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Adaptive nonlinear observer–based
sliding mode control of robotic
manipulator for handling an unknown
payload
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Abstract
This article presents the control synthesis of robotic manipulators with an unknown constant payload. A novel nonlinear
disturbance observer with an adaptive scheme is designed to estimate the external force induced by the unknown con-
stant payload. A general design procedure for designing the gain of the nonlinear observer is developed rather than the
time-consuming trials and error to choose proper gain. The nonlinear observer gain is designed using an adaptive tech-
nique to extend the applicability of the disturbance observer. The stability of the proposed observer is established using
Lyapunov method under certain conditions. The proposed nonlinear disturbance observer will be integrated with the
sliding mode control to substantially alleviate the chattering problem. Also, simulation results are presented to verify the
effectiveness of the proposed methods.
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Introduction

With the increasing demands for sophisticated opera-
tions, the task of robotic manipulators is becoming
diversified and complicated, and the operation is not
limited to repetitive positioning operation, such as the
operation, assembling components, and capturing tar-
gets, play an increasingly significant role and has
attracted more attention in recent years.1 And the
requirements for the control performances of robotic
manipulators are ever-increasing. However, the perfor-
mance of motion control for robotic manipulators sys-
tem is very sensitive to the large payload variation.2

For example, when the end effector of robotic manipu-
lator grabs an object with the unknown mass, the phys-
ical properties of the dynamics are changed. This
contributing factor will degrade the system perfor-
mances severely.

Research on deal with the unknown payload begun
with early work on single manipulator3–6 has stated
that the unknown physical parameters of robot arm
were estimated using an adaptive coordinated control
method. The augmented adaptive sliding mode control-
ler with the online parameter estimation algorithm,
which is designed to estimate the unknown physical
parameters of the robotic manipulator such as mass

and moment of inertia, is developed.1 These researchers
were dedicated to the identification schemes which can
be used to identify the set of mass parameters. These
techniques can apply to both geared and direct drive
robots for capturing target with unknown payload.

The observer-based control techniques exploit the
compensation control structure of manipulator, and
effective techniques have been developed.7–10

Meanwhile, the observer-based sliding mode control
(OBSMC) chattering can be reduced by decreasing the
switching gain without sacrifice of the disturbance
rejection ability of sliding mode control (SMC). In real-
ity, an excess of control effort will be expended for sup-
pressing the transients due to system uncertainties, if
the developed approaches rely heavily on this
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conservative upper bound. This will degrade SMC per-
formance such as tracking precision and undesired
chattering.11

This article reviews a number of widely used non-
linear uncertainty estimation techniques.12 In this con-
text, by estimating the unknown parameters of robotic
manipulator via an adaptive nonlinear observer,1 the
SMC scheme has been designed without requiring the
multiaxis force/torque sensors or information on pay-
load. Chen and Guo13 have described that the closed-
loop system under observer-based control is input-to-
state stable (ISS) with the assumption that the distur-
bance is bounded variation. Therefore, the influence of
the uncertainties can only be attenuated to a specified
level. Several works14–17 have developed an SMC
approach for systems with mismatched uncertainties
via a nonlinear observer based on the assumption that
the derivative of the disturbance is zero when time
approaches to infinity. In general, these observers can
only be available for slowly time-varying disturbance.
However, it is not a reasonable assumption for practi-
cal systems, since many engineering systems may suffer
from time-varying disturbance, such as the uncertainty,
which consists of both high-frequency and low-
frequency parts.

Furthermore, the gain matrix of observer is a crucial
design parameter to approximate the unknown uncer-
tain. However, according to Yang et al.,14 for multi-
input and multi-output (MIMO) system, there is no
general design procedure for designing observer gain.
The time-consuming trials and error are inevitable to
choose proper gain.

In this article, we will further investigate the design
of observer-based control techniques for the tracking
trajectory of robotic manipulator, with the explicit con-
sideration of the unknown external force. By designing
a novel adaptive gain algorithm, the observer states can
be driven to the desired equilibrium in the presence of
the unknown constant payload. There are mainly two
contributions of this article as follows:

1. A general design procedure for designing observer
gain matrix is developed via a novel adaptive
scheme. From this point of view, in comparison
with the existing observer18–20 in literature, such as
nonlinear observer, this work is the extension of
the nonlinear disturbance observer design
approach to MIMO system.

