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Abstract—This paper investigates the charging problem of
plug-in electric vehicles (PEVs) in a smart charging station (SCS)
under a new interaction mechanism that allows the interactions
among PEVs. The target is to coordinate the charging strategies
of all PEVs such that the energy cost of SCS is minimized without
compromising a set of constraints for PEVs and SCS. To this end,
we first construct a non-cooperative game framework, in which
each player (i.e., PEV) expects to minimize its cost by choosing
the optimal charging strategy over the entire charging horizon.
Then, the existence and optimality of Nash equilibrium (NE)
for the formulated non-cooperative game is provided. Moreover,
to find the unique generalized Nash equilibrium (GNE), we
propose a distributed GNE-seeking algorithm based on the
Newton fixed-point method. And a fast alternating direction mul-
tiplier method (fast-ADMM) framework is applied to determine
the best response of PEVs. The convergence of the proposed
distributed GNE-seeking algorithm and PEVs’ best response are
also provided with theoretical analysis. Simulations are presented
at last to validate the effectiveness of the proposed algorithm.

Index Terms—Plug-in electric vehicle (PEV), interaction mech-
anism, non-cooperative game, charging strategy.

NOMENCLATURE

αt, βt Positive price coefficients at time slot t
λ Lagrange multiplier vector
X (Xn) Feasible charging profile set of all PEVs (PEV n)
x∗ Nash equilibruim of G
x−n Charging strategies of all players except player n
xn Charging profile of PEV n over the entire charging

time horizon
yn Feasible charging strategy for PEV n
δ Profitability index
∆xk Newton direction at k-th iteration
ε1, ε2 Error tolerance
N Set of all the PEVs
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T Set of charging time periods
∇yρ(xk) Gradient of yρ(x

k)
∂M(xk) Computable generalized Jacobian of M at xk

πminn /πmaxn Lower/upper battery capacity of PEV n
π0
n/πTn Initial/terminal enenrgy level of PEV n at time slot t
ρ Regularization parameter
ϕρ(x,y) ρ-regularized Nikaido-Isoda (NI) function
ξn Proportion of the total energy consumption of PEV n

in the total aggregate load of SCS
ζ Augmented Lagrange multiplier
Ct(Lt) Energy cost of SCS at time slot t
Ctol Total energy cost of SCS
C∗tol Minimun energy cost of SCS
fn Fees paid by the owner of PEV n
fn(xn,x−n) Cost function of PEV n
Hk An entry of the computable generalized Jacobian
I1(y)/I2(z) Indicator function with repsect to y/z
Lζ(y, z,λ) Augmented Lagrangian
Lt Total aggregate load of SCS at time slot t
Lmax Maximum allowable load of SCS
M(x∗) Mapping system
n,m Index of PEVs
pt Electricty price at time slot t
Rn Required energy of PEV n
xmaxn Rated charging power of PEV n
xn,t Charging power of PEV n at time slot t
z An auxiliary vector

I. INTRODUCTION

Due to the advantages of energy saving and emission
reduction, the PEVs have become more and more popular in
smart grid and attracted increasing attention from automobile
industry and governments [1], [2]. With the rapid development
of PEVs, the energy structure of society is undergoing signif-
icant changes [3]. However, inappropriate charging strategies
for PEVs, such as charging too many PEVs at the same time,
may lead to a surge in demand or an unacceptable load peak,
resulting in more energy expenditure and even grid collapse
[4]. Therefore, the charging coordination for PEVs in smart
grid is becoming increasingly prominent, aiming to minimize
the energy cost of grid while meeting the charging needs of
all PEVs and avoiding resource waste, battery overload, and
grid collapse [5], [6].

One striking feature of PEVs is their ability to store
electrical energy, which makes the PEVs more flexible. For
example, during peak times, some PEVs can act as energy
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Fig. 1. (a) Traditional interaction mechanism between SCS and PEVs. (b) New interaction
mechanism between SCS and PEVs combining with V2V mechanism.

suppliers rather than consumers. Recently, in addition to the
common vehicle-to-grid (V2G) mechanism that allows two-
way power transmission between PEVs and grid [7], some
other mechanisms have been studied, such as vehicle-to-home
(V2H) [8] and vehicle-to-building (V2B) [9] mechanisms.
Moreover, with the development of information and communi-
cation technologies (ICTs), a new mechanism, i.e., vehicle-to-
vehicle (V2V) mechanism [10], has emerged, which allows the
vehicles in the same area to communicate directly with each
other without the need to forward through the grid. In general,
the most common communication area for PEVs is smart
charging station (SCS), which is capable of controlling the be-
haviors of PEVs to mitigate the impact of overcharging during
the peak periods [11]. The traditional interaction mechanism
between SCS and PEVs (see Fig. 1(a)) requires every PEV to
communicate with the aggregator embedded in SCS. Specif-
ically, each PEV responses individually to the time-varying
price determined by the aggregator by increasing/decreasing
its charging request or shifting the charging request from
high-price periods to low-price periods. However, due to the
independence of PEVs, such traditional interaction mechanism
may not be able to find the optimal charging strategy to
minimize the energy cost of SCS. Therefore, we propose a new
interaction mechanism (see Fig. 1(b)) combining with V2V
mechanism, which first coordinates the charging strategies of
all PEVs according to the time-varying price determined by the
aggregator, and then transfers the aggregate load information
to SCS’s aggregator.

