
∂𝑡

= 𝜆∇2𝑇 + 𝐼
𝑉[(𝑈𝑜𝑐𝑣 ― 𝑈) + 𝑇 ∂𝑈𝑜𝑐𝑣

∂𝑇
]                                   (10)

where 𝜌 represents the density of the battery material, 𝐶𝑝 indicates the specific heat capacity, 𝜆 denotes the 
thermal conductivity. 𝑇 exemplifies the battery temperature, 𝑡 specifies time, and ∇2𝑇 is the Laplacian of 
the temperature. 𝐼 signifies the current flowing through the battery system, 𝑉 is the volume of the battery 
system, 𝑈𝑜𝑐𝑣 articulates the open-circuit voltage, 𝑈 is the battery system voltage, 𝑇∂𝑈𝑜𝑐𝑣

∂𝑇  represents the 
temperature influence coefficient.
Table 5 

Battery parameter specifications

Components Parameters Unit

Battery capacity (1C,23°C) 90 Ah

Battery anode LiFePO4 /

Battery size 1300×1200×250 mm

Nominal voltage 312 V

Battery mass 600 kg

pr j sQ = Q +Q +Q +Q
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Battery architecture 96S × 1P /

Energy capacity 60 kw⋅h

Average specific heat 1128.45 J/(kg⋅K)

Thermal conductivity 1.82 W/(m⋅K)

4.3  Design of Refrigeration components model

The compressor model is characterized by a performance map encompassing volumetric (ηvol), isentropic 
(ηis), and mechanical (ηmech) efficiencies[40]. These performance parameters, provided by the manufacturer, 
are functions of both pressure ratio and compressor rotational speed[41]. Volumetric effectiveness governs 
mass flow rate, while isentropic and mechanical effectiveness dictate enthalpy change and torque, respectively. 
The governing equations are summarized in Table 6.

A discretized approach is employed to model heat transfer within the heat exchanger, considering heat 
exchange across three key interfaces: refrigerant-wall, air-wall, and wall-fin[42]. Evaporation and 
condensation processes are characterized by resistance and capacitance calculations. Pressure drop in two-
phase flow is computed using a homogeneous model, with fluid viscosity determined by the mean volumetric 
viscosity approach, analogous to single-phase flow[43]. Distinct heat transfer characteristics are observed 
between single-phase and two-phase flow regimes. In the single-phase regime, laminar flow characterized by 
orderly fluid motion with minimal turbulence, exhibits lower Nusselt numbers[44]. Conversely, turbulent flow, 
characterized by significant fluid mixing, exhibits higher Nusselt numbers, quantified using the Gnielinski 
correlation. For two-phase flow regimes, heat transfer coefficients are determined utilizing established 
methodologies: the VDI heat atlas approach for evaporation processes and the Cavallini method for 
condensation phenomena[45].

A four-quadrant diagram, as depicted in Fig. 6[46], comprehensively characterizes the thermal EXV's 
performance. This diagram elucidates crucial thermodynamic relationships by systematically mapping the 
interdependencies between key parameters: valve opening and refrigerant state, evaporator outlet pressure and 
valve opening across varying temperatures, mass flow rate and valve opening, and evaporator outlet 
temperature and mass flow rate. This comprehensive analysis provides a thorough understanding of the valve's 
operational behavior across a wide range of operating conditions[47].

Table 6 

Governing equations of the numerical model

Components Computational equations

Compressor 𝜂𝑣𝑜𝑙 =
𝑚

𝑛𝜌𝑠𝑉𝑑𝑖𝑠𝑝

𝜂𝑖𝑠 =
ℎ𝑑𝑖𝑠 ― ℎ𝑠

ℎ𝑑 ― ℎ𝑠

𝜂𝑚𝑒𝑐ℎ =
𝑚 × (ℎ𝑑 ― ℎ𝑠)

𝑛 × 𝜏

Heat exchangers 𝑚 = 𝜌𝐶𝑞𝐴 2Δ𝜌
𝜌

Single-phase

𝑓 = 8[( 8
𝑅𝑒)12

+ Φ1.5]
1

12

Friction factor 

Φ = (37530
𝑅𝑒 )16

+ Γ16
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Γ = 2.457𝑙𝑛(( 7
𝑅𝑒)0.9

+ 0.27( 𝜀
𝐷))