2. The boundary assumption of disturbance in SMC
is relaxed by the developed disturbance observer
technique. Similar to the approach,14 the chatter-
ing can be substantially alleviated by designing
the switching gain to be greater than the bound
of the estimation error rather than that of the
disturbance.

The rest of this article is arranged as follows. Section
‘‘Problem formulation’’ presents the control problem
formulation. In section ‘‘Basic control design,’’ some

results of basic control design for manipulator will be
recalled. In section ‘‘Main results,’’ as main results of
this brief, the design and analysis of adaptive nonlinear
observer for robotic manipulators is presented. Then,
SMC with adaptive nonlinear observer is derived in sec-
tion ‘‘SMC design with adaptive nonlinear observer.’’
In section ‘‘Simulation example and comparisons,’’
simulation example and comparisons are present. The
conclusions are finally given in section ‘‘Conclusion.’’

Problem formulation

For the considered n-link rigid manipulator, its
dynamic can be described by the Lagrange–Euler vec-
tor equation in the joint space

M uð Þ€u+C u, _u
� �

_u+G uð Þ= t + JTD ð1Þ

where u 2 <n, _u 2 <n, and €u 2 <n are the joint angle
vector, the joint velocity vector, and the joint accelera-
tion vector, respectively; M(u) 2 <n3 n is the positive
definite inertia matrix for all u; C(u, _u) 2 <n3 n is the
centrifugal and Coriolis matrix; G(u) 2 <n is the gravi-
tational torque; and t 2 <n is control torque acting on
joints. The torque in joint space JTD 2 <n represents
the disturbance torque vector generated by the
unknown forces D 2 <n applied at the end effector.
J 2 <n3 n can also be the manipulator Jacobian matrix
from the task space to joint space. The force in task
space D represents the interaction of the end effector
with environment such as the force exerted by the
object on the end effector or external disturbances.

A nonlinear observer will be derived in this article to
estimate the unknown external input D. The influences
of D will be compensated in feedback control channel.
Control object is to make the angle of joint follow the
reference trajectory well.

Basic control design

Tracking error is given by e(t)= u� ud, where ud 2 <
is the reference trajectory in kinematic coordination.
The design task is to develop a control law for manipu-
lator system such that tracking error e(t) converges to
zero in the presence of the unknown payload. To do
that, the sliding variable is selected as

s= _e+Le ð2Þ

where L is the positive constant diagonal matrix. When
the sliding mode s=0 is reached, e=0 is the attractor
of system error dynamic _e+Le=0. Substituting equa-
tion (2) into equation (1) yields

M uð Þ €u� _s
� �

+C u, _u
� �

_u� s
� �

+G uð Þ=F u, _u, _ur, €ur

� �
ð3Þ

where F(u, _u, _ur, €ur)=M(u)€ur +C(u, _u) _ur +G(u) and
_ur = _ud � Le. Then, using equation (1), we can write
equation (3) in the following form
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M uð Þ _s+C u, _u
� �

s= t �F u, _u, _ur, €ur

� �
+ JTD ð4Þ

Consider the candidate Lyapunov function
V=1=2(sTM(u)s). Then, its time-derivation along
the trajectory of equation (4) is _V= sTM(u) _s+1=2
(sT _M(u)s). In view of fundamental property that the
matrix _M(u)� 2C(u, _u) is a skew symmetric matrix and
substituting equation (4), _V can be written as

_V= sTM uð Þ _s+ sTC u, _u
� �

s= sT

t �F u, _u, _ur, €ur

� �
+ JTD

� � ð5Þ

Now, the basic sliding mode control (BSMC) law
can be derived as

t =F u, _u, _ur, €ur

� �
� r0sgn sð Þ ð6Þ

where r0 is a constant. It is common that JTD is
assumed to be bounded, that is, kJTDkł r. If we have
obtained a bound r0 by the priori knowledge such that
r0 . r, then _V can be simplified as

_V= sT JTD� r0sgn sð Þ
� �

ł � r0 � rð Þ sk kł 0 ð7Þ

It is clear that if s 6¼ 0, then _V is negative. Using
Barbalat’s Lemma, we can conclude that the trajectory
of the system equation (1) can be driven onto sliding
surface s(t)=0 as t!+‘.