Recently, a lot of works have been devoted to study the
charging problem of PEVs [7], [12]–[14]. In [12], the authors
propose a time-of-use (TOU) price-based centralized charging
scheduling pattern that has great benefit in reducing the
charging cost and flatting the load curve. However, a new
peak load may occur during the low-price periods. To address
this limitation, the concept of valley-filling is introduced in
[13], and a decentralized algorithm is developed to obtain
the optimal charging profile that can smooth the load curve.
In addition, some other works, like [7], [14], focus on the
interaction between PEVs and grid. In [14], the authors adopt
an unidirectional V2G mechanism to describe the interaction
between PEVs and grid, which increases the adoption rate
of PEVs. Then, the work [7] extends the unidirectional V2G
mechanism to a bidirectional one, where the PEVs can also
send the electrical energy back to the grid. However, the above-

mentioned works rarely consider the strategic interactions
among multiple participants in SCS.

As a result, to study the strategic interactions among multi-
ple participants, we then focus on the game theory since it is
a powerful tool for analyzing the strategic interactions among
multiple decision makers to improve the system/network per-
formance [15]. Recently, many researchers have investigated
the charging coordination based on game theory [16]–[21]. In
[16], a non-cooperative Stackelberg game is constructed under
V2G mechanism, in which the leader (i.e., smart grid) decides
the price to maximize its revenue and the followers (i.e., PEV
groups) choose the charging strategies to optimize a tradeoff
between individual charging benefit and associated cost. The
work [17] presents a price-incentive non-cooperative game
model to produce the equilibrium solutions for energy storage
systems (ESSs), including the stationary and mobile batteries
(i.e., PEVs). To address the network failures caused by the
spatial and temporal security constraints, a distributed charging
control with security constraints of distribution network is
proposed in [18] based on a non-cooperative game. Another
work [19] develops a distributed approach for temporal-spatial
charging coordination of plug-in electric taxi fleets (PETs) by a
two-stage decision process, in which the second stage devises a
game-theoretical approach for PETs to select charging stations.
Moreover, the authors in [20] introduce a stochastic game
to study the data-driven charging strategy for PEV-based
taxis. Also, a charging management with a social contribution
behavior of EVs is presented in [21]. However, it is worth
noting that most of the existing works mainly focus on the
interactions between PEVs and grid, the potential interactions
among the PEVs are rarely considered.

Motivated by the above discussions, this paper studies
the charging coordination of PEVs under a new interaction
mechanism (see Fig. 1(b)). The main contributions are shown
below:

1) A new interaction mechanism for the PEVs and SCS is
proposed. Comparing with the V2G mechanism [7], [14],
[16] that considers the interaction between each PEV
and aggregator/grid, the proposed mechanism combines
the V2V mechanism, allowing interactions among the
PEVs1. As a result, the flexibility of the PEVs can be
fully exploited.

2) A non-cooperative game framework for PEVs charging
is constructed, in which each player (i.e., PEV) chooses
optimal strategy according to the strategies of all other
players, so as to minimize its own cost (i.e., the payment
to SCS). The existence and optimality of the NE for the
formulated non-cooperative game are provided. Specifi-
cally, it is shown that the NE of the non-cooperative game
is unique and minimizes the total energy cost of SCS.

3) A distributed GNE-seeking algorithm is developed based
on the Newton fixed-point method. Moreover, a fast-
ADMM framework is employed to determine the PEVs’
best response. The convergence of the proposed dis-

1Since that the information exchange under the V2V mechanism is assumed
to be complete and accurate rather than dishonest, the associated complexities
[22] imposed by the information communication among PEVs are beyond the
scope of this paper.

Authorized licensed use limited to: University of Liverpool. Downloaded on September 05,2020 at 12:42:33 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3020466, IEEE
Transactions on Smart Grid

3

Lt

Information line

Power line

Fig. 2. Schematic diagram of a smart charging station.

tributed GNE-seeking algorithm and PEVs’ best response
are also presented with theoretical analysis.

The remainder of this paper is arranged as follows. The
system model and problem formulation are described in Sec-
tion II, followed by the non-cooperative game framework
in Section III. In Section IV, the distributed GNE-seeking
algorithm is proposed. The simulation results are presented
in Section V and the conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a SCS located in residential/commercial area as
shown in Fig. 2, where an aggregator sets price to coordinate
the charging behavior of a finite set N = {1, 2, . . . , N} of
PEVs over the entire charging horizon T = {1, 2, . . . , T}.
The PEVs actively participate in the charging coordina-
tion through charging/discharging. Denote vector xn =
(xn,1, xn,2, . . . , xn,T )T as the charging profile of PEV n over
the charging horizon, where xn,t is the charging/discharging
power of PEV n at time slot t and adopts the following sign
convention: when xn,t > 0, the PEV n is charging; when
xn,t < 0, the PEV is discharging; and when xn,t = 0, the
PEV is idle. Let x = (x1

T ,x2
T , . . . ,xN

T )T represent the
charging profile of all PEVs in SCS.

A. System Model
1) Feasible Charging Profile Set: Assume that the initial

and terminal energy levels of PEV n are π0
n and πTn , respec-

tively. Then the required energy of PEV n is Rn = πTn − π0
n.