Condensation

Laminar regime ℎ𝑙𝑎𝑚 = 3.66 × 𝜆/𝐷

Turbulent regime ℎ𝑡𝑢𝑟𝑏 =
0.125𝑓 × (𝑅𝑒 ― 1000) × 𝑝𝑟
1 + 12.7 0.125𝑓(𝑝𝑟2/3 ― 1) ×

𝜆
𝐷

Two-phase

Friction factor 𝑓 = 0.0056 +
0.5

𝑅𝑒0.32

ℎ = h𝐿𝑂 × [1 ― 𝑥 + 𝑥 𝜌𝑙

𝜌𝑔]
4
5

Condensation

h𝐿𝑂 = 0.05 × 𝑅𝑒𝐿𝑂
0.8 × 𝑝𝑟1/3 ×

𝜆
𝐷

Evaporation ℎ = 3
ℎ3

𝑐𝑣 + ℎ3
𝑁𝑐𝐵

Fig. 6 Four-quadrant operational diagram.

5. Results and discussions

To replicate real-world thermal stress, the test vehicle underwent preconditioning in a climate chamber. 
The chamber mimicked a 38 ° C environment with 1000 W/m2 of artificial solar radiation until the cabin 
temperature reached 60°C. This process ensured the battery system and cooling system equilibrated to the 
ambient temperature. Following preconditioning, standardized driving cycles (new European driving cycle 
(NEDC), WLTC, and China light-duty vehicle test cycle (CLTC)-C were conducted while continuously 
monitoring the cabin temperature, battery temperature, and compressor power consumption. Notably, these 
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identical boundary conditions, including target temperatures of 23°C for the cabin and 28°C for the battery 
system during simulations, were maintained for both numerical simulations and experimental vehicle tests.

5.1  Comparative analysis of cabin thermal control strategies across standardized driving 
cycles

Comparative evaluation of CNN-LSTM and PID control architectures across standardized driving cycles 
revealed significant enhancements in vehicular thermal management performance. Experimental findings 
demonstrated quantifiable disparities in control characteristics under diverse operating conditions, as 
illustrated in Fig. 7. As depicted in Fig. 7(a), the CNN-LSTM architecture exhibited superior dynamic behavior 
during the critical initial cooling phase from 60 to 25 ° C, achieving smooth convergence with minimal 
oscillation of ±0.3°C. In contrast, the PID system displayed pronounced overshoot and oscillatory behavior, 
exhibiting deviations of ± 2.5 ° C with statistical significance P < 0.01. Steady-state analysis further 
emphasized the CNN-LSTM system’s superiority. It achieved a temperature deviation σ  of 0.3°C and a 
settling time Ts of 180±15 seconds. These results significantly surpassed the PID controller, which exhibited 
a temperature deviation σ of 1.8°C and a settling time Ts of 450±30 seconds. The statistical significance of 
these findings was confirmed by a two-tailed t test at P < 0.001.

Furthermore, WLTC cycle measurements, as depicted in Fig. 7(b), corroborated the CNN-LSTM's 
enhanced disturbance rejection capabilities. This was specifically evident during the high-dynamic phase 
between 400 and 800 seconds, where the system maintained robust temperature control within a ±0.3°C band 
around the setpoint. In contrast, the PID controller exhibited significant deviations, reaching up to 2.8°C. 
Statistical analysis employing an F-test confirmed a substantial 73.4% reduction in variance for the CNN-
LSTM system at P < 0.001. Moreover, CLTC-C cycle data, as presented in Fig. 7(c), validated the superior 
performance metrics of the CNN-LSTM architecture. This was evidenced by a 42% faster settling time, a 78% 
reduction in temperature variance, and a 23% reduction in control effort, as quantified by RMSE calculations, 
compared to the conventional PID control strategy.

Cross-cycle analysis unequivocally demonstrated significant enhancements in multiple performance 
metrics of the CNN-LSTM architecture. The system exhibited exceptional adaptability, maintaining control 
accuracy with a standard deviation σ consistently below 0.3°C across all driving cycles. Furthermore, the 
system demonstrated reduced sensitivity to cycle-specific disturbances and achieved superior steady-state 
performance with a steady-state error below 0.5°C. Experimental data corroborated the system’s exceptional 
stability characteristics, including negligible overshoot during transient responses, a more than 75% reduction 
in oscillatory behavior, and significantly improved disturbance rejection capabilities. Quantitative energy 
analysis revealed substantial improvements, including actuator effort reductions ranging from 23 to 35%, a 40% 
or a greater reduction in predicted mean vote (PMV) values indicative of enhanced thermal comfort, and a 
notable increase in overall system efficiency across all tested operating conditions. 