It is noted that even if the bound can be obtained
sometimes, it is usually very conservative. For example,
it is assumed that uncertainties are bounded and
the upper bound is known.21 And the conservative
upper bound is usually used in control design.22,23

Furthermore, it can be seen from equation (6) that the
undesirable chattering is reduced by tuning the para-
meters r0. A practical approach that replaces signum
function by a continuous approximation s=(s+ e),
where e is a small positive constant, will be applied in
the experimental tests to reduce the chattering.
Moreover, a smaller e leads to a better approximation
performance.5 To remove the chattering, a saturation
function sat(x) is used to replace the signum function.11

However, the disadvantage of this method is that the
original robustness and control performance will be
degraded such as reducing tracking positional accuracy
and increasing steady-state errors. In addition, the
upper bound of uncertainty, in practical systems, may
not be easily obtained due to the completely unknown
targets. The gain r0 in equation (6) needs to be selected
large enough when the bound is not exactly settled.
The large gain will result in violent chattering or con-
trol input saturation.

In addition, SMC based on disturbance observer is
regarded as an effective scheme to reduce the chatter-
ing. If the observer cannot track the unknown distur-
bances, it can only guarantee the bounded motion
around the sliding surface. The boundary layer of the
sliding surface is determined by the estimation error.11

Thus, the performances of the disturbance observer are
more important, since it not only determines the

behavior of the sliding surface but also impacts the
decrease in undesired chattering. This method needs
time-consuming trials and error to choose proper gains.
From another point of view, the fixed gain implies that
there would be still considerable room for control per-
formance improvement by appropriately estimating
them. In view of these situations, a new nonlinear
observer will be introduced in the following section.

Main results

In this section, OBSMC is developed in the framework
of the observer-based control design. The objective of
OBSMC is twofold: (1) design a new nonlinear observer
to estimate the unknown parameters of manipulators
and (2) design OBSMC such that the system outputs
can track accurately the reference trajectory during cap-
turing target with unknown payload.

The design of nonlinear observer

We address the identification of manipulator mode
parameters based on the nonlinear observer in this sub-
section. For this purpose, inspired by Chen and Chen,18

the adaptive nonlinear disturbance observer (ANDO)
for dynamic equation (1) is designed as

_z=� l tð ÞJTz� l tð Þ JTl tð ÞM uð Þ _u+ f tð Þ
� �

� p tð ÞM uð Þ+ l tð Þ _M uð Þ
� �

_u

D̂= z+ l tð ÞM uð Þ _u
ð8Þ

where D̂ 2 <n is the estimation of unknown term D,
z 2 <n is the state vector of the observer, l(t) 2 <n3 n is
the observer gain, p(t) 2 <n3 n is the design parameter
matrix, and f(t)= t � C(u, _u) _u� G(u).

Now, define the estimation error as

~D=D� D̂ ð9Þ

From equation (9), it can be obtained that

_~D= _D� _̂
D ð10Þ

Substituting Equations (1) and (8) into the above
equation yields

_~D= l tð ÞJTz+ l tð Þ JTl tð Þ _u
� �

� l tð ÞJTD+ _D ð11Þ

Applying z= D̂� l(t)M(u) _u, it follows that

_~D= l tð ÞJTD̂� l tð ÞJTD+ _D ð12Þ

It can be shown that the estimation error is governed
by

_~D=� l tð ÞJT~D+ _D ð13Þ
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Assumption 1. The derivative of the unknown external
input in robotic manipulator system equation (1) is
bounded, that is, _D \ ‘.

This is an assumption made for the continuous and
bounded disturbances.