One thus has
T∑
t=1

xn,t = Rn, ∀n ∈ N , (1)

which indicates that during the entire charging period, the total
energy consumption of PEV n should be equal to the required
energy such that the terminal energy level is reached at the
end of charging without overcharging. Moreover, the energy
level of each PEV n ∈ N after being charged or discharged
at any time cannot exceed its battery capacity, i.e.,

πminn ≤ π0
n +

t∑
τ=1

xn,τ ≤ πmaxn , ∀t ∈ T ,∀n ∈ N , (2)

where πminn and πmaxn are the lower and upper battery capacity
of PEV n, respectively. The charging/discharging power of
each PEV n at any time t ∈ T is bounded by

− xmaxn ≤ xn,t ≤ xmaxn , ∀t ∈ T ,∀n ∈ N , (3)

where xmaxn and−xmaxn are the rated charging and discharging
power of PEV n, respectively.

In addition, for safety, the total charging request of all PEVs
at any time cannot exceed the maximum allowable load of
SCS, i.e.,

0 ≤
N∑
n=1

xn,t ≤ Lmax, ∀t ∈ T , (4)

where Lmax is the maximum allowable load of SCS.
Therefore, for each PEV n, the feasible charging profile set

is as follows:
Xn = {xn|(1)− (4)}. (5)

Correspondingly, the feasible charging profile set of all PEVs
in SCS is X = {(x1,x2, . . . ,xN)|xn ∈ Xn,∀n ∈ N}.

2) Electricity Price Model: To coordinate the charging
behaviors of PEVs, the following linear price function [17]
is introduced

pt = αtLt + βt, ∀t ∈ T , (6)

where αt and βt are positive price coefficients related to the
TOU price and the base price of SCS, respectively2; Lt =∑N
n=1 xn,t is the total aggregate load of SCS at time slot

t. Notice that the price function is increasing, which prevents
the SCS from overloading. Specifically, if there is a significant
increase in aggregate load of SCS resulting from charging too
many PEVs at the same time, the price will rise accordingly
to prompt PEVs without urgent tasks to shift their charging
requests to low-price periods.

3) Cost Model of SCS: Given the price pt, we define Ct(Lt)
as the energy cost of SCS at time slot t, indicating the fees
paid by SCS to a higher-level power supply facility. In general,
the cost model must satisfy the following assumption:

Assumption 1: [23] The cost function Ct(Lt) is considered
to be non-decreasing with respect to (w.r.t.) the aggregate load
Lt at each time slot t ∈ T . That is, the following property
holds:

∂Ct(Lt)

∂Lt
≥ 0, ∀t ∈ T . (7)

A typical cost model that satisfies Assumption 1 can be
expressed as a quadratic function [24], [25], i.e.,

Ct(Lt) = ptLt = αtL
2
t + βtLt, ∀t ∈ T . (8)

The total energy cost of SCS over the entire charging horizon
is then written as

Ctol =
T∑
t=1

Ct(Lt). (9)

In addition, we define fn as the fees paid by the owner
of PEV n at the end of charging, which depends on the
electricity price and the total energy consumption of PEV n
over the entire charging period. Without loss of generality,
the total fees paid by all PEVs should be greater than the
total energy cost of SCS. That is to say, it must ensure that
the SCS does not lose money or at least makes ends meet,

2The base price of a SCS depends largely on the distance to the power
plants. Generally, the farther away from the power plants, the higher the base
price of SCS.
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i.e.,
∑N
n=1 fn ≥

∑T
t=1 Ct(Lt). Next, we define a profitability

index δ :=
∑N
n=1 fn∑T

t=1 Ct(Lt)
to measure whether the SCS is

profitable. Obviously, if δ = 1, the SCS makes ends meet;
if δ > 1, the SCS is profitable. Note that the price charged by
SCS to PEVs is fixed, and therefore the fees paid by the owners
of PEVs is proportional to their total energy consumption over
the entire charging period, i.e.,

fn
fm

=

∑T
t=1 xn,t∑T
t=1 xm,t

, ∀n,m ∈ N . (10)

Sum up both sides of equality (10) over all PEVs to yield

fn =

∑T
t=1 xn,t∑

m∈N
∑T
t=1 xm,t

∑
m∈N

fm. (11)

Combining the definition of δ and (11), one has

fn =
δ
∑T
t=1 xn,t∑

m∈N
∑T
t=1 xm,t

T∑
t=1

Ct(Lt) = γn

T∑
t=1

(αtL
2
t + βtLt)

= γn

T∑
t=1

[
αt(

N∑
n=1

xn,t)
2 + βt

N∑
n=1

xn,t
]
, (12)

where γn = δξn with ξn =
∑T
t=1 xn,t∑

m∈N
∑T
t=1 xm,t

as the proportion
of the total energy consumption of PEV n in the total aggregate
load of SCS.

B. Problem formulation

As previously mentioned, the charging coordination is to
collectively determine the optimal charging profile of all PEVs
so as to minimize the total energy cost of SCS while satisfying
the charging needs of PEVs and the constraints of SCS. The
problem can be formulated as follows: min

x∈X
Ctol =

T∑
t=1

Ct(Lt),

s. t. (5), ∀n ∈ N .
(13)

Since the feasible charging profile set Xn is bounded by a
finite set of linear constraints (1)-(4), the set Xn is nonempty,
compact, and convex. Moreover, the cost function Ct(·) with
the form (8) is strictly convex. Thus, the optimization problem
(13) is convex and has a unique optimal solution [26].

III. NON-COOPERATIVE PEV CHARGING GAME

This section first constructs a non-cooperative game frame-
work for PEVs charging, and then discusses the existence and
optimality of the NE solution.