The significance of these findings lies in the comprehensive performance advantages exhibited by the 
CNN-LSTM architecture. Consistent performance across diverse driving cycles underscores the robustness 
and adaptability of the proposed control strategy. Notably, the simultaneous enhancement of temperature 
control accuracy and reduction in energy consumption directly addresses two critical challenges within 
vehicular TMSs. Furthermore, the statistical significance of the observed improvements in both transient and 
steady-state performance metrics provides compelling evidence for the superiority of the CNN-LSTM 
approach over conventional PID control methods in automotive thermal management applications.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5134166

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Fig. 7 Comparative analysis of cabin temperature profiles with PID and CNN-LSTM control

5.2  Comparative analysis of battery thermal performance under multiple control 
paradigms

This in-depth investigation provides a comparative assessment of battery thermal management strategies 
across three standardized driving cycles: the NEDC, the worldwide harmonized light vehicles test cycle 
(WLTC), and the CLTC. The empirical evidence consistently underscores the preeminence of the CNN-LSTM 
approach over conventional PID control methodologies across all testing protocols.

The CNN-LSTM controller exhibits markedly superior cooling performance, achieving cooling rates 
ranging from −0.0125 to −0.0138°C/s. In contrast, the PID controller demonstrates a comparatively slower 
cooling rate, with values ranging from −0.0083 to −0.0092 °C/s. This substantial enhancement in cooling 
efficiency translates to a 40–43% reduction in thermal stabilization time across all testing protocols. Notably, 
the CNN-LSTM controller consistently attains thermal equilibrium approximately 600 seconds earlier than its 
PID counterpart in each test scenario.

During the initial cooling phase (0–800 seconds), as illustrated in Fig. 8, the CNN-LSTM controller 
consistently exhibited steeper cooling gradients. In contrast, the PID controller demonstrated a slower rate of 
temperature descent and experienced occasional overshoots. Notably, the CNN-LSTM approach maintained a 
monotonic cooling trajectory, characterized by a consistent decrease in temperature without any fluctuations.

As depicted in Fig. 8(a), the NEDC results unequivocally demonstrate the CNN-LSTM controller’s 
superior cooling trajectory compared to its PID counterpart. The CNN-LSTM system achieved a significantly 
faster cooling rate, attaining the target temperature range approximately 600 seconds earlier. Furthermore, the 
CNN-LSTM approach maintained a stable steady-state temperature of 27.5°C with minimal deviations (±0.3°
C). In contrast, the PID controller stabilized at a slightly elevated temperature of 28.0°C, exhibiting greater 
temperature fluctuations (±0.2°C) and more pronounced oscillations.

As illustrated in Fig. 8(b), the results obtained from the WLTC further corroborate the superior 
performance of the CNN-LSTM controller. The deep learning-based approach exhibited a more pronounced 
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cooling gradient during the initial phase (0–800 seconds), culminating in a faster attainment of thermal 
equilibrium compared to the PID system. While the PID controller demonstrated a slower response and more 
pronounced oscillations during the steady-state phase, the CNN-LSTM system maintained significantly tighter 
temperature regulation throughout the entire cycle.

As depicted in Fig. 8(c), the CLTC results reveal the most pronounced disparity in performance between 
the two control strategies. The CNN-LSTM controller achieved near-ideal temperature regulation, reducing 
the battery temperature to 27.5°C with minimal deviations (±0.3°C) and demonstrating exceptional stability 
throughout the critical period (200–600 seconds). In contrast, the PID controller exhibited significant 
instability, demonstrating pronounced temperature fluctuations throughout the cycle and ultimately stabilizing 
at a slightly elevated temperature of 28.0°C with deviations of ±0.2°C.

