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A B S T R A C T   

Automated detection of dementia stage using multimodal imaging modalities will be helpful for improving the 
clinical diagnosis. In this study, we develop the Inception-ResNet wrapper model in differentiating the healthy 
controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) using conjoint magnetic reso-
nance imaging (MRI) and positron emission tomography (PET) scans. We use T1-weighted MR and PET images of 
individuals aged between 42 and 95 years, including HC, MCI and AD patients. We first perform 3D tissue 
segmentation of MR images after skull striping. The atlas-based segmented MR image tissue is fused with PET 
image. Then we transform PET images from RGB to HSI color space and apply fusion of MRI with PET images 
using two-dimensional Fourier and discrete wavelet transform (DWT) and then reconstruct the MR-PET fused 
image using inverse Fourier and DWT methods. After the fusion of MRI and PET imaging modalities, we used 60 
% training, 20 % for validation and the remaining 20 % as a test set using various convolutional neural networks. 
We found the proposed model as the best classifier with an accuracy of 95.5 %, 94.1 % and 95.9 % in classifying 
HC vs MCI, MCI vs AD and AD vs HC respectively when compared to the existing methods. We conclude that the 
proposed deep learning model has potential in automated classification of healthy and dementia stages using 
combined MRI and PET modalities with good performance.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive disease due to dementia 
(memory and cognition loss) due to cortical neurodegeneration when 
compared to healthy aging. Currently the prevalence of AD is about 24 
million people worldwide. Early detection of dementia stage will be 
helpful for efficacious treatment as delayed therapy will not be helpful in 
arresting the disease progression. Hence early imaging-based diagnosis 
among the dementia stages are required. Till date, most of the available 
methods are manual and semi-automated and hence fully automated 
reliable imaging methods are needed. However, automated methods are 
more useful without human intervention that could differentiate stages 
of dementia either correlated with clinical scale or cognitive score. 

Various machine learning (ML) methods using structural magnetic 
resonance imaging (sMRI) have been proposed for classifying various 
stages of dementia [1–3]. sMRI-based disease atrophy index [4,5], brain 
asymmetry pattern [6], identification of AD-related brain patterns [7] 
including disease progression of AD [8]. Several studies have been 
proposed using fluorodeoxyglucose-positron emission tomography 

(FDG-PET) and of amyloid deposition using amyloid PET can help in 
differentiating AD from healthy cognitive individuals (HC). An associ-
ation between AD and hypometabolism was found in several brain re-
gions, such as the hippocampus [9] and parieto–temporal and posterior 
cingulate cortices [10]. Similarly, AD subjects compared to HC have 
shown higher amyloid burden in overall cortex and all cortical regions 
(precuneus, anterior and posterior cingulate, and frontal median, tem-
poral, parietal and occipital cortex) [11]. Also, the characteristic pat-
terns of cerebral glucose metabolism rate can help in AD classification 
and prediction of conversion from MCI to AD [12,13]. Anatomical atlas 
region of interests (ROIs)-based gaussian mixture model and model se-
lection are combined to predict discriminative brain metabolism pat-
terns [14]. The evidence of the association of hypometabolism and 
amyloid burden with AD encouraged the use of FDG-PET and amyloid 
PET as a suitable biomarker for AD classification. However, it is reliable 
for AD but not suitable biomarker for early MCI stage. 

Longitudinal studies were also reported for the progression of the 
disease or stable condition. Some group analysis-based studies have 
revealed differences in amyloid burden in various brain regions in 
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different subject groups; higher amyloid burden has been found in 
progressive mild cognitive impairment (pMCI) than those in stable MCI 
(sMCI) individuals [15,16]. Another study used the average regional 
intensity and inter-hemispheric symmetry between the parcellated re-
gions as features for support vector machines (SVM)-based classification 
[17]. The prominent goal of these methods is to simultaneously select 
the informative voxels as features and used to investigate the prediction 
of AD conversion based on FDG-PET images at various time-points [18]. 
Discriminative voxels of the images were selected based on mutual in-
formation criterion, SVM and Gaussian naive bayes were used for clas-
sification. The classification based on stage-specific categories of pMCI 
demonstrated better predictive accuracy than did the overall classifi-
cation of pMCI and sMCI [19]. Another study used quantification of 
plaque levels in different regions using the intensity values of all the 
voxels of 18F-flutemetamol PET scans as features for SVM-based classi-
fication of AD versus HC, and pMCI versus sMCI subjects [20]. Feature 
dimensionality reduction method, non-negative matrix factorization 
projections to functional brain images was applied and then selected 
several subsets of these projections, and classified using SVM [21]. Thus, 
feature selection also plays a role in improving accuracy. 

