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A B S T R A C T   

This paper proposes a superconducting magnetic energy storage (SMES) device based on a shunt active power 
filter (SAPF) for constraining harmonic and unbalanced currents as well as mitigating power fluctuations in 
photovoltaic (PV) microgrid. The AC side of the SAPF is interfaced to the point of common coupling (PCC), and 
its DC-link is with integration of a DC/DC converter and an energy storage superconducting coil (SC). A multi- 
objective control technique based on modified ip − iq method and hysteresis SVPWM is adopted to implement the 
dual functions of active filtering and power fluctuation suppression. A fuzzy logic control (FLC) method is 
proposed for the DC/DC converter to stabilize the DC-link voltage and reduce the discharging depth of the SMES. 
The single and comprehensive performances of the SAPF-based SMES in various scenarios have been attested 
through a series of comparisons based on a conventional SAPF and a SAPF-based battery energy storage (BES). 
The superiority and robustness of the proposed FLC method are identified through simulation comparisons with a 
classical proportional-integral controller and a sliding mode controller in various scenarios considered.   

1. Introduction 

Among various renewable energy sources (RESs), PV generation 
systems with merits of pollution-free, no geographical restrictions, and 
abundant reserves occupy an increasing proportion of the microgrid 
with extreme prospects [1,2]. With the improved penetration of the 
photovoltaic generation, the PV system is transferring from the past 
small-scale island mode to large-scale grid-connected mode [3]. Unfor-
tunately, solar energy has strong randomness and obvious inter-
mittentness, which leads to large power fluctuation in PV output [4-6]. 
Moreover, the microgrid contains a growing variety of loads, such as 
nonlinear, unbalanced, and pulsating loads, which inevitably produce 
harmonic, reactive, and unbalanced currents at the PCC and greatly 
imperil the grid stability [7-10]. 

As a traditional shunt active power filter (SAPF) is gradually unable 
to govern these issues, it is necessary to draw an updating method that 
can rapidly respond to the internal power quality problems of the PV 
microgrid. Considering that the energy storage device (ESD) with 
smoothing power fluctuation is an essential part for microgrid [11-14], 
the active filtering function can be integrated into the ESD to improve 

the utilization rate and to reduce the cost. 
The widely-investigated ESDs can be classified into several cate-

gories: battery energy storage [15,16], supercapacitor energy storage 
[17], and superconducting magnetic energy storage (SMES) [18,19]. In 
[15] and [16], the SAPFs combined with battery energy storage and 
PV-battery are respectively presented to constrain harmonic current and 
mitigate transient oscillations caused by abrupt loads. However, the 
battery-based protection schemes are not suitable for applying in 
MW-class conditions. The service life of the battery will be seriously 
shortened on account of frequent power fluctuations. The 
supercapacitor-integrated SAPF is proposed in [17] to provide active 
and reactive power support for intermittent renewable energy. Although 
supercapacitor has the advantages of high-power density and fast 
response, the voltage sharing control for series capacitors is still an 
obstacle that needs to be addressed. 

Unlike other energy storage technologies, the principle of SMES is to 
store energy in the form of a magnetic field, which is generated by DC 
current flowing through the SC [20]. Due to the zero-resistance char-
acteristic of the superconductor, electrical energy can be stored in the SC 
with little loss. When electrical power is needed, the DC current stored in 
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the magnetic field of SC will be quickly injected into the grid with 
extreme high efficiency (over 90%) using power conditioning system 
(PCS). Therefore, the SMES is suitable for harmful currents compensa-
tion [18], dynamic voltage regulation [21], low voltage ride through 
and power fluctuation suppression [22,23], and alleviating 
sub-synchronous oscillation [24]. 

As an interface between SC and the grid, the PCS generally has two 
types of topologies: voltage source converter (VSC) with DC/DC con-
verter [24] and current source converter (CSC) [25-26]. A series of 
comparisons between CSC and VSC with DC/DC converter in terms of 
performance, configuration, efficiency, and control complexity are 
shown in Table 1 [20,24,27]. Consequently, a VSC with DC/DC con-
verter is employed to connected in parallel at the PCC in this paper. 

Several control schemes have been proposed to preliminarily inves-
tigate the performance of the SMES integrated with SAPF [18,19]. In 
[18] and [19], the control techniques based on the modified synchro-
nous reference frame and instantaneous symmetrical component theory 
are adopted to control the VSC to suppress the harmonic current and 
power fluctuation resulted from the pulsating load, respectively. How-
ever, the functions for mitigating unbalanced current and intermittent 
output of RESs have not been fully explored, resulting in a waste of 
equipment utilization. 

On the other hand, the stable DC-link voltage is a vital prerequisite 
for the SMES to have excellent compensation capability. The hysteresis 
control method is adopted to regulate the DC-link voltage for reducing 
the capacitor ripple voltage in [18,19]. However, the operating fre-
quency of the hysteresis controller is influenced by the fixed bandwidth, 
resulting in higher requirements for power switching devices. The per-
formance of the SMES controlled by the proportional-integral (PI) 
method in [21-22] is easily affected by the controller parameters. 
Moreover, a fuzzy logic controller is proposed to mitigate power 

fluctuation in [28-31]. However, the DC-link voltage error is not used as 
the input of the fuzzy logic controller, but as the input of the outer loop 
PI regulator of the AC side converter, resulting in larger voltage oscil-
lation when power fluctuation occurs. 