A. Game Model

In SCS, each PEV tries to select an optimal charging
strategy from its strategy set to minimize its payment to
SCS. Therefore, a non-cooperative PEV charging game G ={
N , {Xn}n∈N , {fn}n∈N

}
is formulated, in which each com-

ponent is described as follows:
• Players: The PEVs in set N ;

• Strategy set: Xn ⊆ RT for each n ∈ N , is nonempty,
compact, and convex;
• Cost function: fn(xn,x−n) for each n ∈ N shown as

fn(xn,x−n) = γn

T∑
t=1

[
αt(

N∑
n=1

xn,t)
2 + βt

N∑
n=1

xn,t
]
, (14)

where x−n = (x1, . . . ,xn−1,xn+1 . . . ,xN ) represents the
strategies of all players except that of player n. In this regard,
the vector x is usually written as x = (xn,x−n) to stress
the player n’s strategy in game theory [15]. It is assumed that
all players are rational in the sense of minimizing their own
payments to SCS. Moreover, it can be observed from (14)
that the individual cost of each palyer depends on both its
own strategy and all other PEVs’ strategies.

Definition 1: Consider the non-cooperative PEV charging
game G = {N , {Xn}n∈N , {fn}n∈N } with Xn and fn given
by (5) and (14), respectively. A vector x∗ = (x∗n,x

∗
−n) ∈ X

is a NE of G if and only if the following inequality holds:

fn(x∗n,x
∗
−n) ≤ fn(xn,x

∗
−n),∀(xn,x

∗
−n) ∈ X ,∀n ∈ N .

(15)
That is, no player can unilaterally deviate from NE strategy
to reduce its payment.

Note that in game theory, a solution of a non-cooperative
game is a NE which characterizes how players play the game.

Remark 1: Some existing works have adopted the dominant
strategy equilibrium (DSE), a strategy combination composed
of the dominant strategies of all participants, to characterize
the player’s self-interested behavior [27]. At the DSE, each
player always follows the dominant strategy regardless of other
players’ strategies. However, in problem (13), the feasible set
of each player depends on other players’ strategies according
to (1)-(4). Therefore, under the V2V mechanism considered in
the current work that allows the strategic interactions among
players, the NE is more suitable than the DSE.

B. Existence and Optimality of NE

Next, we proceed to seek a NE of the game G. Since the
NE may not exist in non-cooperative games, it is necessary
to discuss the existence of NE. The next theorem shows the
existence of NE for our formulated game G.

Theorem 1: Consider the non-cooperative PEV charging
game G = {N , {Xn}n∈N , {fn}n∈N } with Xn and fn given
by (5) and (14), respectively. Then, the NE of game G always
exists.

Proof: The Hessian matrix of cost function fn(xn,x−n)

w.r.t the charging strategy xn is give by ∂2fn(xn,x−n)

∂xn
2 =

diag{2γnα1, 2γnα2, · · · , 2γnαT }, where γn = δξn ≥ 0 and
αt > 0 for each t ∈ T . Then the Hessian matrix is positive
semidefinite since it is diagonal with nonnegative diagonal
elements. The cost function fn(xn,x−n) is thereby convex
w.r.t. xn. Moreover, it is noted that the strategy set Xn

bounded by a finite set of linear constraints is nonempty,
compact, and convex. Therefore, by Theorem 4.1 in [28], the
NE of game G always exists.
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In what follows, we further discuss the optimality of NE
for game G (see Theorem 2 below).

Theorem 2: The unique NE of non-cooperative PEV charg-
ing game G is exactly the optimal solution to energy cost
minimization problem (13).

Proof: Denote x∗ = (x∗n,x
∗
−n) ∈ X as a NE of G, then

by (15), one has

γn

T∑
t=1

[
αt(
∑
n∈N

x∗n,t)
2 + βt

∑
n∈N

x∗n,t

]
≤γn

T∑
t=1

[
αt(xn,t +

∑
m∈N ,m 6=n

x∗m,t)
2 + βt(xn,t +

∑
m∈N ,m6=n

x∗m,t)
]
.

(16)

Dividing both sides of (16) by γn yields

C∗tol ≤
T∑
t=1

[
αt(xn,t +

∑
m∈N ,m6=n

x∗m,t)
2

+ βt(xn,t +
∑

m∈N ,m6=n

x∗m,t)
]
.

(17)

Therefore, it can be obtained that the NE of game G is the
optimal solution to problem (13). In addition, we have learned
that the optimization problem (13) has a unique optimal
solution. It is then concluded that the NE of game G is unique
and is exactly the optimal solution to energy cost minimization
problem (13).

IV. DISTRIBUTED GNE-SEEKING ALGORITHM

In this section, we propose a GNE-seeking algorithm based
on the Newton fixed-point method. And a distributed fast-
ADMM framework is employed to determine the best response
of PEVs. Since that both strategy set Xn and cost function
fn of PEV n depend on the strategies of all other PEVs, the
formulated game G can be further regarded as a generalized
Nash equilibrium problem (GNEP) [28]. Therefore, the previ-
ously mentioned NE of game G corresponds to the generalized
Nash equilibrium (GNE), which is a solution of GNEP and
also characterizes how players play a game. Unless otherwise
stated, hereinafter we replace the NE with GNE.

A. GNE-Seeking Algorithm Based on Newton Fixed-Point
Method

We first introduce a ρ-regularized Nikaido-Isoda (NI) func-
tion [28]

ϕρ(x,y) :=
N∑
n=1

[
fn(xn,x−n)−fn(yn,x−n)−ρ

2
‖xn−yn‖2

]
(18)

with a suitable regularization parameter ρ > 0, which
represents the cost reduction of PEV n when he changes
his charging strategy xn to another feasible strategy yn ∈
Xn while all other PEVs still adopt the original strategies
x−n. That is to say, the ρ-regularized NI function quantifies
how much the individual PEV benefits when he unilaterally
changes his strategy while leaving the strategies of other PEVs
unchanged.