The combination of sMRI features with PET and cerebrospinal fluid 
(CSF) biomarkers is another dimension. These biomarkers yield com-
plementary information, i.e., different modalities capture disease in-
formation from different perspectives, thereby improving understanding 
of the disease pattern over that presented by one modality. The regional 
gray matter (GM) volumetric measures, CSF biomarkers, voxel-based 
FDG-PET intensities, and APOE genotype were trained using random 
forest for AD and MCI classification [22]. In earlier studies, the com-
bined regional volumetric measures, and regional cerebral blood flow 
were used for MCI classification using SVM [23]. In addition, the spatial 
patterns of brain atrophy-AD index with CSF biomarkers were combined 
to predict conversion from MCI to AD using SVM [24]. Further, FDG-PET 
and GM density values of all the voxels of selected ROIs and the average 
of all the voxels of selected ROIs were classified AD using SVM classifier 
[25]. The combined regional GM volume, regional average PET in-
tensity, and CSF biomarkers as features, and proposed a matrix- 
similarity-based loss function for better classification using SVM [26]. 
Similarly, regional thickness measures, regional correlative measures 
(calculated from thickness measures) and APOE genotype were used to 
classify AD using SVM classifier, and further prediction of AD conversion 
[27]. Also, hippocampal volume and CSF biomarkers were classified AD 
and MCI using the SVM classifier [28]. 

The combination of sMRI, PET, and CSF biomarkers together with 
genetic data and neuropsychological status exam scores has also been 
common. A study was combined with cognitive scores, APOE genotype, 
and CSF biomarkers to predict conversion from MCI to AD [29]. Simi-
larly, the combined hippocampal, ventricular, and temporal lobe vol-
umes, FDG-PET quantitative values, CSF biomarkers, APOE genotype, 
age, sex, and body mass index were used SVM-based AD and MCI clas-
sification [30]. In addition, the combined average regional cortical 
thickness, standard deviation of thickness, average regional surface area 
and cortical volume features from sMRI with CSF biomarkers and neu-
ropsychological status exam scores using SVM classifier [31]. The use of 
straightforward feature concatenation may be considered desirable but 
the method suffers from a major drawback as it treats all the features are 
equivalent, it provides no way to account for the different natures of 
features extracted from different modalities [32,33]. The fusion strate-
gies may either combine the results of classification rules trained on the 
individual modalities [34] or use special combination rules to combine 
features before training [35,36]. The multi-task learning [37], domain 
transfer learning [38] and semi-supervised multimodal manifold- 
regularized transfer learning [39] have been proposed for the predic-
tion of MCI conversion. Recently, multi-modal ML classification 
methods have been reported using 18Fluorine PET, sMRI and fMRI for 
the classification of AD and MCI [40,41], MCI classification and pre-
diction of progression to AD [42], graph-based transductive learning 

[43], and joint human connectome project multi-modal parcellation 
using logistic regression and recursive feature elimination [44]. The 
recent studies advocated the use of multi-modal imaging. 

Various deep learning (DL)-based MRI-PET imaging approaches have 
been proposed using combination of convolutional and recurrent neural 
network (CNN-RNN) [45], traditional bidirectional long short-term 
memory (biLSTM) [46] and fully stacked (FSbiLSTM) [47] including 
the combination of neuroimaging features with genomics data [48] as 
well as post-mortem pathological correlation [49]. Most of the current 
diagnosis utilize single imaging modality and the need for multimodality 
imaging with the technological advances majorly impact on clinical 
diagnosis with structural, diffusion, functional MRI (fMRI) [50], diffu-
sion and functional imaging [51]. These recent developments have 
already had a critical positive effect on the automated clinical diagnosis 
and prognosis with portent continued quick improvements utilizing ML 
and DL methods. Here, we propose a DL-based Inception-ResNet50 
wrapper model in classifying MCI and AD dementia patients from HC 
using multi-modal and complementary imaging modalities such as sMRI 
for better spatial details and combined with functional PET for good 
temporal resolution. The proposed approach demonstrates an efficient 
use of the multimodal information provided by the MRI-PET modalities 
by resolving the current limitations like feature selection biasness as 
well as feature dimensionality reduction to detect early MCI and AD 
diagnosis. 

