
Multi-Process File System 

 

Project Description: 

The goal of this project is to design and implement a multi-process file system that provides file sharing 

and memory management functionalities. The file system should support concurrent access by multiple 

processes, handle file permissions, and manage memory efficiently. 

 

Project Components: 

1. File System Structure: This component involves designing and implementing the structure of the 

file system. It includes creating a root directory to organize files, a file allocation table to track 

file locations, and data blocks to store actual file data. Each file will have its own metadata, such 

as size, permissions, and the location of its data blocks. 

2. IPC Mechanism: The Inter-Process Communication (IPC) mechanism allows processes to 

communicate and share data with each other. You can choose from different IPC techniques like 

shared memory, message passing, or pipes to enable processes to exchange information and 

collaborate on accessing shared files. 

3. Process Management: The process management module handles process creation, termination, 

and scheduling. It ensures that processes have appropriate access to shared files and enforces 

file permissions. This component plays a crucial role in coordinating the activities of multiple 

processes accessing the file system concurrently. 

4. Memory Management: Efficient memory management is essential for both the file system and 

the processes running on it. This component involves implementing a memory management 

system that allocates and deallocates memory effectively. Techniques such as paging or 

segmentation can be employed to manage memory efficiently. 

5. File Operations: Basic file operations like creating, opening, reading, writing, and deleting files 

need to be implemented. These operations should be designed to allow multiple processes to 

perform them concurrently while maintaining data integrity and consistency. 

6. File Permissions: Implementing a permission system allows processes to control access to their 

files. This component involves implementing read, write, and execute permissions for each file. 

The file system should enforce these permissions during file operations to ensure proper security 

and access control. 

7. Error Handling: Developing a robust error handling mechanism is crucial to handle various error 

conditions that may arise during file system operations. Examples of such errors include file not 

found, insufficient permissions, or out-of-memory errors. Proper error handling improves the 

reliability and stability of the file system. 

8. Testing and Evaluation: Creating a comprehensive set of test cases is essential to validate the 

functionality and correctness of the file system. Test scenarios should include concurrent access, 

file sharing, permission enforcement, and memory management. Thorough testing helps identify 

and resolve any issues or bugs in the implementation. 

 



Optional Enhancements: 

• Implement directory support for organizing files into hierarchical structures. 

• Develop a user interface to interact with the file system, allowing users to perform file 

operations and manage processes. 

• Implement file caching mechanisms to improve read/write performance. 

• Integrate file system encryption and decryption for secure file storage. 

 