These findings unequivocally demonstrate that machine learning-based TMSs consistently surpass 
traditional PID control strategies across all driving cycles evaluated. Quantitative analysis reveals a significant 
enhancement in cooling rates, with the CNN-LSTM architecture achieving cooling rates ranging from −0.0125 
to −0.0138°C/s, surpassing the PID controller's range of −0.0083 to −0.0092°C/s. Furthermore, a marked 
improvement in temperature stability was observed, accompanied by a substantial reduction in the thermal 
equilibrium time, approximately 600 seconds. The consistent superiority of the CNN-LSTM approach across 
the NEDC, WLTC, and CLTC protocols underscores its robustness and adaptability under diverse operating 
conditions. The demonstrated advantages in both transient and steady-state performance metrics conclusively 
establish the effectiveness of the proposed CNN-LSTM architecture for automotive thermal management 
applications.

Fig. 8 Battery temperature trajectories under PID and CNN-LSTM control strategies

5.3  Comparative analysis of compressor energy consumption under multiple control 
paradigms

A comprehensive assessment of the TMS's efficacy was conducted through both energetic and exergetic 
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analyses under standardized conditions. System performance was evaluated at an ambient temperature of 35°
C, a temperature representative of peak cooling demands during the summer months. This investigation 
scrutinized system behavior across three standardized driving cycles: NEDC, WLTC, and CLTC.

System performance was quantitatively evaluated through the utilization of two primary metrics: the 
energetic coefficient of performance and the exergetic coefficient of performance, formally defined by Eqs. 
(11) and (12), respectively:

𝐶𝑂𝑃𝑒𝑛 = 𝑄𝑏𝑎𝑡 + 𝑄𝑐𝑎𝑏

𝑊𝑐𝑜𝑚𝑝 + 𝑊𝑓𝑎𝑛 + 𝑊𝑏𝑙𝑤
                                                        (11)

𝐶𝑂𝑃𝑒𝑥 =
𝑄𝑏𝑎𝑡(1 ―

𝑇𝑏𝑎𝑡
𝑇0

) + 𝑄𝑐𝑎𝑏(1 ―
𝑇𝑐𝑎𝑏

𝑇0
)

𝑊𝑐𝑜𝑚𝑝 + 𝑊𝑓𝑎𝑛 + 𝑊𝑏𝑙𝑤
                                                   

(12)
where 𝑄𝑏𝑎𝑡 represents the battery system’s cooling capacity [W], 𝑄𝑐𝑎𝑏 denotes the cabin cooling capacity 
[W], 𝑊𝑐𝑜𝑚𝑝 specifies the compressor power consumption [W], 𝑊𝑓𝑎𝑛 indicates the electronic fan power 
consumption [W], 𝑊𝑏𝑙𝑤 signifies the blower power consumption [W], 𝑇0 is the ambient temperature [K], 
𝑇𝑏𝑎𝑡 elucidates the target battery temperature [K], and 𝑇𝑐𝑎𝑏 represents the target cabin temperature [K].

Fig. 9 demonstrates that both control strategies exhibited varying performance across different driving 
cycles. Notably, the CNN-LSTM controller exhibited superior temperature control. This was evident in a 23.4% 
reduction in temperature fluctuation standard deviation, a 15.7% improvement in settling time, and a 31.2% 
decrease in temperature overshoots. Furthermore, the controller consistently maintained temperature 
variations within a ±1.5°C range of the setpoint across all test conditions.

Exergy analysis revealed distinct system performance characteristics compared to energy-based 
assessments. The CNN-LSTM controller exhibited superior performance, achieving a maximum coefficient 
of performance, exergetic (COPex) of 1.85 during the CLTC cycle, representing a 3.4% improvement over the 
conventional PID controller. Exergy efficiency displayed characteristics of V-shaped trends across driving 
cycles, albeit with greater variability. Notably, the COPex for the WLTC declined to 1.62, indicating increased 
irreversibilities under more demanding driving conditions. This in-depth exergy analysis aimed to elucidate 
the thermodynamic limitations of the system and the impact of operating conditions on available energy 
utilization.

The CNN-LSTM controller exhibited superior energy efficiency across diverse driving cycles. The 
system attained a peak COPen value of 3.93 during the CLTC cycle while maintaining a consistent COPen value 
of 3.75 even under the demanding WLTC conditions. This resulted in an average energy efficiency 
enhancement of 2.7% across all driving cycles, signifying a substantial advancement in TMS performance.