2. Methods 

2.1. Image acquisition 

T1-weighted magnetization prepared rapid gradient-echo (MP- 
RAGE) images were acquired on a 1.5 T and 3 T Siemens scanner taken 
from Open Access Series of Imaging Studies (OASIS) online dataset 
contains about 1098 individuals over 2000 MR sessions, including 
multiple structural and functional sequences. The MR image acquisition 
details are repetitive time = 9.7 msec, echo time = 4.0 msec, flip angle 
= 100, inversion time = 20 msec, orientation = sagittal, thickness =
1.25 mm, slice gap = 0 mm, no. of slices = 128 and pixel resolution =
256x256. The subjects include both men and women aged between 42 
and 95 years with 605 cognitively healthy controls and 493 demented 
individuals at different stage and has been clinically and cognitively 
evaluated using clinical dementia rating (CDR scale:0–3; 0 being 
cognitively normal, 0.5: MCI, 1: mild AD, 2 moderate AD and 3 being 
severe AD) and mini-mental state examination (MMSE:1–30 score) to 
determine dementia stage or cognitively healthy. 

Functional imaging using 18F- fluorodeoxyglucose (FDG) was per-
formed on the high resolution (HR) PET scanner with 1500 raw imaging 
scans. The plasma glucose concentration was measured prior to tracer 
administration and individuals blood glucose concentrations >=165 
were excluded from the study. Participants received an I.V. bolus in-
jection of 5 mCi of 18F-FDG followed by a dynamic 60 min (consisting of 
24 × 5 sec frames, 9 × 20 sec frames, 10 × 1 min frames and 9 × 5 min 
frames) PET acquisition. 

2.2. Preprocessing 

The PET images are in red, green and blue (RGB) color space trans-
formed based on HSI (hue, saturation, intensity) space and applied 
Fourier transform (FT) on both MRI and PET images. Since the HSI space 
has the ability to separate the intensity of the intrinsic color information, 
and they are affected by lighting changes, characteristic of the images. 
Further, low-pass and high-pass spatial filtering was done using discrete 
wavelet transform (DWT). The fusion of both low and high pass filters on 
MRI and PET was done using inverse DWT and finally retransformed to 
HSI color space. The MRI-PET fusion workflow process is given in Fig. 1. 
The conversion of RGB to HSI color space for PET image was trans-
formed using the below expressions. Initial RGB image is normalized in 
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the range [0, 1] and estimated the HSI components [53]. 

θ = cos− 1

⎛

⎜
⎝

1
2 [(R − G) + (R − B) ]

[
(R − G)

2
+ (R − B)(G − B)1/2

]

⎞

⎟
⎠ (1)  

Hue(H) = θ if B ≤ G else(360 − θ) (2)  

Saturation(S) = 1 −
3

R + G + B
[min(R,G,B)] (3)  

Intensity(I) =
1
3
(R + G + B) (4) 

The raw MRI slice represented using two-dimensional (2D) Fourier 
transform is given by [54]. 

F(k, l) =
∑N− 1

i=0

∑N− 1

j=0
f (i, j)e− i2π

(

ki
N+

lj
N

)

(5)  

where f(i,j) is the image in the spatial domain and the exponential term 
is the basis function corresponding to each point F(k,l) in the Fourier 
space which can be interpreted as the value of each point F(k,l) is ob-
tained by multiplying the spatial image with the corresponding base 
function and summing the result. The basis functions are sine and cosine 

waves with increasing frequencies, i.e. F(0,0) represents the DC- 
component of the image which corresponds to the average brightness 
and F(N-1,N-1) represents the highest frequency. 

In a similar way, the Fourier image can be re-transformed to the 
spatial domain. The inverse Fourier transform is given by. 

f (a, b) =
1

N2

∑N− 1

k=0

∑N− 1

l=0
F(k, l)ei2π

(

ka
N+

lb
N

)

(6)  

in which 1
N2 is the normalization term in inverse transformation. This 

normalization is sometimes applied to the forward transform instead of 
the inverse transform, but should not be used for both. 

To obtain the result for the above equations (5 and 6), a double sum 
has to be calculated for each image point. However, the Fourier Trans-
form is separable and can be written as. 