Based on the ρ-regularized NI function, we further define

Vρ(x) := max
y∈X

ϕρ(x, y). (19)

Since ϕρ(x, y) is strongly concave w.r.t y for any x ∈ X ,
there exists a unique maximizer yρ(x) such that

yρ(x) = arg max
y∈X

ϕρ(x, y)

= arg min
y∈X

N∑
n=1

[
fn(yn, x−n) +

ρ

2
‖xn − yn‖2

]
.

(20)

According to Theorem 5.4 in [28], one has Vρ(x) ≥ 0 for all
x ∈ X and x∗ is a GNE of jointly convex GNEP if and only
if x∗ ∈ X and Vρ(x

∗) = 0. With this in mind, one further
concludes that x∗ is a fixed point of the following mapping
system (see Theorem 5.5 in [28]):

M(x∗) := yρ(x
∗)− x∗ = 0. (21)

Next, we employ the Newton method to solve the mapping
system (21) [18], [29], [30], in which x is updated by

xk+1 = xk + ∆xk, (22)

where ∆xk is the Newton direction at k-th iteration which is
computed by solving the following linear system

Hk∆xk = −M(xk), (23)

where Hk is an entry of the computable generalized Jacobian
of M at xk, i.e.,

Hk ∈ ∂M(xk) = {∇yρ(xk)T − I}, (24)

where I ∈ RNT×NT is an identity matrix. The nonsingularity
of the generalized Jacobian can be easily guaranteed by weak
conditions (see Lemma 4.2 in [29]). Then, the details of the
distributed GNE-seeking algorithm based on Newton fixed-
point method is summarized in Algorithm 1.

Algorithm 1 GNE-Seeking Algorithm Based on Newton
Fixed-Point Method

1: Output: GNE x∗ of Game G
2: Initialize: Set ρ, ε1 > 0,x0

n ∈ Xn for ∀n ∈ N , k = 0;
3: Repeat
4: Step 1: Compute yk by solving (20), i.e.,
yk = arg miny∈X

∑N
n=1

[
fn(yn,x

k
−n)+ ρ

2‖x
k
n−yn‖2

]
;

5: Step 2: Compute generalized Jacobian Hk by (24);
6: Step 3: Solve the linear system (23) to calculate the

Newton direction ∆xk, i.e.,
∆xk = −(Hk)−1M(xk) = −(Hk)−1(yk − xk);

7: Step 4: Update xk by xk+1 = xk + ∆xk;
8: Step 5: Check the stopping criterion:

if ‖yk − xk‖ ≤ ε1
break;

end if
9: Step 6: k ← k + 1;

10: End
11: Return xk.

Authorized licensed use limited to: University of Liverpool. Downloaded on September 05,2020 at 12:42:33 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3020466, IEEE
Transactions on Smart Grid

6

Remark 2: Note that in Algorithm 1, the stopping criterion is
‖yk−xk‖ ≤ ε1 instead of the commonly used ‖xk+1−xk‖ ≤
ε1. The main reason is that Algorithm 1 aims to seek the GNE
of game G, so we have to guarantee that we get the GNE at the
end of the algorithm. To this end, the first step of Algorithm 1
is to seek the PEVs’ best response, which corresponds to the
optimal strategy of each PEV given all other PEVs’ strategies.
Then by the Newton fixed-point method, we update x to find
the GNE. Since all players obtain the optimal strategies at the
best response, in this sense, the best response at the end of the
algorithm is essentially equivalent to the GNE. Therefore, in
each iteration, we can check the difference of the best response
and GNE to determine whether the algorithm is terminated.

B. Fast-ADMM Framework for PEVs’ Best Response

Note that in each iteration of Algorithm 1, we need to solve
a subproblem (20) to determine the best response of PEVs
under a given strategy x. Although some traditional convex
programming techniques such as interior point method (IPM)
[26] can solve such optimization subproblem, it is undesirable
when considering the system scalability and reliability. As a
result, we next employ the fast-ADMM framework [31] which
can be achieved in a distributed manner, ensuring scalability
and reliability of the system.

By introducing an auxiliary vector z (a common trick in
ADMM), the subproblem (20) can be reformulated as min

N∑
n=1

[
fn(yn,x

k
−n) +

ρ

2
‖xkn − yn‖2

]
+ I1(y) + I2(z),

s. t. y = z,
(25)

where I1(y) and I2(z) are indicator functions. I1(y) = 0 if
y ∈ S1 and I1(y) = ∞ otherwise with set S1 = {y|πminn ≤
π0
n +

∑t
τ=1 yn,τ ≤ πmaxn ,∀t ∈ T ,∀n ∈ N ;−ymaxn ≤ yn,t ≤

ymaxn ,∀t ∈ T ,∀n ∈ N ; 0 ≤
∑N
n=1 yn,t ≤ Lmax,∀t ∈ T }.

I2(z) = 0 if z ∈ S2 and I2(z) =∞ otherwise with set S2 =
{z|
∑T
t=1 zn,t = Rn,∀n ∈ N}. The augmented Lagrangian

of (25) is

Lζ(y, z,λ) =
N∑
n=1

[
fn(yn,x

k
−n) +

ρ

2
‖xkn − yn‖2

]
+ I1(y)

+ I2(z) + λT (z − y) +
ζ

2
‖z − y‖2,

(26)

where λ ∈ RTN is the Lagrange multiplier vector and ζ is the
augmented Lagrange multiplier.

