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Abstract
In a cloud environment, reducing energy consumption while ensuring diverse quality of service (QoS) guarantees is

challenging for task schedulers. Specifically, the energy-efficient scheduling for real-time tasks is more complicated

because such tasks have strict time constraints. In this paper, we propose a two-stage scheduling method for deadline-

constrained tasks. In the first stage, Enhanced Ant Colony Optimization (EACO) is a global scheduler that allocates

incoming cloud tasks to suitable virtual machines (VMs). It can minimize makespan and energy consumption while

guaranteeing strict deadline constraints. In the second stage, the Modified Backfilling (MBF) algorithm reorders VM’s

waiting queue to improve the task completion rate. We conduct two experiment series on synthetic and real trace datasets

using the Cloudsim toolkit. Extensive experiments show that compared with other well-known task scheduling methods,

our method can effectively reduce makespan by 25.28% and energy consumption by 23% on average. The task completion

rate can be increased by 6.27%. The proposed method has a significant improvement compared with other well-known

algorithms.
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1 Introduction

Cloud computing abstracts tremendous servers into virtual

resources through virtualization technology and provides

users with a pay-per-use fashion [1, 2]. This paradigm had

significantly reduced the financial and maintenance cost of

acquiring computing resources for application deployment.

Real-time applications deployed on the cloud have strict

time constraints [3], such as multimedia, video streaming,

internet of things (IoT), etc. Backfilling algorithms [4] are

widely used in cloud computing to improve resource uti-

lization and task response time. It discovers idle time slots

between tasks and inserts suitable tasks in this gap, thereby

improving resource utilization and task waiting time [5].

This method can significantly improve task completion rate

but neglect the energy consumption.

With the development of cloud computing, energy

consumption has become a major problem that can not be

ignored [6]. Reducing energy consumption has become a

hot spot that most researchers have devoted to in recent

years [7]. High energy consumption in cloud data centers

increases carbon emissions and affects the reliability of the

system [8]. This can be supported by Arrhenius’s life-stress

model [9], which believes that ‘‘for every 10�C increase in

temperature, the failure rate of electronic devices will

increase by a factor of two’’. Therefore, it is necessary to

take measures to reduce energy consumption in the cloud

data center. Virtual machine (VM) consolidation [10] is the

main method to reduce energy consumption in the cloud

data center. It takes hot migration technology to consoli-

date low-utilization VMs and switches idle servers to

& Fagui Liu

fgliu@scut.edu.cn

& Bin Wang

wangb02@pcl.ac.cn

Xiaojian He

hexj@scut.edu.cn

Guoxiang Zhong

cszhongguoxiang111@mail.scut.edu.cn

1 School of Computer Science and Engineering, South China

University of Technology, Guangzhou, China

2 Cyberspace Security Research Center, Peng Cheng

Laboratory, ShenZhen, China

123

Cluster Computing (2022) 25:3265–3281
https://doi.org/10.1007/s10586-022-03561-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3758-9141
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03561-y&amp;domain=pdf
https://doi.org/10.1007/s10586-022-03561-y


energy-saving mode [11, 12]. Although VM consolidation

can significantly reduce energy consumption, it will also

generate communication costs in VM migration. If we

consider energy consumption and load balance in the task

scheduling phase, the communication costs will decrease as

VM consolidation triggering decreases.

Task scheduling is a vital step in cloud computing to

improve the performance of the cloud system and ensure

quality of service (QoS) [13, 14]. An efficient scheduling

algorithm can not only reduce the energy consumption of the

data center, improve resource utilization, but also improve

the response time of the task [15, 16]. However, task

scheduling problems are still NP-complete [17]. When the

scale of the problem increases, the algorithm will suffer

dimension explosion [18]. Hence, most algorithms are

searching for an acceptable sub-optimal solution. In recent

years, meta-heuristic algorithms and their variations have

been widely used in cloud computing to solve scheduling

problems [19]. It may benefit from the high efficiency of the

meta-heuristic algorithm and can find an approximate opti-

mal solution in a polynomial time [2], include ant colony

optimization (ACO) [20, 21], genetic algorithm (GA)

[22, 23], particle swarm optimization (PSO) [24, 25], etc.

There are two kinds of problems we face during the

scheduling phase. The first one is when a relatively larger

task is assigned to a VM with weak processing ability. We

can reduce energy consumption, but the task processing

time will increase, which may cause the task can not

complete before its deadline. The second one is that when a

small task allocates to a VM with strong processing ability,

it will consume more energy and make a large task stay

waiting for extra time. This can be supported by [26]

energy model. In other words, we should schedule tasks on

the most suitable VMs to trade-off several conflict metrics.