F(k, l) =
1
N

∑N− 1

b=0
P(k, b)e− i2π

(

lb
N

)

(7)  

where P(k, b) =
1
N
∑N− 1

a=0
f (a, b)e− i2π

(

ka
N

)

(8) 

Using these two formulas, the spatial domain image is first trans-
formed into an intermediate image using N one-dimensional Fourier 
Transforms. This intermediate image is then transformed into the final 
image, again using N one-dimensional Fourier Transforms. Expressing 
the 2D Fourier Transform in terms of a series of 2 N one-dimensional 
transforms decreases the number of required computations by employ-
ing Fast Fourier Transform (FFT). Since FT is not localized in time and 
space, MRI images were further applied 2D discrete wavelet transform 
(DWT) of image I is calculated by passing it through a series of filters. 
First the samples are passed through a low-pass filter with impulse 
response g resulting in a convolution operator (*) of the two which is 
given by. 

y[n] = (I*g)[n] =
∑N− 1

j=0

∑N− 1

k=0
I(j, k)g[n − j]*g[n − k] (9) 

The image is also decomposed simultaneously using a high-pass fil-
ter, h. The outputs give the detail coefficients (from the high-pass filter) 
and approximation coefficients (from the low-pass). However, the two 
filters are related to each other and half the frequencies are removed as 
per Nyquist’s rule as follows: 

ylow[n] = (I*g)[n] =
∑N− 1

j=0

∑N− 1

k=0
I(j, k)g[2n − j]*g[2n − k] (10)  

yhigh[n] = (I*h)[n] =
∑N− 1

j=0

∑N− 1

k=0
I(j, k)h[2n − j]*h[2n − k] (11) 

The filter output of the low-pass filter, g is then subsampled by 2 and 
further processed by passing it again through a new low-pass filter g 
(approximation coefficients) and a high-pass filter, h (detail coefficients) 
with half the cut-off frequency of the previous one [55]. This decom-
position is repeated to further increase the frequency resolution and the 
approximation coefficients decomposed with high and low-pass filters 
and then down-sampled. After one level of transform, we obtain N/2 
coefficients by splitting into even and odd indexed positions in the lifting 
scheme (LS). This process is recursively repeated which can be shown as 
a cascading and filter banks representing a sub-space with a different 
time–frequency localization. We used PyWavelets package [56]. Instead 
of traditional LS (left-hand, right-hand and inner columns), we imple-
mented the horizontal filtering (lower and upper boundaries and inner 
rows) DWT kernel and then followed by vertical DWT. Then estimate the 
thresholds for all the detailed coefficients using soft thresholding 
method in which by setting to zero coefficients whose absolute values 
are lower than applied threshold and shrinking the nonzero coefficients 
toward zero. Now estimate thresholds for all detail coefficients on all 

Fig. 1. MRI-PET fusion workflow: MRI images were applied Fourier transform 
and PET images were transformed from RGB color space to HIS color space and 
then performed DWT fusion by decomposing into low-pass and high-pass filters 
and performed inverse DWT to reconstruct MRI-PET fusion image. 
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levels and obtain these matrices for all the detail components and use 
inverse DWT to reconstruct fusion image. 

2.3. MRI-PET registration 

MR images of all the subjects were initially bias corrected via N4 and 
then performed skull stripping. Next perform the atlas-based segmen-
tation of brain tissue on the skull stripped image using Advanced 
Normalization Tools (ANT) [57] and brain regions defined in Table 1. 
PET images were smoothed to achieve a common spatial resolution of 8 
mm to minimize inter-scanner differences and inter-frame motion 
correction for the dynamic PET images. We have performed registration 
in different levels such as individual space and template space. PET/MRI 
T1 image registration was performed based on the local rigid-body 3D 
affine transformation; T1-weighted MRI image using rigid-body regis-
tration and deformable cubic B-spline interpolation and finally warpped 
PET with MRI. A rigid-body affine transformation with 12 degrees of 
freedom (each 3 parameters for translation, rotation, shearing, scaling) 
used for global registration TG as follows: 

TG(x, y, z) =

⎛

⎝
θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠+

⎛

⎝
θ14
θ24
θ34

⎞

⎠ (12) 

For the reference image, IR and static image, IS then local registration 
mapping to a point u, deformation coefficient, h and transformation 

function, ω
⏞⏟⏟⏞

minimize image divergence, K given by. 