Lemma 1. Suppose that Assumption 1 is satisfied. The
estimation error system equation (13) is locally ISS if
the observer gain l(t)JT is chosen such that

_~D=� l tð ÞJT~D ð14Þ

is asymptotically stable.
The proof of this Lemma 1 can also be derived by

combining the result of Lemma 1 with the ISS defini-
tion in Khalil (1996).

Lemma 2. Consider a nonlinear system _x=F(x,v)
which is ISS.14 If the input satisfies lim

t!‘
v(t)=0, then

the state lim
t!‘

x(t)=0.

The design of the adaptive observer gain

It is more useful to develop a systematic method for the
design of the observer gain.

Lemma 3. Let A be a constant matrix with
Re(s(A))\ 0. The all solution of

_x(t)= A+C(t)ð Þx(t) ð15Þ

is globally asymptotically stable, if C(t) is the continuous
matrix valued function on the interval ½0,‘) such that

C(t)\ cedt, 8tø 0 ð16Þ

for some constants, c. 0 and d \ 0.

Proof. If we multiply equation (15) by the integrating
factor eAt and integrating from 0 to t, we have

x(t)= eAtx0 +

ðt
0

eAtC sð Þx(s)ds ð17Þ

Since Re(s(A))\ 0, there exists constants s \ 0 and
K. 0, such that eAt łKest and tø 0. Using this esti-
mate and taking norms in equation (17) yields

x(t)łKx0e
st +

ðt
0

Kx0e
s(t�s)C sð Þx(s)ds ð18Þ

Applying Gronwall’s inequality yields

e�stx(t)łKx0+

ðt
0

K2x0C sð Þexp
ðt
s

KC uð Þdu

2
4

3
5ds ð19Þ

We make the estimate

exp

ðt
s

KC uð Þdu

2
4

3
5ł exp

ð‘
s

Kcedudu

2
4

3
5ł ecKN = c0 ð20Þ

where N=
Ð ‘

s edudu. Then, we get

e�stx(t)łKx0+c0K
2x0

ðt
0

C sð ÞdsłKx0+c0K
2Nx0 ð21Þ

In short, x(t)ł best for some constant b. since s is
negative, we can conclude that x(t)! 0, as t! ‘.
Thus, this completes the proof of Lemma 2.

The design of the observer gain l(t) in equation (8)
can be described by Theorem 1.

Theorem 1. The estimation error system equation (14)
is asymptotically stable if the observer gain l(t) in equa-
tion (8) is governed by

_l tð Þ= p tð Þ
p tð ÞJT =� l tð Þð _JT +mJTÞ+mhI

(
ð22Þ

where h and m are the positive constant and I is the
identity matrix of order n.

Proof. Let l�(t) denotes the theoretical solution of the
following equation l(t)JT =hI such that

l� tð ÞJT =hI ð23Þ

Define ~l(t)= l(t)� l�(t), where ~l(t) denotes the error
between l(t) and l�(t). Taking derivative with respect to
time, we have

_~l tð Þ= _l tð Þ � _l� tð Þ ð24Þ

It can be directly obtained from equation (22) that

p tð ÞJT +ml tð ÞJT � mhI=� l tð Þ _JT ð25Þ

Applying equations (22)–(25), we can obtain

ð_~l tð Þ+m~l tð ÞÞJT = p tð ÞJT +ml tð ÞJT � ml� tð ÞJT

� _l
�
tð ÞJT

= p tð ÞJT +ml tð ÞJT � mhI� _l
�
tð ÞJT

=� l tð Þ _J
T
+ l� tð Þ _J

T

=� ~l tð Þ _J
T

ð26Þ

It is immediately following that

_~l tð ÞJT + ~l tð Þ _JT =� m~l tð ÞJT ð27Þ

Define the energy function E(~l(t)) as

E ~l tð Þ
� �

= ~l tð ÞJT2F =trace ~l tð ÞJT
� �T

3 ~l tð ÞJT
� �n o

ð28Þ

where :k kF is the Frobenius norm. Then
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dE ~l tð Þ
� �
dt