There are lot of work devoted to multi-objective opti-

mization scheduling problems and mainly optimize cost,

energy consumption, and response time [27]. However,

these methods can not achieve a good balance between

optimizing energy consumption and task completion rate

under deadline constraints.

To resolve the mentioned issues, this paper proposes a

two-stage scheduling method for deadline-constrained

tasks in cloud computing. In the first phase, Enhanced Ant

Colony Optimization (EACO) is a global scheduler that

allocates incoming cloud tasks to suitable VMs. This stage

can minimize makespan and energy consumption while

satisfying task response time. In the second phase, the

Modified Backfilling (MBF) algorithm reorders the VM’s

waiting queue to improve the task completion rate. We

conduct simulation experiments using the CloudSim toolkit

to verify the effectiveness of our algorithm. The main

contributions of this paper are as follows:

1. We propose a two-stage task scheduling framework

based on the ant colony algorithm and backfilling

strategy to solve and optimize the task scheduling

scheme by considering the makespan and energy.

2. We present a novel ACO based on deadline constraints

to obtain a near-optimal task scheduling scheme to

balance energy consumption and task completion rate.

In addition, according to the sensitivity of the task

deadline, the MBF strategy is proposed to adjust the

execution order of tasks in the VMs waiting queue to

improve the task completion rate further.

3. Experimental results show that compared with other

well-knownmethods, our algorithm can better guarantee

the timely response of deadline-constrained tasks and

minimize the energy consumption of cloud systems.

The rest of this paper is organized as follows: Sect. 2

introduces related work. Section 3 presents our proposed

scheduling framework and the models used in this paper.

We introduce the implementation detail of EACO–MBF in

Sect. 4. Section 5 evaluates the performance of the pro-

posed algorithms. Finally, we conclude this paper in

Sect. 6.

2 Related works

The responsibility of the cloud task scheduler is to allocate

resources reasonably so that tasks can be executed on

appropriate computing resources. In this process, it is

necessary to guarantee the QoS of users and maximize the

benefits of cloud service providers. Different users have

different requirements for QoS, such as cost, response time,

and reliability [28]. Therefore, service profit and energy

consumption are significant issues that cloud providers

need to consider urgently. Hence, this conflict problem is

what the scheduler needs to address. Moreover, the

dynamics and heterogeneity of the cloud environment

further complex this problem [29]. There exists numerous

work in task optimize scheduling in the cloud environment,

including energy-aware and QoS-aware. We classify these

work into two categories: (i) Energy-aware task schedul-

ing, and (ii) Multi-objective task scheduling.

2.1 Energy-aware task scheduling

Task scheduling is a vital step to reduce energy con-

sumption in cloud data centers. Efficient task scheduling

not only improves system performance but also cuts down

energy consumption.

Yuan et al. [30] used the G/G/1 queuing model to ana-

lyze server performance and proposed a honeybee algo-

rithm based on simulated annealing to achieve task energy
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optimization scheduling. Taking into account energy con-

sumption, Ding et al. [31] divided task scheduling into two

stages. The first stage used a centralized task dispatcher

based on the M/M/S queuing model to assign tasks to the

host. According to the user’s service level agreeement

(SLA) requirements, the Q-learning-based scheduler maps

tasks to VMs in the second stage, thereby minimizing

energy consumption and task response time. In order to

achieve the trade-off between profit and energy consump-

tion, Kumar et al. [25] proposed an improved particle

swarm optimization algorithm (PSO-COGENT), which can

balance the execution time, cost, and energy consumption.

In the area of edge or fog, computation offloading is facing

more challenges and diversities such as limited energy power

and ephemeral resources [32]. Sun et al. [33] proposed a

general IoT-fog-cloud architecture that fully exploits the

advantages of fog and cloud and then presents energy and

time-efficient computation offloading and resource alloca-

tion (ETCORA) algorithm tominimize energy and time cost.

In [34], the authors formulated the computation offloading

problem for mobile edge computing into the system cost

minimization problem. They proposed a distributed algo-

rithm consisting of offloading strategy by taking the com-

pletion time and energy into account.