ω
⏞⏟⏟⏞

= argminK(IR, IS*h(u/ω) ) (13) 

Now kernel-based cubic B-spline interpolation [58] was used to 
evaluate the deformations for a set of control points, ∂b being set of 
deformation function and the deformation for any control point, ϑ in the 
test image is interpolated as given below. 

C(u/ϑ) =
∑

b
∂bγ3(

u − τb
Δδ

) (14) 

Now the deformation function, C(u/ϑ) coefficient is applied on test 
image i.e.,h(u/ω) = C(u/ϑ)

where γ3(u) = γ3(i)γ3(j)γ3(k) and u =[i, j, k]l i, j and k are spatial po-
sitions of lth slice of IR and transformed function is given as ω = ∂b. 

Structural T1-weighted image was co-registered with Montreal 
Neurological Institute (MNI152) T1 brain template. Further, PET to MR 
registration was performed using a voxel-based algorithm (VBA) that 
computes image transformations based on the alignment of intensity 
gradients. Since there is no gold standard score for PET/MRI fusion, we 
measured using mutual information [59]. A gradient-descent algorithm 
was used to optimize the normalized mutual information (NMI), a 
measure of information one random variable contains the other, here 
image intensity is random variable which is given by. 

NMI =
H(X) + H(Y)

H(X, Y)
(15)  

where H(X) and H(Y) are the marginal entropies of X and Y and H(X,Y) 
represents joint entropy. The NMI results between 0 (completely non- 
aligned images) and 1 (maximum for completely aligned images). The 
step-wise implementation of the proposed work is given in Fig. 2. 

2.4. Deep learning using convolutional neural networks 

Various DL models using convolutional neural networks (CNNs) have 
been proposed such as VGG-16 [60], DenseNet [61], AlexNet [62], 
ResNet-50 [63], Xception [64] and Inception-V3 [65]. The detailed CNN 
architecture of the proposed Inception-ResNet wrapper model is shown 
in Fig. 3. The model used input image size 299x299x3 with maximum 
pooling size of 3x3 stem model and consequently converting them into 
different blocks Inception-ResNet A, B, C including two reduction-A and 
reduction-B blocks. We implemented all the models using Keras and 
Tensorflow packages in Python 3. Hyperparameter optimization will be 
helpful in learning and fine tuning the model by varying different pa-
rameters such as learning rate = [0.01, 0.001, 0.0001], optimizers =
[Adam, root mean square propagation (RMSprop), stochastic gradient 
descent (SGD)], activation function = [Linear, Rectified linear unit 
(ReLU), Sigmoid, SoftMax] and epochs = [0 to 50] with step size = 10. 
The best parameters for the Inception-ResNet wrapper model were 
found as the learning rate = 0.0001, optimizer = Adam and average 
pooling with dropout = 0.2 using SoftMax activation function. The 
images in the entire dataset were split into 60 % training, 20 % vali-
dation and the remaining 20 % as test set. We then measured the ac-
curacy, model loss, specificity, sensitivity and area under the curve 
(AUC) with all the hyperparameters and chose the best model to predict 
on the test images. 

3. Results 

Various image-based CNN models were implemented and compared 
them with the proposed Inception-ResNet50 wrapper model using the 
fusion of MRI-PET feature maps. ResNet-50 model architecture uses 
input image size 224x224x3 with 7x7 convolution, maximum pooling 
size of 3x3 and implemented using three optimizers Adam, RMSprop 
and SGD by varying number of epochs from 0 to 50 with step size of 10 
and with different activation functions. ResNet50 showed accuracy of 

Table 1 
Gyri and Sulci brain region used in segmentation.  