=trace
∂E ~l tð Þ
� �

∂(~l tð ÞJT)
d(~l tð ÞJT)

dt

( )
=trace 2 ~l tð ÞJT

� �T ~l tð ÞJT + ~l tð Þ _J
T

� �n o
=� 2mE ~l tð Þ

� �

Hence, for any initial state ~l(0), there holds

E ~l tð Þ
� �

= e�2mtE ~l 0ð Þ
� �

ð29Þ

Thus, E(~l(t)) will converge to zero with decaying rate
of e�2mt. It implies that ~l(t)JT globally converges expo-
nentially to zero, as t! ‘. Namely

~l tð ÞJTF = e�mtl 0ð ÞJT 0ð Þ � hIF ! 0, ast! ‘ ð30Þ

According to the definition of ~l(t), we have

l tð ÞJT =hI+Ke�mt ð31Þ

where K= l(0)JT(0)� hIF.
Since l(t)JT globally converges exponentially to hI,

the l(t)JT converges into a residual set of hI. According
to Lemma 3, the estimation error system equation (14)
is asymptotically stable. Thus, this completes the proof
of Theorem 1.

With the result of Theorem 1, it can be derived from
Lemma 1 that the estimation error system equation (13)
is ISS.

Assumption 2. The derivative of the unknown external
input in robotic manipulator system equation (1) is

bounded and satisfies lim
t!‘

_D=0.

Based on Lemma 2 and the condition given in
Assumption 2, the estimation errors in equation (13)

satisfy lim
t!‘

~D=0. This implies that the estimation error

will slide to the desired equilibrium point
asymptotically.

The structure of adaptive disturbance observer gain
is specified in Figure 1.

Remark 1. As a further extension to the existing work,18

a novel nonlinear observer is developed in this study in
an effort to provide a new approach along the line of
adaptive technique.

Remark 2. It is noted that an alternative approach is
that the term JT can be included in to-be-estimated
lumped uncertainty, that is, JTD in equation (1).
However, the lumped disturbances do not satisfy the

assumption that its derivative is a constant steady-state
value, that is

lim
t!‘

JTD

dt
=0 ð32Þ

This implies that the estimate error cannot be driven
to the desired equilibrium point. The adverse effects of
JTD on the estimate error will be shown in the latter
simulation comparison studies.

SMC design with adaptive nonlinear
observer

Assumption 3. The disturbance estimation error in equa-

tion (13) is bounded by g�= sup
t. 0
kD� D̂k.

Using the appropriate estimate of the disturbance,
we obtain the following result presented in Theorem 2.

Theorem 2. Suppose that Assumptions 2 and 3 are satis-
fied for system equation (1). Considering the sliding
variable equation (2) and nonlinear disturbance obser-
ver equation (8) under the proposed adaptive observer
gain equation (22), state of the robotic manipulator sys-
tem can be driven onto the sliding surface s(t)=0 with
the control law

t =F u, _u, _ur, €ur

� �
� JT D̂+ gsgn sTJT

� �� �
ð33Þ

where g . g�.

Proof. Consider the following Lyapunov function

V=
1

2
sTM uð Þs ð34Þ

Taking the derivative V along the trajectory of equa-
tion (1) yields

_V= sTM uð Þ _s+ 1

2
sT _M uð Þs ð35Þ

For the dynamic system (1), the matrix
(1=2) _M(u)� C(u, _u) is a skew symmetric matrix for all
u 2 <n. Based on this fundamental property, it can be
derived that

_V= sTM uð Þ _s+ sTC u, _u
� �

s ð36Þ

Substituting Equations (4) and (33) into equation
(36) yields

_V= sTðJTD� JTðD̂+ gsgnðsTJTÞÞÞ
=� gsTJTsgn sTJT

� �
+ sTJTðD� D̂Þ

ł � g sTJT
�� ��+ g� sTJT

�� �� ð37Þ
Figure 1. Block diagram for dynamic of adaptive nonlinear
disturbance observer gain l(t).
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By Theorem 1, the magnitude of the estimation error
kD� D̂k asymptotically converges to zero in terms of
the unknown constant payload D. Thus, there exists a
sufficiently small positive control parameter g such that
g . g�. According to equation (37), it holds that _V\ 0
when s 6¼ 0. Thus, the system satisfies the Lyapunov
stability theory. Then, the system state can reach the
sliding mode s=0 as t!+‘.