2.2 Multi-objective task scheduling

In order to maximize the profit of cloud providers while

satisfying user QoS, scheduling algorithms based on multi-

objective optimization have been used to solve such two or

more conflicting objectives. In [35], Abdullahi et al. pro-

posed a discrete version of the symbiotic organism search

algorithm to achieve optimal scheduling in terms of make-

span, response time, and VM imbalance rate. In order to

reduce the time-consuming problem of VM creation, Zhang

et al. [36] proposed a two-stage task scheduling algorithm.

Based on the historical task scheduling information, the

authors used Bayesian classifiers to classify tasks and create

correspondingVMs in advance. In the second stage, tasks are

scheduled to be executed on the best matching VM type to

minimize makespan and deadline violation rates.

Masadeh et al. [37] proposed a new metaheuristic called

vocalization of humpback whale optimization algorithm

(VWOA). They applied it to task scheduling problems in the

cloud environment to reduce makespan, cost, energy con-

sumption, andmaximize resources utilization. Zhou et al. [22]

propose a genetic algorithm with a greedy strategy to mini-

mize the total execution time, response time, and cost of the

task. Wu et al. [38] proposed an L-ACO and a heuristic

algorithm ProLiS in workflow scheduling to minimize exe-

cution cost under deadline constrained. Sahoo et al. [39] used

the learning automata (LA) scheduling algorithm to optimize

the energy consumption and makespan for deadline-sensitive

tasks. Although this method can greatly improve the task

completion rate, it can not balance multiple objectives.

In [40], the sea lion optimization algorithm (SLnO) is

applied to solve combinatorial optimization task scheduling

problems in the cloud environment. The algorithm conserves

more energy and increases resources utilization simultane-

ously compared with other meta-heuristic algorithms. Pre-

mJacob et al. [41] used a hybrid algorithm of cuckoo search

and particle swarm optimization to reduce makespan, cost

and improve completion rate. However, although minimiz-

ing makespan can indirectly improve task completion rate, it

can not achieve the best performance. To solve the large-

scale task scheduling optimization problem on Infrastructure

as a Service (IaaS) cloud computing environment, Abdullahi

et al. [42] proposed symbiotic organisms search algorithm

with a chaotic optimization strategy to address multi-ob-

jective task scheduling.

The above survey result shows that meta-heuristic algo-

rithms have been widely used to solve the multi-objective

optimization scheduling problem in the cloud, which may

benefit from the significant advantages in implementation,

deployment, and performance. This article proposes an

enhanced ant colony algorithm to solve the cloud’s deadline-

constrained multi-objective task scheduling problem. The

goal of task scheduling in this paper is to improve task

completion rate, minimize makespan and reduce energy

consumption while achieving load balance. Furthermore, we

use a modified backfilling algorithm to reorder the tasks in

theVMwaiting queue to further improve the completion rate

of tasks. Unlike the current research work to improve the

completion rate by minimizing the makespan, we take the

completion rate as one of the optimization objectives in our

scheduling algorithm. In [39], the authors regarded the

completion rate as one of the optimization objectives in the

scheduling algorithm, but it cannot achieve the balance of

multiple objectives. The algorithms proposed in this paper

can achieve the trade-off between completion rate, make-

span, and energy consumption.

3 Task scheduling framework

A cloud data center consists of many heterogeneous ser-

vers, each hosting one or more VMs. VMs are heteroge-

neous, which have different efficient performances

depending on the resources allocated to them [43]. The

efficient task scheduling algorithm assigns tasks to appro-

priate VMs to make full use of cloud system resources and

guarantee completion time.

In this section, we introduce the cloud task scheduling

framework and discuss the related models as well as the

optimization objective of the proposed scheduling algo-

rithm. The main mathematical symbols used in this paper
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are listed in Table 1. The proposed scheduling framework,

which is shown in Fig. 1, is designed for deadline-con-

strained multi-objective task scheduling in the cloud

environment. The scheduling framework mainly consists of

two phases. The first phase uses an enhanced ant colony

algorithm to assign tasks to suitable VMs to minimize the

makespan, improve task completion rate and reduce energy

consumption. In the second phase, we use a modified

backfilling algorithm to reorder tasks in the VM waiting

queue, which can further improve the task completion rate.

Next, we will introduce the model used in this paper and

the objective function of task scheduling.