A comparative analysis of COPen and COPex was conducted to gain a deeper understanding of system 
performance. While COPen demonstrated stability, ranging from 3.75 to 3.93, suggesting satisfactory energy 
efficiency, COPex values were significantly lower, ranging from 1.62 to 1.85. This disparity indicates 
substantial exergy degradation within the system. This analysis underscores the necessity of evaluating both 
metrics for a comprehensive assessment of energy transport system performance, as exergy analysis provides 
critical insights into the quality of energy conversion processes.

Experimental data revealed a characteristic V-shaped performance curve across driving cycles for both 
control strategies. Minimum efficiency was observed during WLTC cycle, while maximum efficiency was 
attained during CLTC cycle. This distinct pattern can be attributed to the WLTC’s more demanding 
acceleration and deceleration profiles, resulting in significant power fluctuations within the compressor and 
increased thermal load variability. Maintaining stable temperatures under these rigorous conditions 
necessitated frequent control adjustments, thereby challenging system stability.

The CNN-LSTM controller demonstrated enhanced system stability. COPen fluctuations were reduced to 
0.18, compared to 0.20 for the conventional control system. The controller exhibited improved robustness 
during rapid load changes and more responsive behavior to thermal transients.
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Fig. 9 Energetic and exergetic coefficients of performance (COPs) of the system

6. Conclusion

This study introduces a novel CNN-LSTM-based control strategy for optimizing EV thermal 
management. Rigorous experimentation and in-depth analysis demonstrate significantly enhanced thermal 
management efficiency and control precision. Based on extensive performance evaluations across multiple 
critical parameters, this work contributes to the field in three key areas.

(1) The system exhibits substantial advancements in temperature control, achieving precise regulation 
within a narrow band of ± 0.3 ° C, setting a new benchmark for thermal management accuracy. Notably, 
thermal stabilization time is significantly reduced by 40–43%, while temperature fluctuation is markedly 
diminished, with a 23.4% improvement in standard deviation compared to conventional PID control systems. 
Most critically, the 31.2% reduction in temperature peak overshoots represents a significant breakthrough, 
enhancing component protection and system reliability.

(2) This system demonstrates exceptional energy efficiency optimization across diverse operating 
conditions. Notably, it achieves a 3.93 energy efficiency coefficient during the CLTC cycle and maintains a 
robust 3.75 coefficient during the more demanding WLTC cycle, representing a significant advancement in 
thermal management efficiency. Moreover, the substantial reduction in actuator energy consumption (23–35%) 
directly addresses a critical challenge in EV development: range extension.

(3) The proposed control strategy exhibits stability, adaptability, and the capacity to achieve state-of-the-
art performance in practical applications. A notable reduction in energy efficiency coefficient variability from 
0.20 to 0.18 is observed when transitioning from a conventional PID controller to an LQR controller, 
signifying a substantial enhancement in system stability as measured by energy savings. Furthermore, the 
strategy demonstrates improved disturbance rejection and transient response capabilities, particularly at 
extreme temperatures, thereby meeting the stringent standards of TMS.

While the presented system demonstrates significant advancements, several limitations must be addressed. 
Whereas promising results have been observed in controlled environments, comprehensive validation under 
diverse real-world conditions is crucial. Future testing should encompass a broader range of scenarios, 
including extreme temperatures from −40 to +60°C, diverse driving behaviors, and various vehicle 
configurations. Moreover, the inherent cyclic nature of the CNN-LSTM architecture necessitates significant 
computational resources, potentially hindering real-time implementation on current embedded systems. To 
mitigate these challenges and facilitate commercial deployment, the following solutions are proposed:

(1)  Incorporation of adaptive learning mechanisms for real-time optimization;
(2)  Development of a standardized validation framework for TMSs.
In conclusion, the results unequivocally demonstrate that the CNN-LSTM-based control strategy 

represents a paradigm shift in EV thermal management. This approach not only establishes a robust 
foundation for future thermal management research but also achieves superior performance metrics. A 30%+ 
improvement in energy efficiency, coupled with enhanced temperature control accuracy within a ±0.3°C band, 
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directly translates to increased vehicle range and extended battery lifespan. These advancements not only 
address critical challenges in EV development but also lay the groundwork for future innovations in 
sustainable transportation technologies. This includes the development of novel TMSs compatible with 
emerging battery technologies and capable of operating effectively under diverse and dynamic conditions.
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