Gyri Regions Sulci Regions 

Temporal lobe medial aspect Anterior ascending ramus of the lateral sulcus 
Entorhinal cortex Anterior horizontal ramus of the lateral sulcus 
Parahippocampal gyrus Anterior occipital sulcus 
Fusiform gyrus Callosal sulcus 
Temporal lobe (lateral) Calcarine sulcus 
Superior temporal gyrus Cingulate sulcus 
Middle temporal gyrus Collateral sulcus 
Inferior temporal gyrus Circular insular sulcus 
Transverse temporal gyrus Central sulcus 
Frontal lobe Caudal superior temporal sulcus, first segment 
Superior frontal Caudal superior temporal sulcus, second segment 
Middle frontal gyrus Caudal superior temporal sulcus, third segment 
Rostral Frontomarginal sulcus 
Caudal First transverse temporal sulcus 
Inferior frontal gyrus Heschl’s sulcus 
Pars opercularis Inferior frontal sulcus 
Pars triangularis Interhemispheric sulcus 
Pars orbitalis Intraparietal sulcus 
Orbitofrontal gyrus Inferior temporal sulcus 
Lateral division Lateral H-shaped orbital sulcus 
Medial division Lateral occipital sulcus 
Frontal pole Lateral sulcus 
Precentral gyrus Medial H-shaped orbital sulcus 
Paracentral lobule Olfactory sulcus 
Parietal lobe Occipitotemporal sulcus 
Postcentral gyrus Posterior ascending ramus of the lateral sulcus 
Supramarginal gyrus Paracentral sulcus 
Superior parietal lobule Posterior horizontal ramus of the lateral sulcus 
Inferior parietal lobule Primary intermediate sulcus 
Precuneus Postcentral sulcus 
Occipital lobe Parietooccipital sulcus 
Lingual gyrus Precentral sulcus 
Pericalcarine cortex Pretriangular sulcus 
Cuneus cortex Rhinal sulcus 
Lateral occipital cortex Subparietal sulcus 
Cingulate cortex Superior frontal sulcus (sfrs) 
Rostral anterior Superior rostral sulcus 
Caudal anterior Superior temporal sulcus 
Posterior Temporal incisure 
Isthmus Transverse occipital sulcus  
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81.9, 78.5 and 87.9 % for HC vs MCI, MCI vs AD and HC vs AD 
respectively using Adam optimizer, learning rate = 0.0001 and ReLU 
activation function. VGG-16 CNN model architecture uses input image 
size 224x224x3 with 13 convolutional and 3 fully connected layers, 
maximum pooling size of 2x2 and implemented using three optimizers 
Adam, RMSprop and SGD by varying number of epochs from 0 to 50 
with step size of 10 and with different activation functions. VGG-16 
showed accuracy of 82.5, 83.9, 89.4 % for HC vs MCI, MCI vs AD and 
HC vs AD respectively using Adam optimizer, learning rate = 0.0001 
and ReLU activation function. The AlexNet CNN model uses input image 
size 224x224x3 with 5 convolutional and 3 fully connected layers, 
maximum pooling size of 3x3 and implemented using three optimizers 
Adam, RMSprop and SGD by varying number of epochs from 0 to 50 
with step size of 10 and with different activation functions. AlexNet 
showed accuracy of 82.9, 80.5 and 87.9 % for HC vs MCI, MCI vs AD and 
HC vs AD respectively using Adam optimizer, learning rate = 0.0001 
and ReLU activation function. The Inception-V3 CNN model uses 22- 
layer architecture with parallel blocks of convolutions with different 
filters, followed by concatenation, captures different features at 1 × 1, 3 
× 3 and 5 × 5 and finally clusters them into groups of units based on 
high correlations. Inception-V3 achieved accuracy of 85.4, 86.7 and 
89.1 % for HC vs MCI, MCI vs AD and HC vs AD respectively using Adam 
optimizer, learning rate = 0.0001 and ReLU activation function. The 
Xception CNN model uses input image size 299x299x3 with maximum 
pooling size of 3x3 by capturing cross feature map correlations at 1x1 
convolutions and subsequently capture spatial correlations within each 
channel via 3x3 and 5x5 convolutions. Xception model achieved accu-
racy of 82.9, 81.5 and 84.9 % for HC vs MCI, MCI vs AD and HC vs AD 
respectively using Adam optimizer, learning rate = 0.0001 and ReLU 
activation function. Furthermore, we implemented the Inception- 
ResNet50 wrapper model with input image size 299x299x3 with 
maximum pooling size of 3x3, three inception blocks converted into two 
residual inception blocks as shown in Fig. 3. The proposed Inception- 
ResNet50 wrapper model achieved the highest classification 

accuracies of 95.5 %, 94.6 % and 95.7 % for HC vs MCI, AD vs MCI and 
HC vs AD respectively using Adam optimizer, learning rate = 0.0001 
and ReLU activation function as shown in Fig. 4. We noticed that the 
Inception-ResNet model outperformed the other CNN models. The 
comparison of all the six CNN models with their performance measures 
such as accuracy, (the ratio of total correct predictions to sum of all 
samples), precision, sensitivity or recall (true positive rate) and speci-
ficity (true negative rate) were calculated using below formulae: 