To reduce the capital cost and simultaneously improve the utilization 
rate of the SMES, the multi-objective control technique and fuzzy logic 
control method are proposed to achieve the dual functions of active 
filtering and power fluctuation suppression for the SAPF-based SMES. To 
follow up our previous study [32], i.e., a new step-shape solenoidal SC is 
proposed to enhance the critical current and energy storage capacity 
under the determined amount of superconducting tape, a sample 
step-shape SC is employed for the method verification. 

Compared with other combination solutions, this work extends the 
earlier research and application of the SAPF-based SMES as follows:  

1) The SAPF-based SMES provides an integrated protection for harmful 
currents and power fluctuations in PV microgrid.  

2) The modified ip − iq method is proposed to extract reference current.  
3) The fuzzy logic control method is designed to maintain the DC-link 

voltage stability and reduce depth of discharge of the SMES. 

The remainder of this paper is organized as follows. Section 2 in-
troduces the modeling of PV microgrids equipped with the SAPF-based 
SMES. Section 3 presents the control schemes of the entire system. 
Simulation results are presented and analyzed in Section 4. Conclusions 
are drawn from this work in Section 5. 

2. Modeling of PV microgrid 

As shown in Fig. 1, the PV microgrid model consists of three parts: ⅰ) 
PV grid-connected system; ⅱ) Four different types of loads (three-phase 
balanced load L1, nonlinear load L2, unbalanced load L3, and pulsating 
load L4); ⅲ) SAPF-based SMES. 

Fig. 1. Structure of the SAPF-Based SMES for PV microgrid.  

Table 1 
Comparison of VSC and CSC for SMES.  

Item VSC CSC 

Power regulation Good Medium-good 
Filtering performance Better Good 
Configuration Grid-filter L-filter C-filter 

IGBTs 8 6 
Diodes 2 6 
Overvoltage protection circuit No Yes 
Cost Medium-high High 

Efficiency Good Medium-good 
Total power losses Low Lower 
Complexity of control High Medium-high  

Fig. 2. The equivalent circuit diagram of the PV cell.  
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2.1. PV Grid-Connected System 

1) PV Array: The equivalent circuit diagram of the PV cell is shown in 
Fig. 2. The generated photocurrent Iph can be considered approxi-
mately equal to the short-circuit current Isc when the current Id 
flowing through the diode is negligible. A PV array is made up of 
hundreds of PV cells in series and parallel. The relationship between 
PV array output voltage Vpv and current Ipv can be expressed as fol-
lows [33]: 

Ipv = NpIsc − NpI0

{

exp
[

q
(
Vpv + Ipv

(
Ns
/

Np
)
Rs
)

NsAkT

]

− 1
}

(1)   

where I0 is diode reverse saturation current; Rs is PV cell equivalent 
series resistance; q is the electronic charge (1.602 × 10− 19 C); k is 
Boltzmann constant (1.38 × 10− 23 J/K); Ns and Np are the number of PV 
cells in series and parallel, respectively; T and A are temperature and the 
curve-fitting factor of the PV cell, respectively. The selected temperature 
value is 25 ◦C in this paper. 

2) DC/DC Boost Converter: A DC-DC boost converter is employed to 
implement the maximum power point tracking (MPPT) control of the 
PV array in the Fig. 1. 
3) PV Inverter: The PV inverter is a voltage source converter (VSC) 
connected to the PCC via an L-filter and a 0.38 kV/10 kV trans-
former. Assuming that all the related vectors are transformed into the 
d-q reference frame, the mathematical model of PV inverter can be 
obtained as follows [34]: 
⎧
⎪⎪⎨

⎪⎪⎩

Vind = Lin
dIind

dt
+ RinIind − ωLinIinq + Vd

Vinq = Lin
dIinq

dt
+ RinIinq + ωLinIind + Vq

(2)   

where Vind, Vinq and Iind, Iinq are the d-axis and q-axis components of PV 
inverter output terminal, respectively; ω is rotation angle frequency; Lin 
and Rin represent filter inductance and resistance, respectively. 

2.2. SAPF-Based SMES 

As an inductive energy storage device, the real-time residual energy 
Esmes during the SMES operation can be estimated as [35]: 

Esmes =
1
2
LscI2

sc (3)  

where Lsc and Isc are inductance and current of the SC. 
Structurally, the SAPF-based SMES shown in the Fig. 1 can be 

regarded as composed of a SAPF and a DC/DC converter integrated with 
SC, connected in parallel to the DC-link capacitor terminal. 

1) SAPF: The SAPF is a converter interfaced to the PCC for sup-
pressing harmonic, reactive, and unbalanced currents. The other two 
essential components are the supporting capacitor Cdc for the DC-link 
and the L-filter Lapf for the AC side, respectively. The working prin-
ciple of SAPF can be described as: 

ic = ihl + iul (4)   

where ic is the SAPF output compensation current; ihl and iul are the 
harmonic and unbalanced currents, respectively. 