In the sliding mode s=0, there is _e+Le=0 with
the positive constant diagonal matrix L. The state of
system equation (1) satisfies lim

t!‘
e(t)=0. Thus, the sys-

tem state will converge to reference trajectory under the
proposed control law equation (33).

Remark 3. Because the main cause of the chattering
comes from the mandatory term gsgn(sTJT) in equa-
tion (33), which is used for suppression of the error of
estimate, the chattering is reduced by tuning the con-
troller parameter g properly. Controller parameters
selection is mainly conducted with empirical regularity.
However, the following analysis can keep us on track
amid controller parameter selection. Theoretically,
an optimal controller parameters selection is sought
to minimize g subject to inequality constraint
g . kD� D̂k. This means that controller parameter g is
usually selected to be a sufficiently small constant in
practice. In addition, in terms of the unknown constant
payload D, the magnitude of the estimation error
kD� D̂k asymptotically converges to zero. Therefore,
controller parameter g can be also selected to be vari-
able, which is asymptotically convergent in accordance
with the convergence rate of observer.

Remark 4. The performances of the disturbance obser-
ver are more important, since it not only determines
the behavior of the sliding surface but also impacts the
decrease in undesired chattering. For the unknown
constant payload, the proposed observer provides a
new approach of the decrease in the chattering. From
this point of view, the developed observer has distinc-
tive qualities on OBSMC. Compared with BSMC law
equation (6), the decrease in the chattering for the con-
trol law equation (33) is achieved when the inequality
g JT
�� ��\ r0 is satisfied.

Remark 5. In this article, we do not consider some phys-
ical constraints of the manipulator, such as the dynamic

of its actuators and the amplitude of the control signal,
which are the potential causes of some performance
degradation. However, it should be noted that we
develop a general design procedure for designing the
gain of the nonlinear observer. This new adaptive strat-
egy is absolutely available for the general nonlinear
control system design. The developed theoretical result
and its applications are to provide a new research topic:
the controller design with consideration of control
input saturation or the dynamic of actuator.

Simulation example and comparisons

In this section, the simulations are conducted based on
the robot manipulator with unknown parameters to
validate the theoretical results and show the perfor-
mance of the proposed strategies. It is reported that a
drawback to nonlinear disturbance observer (NDO)18

is that NDO has a poor performance to estimate the
fast-varying disturbance due to the estimation error
mainly depends on the frequency of disturbance.16 To
demonstrate the effectiveness of the proposed
approach, NDO is employed for comparison.

The performance of ANDO

In this subsection, the numerical simulations with two-
link robot manipulator are performed to investigate the
performance of the proposed observer (equation (8))
when the mass of manipulator proceeds with abrupt
changes. It is supposed that the unknown mass of the
manipulator is the form which is shown in Figures 2
and 3. The parameters needed for observer are h=10
and m=5. The reference trajectory is given by
r= sin (2t).

The model described in equation (1) for the two-link
robot manipulator are given as follows

M uð Þ= m1 +m2ð Þr21 +m2r
2
2 +2m1m2 cos u2 m2r

2
2 +2m1m2 cos u2

m2r
2
2 +2m1m2 cos u2 m2r

2
2

	 

ð38Þ

C u, _u
� �

=
�m2r1r2 _u1 sin u2 �m2r1r2 sin u2 _u1 + _u2

� �
m2r1r2 _u1 sin u2 0

	 

ð39Þ

G uð Þ= m1 +m2ð Þr1 cos u2 +m2r2 cos u1 + u2ð Þ
m2r2 cos u1 + u2ð Þ

	 

ð40Þ

The unknown mass is D= Dm1
Dm2

� �T 2 <2.
JT =YmFm. According to Slotine and Li,24 the linear
regression matrix Ym and Fm can be expressed as

Ym =
y11 y12 y13
y21 y22 y23

	 

,Fm =

r21 0 0
r22 r22 r1r2

	 
T
ð41Þ

with
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y11 = €u1 +
g

r1

� �
cos u2, y12 = y22 = €u1 + €u2, y21 =0

y13 =2€u1 cos u2 + €u2 cos u2 � _u1
_u2 sin u2

+
g

r1

� �
cos u1 + u2ð Þ � _u1 + _u2

� �
_u2 sin u2

y23 = _u2
1 sin u2 + €u1 cos u2 +

g

r1

� �
cos u1 + u2ð Þ

ð42Þ

The parameters of manipulator system are summar-
ized as follows: r1=0.4m and r2=0.3m. The gravita-
tional acceleration are set to be g=9.81m/s2. The
nominal values of the mass are m1 =2:2 kg and
m2 =1:6 kg.