3.1 VM model and task model

In this paper, our scheduling objective is to find a mapping

scheme between tasks and VMs to minimize makespan,

energy consumption and improve task completion rate. Let

V ¼ fv1; v2; :::; vng represents N VMs that are used to

process tasks submitted by users, each vj in V represents

VM ID and with different computing capacity Cj (in terms

of Million Instruction Per Second (MIPS)). T ¼
ft1; t2; :::; tmg represents M tasks, M[N, each ti in T

represents task ID and consist of three attribute

ti ¼ \ai; li; di [ , where ai; li; di are the arrival time, task

length (in terms of Million Instrution (MI)) and deadline of

ti. The final scheduling scheme can represent by a M � N
matrix S as following:

S ¼

s11 s12 . . . s1n

s21 s22 . . . s2n

. . . . . . . . . . . .

sm1 sm2 . . . smn

2
6664

3
7775;

where si;j is a decision values, when si;j ¼ 1, it represents

task ti allocated to VM vj, otherwise si;j ¼ 0. And for each

task i 2 f1; 2; :::;mg,
PN

j¼1 si;j ¼ 1.

We model the estimated execution time of the task on

the VM as the length of the task divided by the allocated

VM’s computing capacity. Therefore, the estimated exe-

cution time of the tasks on VMs can be represented by an

M*N matrix ETC. Each row in the matrix ETC contains

the estimated execution time of a task on each VM.

ETC ¼

etc11 etc21 . . . etcn1
etc12 etc22 . . . etcn2
. . . . . . . . . . . .

etc1m etc2m . . . etcnm

2
6664

3
7775;

where etcji represents the estimated execution time of task ti
on VM vj, and it can calculated as follows:

Table 1 Main symbol used in this paper

Symbol Description Symbol Description

ti Task ID of ith task Eaj Energy consumption of vj in active state

vj VM ID of jth VM Eidlj Energy consumption of vj in idle state

Cj Computing capability of vj (in terms of MIPS) Etotal Total energy consumption in cloud

ai Arrival time of ti F Objective function

li Task length of ti s0 Initial pheromone value

di Deadline of ti si;j Pheromone value of combination ðti; vjÞ
si;j Decision values indicate whether ti allocate to vj gi;j Heuristic information of combination ðti; vjÞ

etcji Estimation execution time of ti on vj Ej
i

Energy consumption of ti execute on vj

stji Start time of ti on vj pji The probability of ti allocate to vj

ftji Finished time of ti on vj CR Completion rate

dcji Decision value indicate whether ti execute on vj can satisfy deadline. �U Average CPU utilization rate

Ej Total Energy consumption of vj Uj CPU utilization rate of vj

lj Total execution time of tasks assigned to vj Ustd Standard deviation of CPU utilizaiotn

U Makespan

Fig. 1 EACO–MBF scheduling framework
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etcji ¼
li
Cj

: ð1Þ

The task’s start execution time can be determined by the

task’s finish time in the tail of the VM waiting queue and

the task’s arrival time. Let stji and ftji respectively represent

the start time and finish time of task ti on VM vj, so stji can

be calculated as follows:

stji ¼ maxðftjp; aiÞ: ð2Þ

This formula shows that task ti can start its execution at

latter of its own arrival time and the execution end time of

the previous task. The finish time of the task ti can be

defined as:

ftji ¼ stji þ etcji: ð3Þ

By comparing the finished time and the task’s deadline, we

can determine whether a task violates its deadline. Let

binary variable dcji indicates whether task ti execution on

the VM vj can meet the deadline requirement, if met,

dcji ¼ 1, otherwise dcji ¼ 0. The mathematical formula is as

follows:

dcji ¼
1; ftji � di

0; ftji [ di

(
: ð4Þ

3.2 Energy model

In this paper, we mainly focus on the energy consumption

of IT equipments in the cloud environment and establish an

energy consumption model, like [39]. VMs in an idle state

also consume plenty of energy, accounting for about 60%-

70% of VMs in the active state. [9, 26, 44]. Let Eaj rep-

resents the energy consumption of VM vj in an active state,

and Eidlj represents the energy consumption of the idle

state. Ej is the total energy consumption of the jth VM

which considers the energy consumption of active state and

idle state, calculated as follows:

Ej ¼ ðEaj þ EidljÞ � Cj½39�: ð5Þ

The totla execution time lj of VM vj can be calculated as:

lj ¼
XM
i¼1

ðsi;j � etcjiÞ: ð6Þ

Makespan U is the maximum total execution time among

all VMs, it can be expressed as:

U ¼ maxðljÞ; j 2 f1; 2; :::;Ng: ð7Þ

The energy consumption of VM vj in active state and idle

state are calculated as follows:

Eaj ¼ lj � rj; ð8Þ

Eidlj ¼ ðU� ljÞ � 0:6� rj½39�; ð9Þ

where rj ¼ 10�8 � ðCjÞ2 Joules/MI [26]. The total energy

consumption of cloud system is denoted by Etotal, and it can

expressed as follows:

Etotal ¼
XN
j¼1

Ej: ð10Þ

3.3 Objective function

This paper aims to minimize makespan and energy con-

sumption while improving task completion rate. When

multiple indicators conflict in multi-objective optimization,

it becomes more challenging. To improve task completion

rate, tasks will be scheduled to execute on a high-perfor-

mance VM as much as possible, which will cause more

energy consumption and lead to load imbalance, and vice

versa.