In addition to the active filtering function, the SAPF-based SMES also 
has the function of mitigating power fluctuations. The relationship 
among output current i, active power P, and reactive power Q of grid 
side, PV generation side, SMES side, and load side is as follows: 
⎧
⎨

⎩

ig = ipv + ic − il
Pg = Ppv + Psmes − Pl

Qg = Qsmes − Ql

(5)  

where subscripts g, pv, smes, and l represent the grid side, PV inverter, 
SMES side, and load side variables, respectively. 

2) DC/DC Converter: The DC/DC converter is an interface for 
coupling the SC with the DC-link of SAPF, as illustrated in Fig. 3(a). 
Although the current direction through the SC is consistent in 
different operating modes, the voltage polarity of the SC terminal is 
different. The relationship between the average voltage Vsca of the SC 
terminal and DC-link voltage Vdc in a cycle is as follows [36]: 

Vsca = (2D − 1)Vdc (6)   

where D is the duty cycle of the two insulated gate bipolar transistors 
(IGBTs) S1 and S2. 

According to (6), the duty cycle D determines the operation mode of 

Fig. 3. The structure of the SMES. (a) Topology of DC/DC converter integrated with SC; (b) The electrical connection of the SC employed.  

Table 2 
Analysis of the SMES operation mode.  

DC-link voltage error ΔVdc  Duty cycle D  Operation mode 

ΔVdc < 0  D > 0.5  Charging mode 
ΔVdc > 0  D < 0.5  Discharging mode 
ΔVdc = 0  D = 0.5  Standby mode  
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SMES. When the DC-link voltage error ΔVdc is less than zero, the SMES 
needs to absorb the surplus energy for stabilizing the DC-link voltage, 
and vice versa. Therefore, the relationship among ΔVdc, D, and the SMES 
operating mode is shown in Table 2. 

3) Superconducting coil: In order to lower the capital cost of the 
SAPF-based SMES, a 1.193 H/ 1760 A SC employed in this paper is 
formed by four 1.193 H/ 880 A step-shaped solenoidal coil units 
(SC1, SC2, SC3, and SC4) [32], as shown in Fig. 3(b). The super-
conducting tape selected is Dynamically Innovative BSCCO 
(DI-BSCCO) tapes [37] with a total length of 20872 m. In compari-
son, the tape usage of the step-shaped SC is 0.8 times than that of the 
traditional rectangular-shaped SC, and the critical current is 1.4 
times than that of the conventional rectangular-shaped SC, which 
indicates that the step-shaped SC is more cost-effective in energy 
storage. 

The cost of a SMES unit mainly depends on its capacity and conse-
quently the amount of the superconductor used. Along with the devel-
opment and maturation of superconducting technology, a practical 
SMES becomes feasible. Moreover, compared with conventional SAPF, 
the application of SAPF-based SMES is to provide an integrated pro-
tection for harmful currents and power fluctuations in PV microgrid, 
which leads to a further cost reduction of the SMES. 

3. Control schemes for the entire system 

According to the overall layout of the entire system depicted in the 
Fig. 1, four types of converters are employed, i.e., DC/DC boost con-
verter, PV inverter, ASC (the SMES AC side converter), and DC/DC 
converter. The control schemes of each converter are shown in Fig. 4. 

Fig. 4. Control schematic diagram of the entire system.  

Fig. 5. Schematic diagram of the modified ip − iq method.  
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3.1. Control of PV generation system  

1) DC/DC Boost Converter Control: The DC/DC boost converter is 
adopted to track the maximum power point of the PV array using the 
incremental conductance method [38].  

2) PV Inverter Control: Voltage and current dual-loop control method is 
adopted to control the PV inverter for outputting the active power Ppv 

generated by PV array. The control target of the voltage outer loop PI 
regulator is to stabilize the DC-link voltage of the PV inverter. The 
outer loop PI-1 regulator input is the DC-link voltage error ΔVin− dc 
and the output Iindref is used as the reference current of the inner loop 
PI-2 regulator. Since PV grid-connected system needs to operate 

under unity power factor condition, the reference current Iinqref of the 
inner loop PI-3 regulator is zero. The mathematical expression is as 
follows: 
⎧
⎪⎨

⎪⎩

Iindref =

(

Kop +
1

Kois

)
(
Vin− dc − Vin− dcref

)

Iinqref = 0
(7)   

where Vin− dc and Vin− dcref are the DC-link actual and reference voltages, 
respectively; Kop and Koi are the proportional and integral parameters of 
the PI-1 regulator, respectively. 

It can be seen from (2) that PV output current components Iind and Iinq 

are coupled with each other. Therefore, the feedforward decoupling 
method is utilized to control the inner loop current. The reference 
voltage Vindref and Vinqref can be obtained as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vindref =

(

Kip +
1

Kiis

)
(
Iindref − Iind

)
− ωLinIinq + Vd

Vinqref =

(

Kip +
1

Kiis

)
(
Iinqref − Iinq

)
+ ωLinIind + Vq

(8)  

where Kip and Kii are the proportional and integral parameters of PI-2 
and PI-3 regulators, respectively. 

Fig. 6. Schematic diagram of hysteresis SVPWM method.  

Fig. 7. The region divisions of Δi and V∗.  

Table 3 
Optimal output voltage vector.  