The performances of the ANDO are shown in
Figures 2 and 3. It is clear that the output of ANDO
converges to the actual unknown mass Dm1

and Dm2

promptly even though the mass changes abruptly in
some points. Form these results, the proposed ANDO
provides a satisfactory estimation of the uncertain mass
variation (Figure 4).

Experimental results

To verify the effectiveness of the proposed OBSMC for
fast reference trajectories, some experiments are per-
formed in this section. For the considered single-link
rigid manipulator, its dynamics can be described by

M€u+mgL cos u= t +DmgL sin u ð43Þ

where u 2 < is the joint angle. The parameters of the
single-link manipulator are as follow. The load arm
length is L=18:6 cm. The load arm mass is
m=0.225kg. The load mass is m=0.298 kg. The grav-
itational acceleration is set to be g=9.8m/s2. For the
proposed control law, the parameters are selected by
trial and error until an improved tracking performance

is obtained. Control parameters and observer para-
meters in equation (8) are selected as g =0:35, h=6,
and m=2 in the simulation. The unknown mass
Dm 2 < applied at the end effector.

The schematic of the experiment setup is depicted in
Figure 5. The servo base unit is a geared servo-
mechanism system. The plant consists of a DC motor
in a solid frame. The DC motor on the rotary servo
base unit is used to rotate the link from one end in the

Figure 2. The unknown mass Dm1
and the estimation mass. Figure 3. The unknown mass Dm2

and the estimation mass.

Figure 4. The estimation error of the unknown mass Dm1
and Dm2

.
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vertical plane. The position of the load shaft can be
measured using a high-resolution encoder. The tach-
ometer can measure the speed of the motor. The sen-
sors are connected directly to the data-acquisition
board. They provide the position feedback necessary to
control the link. The data-acquisition board outputs a
control voltage that is amplified and drives the motor.

Here, the unknown payload Dm =0:15 kg, which is
treated as an unknown term in simulation. The refer-
ence trajectories are given by r1 = sin (t) and
r2 = sin (2t), respectively. First, we show the perfor-
mance of the proposed nonlinear observer according to
Equations (8) and (22) in Figures 6 and 7. It can be
seen that the estimation error is ultimately bounded by
0.003. It shall be noticed that the proposed ANDO pro-
vides a satisfactory estimate for the unknown mass vec-
tor instead of the lumped uncertainty in this study.

From Figures 6 and 7, we can know that the designed
adaptive nonlinear observer is valid.

Figure 8 shows the position tracking with unknown
moment inertia under OBSMC in equation (33). The
proposed controller forces the position tracking error
to the zero. The bounded control torque generated by
OBSMC for manipulator system is shown in Figure 9.
Meanwhile, it can be obviously seen that the OBSMC
have very small vibration around the sliding mode sur-
face. The reason behind this situation is that the pro-
posed observer provides a proper control gain to
ensure that the tracking error can reach into a small
neighborhood of zero. Hence, the chattering problem is
substantially alleviated. As stated in section ‘‘Problem
formulation,’’ the desired results for the OBSMC are
obtained without the excessive controller chattering.
The proposed ANDO is very effective in reducing chat-
tering while achieving good tracking performance.

In summary, the proposed control scheme has good
tracking performance and it works well for fast-varying
references. Under a properly designed observer and
proper sliding mode controller, the adverse impact
caused by disturbance can be suppressed with the
decrease in undesired control chattering.