Motivated by the work in [25] and [31], a fast-ADMM
framework composed by the standard ADMM and a predictor-
corrector acceleration step is employed to determine the best
response of PEVs in a distributed manner. The details are
shown in Algorithm 2.

C. Convergence Analysis

Next, we provide the convergence analysis on Algorithms
1 and 2. The results are shown in the following theorems.

Algorithm 2 Best Response of PEVs under fast-ADMM
Framework

1: Output: Best response yk of all PEVs
2: Initialize: Set z0 = ẑ1 ∈ RTN , λ0 = λ̂

1
∈ RTN , ε2 > 0,

ζ > 0, η1 = 1, and a given charging strategy x;
3: Repeat
4: for ν = 1, 2, · · · do
5: y-update: yν = arg miny∈S1 Lζ(y, ẑ

ν , λ̂
ν
);

6: z-update: zν = arg minz∈S2
Lζ(y

ν , z, λ̂
ν
);

7: λ-update: λν = λ̂
ν

+ ζ(zν − yν);
8: Predictor-corrector step:
9: ην+1 =

1+
√

1+4(ην)2

2 ;
10: ẑν+1 = zν + ην−1

ην+1 (zν − zν−1);

11: λ̂
ν+1

= λν + ην−1
ην+1 (λν − λν−1);

12: Until ‖λν − λν−1‖ ≤ ε2
13: End
14: Return yν .

Theorem 3: Consider the non-cooperative PEV charging
game G = {N , {Xn}n∈N , {fn}n∈N } with Xn and fn given
by (5) and (14), respectively. Then, the sequence {xk} gener-
ated by Algorithm 1 converges Q-quadratically to a GNE.

Proof: We first notice that since the strategy set X is
composed by a finite set of linear constraints, the constant
rank constraint qualification (CRCQ)3 of Assumption 3.1 in
[29] is satisfied. Next, by the proof of Theorem 1, it can be
seen that for each n ∈ N , the Hessian matrix ∂2fn(xn,x−n)

∂xn
2

w.r.t the charging strategy xn is positive semidefinite. Thus,
the Assumption 4.1 in [29] is also satisfied. Then, the nonsin-
gularity of the generalized Jacobian ∂M(xk),xk ∈ X directly
holds due to Lemma 4.2 in [29]. Let x∗ be a GNE of game
G, then {∇yρ(x∗)T − I} is thereby nonsingular, which also
implies that x∗ is a quasi-regular solution4 to system (21).
Therefore, it can be readily obtained from Theorem 2 in [30]
that the Newton-type method is well defined and the sequence
{xk} generated by Algorithm 1 converges Q-quadratically to
x∗.

Next, the convergence result for Algorithm 2 is provided.
Theorem 4: The sequence {(yν , zν ,λν)} generated by

Algorithm 2 converges to a KKT point (y∗, z∗,λ∗) of problem
(25). Moreover, at (y∗, z∗,λ∗), the Lagrangian (26) converges
to the ε2-optimal solution with the following upper bound:

Lζ(y
∗, z∗,λ∗)− Lζ(yν+1, zν+1,λν+1) ≤ 2‖λ0 − λ∗‖2

ζ(ν + 2)2
(27)

Proof: Note that the optimal solution to problem (25)
must satisfy the KKT conditions which are shown below:

y∗ = z∗, (28)

3The constant rank constraint qualification (CRCQ) holds if for each subset
of the gradients of the active inequality constraints and the gradients of the
equality constraints, the rank at a vicinity of x∗ is constant [32].

4A point x is a quasi-regular solution to system (21) if all matrices in the
generalized Jacobian ∂M(xk) are nonsingular [30].
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0 ∈
∂fn(yn,x

k
−n)

∂y∗n,t
−ρ(xkn,t−y∗n,t)+M1−λ∗n,t−ζ(z∗n,t−y∗n,t),

(29)
0 ∈M2 + λ∗n,t + ζ(z∗n,t − y∗n,t), (30)

λ∗n,t 6= 0, (31)

whereM1 andM2 are subgradient sets of indicator functions
I1(y) and I2(z) w.r.t y∗n,t and z∗n,t, respectively. While in
each iteration of Algorithm 2, the y-update and z-update
always satisfy the conditions (29) and (30), respectively.
Moreover, when Algorithm 2 stops, one has λν → λν−1,
which implies λν → λ̂

ν
. Then one further obtains condition

(28). As for the last condition (31), it is straightforward by
λ-update. Therefore, the sequence {(yν , zν ,λν)} generated
by Algorithm 2 converges to a KKT point of problem (25).

By the Lagrangian (26), one obtains

Lζ(y
ν+1, zν+1,λν+1)− Lζ(yν , zν ,λν)

≥ 1

2ζ
‖λν+1 − λ̂

ν+1
‖2 +

1

ζ
(λν+1 − λ̂

ν+1
)T (λ̂

ν+1
− λν)

(32)

and

Lζ(y
ν+1, zν+1,λν+1)− Lζ(y∗, z∗,λ∗)

≥ 1

2ζ
‖λν+1 − λ̂

ν+1
‖2 +

1

ζ
(λν+1 − λ̂

ν+1
)T (λ̂

ν+1
− λ∗)

(33)

Denote ∆ν = Lζ(y
∗, z∗,λ∗) − Lζ(y

ν , zν ,λν). Then by
combining (32), one gets

−∆ν+1 + ∆ν

≥ 1

2ζ
‖λν+1 − λ̂

ν+1
‖2 +

1

ζ
(λν+1 − λ̂

ν+1
)T (λ̂

ν+1
− λν).