Region of V∗ (Δicab, Δicbc, Δicca)  Region of Δi  

① ② ③③ ④④ ⑤⑤ ⑥⑥ 

I (+ + − )  V1  V2  V2  V0,7  V0,7  V1  

II ( − + − )  V2  V2  V3  V3  V0,7  V0,7  

III ( − + + )  V0,7  V3  V3  V4  V4  V0,7  

ⅥⅥ ( − − + )  V0,7  V0,7  V4  V4  V5  V5  

ⅤⅤ (+ − + )  V6  V0,7  V0,7  V5  V5  V6  

ⅣⅣ (+ − − )  V1  V1  V0,7  V0,7  V6  V6   
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3.2. Control of the SAPF-based SMES 

3.2.1. ASC Control 
In the proposed multi-objective control technique, the ASC of the 

SAPF-Based SMES aims to compensate for the harmonic, reactive, and 
negative sequence components existing in grid-connected current and 
mitigating power fluctuations resulted from the pulsating load and the 
intermittent renewable energy. The control technique consists of two 
parts: ⅰ) Extraction of reference current; ⅱ) Generation of required 
compensation current. 

3.2.1.1. Extraction of reference current. The modified ip − iq method 
combining instantaneous reactive power theory [39] and power 
decoupling control [34] is proposed to detect and calculate the reference 
current, as illustrated in Fig. 5. 

1) According to the symmetric component method, the nonlinear 
current ihl and unbalanced current iul can be decomposed into: 

⎡

⎣
ihla
ihlb
ihlc

⎤

⎦ =
∑∞

k=0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ihl(2k+1)sin((2k + 1)ωt + θ2k+1)

Ihl(2k+1)sin
(

(2k + 1)
(

ωt −
2π
3

)

+ θ2k+1

)

Ihl(2k+1)sin
(

(2k + 1)
(

ωt +
2π
3

)

+ θ2k+1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)  

⎡

⎣
iula
iulb
iulc

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Iulpssin
(
ωt + θps

)

Iulpssin
(

ωt + θps −
2π
3

)

Iulpssin
(

ωt + θps +
2π
3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Iulnssin(ωt + θns)

Iulnssin
(

ωt + θns +
2π
3

)

Iulnssin
(

ωt + θns −
2π
3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎣
Iul0sin(ωt + θ0)

Iul0sin(ωt + θ0)

Iul0sin(ωt + θ0)

⎤

⎦

(10)   

where I, and θ is amplitude and initial phase angle, respectively; 
subscript k represents the harmonic order, and k = 1 & k > 1 represent 
the fundamental and harmonic components, respectively; subscripts ps, 
ns, and 0 represent positive sequence, negative sequence, and zero 
sequence components, respectively; ωt is the transformation angle ob-
tained through the phase-locked loop (PLL). 

Fig. 8. Principle of the proposed FLC method. (a) MFs of the first input ΔVdc; (b) MFs of the second input ΔEsmes; (c) MFs of output D; (d) 3-D graph for DISO FLC MFs.  

Table 4 
Fuzzy logic control rules.  

D  ΔEsmes  

VS MS LS M LB MB VB 

ΔVdc  NB CS CM CB CB CB CB CB 
NM CS CM CM CB CB CB CB 
NS CS CS CM CM CB CB CB 
Z M M CS CS CM CB CB 
PS DB DM DM DS DS DS DS 
PM DB DB DM DM DS DS DS 
PB DB DB DB DM DM DS DS  
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Fig. 9. Profiles of grid side voltage and current with no compensator and harmonic spectrum of current at t=0.5 s and 0.8 s.  
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Since there is no zero-sequence current in the three-phase three-wire 
system, according to (11) [40], the forms of (9) and (10) can be derived 
as follows: 

T =
2
3

⎡

⎢
⎢
⎣

cosωt cos
(

ωt −
2π
3

)

cos
(

ωt +
2π
3

)

− sinωt − sin
(

ωt −
2π
3

)

− sin
(

ωt +
2π
3

)

⎤

⎥
⎥
⎦ (11)  

[
ihlp

ihlq

]

=

[
Ihl1sinθ1

− Ihl1cosθ1

]

+

⎡

⎢
⎢
⎣

∑∞

n=7,13…
Ihln[sin(n − 1)ωt + θn]

∑∞

n=7,13…
Ihln[cos(n − 1)ωt + θn]

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎣

∑∞

n=5,11…
Ihln[sin(n + 1)ωt + θn]

∑∞

n=5,11…
Ihln[cos(n + 1)ωt + θn]

⎤

⎥
⎥
⎥
⎦

(12)  

[
iulp
iulq

]

=

[
Iulpssinθps + Iulnssin(2ωt + θns)

− Iulpscosθps + Iulnscos(2ωt + θns)

]

(13) 

Combining (12) and (13), it can be obtained: 
[

ilp
ilq

]

=

[
ihlp + iulp
ihlq + iulq

]

(14)  

[
ilp
ilq

]

=

[
Ihl1sinθ1 + Iulpssinθps

− Ihl1cosθ1 − Iulpscosθps

]

(15)  

where subscripts p and q represent instantaneous active and reactive 
components, respectively. 