Precision =
TP

(FP + TP)
(16)  

Recall(orSensitivity) =
TP

(TP + FN)
(17)  

Specificity =
TN

FP + TN
(18)  

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(19)  

Error =
(FP + FN)

(TP + TN + FP + FN)
(20)  

where TP, TN, FP and FN are true positives, true negatives, false posi-
tives and false negatives respectively. TP = 192, FP = 8, FN = 7 and TN 
= 110 in classifying HC and MCI individuals, TP = 111, FP = 6, FN = 3 
and TN = 35 in classifying MCI and AD patients, TP = 194, FP = 6, FN =
3 and TN = 35 in classifying HC and AD patients. The comparison of six 
different CNN models with their performance measures were given in 
Table 2. The comparison of various DL models using combined MRI and 
PET modalities were given in Table 3 and the proposed Inception-ResNet 
model outperformed the existing methods with an accuracy, sensitivity, 
specificity, ROC of 95, 97.4, 92.76 and 98.5 % respectively. Fig. 5 shows 
the receiver operating characteristic (ROC) curve which illustrates the 

Fig. 2. (a) Schema of the proposed approach: MRI-PET feature fusion; Raw MRI images were preprocessed for bias field correction and perform skull stripping to 
extract brain tissue and segmentation into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF); PET images were transformed as shown in Fig. 1 and 
performed nonlinear affine registration of MRI and PET image to derive MRI-PET fusion image; Deep learning model using Inception and ResNet framework for the 
classification of HC, MCI and AD individuals. 
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trade-off between the false positive rate (on x-axis) and true positive rate 
(on y-axis) with an AUC of 0.988, 0.981 and 0.989 for HC vs MCI, MCI vs 
AD and HC vs AD respectively. 

4. Discussion 

The proposed method was outperformed with the existing CNN 
models using the combination of MRI and PET imaging modalities. The 
combination of CNN-RNN model showed an overall accuracy, sensitivity 
and specificity of 93.3, 92.5 and 93.9 % respectively [45]. Traditional 
biLSTM model showed an accuracy, specificity and sensitivity of 94.3, 
96.6 and 92.4 % respectively [46]. Recently, 3D-CNN FSBiLSTM model 
showed average accuracies of 94.82, 86.36, and 65.35 % for differen-
tiating AD from HC, progressive MCI from HC, and stable MCI from HC 
[47]. Various approaches have been proposed in classifying AD, MCI and 
HC using CNN such as hybrid enhanced independent component 
analysis-based segmentation of GM on T2-weighted MRI [66], single 
slice MRI [67] and texture features from MRI image [68]. The multi- 
modal imaging approaches are proposed using sparse hierarchical 
extreme learning [69], MRI and PET studies [70]; multimodal fusion 
with DL techniques [71–73]. Also, DL-based fMRI studies have been 
proposed for early AD and MCI diagnosis [74], static and dynamic 
functional brain networks [75], spatiotemporal modeling and brain 
network hub detection [76,77]. 

Our proposed approach using PET/MRI showed improved 

performance with respect to the recent ML and DL approaches that are 
currently available. A recent study based on kurtosis and diffusion fea-
tures using balanced random forest classifier in classifying MCI, AD and 
HC [78]. Another MRI study using gray matter density from GM tissue 
combined with the local gyrification index from WM tissue features for 
dementia diagnosis of HC, MCI and AD [79]. Several feature selection 
methods were proposed using local feature selection using SVM classi-
fier [80], and two-stage local feature fusion [81]. Recently, neuroana-
tomical heterogeneity in normal controls and disease subtypes using 
semi-supervised DL method has been proposed using Smile-GAN 
(SeMI-supervised cLustEring-Generative Adversarial Network) [82]. 
Another study proposed random forest feature selection and deep neural 
network classification strategy using fuzzy logic learning on a mixed 
cohort including healthy and AD individuals [83]. A CNN model based 
on hippocampus achieved a dice similarity coefficient of 0.87 for hip-
pocampal segmentation and also achieved an accuracy of 88.9 % and an 
AUC of 0.925 for classifying AD vs HC subjects, and an accuracy of 76.2 
% and AUC of 0.775 for classifying MCI vs HC subjects [84]. A classifier 
based on multiple cluster dense convolutional neural networks showed 
an accuracy of 89.5 .% and an AUC of 0.924 for AD vs HC classification, 
and an accuracy of 73.8 % and an AUC of 0.775 for classification of MCI 
vs HC [85]. A CNN-based approach based on cortical volume, surface 
area and cortical thickness features achieved an accuracy of 79.9 % and 
an AUC of 0.861 in leave-one-out cross validations [86]. A 3D CNN 
approach showed accuracy, sensitivity and specificity of 98.90 %, 98.90 