(34)

Multiply (34) by (ην+1−1) and then substitute it into (33) to
yield

(ην)2∆ν − (ην+1)2∆ν+1

≥ 1

2ζ
‖ην+1(λν+1 − λ̂

ν+1
)‖2 +

ην+1

ζ
(λν+1 − λ̂

ν+1
)T(

ην+1λ̂
ν+1
− (ην+1 − 1)λν − λ∗

)
,

(35)

where ην+1 =
1+
√

1+4(ην)2

2 . In view of the fact that the three
vectors a, b, c satisfy the following inequality:

‖b− a‖2 + 2〈b− a,a− c〉 = ‖b− c‖2 − ‖a− c‖2, (36)

then one obtains

2ζ(ην)2∆ν − 2ζ(ην+1)2∆ν+1

≥ ‖ην+1λν+1 −
(
(ην+1 − 1)λν + λ∗

)
‖2

− ‖ην+1λ̂
ν+1
−
(
(ην+1 − 1)λν + λ∗

)
‖2.

(37)

Moreover, denoting ζν = ηνλν − (ην − 1)λν−1 − λ∗ and
reordering (37), one has

2ζ(ην+1)2∆ν+1 + ‖ζν+1‖2 ≤ 2ζ(ην)2∆ν + ‖ζν‖2. (38)

Note that ην ≥ ν+2
2 and η1 = 1. Thus, one further obtains

∆ν+1 ≤
4∆1

(ν + 2)2
+

2‖ζ1‖2

ζ(ν + 2)2

=
4ζ∆1 + 2‖λ1 − λ∗‖2

ζ(ν + 2)2
. (39)

By reviewing (33), one has

−2ζ∆1 = 2ζ
(
Lζ(y

1, z1,λ1)− Lζ(y∗, z∗,λ∗)
)

≥ ‖λ1 − λ̂
1
‖2 + 2(λ1 − λ̂

1
)T (λ̂

1
− λ∗)

= ‖λ1 − λ∗‖2 − ‖λ̂
1
− λ∗‖2. (40)

Substituting (40) into (39), one immediately gets

∆ν+1 ≤
2‖λ̂

1
− λ∗‖2

ζ(ν + 2)2
=

2‖λ0 − λ∗‖2

ζ(ν + 2)2
, (41)

which completes the proof.
From the proof of Theorem 4, it can be seen that the

fast-ADMM achieves the convergence rate O(1/ν2) while
the standard ADMM has a convergence rate O(1/ν) [33].
Therefore, at each iteration, the fast-ADMM framework used
in this work can determine the PEVs’ best response in a more
efficient way. In addition, since that the fast-ADMM is essen-
tially a combination of the standard ADMM and a predictive
correction step, it does not introduce any complexity. In other
words, the complexity of the fast-ADMM algorithm is the
same as that of the standard one, which is still linear, i.e.,
O(N ).

V. SIMULATION RESULTS

This section presents the simulation results to verify the
performance of the proposed distributed GNE-seeking algo-
rithm. For ease of illustration, we first consider a SCS with 10
PEVs in a residential area [18]. Particularly, the effectiveness
of Algorithm 2 based on the fast-ADMM framework for PEVs’
best response is also verified by comparing with [18] and [33].
Then a large-scale SCS with 150 PEVs in a commercial area
is further taken into account to verify the scalability of the
proposed algorithm.

A. Case study 1: SCS with 10 PEVs

In this scenario, 10 heterogeneous PEVs arrive at a resi-
dential SCS according to the owners’ preferences and needs.
The PEVs’ parameters, arriving time (AT), and departure time
(DT) are listed in Table I. Note that the terminal energy level
of PEVs is generally not equal to the maximum capacity of
battery to avoid the potential damage to battery. The maximum
allowable load of SCS is 50 kWh. The price coefficients
are αt = 0.2 $/kWh at off-peak hours (i.e., from 7:00 to
17:00), αt = 0.3 $/kWh at peak hours (i.e., from 18:00 to
6:00 of the next day), and βt = 0.8 $/kWh. Note that we
consider here the case of δ = 1. Then, the charging strategies
without charging coordination are shown in Fig. 3(a). It can
be observed from Fig. 3(b) that the peak demand appears
from 17:00 to 20:00 and the aggregate load during this period
violates the maximum load limit of SCS. The total energy cost
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TABLE I. Parameter settings of PEVs

PEV
Parameter

π0
n πT

n πmin
n πmax

n xmax
n AT DT

1 7.5 67.5 5 75 15 17:00 22:00
2 6 72 5 80 15 18:00 23:00
3 7 67.5 5 75 10 19:00 6:00
4 5.6 63 5 70 8 17:00 7:00
5 6.7 58.5 5 65 8 18:00 8:00
6 7.5 67.5 5 75 8 12:00 18:00
7 8.1 58.5 5 65 8 11:00 23:00
8 9 72 5 80 10 12:00 6:00
9 7.2 63 5 70 8 13:00 7:00
10 7.5 67.5 5 75 15 14:00 20:00
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Fig. 3. (a) Charging strategies without charging coordination. (b) Aggregate load of SCS
without charging coordination.

of SCS is $6298.702. Next, we use the proposed distributed
algorithm to coordinate the charging behavior of PEVs, and
the results are shown below.