It can be seen from (12) and (13) that the harmonic and negative 
sequence components appear in the d and q channels with six times and 
double frequency, respectively. Only the fundamental positive sequence 
active and reactive components of the nonlinear and balanced currents 
are DC components. Therefore, the DC components ilp and ilq can be 
obtained using the second-order Butterworth low-pass filter (LPF), as 
shown in (15). Besides, assuming that switch S shown in the Fig. 5 is off, 
i.e., ilq = 0, complete reactive power compensation can be implemented. 

2) Considering that the power fluctuations of PV microgrid are 
resulted from variable solar irradiance and the pulsating load in this 
paper, the reference active and reactive power demands Pref and Qref 

can be obtained as follows: 
{

Pref = Ppvref − Ppv + Ppl
Qref = Qpl

(16)   

where Ppvref and Ppv are the rated and actual PV output active power, 
respectively; Ppl and Qpl are the active and reactive power of pulsating 
load, respectively. 

To simplify the calculation process, it is assumed that the grid 
voltage Vg is oriented in the d-axis, i.e., Vd = Vg, Vq = 0. According to 
the relationship between the SMES output power and grid voltage, the 
power reference current Ipref , Iqref can be calculated as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ipref =
2Pref

3Vd

Iqref = −
2Qref

3Vd

(17) 

According to (15) and (17), the synthetic reference current command 
of the two parts is given by: 

Fig. 10. Responses and harmonic spectrum of grid side current with the three types of protection device. (a) With SAPF; (b) With SAPF-based BES; (c) With SAPF- 
based SMES; (d ~ f) Harmonic spectrum at t=0.5 s; (g ~ i) Harmonic spectrum at t=0.8 s. 
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{
Ifpref = ilp − Ipref
Ifqref = − Iqref

(18)  

where subscript f represents the fundamental component. 

3) After the synthetic reference current of the ASC is obtained, the 
fundamental positive sequence components in the d-q reference 
frame are transformed to the stationary abc reference frame. By 
subtracting the fundamental positive sequence current if from the 
sampling total load current il, the comprehensive compensation 
current icref can be given as follows: 

icref = il − if (19)   

3.2.1.2. Generation of Compensation Current. Hysteresis SVPWM 
method is utilized to track the reference current for generating the 
required compensation current [41], as shown in Fig. 6. The ASC output 
voltage vector Vk mainly depends on the vector space regions where the 
error current vector Δi and the reference voltage vector V∗ are located. 
The region divisions of Δi and V∗ are shown in Figs. 7(a) and (b). On the 
one hand, the error currents (Δica, Δicb, Δicc) are used as the input of the 
hysteresis controllers, and the output state values (Ha, Hb, Hc) determine 
its region. On the other hand, the region of V∗ is determined by the 
polarities of the line current errors (Δicab, Δicbc, Δicca). Once the two 

regions are determined, the corresponding Vk can be selected according 
to Table 3. 
⎡

⎣
Δica
Δicb
Δicc

⎤

⎦ =

⎡

⎣
icaref − ica
icbref − icb
iccref − icc

⎤

⎦ (20)  

⎡

⎣
Δicab
Δicbc
Δicca

⎤

⎦ =

⎡

⎣
ica − icb
icb − icc
icc − ica

⎤

⎦ (21)  

3.2.2. DC/DC Converter Control 
For the DC/DC converter, the dual input and single output (DISO) 

fuzzy logic controller is employed to control the DC-link voltage stability 
and optimize the charging and discharging performance of the SMES. 
The principle of the proposed FLC method is illustrated in Fig. 8. 

The first input of the FLC is the voltage error (ΔVdc), which indicates 
the difference between the DC-link voltage reference and actual value 
for judging the operating mode of the SMES, as shown in Table 2. The 
second input is the difference between the initial energy and the real- 
time residual energy of SMES (ΔEsmes) for mitigating discharging deep. 
The output of the FLC is the duty cycle (D), which is compared with a 10 
kHz sawtooth carrier for generating the PWM required by the two IGBTs. 
The domains of ΔVdc, ΔEsmes and D are [-1, 1], [0, 1.47], and [0, 1], 
respectively. They are respectively defined as seven fuzzy subsets, as 
follows: 

Fig. 11. Comparisons among SAPF, SAPF-based BES and SAPF-based SMES in scenario 1. (a) Grid side active and reactive power; (b) Residual energy storage of 
SMES; (c) DC-link voltage. 
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⎧
⎨

⎩

ΔVdc = {NB,NM,NS,Z, PS,PM, PB}
ΔEsmes = {VS,MS,LS,M,LB,MB,VB}

D = {DB,DM,DS,M,CS,CM,CB}
(22)  

where NB, NM, NS, Z, PS, PM, and PB are indicated as negative large, 
negative medium, negative small, zero, positive small, positive middle, 
and positive big, respectively; VS, MS, LS, M, LB, MB, and VB are indi-
cated as very small, medium small, little small, medium, little big, me-
dium big, and very big, respectively; DB, DM, DS, M, CS, CM, and CB are 
indicated as discharge big, discharge medium, discharge small, medium, 
charge small, charge medium, and charge big, respectively. 

As shown in the Fig. 8, Gaussian membership functions (MFs) are 
adopted to improve the performance of the designed FLC controller. The 

setting rules of the membership function for the first input ΔVdc follow: 
Near the zero point, the curve is steep; Far away from the zero point, the 
curve is gentle. Moreover, the format of “IF A AND B, THEN C” is 
adopted to establish the fuzzy logic control rules, as depicted in Table 4. 