Fig. 3. CNN architecture for the proposed (a) Inception and ResNet50 wrapper model is split into different blocks: (b) Inception-ResNet-A, (c) Reduction-A, (d) 
Inception-ResNet-B (e) Reduction-B, (f) Inception-ResNet-C with ReLU activation function and average pooling with dropout = 0.2 and finally applied SoftMax 
activation function to get final output. 
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% and 98.80 % respectively in classifying HC vs MCI; 99.10 %, 99.80 % 
and 98.40 % respectively in classifying HC vs AD; 89.40 %, 86.70 % and 
84.00 % respectively in classifying MCI vs AD patients [87]. 

A multi-modal MRI-PET study using a cascaded CNN approach 
achieved an accuracy of 93.26 % for classification of AD vs HC and 
82.95 % for classification MCI converters vs HC [88]. A recent study 
using the DenseNet-121 based approach achieved overall accuracy of 
about 90 % in classifying HC, MCI and AD patients [89]. A multi-modal 
OASIS dataset study classified with an accuracy of 87.0 % using random 
forest [90]. The cortical thickness-based non-linear SVM approach 
showed accuracy, sensitivity and specificity of 75.0 %, 75.0 % and 77.0 
% respectively in classifying HC,early MCI, late MCI and AD patients 
[91]. 

The main advantages of the proposed method over existing methods 
were firstly, low feature dimensionality derived on fusion image 
compared to individual imaging modalities. For instance, where one 

modality has many more features than another (or has variation on a 
much larger scale), classification algorithms trained on concatenated 
features may produce prediction models that effectively ignore the other 
modalities. Secondly, to minimize the misregistration error of MRI-PET, 
the normalized mutual information was used for the affine global 
registration and in case of the local registration, non-rigid deformation 
with cubic B-spline interpolation was used. Thirdly, most biomedical 
imaging studies do not report handling of imbalanced samples in each 
group and in this study, we performed data augmentation techniques 
using random combinations of intensity variation, rotation, translation, 
horizontal and vertical flipping methods to avoid model overfitting or 
under fitting. Lastly, the proposed method can handle color PET images 
without converting to grayscale. However, there are few limitations in 
our study. Firstly, the prediction of disease progression or stable (non- 
converters) over time (longitudinal data). Also, another limitation of 
multimodal imaging is collection of data on same individuals which is 

Fig. 3. (continued). 
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expensive, complex, and tedious for implementation. However, the 
study excluded few subjects due to non-availability or artifacts in PET 
and/or MRI images of the patients and healthy individuals. The current 

understanding of multi-modal imaging biomarkers for AD are limited for 
clinical utility. 

5. Conclusions 

We have developed the Inception-ResNet wrapper CNN model using 
the fusion of structural MRI and PET imaging features. From this study, 
we conclude that the proposed Inception-ResNet model outperformed 
the other existing CNN models with the highest overall average accuracy 
and ROC in classifying HC, MCI and AD patients. To conclude, the deep 
learning model with the fusion of MRI-PET imaging modalities 
improved the accuracy and may be helpful as the automated imaging 
diagnostic tool for the classification of MCI and AD from HC. In future, 
the utility of complementary imaging techniques may be useful to 
improve the clinical diagnosis. 

Author Contributions 

Fig. 4. The accuracy and loss plots of proposed model for the training and validation data using Adam (best optimizer) shows that all the models are well fitted both 
for the training and validations data in classifying (a) HC vs MCI; (b). MCI vs AD; (c). HC vs AD individuals. 

Table 2 
Comparison of various CNN models using Adam optimizer.  

Model Performance 
Index 

HC vs 
MCI 

MCI vs 
AD 

HC vs 
AD 

ResNet50 Accuracy  81.7  79.1 87.8  
Sensitivity  81.9  79.3 87.9  
Specificity  81.6  78.9 87.8 
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Table 3 
Comparison of various deep learning models using MRI + PET modalities.  
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