Experimental comparisons

For the purpose of comparison, we evaluate the perfor-
mance of the NDO in Chen and Chen18 From equation
(43), we can obtain the following form:

€u=M�1t �M�1mgL cos u+ d ð44Þ

where the lumped uncertainties d=M�1JTD; the load
arm length L=19:8cm. According to Chen and
Chen,18 for dynamic equation (44), the corresponding
observer is reconstructed as follows

Figure 5. Test platform for manipulator to handle an unknown
payload.

Figure 6. Estimation error em(t) of the unknown payload Dm

for r1 = sin (t).

Figure 7. Estimation error em(t) of the unknown payload Dm

for r2 = sin (2t).
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_z=� lz� l l _u+M�1t �M�1mgL cos u
� �

d̂= z+ l _u


ð45Þ

where d̂ is the estimation of the disturbance d. The
observer gain l is given by Chen and Guo.13

In order to investigate on the precise estimation
problem of the observer equation (41) for the distur-
bance with different frequency, the following tested dis-
turbances are considered to take the place of the
uncertainty d in equation (44)

Case 1: d1(t)= sin (0:2t)
Case 2: d2(t)= sin (0:6t)
Case 3: d3(t)= sin (t)
Case 4: d4(t)= sin (2t)

The estimate errors for the four cases are illustrated
by Figure 10. The variation disciplinarian of the maxi-
mum estimation error is also shown in Figure 10. It
can be seen from these results that the change in the
maximum estimation errors with the frequency of dis-
turbance occurs, and the estimation accuracy mainly
depends on the frequency of disturbance. The results

indicate that the frequency of disturbance is mainly
attributed to this variation. It also reveals a fact that
the observer18 has to operate within the condition of its
basic assumption that the estimated signal should be a
slow-varying disturbance. In comparison with Chen
et al.,18 the proposed observer have a distinct advan-
tage in this respect.

For BSMC, the controller parameter g is selected by
trial and error until an improved tracking performance
is obtained. The values of g =8 are considered in equa-
tion (6). In order to evaluate the performance of the
controller, the following indexes that include the inte-
gral of squared tracking error (ISTE) and the integral
of squared control torque (ISCT) are considered as
follows

ISTE=
1

T

ðT
0

e tð Þk k2dt, ISCT=
1

T

ðT
0

t tð Þk k2dt ð46Þ

Figure 9. The response curves of the control input under
OBSMC.

Figure 8. The response curves of the state u(t) and its error
e(t) under OBSMC.

Figure 10. Comparisons of estimation error of NDO (eDi is
the estimation error for the disturbance di).
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Note that T=30 s is selected for all cases. The val-
ues of these two indexes for each controller are sum-
marized in Table 1.

Figure 11 depicts the response of control input for
BSMC. As clearly shown in Figure 11, the controller
has resulted in substantial chattering since a large
switching gain. Furthermore, the performance index
ISTE varies only from 0.0013 to 0.0035, whereas the
performance ISTE decreases from 671.1907 to
582.4356N2m2. It shows that both approaches achieve
similar performance in terms of control efficiency.
However, it is clear that, when state trajectories cross
the sliding surface, the undesired chattering can also be
reduced effectively with the estimation of the distur-
bance by the ANDO in the presence of the unknown
payload.

Conclusion

In this article, an OBSMC is developed for a class of
robotic manipulator systems in the operating task such
as target capturing task. To enhance the system perfor-
mance, a novel nonlinear observer with adaptive
scheme is designed, which can be used to approximate
the corresponding uncertainties induced by the
unknown payload of manipulators system. The pro-
posed observer overcomes some restriction of the exist-
ing nonlinear disturbance observer. Asymptotic

stability results are established when SMC is integrated
with the proposed observer for manipulators with
unknown payload. Finally, two examples are used to
verify the effectiveness of the developed adaptive non-
linear observer and OBSMC scheme. The simulation
results suggest that the proposed OBSMC is valid. The
main advantages of this article is that a general design
procedure for designing robust observer gain matrix is
developed via a novel adaptive scheme, and the other is
to extend the applicability of OBSMC to some engi-
neering problem, such as nonlinear mechanical systems
subject to variation of load and the vibration of
mechanical structures.
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