4. Simulation results and analysis 

A 3 MW PV microgrid connected with SAPF-based SMES shown in 
the Fig. 1 is modeled using MATLAB/SIMULINK. The simulation pa-
rameters of PV grid-connected system, SAPF-based SMES, and various 
loads are designed as shown in Table A1 ~ A3. 

In this section, a conventional SAPF and a SAPF-based BES will be 
simulated to compare with the SAPF-based SMES for single and 

Fig. 12. Comparisons between BES and SMES in scenario 2. (a) Pulsating load power fluctuation; (b) Grid side active and reactive power; (c) Residual energy storage 
of SMES; (d) DC-link voltage. 
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comprehensive performances in four typical scenarios. The parameters 
of the lead-acid battery are depicted in Table A4. 

Scenario 1: Standard solar irradiance condition (1 kW/m2) under 
nonlinear and unbalanced loads connected, sequentially. 
Scenario 2: Standard solar irradiance condition under the pulsating 
load connected. 
Scenario 3: Normal operation condition under time-varying solar 
irradiance. 
Scenario 4: Time-varying solar irradiance condition under nonlinear, 
unbalanced, and pulsating loads connected, sequentially. 

To justify the superiority and robustness of the proposed FLC, a 

classical PI controller and a sliding mode controller (SMC) are consid-
ered to compare the operating performance of the SMES. 

4.1. Active filtering function 

Assume that the nonlinear and unbalanced loads are sequentially 
connected to the PCC at t=0.4 s and t=0.7 s. The profiles of grid side 
voltage and current with no compensator are presented in Fig. 9(a) and 
(b). As shown in Fig. 9(c), during the period 0.4 ~ 0.7 s, the grid- 
connected current is distorted with the total harmonic distortion 
(THD) of 7.29% owing to the injected harmonic and reactive current. 
The addition of an unbalanced current caused more serious distortion 
and imbalance during the period 0.7 ~ 1 s. 

Fig. 13. Performance of active power fluctuation suppression between BES and SMES in scenario 3. (a) Simulated solar irradiance curve; (b) Grid side active power; 
(c) Residual energy storage of SMES; (d) DC-link voltage. 
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Figs. 10(a) ~ (c) reveal the responses of grid side current with the 
SAPF, SAPF-based BES, and SAPF-based SMES in scenario 1, respec-
tively. It can be observed that compared with the SAPF, the grid side 
current shows a symmetrical three-phase sinusoidal waveform with the 
assistance of ESDs during the period 0.9 ~ 1 s. Moreover, the harmonic 
spectrograms of the grid side current under the three types of protection 
devices are shown in Figs. 10(d) ~ (i). During the period 0.4 ~ 0.7 s, all 
the three protection devices can achieve good filtering performance only 
for the current distortion caused by the nonlinear load. After the un-
balanced current is injected into the grid, the conventional SAPF has 
been difficult suppressing the nonlinear unbalanced component existing 
in the grid current with the THD of 9.37%. With the utilization of ESDs, 
SAPF-based BES and SAPF-based SMES still maintain good active 
filtering capabilities. However, for the SAPF-based SMES, the grid side 
current observed is sinusoidal with a better THD of 2.33% during the 
period 0.7 ~ 1 s. 

The profiles of grid side active and reactive power, residual energy 
storage of the SMES, and DC-link voltage in scenario 1 are presented in 
Figs. 11(a) ~ (c), respectively. Fig. 11(a) reveals that with the help of 
ESDs, the grid side active power is smoothly transitioned to a steady- 
state, and the oscillations resulted from the six times frequency har-
monic component and the double frequency negative sequence 
component are suppressed. In comparison, the SAPF-based SMES be-
haves more smoothly when an unbalanced load is connected. The SMES 
discharges to ensure a smooth transition of grid side power, as depicted 
in Fig. 11(b). As illustrated in Fig. 11(c), since the DC/DC converter is 
controlled to stabilize the voltage, the SMES DC-link voltage is always 
maintained at the set value (1 pu) using the proposed FLC method. 
However, for the SAPF and the SAPF-based BES, the DC-link voltage is 
fluctuating when the loads are suddenly connected, and there is obvious 
double frequency oscillation during the period 0.7 ~ 1 s. 

Fig. 14. Responses of grid side current with no compensator, SAPF, SAPF-based BES, and SAPF-based SMES in scenario 4. (ⅰ) Nonlinear load connected at t=0.5 s; (ⅱ) 
Unbalanced load connected at t=1 s; (ⅲ) Pulsating load connected at t=1.5 s. 
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4.2. Power fluctuation suppression function 

In the grid-connected operation mode, the PV output power is partly 
caused by pulsating load and random solar irradiance. 

Therefore, the power fluctuation suppression function for the SMES 
is verified in scenarios 2 and 3, respectively. 

4.2.1. Scenario 2 
Assume that the pulsating load with peak active and reactive power 

demands of 0.5 MW and 0.2 MVAR are connected to the PCC at t=0.4 s, 
as shown in Fig. 12(a). The frequency of the pulsating load is 10 Hz, and 
the duty cycle is 40%. The simulation results with the BES and SMES in 
scenario 2 are provided in Figs. 12(b) ~ (d). 