1) Fast ADMM Framework-Based Best Response: To bet-
ter illustrate the performance of PEVs’ best response under
the fast-ADMM framework, we take an accelerated gradient
algorithm (AGA) proposed in [18] and the standard ADMM
algorithm [33] for comparison. In the standard ADMM, let
ρ = 0.1, ζ = 0.01, and ε2 = 0.01. Figure 4 shows the
comparison results. It can be observed that the fast-ADMM
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Fig. 4. Convergence performances of three compared algorithms for PEVs’ best response.

algorithm converges with an error accuracy of 10−2 at 713th
iteration while the error accuracy achieved by the standard
ADMM framework and the AGA are 0.1885 and 0.0479,
respectively. In view of such, it can be concluded that the
fast-ADMM framework is superior to the standard one and
AGA in terms of the convergence rate.

2) Coordinated Charging Results: Based on the PEVs’
best response under the fast-ADMM framework, we further
provide the coordinated charging strategies and aggregate load,
which are presented in Fig. 5. It can be found from Fig.
5(a) that there are three PEVs discharging at 19:00. As a
result, the total aggregate load in Fig. 5(b) does not exceed
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Fig. 5. (a) Charging strategies with charging coordination. (b) Aggregate load of SCS
with charging coordination.

the load limit of SCS. And the total energy cost of SCS is
largely reduced from $6298.702 to $4670.042 as opposed to
the uncoordinated charging. Additionally, as shown in Fig.
6, we provide the iterative process of 10 PEVs at a single
time slot, i.e., 19:00, to further illustrate the effectiveness of
the proposed algorithm. It can be readily seen that all PEVs
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Fig. 6. Charging trajectories of 10 PEVs at 19:00.

converge to their optimal charging strategies. Therefore, the
proposed GNE-seeking algorithm under the non-cooperative
framework can effectively solve the charging problem in SCS.

B. Case Study 2: Large-Scale SCS with 150 PEVs

To further verify the scalability of the proposed algorithm,
we next consider a large-scale SCS located in a commercial
area with 150 PEVs charging at daytime, i.e., from 7:00 to
18:00. The load limit of SCS is assumed to be 900 kWh. This
scenario considers the case of δ = 1.5 to guarantee the SCS is
profitable. The initial charging strategies are depicted in Fig.
7, which shows that in the absence of charging coordination,
all PEVs expect to charge as much as possible when connected
to SCS, resulting in the overload between 7:30 and 9:30. The
total energy cost of SCS is $2.425× 106.
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Fig. 7. (a) Charging strategies without charging coordination. (b) Aggregate load of SCS
without charging coordination.
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Then, we employ the proposed GNE-seeking algorithm and
the coordinated charging strategies are given in Fig. 8. By

6 8 10 12 14 16 18

Time (Hour)

2

4

6

8

10

C
h

ar
g

in
g

 s
tr

at
eg

y
 (

k
W

h
)

(a)

6 8 10 12 14 16 18

Time (Hour)

500

600

700

800

900

1000

A
g

g
re

g
at

e 
lo

ad
 o

f 
S

C
S

 (
k

W
h

)

L
t

L
max

(b)

Fig. 8. (a) Charging strategies with charging coordination. (b) Aggregate load of SCS
with charging coordination.

comparing Fig. 7(a) and Fig. 8(a), it can be found that the
charging is more dispersed under the coordination. Moreover,
Fig. 8(b) shows that there is no violations of load limit
with charging coordination, which effectively guarantees the
operational security of SCS. Also note that the proposed
charging coordination scheme can achieve the peak shaving
and valley filling. Additionally, the total energy cost is reduced
to $1.253 × 106. Therefore, if the charging strategies of all
PEVs depend on the proposed charging coordination scheme,
the SCS will operate normally and reduce the cost effectively.

Finally, the computational time of the proposed solution
approach for different case studies are presented in TABLE
II. It can be readily seen that the proposed algorithm takes
125.05s and 1875.75s to obtain the optimal charging strategies
(i.e., GNE of the game G) in a SCS with 10 PEVs and
150PEVs, respectively. Thus, the computational time does not
increase dramatically with the increase in the problem size.
Therefore, the proposed GNE-seeking algorithm under the
non-cooperative framework can effectively solve the charging
problem in SCS. In addition, note that the solving time of the
internal fast-ADMM for PEVs’ best response only accounts
for a small fraction of the total computational time, which
also indicates the superiority of the fast-ADMM framework.

TABLE II. The computational time for two case studies

Case study 1 Case study 2
Fast-ADMM GNE-seeking Fast-ADMM GNE-seeking

Time/s 49.54 125.05 740.18 1875.75

VI. CONCLUSION

In this paper, we have formulated a non-cooperative game to
investigate the charging problem for PEVs in a SCS, in which
the strategic interactions among PEVs are considered. It shows
that the GNE of the formulated non-cooperative game exists
and is unique. To seek the GNE, we propose a distributed
algorithm based on the Newton fixed-point method, in which
a fast-ADMM framework is employed to determine the PEVs’
best response. Simulation results are provided to illustrate the
effectiveness of the proposed algorithm. Notice that since this
work mainly focuses on the energy cost minimization on SCS
side and the fees paid by the PEVs are closely linked to the
SCS’s energy cost, the cost function under the formulated non-
cooperative game is modeled as the PEVs’ payments to SCS.

If one takes account of the battery degradation cost of PEVs
caused by the charging/discharging, compensation to the PEV
owners may be needed to motivate their participation, which
will serve as a part of future work.
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