Fig. 12(b) shows the responses of grid side active and reactive power 
with no compensator, BES, and SMES, respectively. It can be clearly 

observed that the grid side active power is regulated at a constant value 
of 2.2 MW by injecting additional active power into the grid with ESD. 
Due to the internal resistance and low-power of lead-acid battery, there 
will be more dramatic oscillation existing in the grid side active power 
during the load pulsation compared with the proposed method based on 
SMES. Moreover, both BES and SMES can mitigate reactive power 
fluctuation to a constant level (0 VAR). As shown in Fig. 12(c), during 
the pulsating load fluctuation, the SMES discharges to generate 
compensation power. Besides, the battery DC-link voltage experiences 
severe oscillation. In contrast, the DC-link voltage of the SMES is 
controlled at the constant value, as depicted in Fig. 12(d). 

4.2.2. Scenario 3 
To simplify the simulation, the simulated random solar irradiance 

data is provided in Fig. 13(a) according to the changing trend of solar 

Fig. 15. Harmonic spectrum of grid side current with no compensator, SAPF, SAPF-based BES, and SAPF-based SMES. (a) At t=0.8 s; (b) At t=1.3 s; (c) At t=1.9 s.  
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irradiance in the daytime. For minimizing output fluctuation, the 
reference active power demand Ppvref should be set to a constant value of 
3 MW. The simulation results in scenario 3 are shown in Figs. 13(b) ~ 
(c). 

As illustrated in Fig. 13(b), the PV output power fluctuates drasti-
cally under variable solar irradiance. When the PV output power is more 
than the reference power, the ESDs absorb surplus energy to keep the 
grid side power at the reference value and vice versa. As depicted, the 
power fluctuation caused by lower solar irradiance is difficult to 
smoothly suppressed by the lead-acid battery, which can be eliminated 
by the SMES. The residual energy of the SMES is shown in Fig. 13(c), 
which reflects its operation mode in real-time. Fig. 13(d) reveals that 
frequent charging and discharging operations of lead-acid battery have 
caused drastic fluctuations in the DC-link voltage, which will severely 
shorten the service life of the battery. 

4.3. Comprehensive function 

After separately demonstrating the superiority and effectiveness of 
the single function for the SAPF-based SMES, its comprehensive function 

is further confirmed in scenario 4. Assume that under variable solar 
irradiance, the nonlinear, unbalanced, and pulsating loads are con-
nected to the PCC at 0.5 s, 1 s, and 1.5 s, respectively. The simulation 
results in scenario 4 are shown in Figs. 14(a) ~ (d), Figs. 15(a) ~ (c) and 
Figs. 16(a) ~ (c). 

Figs. 14(a) ~ (d) show responses of the grid side current with no 
protection device, SAPF, SAPF-based BES, and SAPF-based SMES. The 
harmonic spectrograms of the grid side current under the four condi-
tions are presented in Figs. 15(a) ~ (c). In the case of grid power fluc-
tuations, the conventional SAPF has lost its good filtering ability. Before 
the pulsating load is connected, the dynamic performance of the system 
with the SAPF-based BES and SMES is similar to that in scenario 1. After 
1.5 s, the SAPF-based BES has been difficult to constrain harmonic and 
negative sequence components exiting in the grid side current. However, 
with the assistant of SAPF-based SMES, only the phase-A current 
amplitude is suddenly increased to 1.12 times within half a cycle and 
then promptly maintained stability. 

Figs. 16(a) ~ (c) show the profiles of grid side active and reactive 
power, residual energy of SMES, and DC-link voltage in scenario 4, 
respectively. Even under extremely complex condition, violent power 

Fig. 16. Comparisons among SAPF, SAPF-based BES and SAPF-based SMES in scenario 4. (a) Grid side active and reactive power; (b) Residual energy storage of 
SMES; (c) DC-link voltage. 
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fluctuations can still be smoothly mitigated using the SAPF-based SMES 
compared with SAPF and SAPF-based BES. Fig. 16(b) depicts that the 
residual energy of the SMES is controlled between 10% and 90% of the 
maximum energy storage capacity. Furthermore, it can be observed that 
the DC-link voltage remains stable on account of the SMES supplement, 
as shown in Fig. 16(c). 

4.4. Comparison with Conventional Method 

The comparisons among the proposed FLC method, SMC, and PI 
controller for SC current in all scenarios mentioned above are carried 
out, as shown in Figs. 17(a) ~ (d). ΔEsmes1 represents the difference 
between the residual storage energy of the SMES under the proposed 
FLC and SMC; ΔEsmes2 represents the difference between the residual 
storage energy under the proposed FLC method and the classical PI 
controller. It can be clearly seen that the proposed FLC method not only 
stabilizes the DC-link voltage, but also reduces the depth of discharge of 
the SMES compared with SMC and classical PI controller. 

Moreover, an extreme operating condition (Partial SC quench in 
scenario 4) is considered to verify the robustness of the proposed FLC. 
The critical current of the SC will decrease as the temperature increases. 
When the current flowing through the SC exceeds the critical current at 
the temperature where it is located, the SC will quench, i.e., the SC will 
have internal resistance. Assuming that the operating temperature of 
partial SC (One tenth of SC1 and SC3) adopted is increased to 30 K, the 
critical current Ic and internal resistance Rscin of SC1 and SC3 can be 
estimated as follows [32,42]: 

Ic = Ic0(T) × G(T, B, θ) (23)  

Ic0(T)= {
(5.92 − 0.065T) × Ic0,77K T < 75K
(3.69 − 0.035T) × Ic0,77K T > 75K (24)  

Fig. 17. Comparisons among the proposed FLC method, SMC, and PI controller for SC current. (a) In scenario 1; (b) In scenario 2; (c) In scenario 3; (d) In scenario 4.  

Fig. 18. Comparison among the proposed FLC method, SMC, and PI controller 
for SC current under the partially quenched SC condition in scenario 4. 
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G(T, B, θ)= {

[

1 +

⃒
⃒
⃒
⃒
Bsinθ
B0(T)

⃒
⃒
⃒
⃒

α(T)]− 1

θ > θc

[

1 +

⃒
⃒
⃒
⃒
Bsinθc

B0(T)

⃒
⃒
⃒
⃒

α(T)]− 1

θ < θc

(25)  

{
B0(T) = 0.03 + (32 − 0.393T) × Ic0(T) × 10− 4

α(T) = 0.2116 + 0.0083T + (12 + 0.3T) × Ic0(T) × 10− 4 (26)  

Rscin =
Vsc

Isc
= SEc

In− 1
sc

In
c

(27)  

where Ic0,77k = 200 A is critical current at 77 K; S is the length of the 
quenched SC; Ec = 1 V/cm; θc = 7.5∘ is the misalignment angle of the SC 
filaments [37]. 

Fig. 18 illustrates the comparison among the proposed FLC method, 
SMC, and PI controller for SC current under the partially quenched SC 
condition in scenario 4. ΔEsmes1 and ΔEsmes2 are 894.09 J and 1188.30 J 
on average, reflecting that the proposed FLC controller still has better 
performance than SMC and PI controller. 

5. Conclusion 

A novel superconducting magnetic energy storage device integrated 
with active filtering function is presented in this paper. The configura-
tion of the entire system and the control strategies of each converter 
have been designed. The simulation results show that the utilization of 
SAPF-based ESD can further improve the active filtering capability of 
conventional SAPF and also enable it to have active power supply 
capability. 

Compared with SAPF-based BES, the single and comprehensive 
functions of the SAPF-based SMES are verified to be more effective using 
the multi-objective control technique and FLC method. The former can 
thoroughly compensate for the harmonic, reactive, and unbalanced 
components existing in the grid current, making it restricted within the 
IEEE-519 standard. The latter can smoothly suppress power fluctuations 
resulted from load mutation, pulsating load, and time-varying solar 
irradiance. Meanwhile, the surplus energy of PV generation would be 
stored in the SC for emergency needs. 

In order to prove the superiority and robustness of the proposed FLC, 
the performance of FLC, SMC, and PI controller are assessed in scenarios 
1 ~ 4, and partial SC quench conditions, respectively. The simulation 
results show that the proposed controller can achieve DC-link voltage 
stabilization and reduce the depth of discharge of SMES under all 
operating conditions considered. 

The proposed control schemes provide a comprehensive solution for 
the problems of harmful currents and power fluctuations existing in the 
PV grid-connected operating microgrid. Moreover, the proposed 
schemes can also be used to protect sensitive loads and suppress har-
monic and unbalanced voltages in island mode. It is expected that the 
distribution network in the future will be more complex and sensitive. 
Therefore, the SMES, which can integrate multiple functions, will 
become the critical alternative to solve the power quality issues. 
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Appendix 

Tables A1–A4. 

Table A1 
Parameters of the PV generation system.  

Parameter Value 

Number of PV arrays in parallel 2 
Single PV array maximum power 1.5 MW 
PV array side capacitance 1000 μF 
Boost inductance 0.05 mH 
Inverter DC-link capacitance 10000 μF 
L-filter inductance 0.15 mH 
Rated DC-link voltage 800 V 
PI-1 Controller Kop=100 Koi=5000 
PI-2 and PI-3 Controllers Kip=20 Kii=5000  

Table A2 
Parameters of SMES.  

Parameter Value 

SC inductance 1.193 H 
SC initial current 1570 A 
SC critical current 1760 A (T = 20 K) 
Energy capacity 1.847 MJ 
Length of the tape usage 20872 m 
Rated DC-link voltage 14.2 kV 
DC-link capacitance 10000 μF 
L-filter inductance 10 mH  

Table A3 
Parameters of the various loads connected.  

Parameter Value 

Balanced load rated active power 0.8 MW 
Nonlinear load Resistance 400 Ω 

Inductance 40 mH 
Unbalanced load Phase A 300 + j6.28 Ω 

Phase B 200 + j9.42 Ω 
Phase C 150 + j6.28 Ω 

Pulsating load Peak active power 0.5 MW 
Peak reactive power 0.2 MVAR  

Table A4 
Parameters of lead-acid battery.  

Parameter Value 

Rated voltage 14.2 kV 
Rated capacity 50 Ah 
Energy capacity 2556 MJ 
Initial state-of-charge 50% 
Internal resistance 2.84 Ω 
Fully charged voltage 15.4 kV 
Maximum capacity 52.08 Ah  
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