In this paper, we construct a multi-objective function

that considers the makespan and energy consumption.

Based on the characteristics of the ant colony algorithm

using pheromone optimization, the deadline constraints are

introduced in the pheromone update rule, which only

considers the objective function in the standard ACO. In

this way, we can achieve the best performance between

makespan, energy consumption, and completion rate. The

objective function is as follows:

F ¼ min x� U
Umax

þ ð1� xÞ � Etotal

Emax

� �
; ð11Þ

where Umax is the maximum allowable makespan, Emax

represents the maximum energy consumption that the

cloud system may generate. x (0�x� 1) is a weight

coefficient that can be adjusted in practice. For example, to

meet the user’s QoS and improve task’s response time, we

can set x[ 0:5, whereas in an energy-aware environment,

we can set x\0:5. When x is equal to 0 or 1, the

scheduling problem will be more straightforward because

multi-objective optimization scheduling is simplified to a

single-objective optimization scheduling.

4 EACO–MBF scheduling model

This section describes the detailed implementation of our

proposed EACO–MBF algorithm that attempts to minimize

the performance metrics (i.e., makespan, energy con-

sumption) and satisfy task deadline constraints.
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4.1 Enhanced ant colony optimization algorithm

Ant colony algorithm was firstly proposed by [45] to solve

the traveling salesman problem. The basic idea of the ant

colony algorithm is that in each iteration of the optimiza-

tion process, the ants gradually gather on the optimal path

according to the pheromone and heuristic information.

Finally, all ants concentrate on the best path under positive

feedback.

This paper uses the ant colony algorithm to solve the

deadline-constrained multi-objective task optimization

scheduling problem. Based on the characteristics of the ant

colony algorithm according to pheromone optimization, we

add the deadline of the task to the pheromone update rule

to achieve the best performance in makespan, energy

consumption, and task completion rate. In the enhanced ant

colony algorithm, the pheromone update rule of the ant

colony algorithm is modified. The evaporation and accu-

mulation of pheromone are based not only on the fitness

function but also on whether the task can meet the deadline

requirement on the assigned VM. Using the Enhanced

ACO, we can better trade off multiple objects, such as

completion rate, makespan, and energy consumption.

4.1.1 Definition of pheromone and heuristic information

In the real world, the pheromone is a chemical for ants to

communicate with each other. Ants find food by sensing

the pheromone left by other ants [45]. In this paper,

pheromone was represented by the combination of task and

VM. The more the accumulated pheromone, the more ants

select this VM in prior iteration and prove that the mapping

scheme is better. Let si;j represent the pheromone value of

combination ðti; vjÞ. The initial pheromone value is very

important because it greatly influences the optimization

efficiency of the ACO. We set the initial pheromone value

s0 as follows:

s0 ¼
1

N
: ð12Þ

Apart from pheromone, heuristic information is another

important factor in the ant colony algorithm. Heuristic

information gi;j represent the expected value that allocate

task ti to VM vj. In this paper, heuristic information gi;j is
represented by the combination of estimated execution

time and energy consumption required for task ti execute

on VM vj. The larger the gi;j, the shorter execution time and

less energy consumption can be obtained by assigning task

ti to VM vj. We set gi;j to a small enough number when task

ti execute on VM vj can not satisfy it’s deadline (10�3 in

this paper), so that in the process of optimization, the

probability of task ti selecting VM vj is close to 0. In this

way, we can reduce the search space of ants in the opti-

mization process, improve the algorithm’s convergence

speed, and find the optimal solution in a shorter time. The

mathematical expression of gi;j is as follows:

gi;j ¼
1

etc j
i � E j

i

ft ji � di

10�3 ft ji [ di

8<
: ; ð13Þ

where Ej
i represent the energy consumption of task ti exe-

cute on VM vj.

4.1.2 Pseudo-random-proportional and pheromone
updating rules

In each iteration of the ant colony algorithm, the ant will

select the next target based on the value of pheromone and

heuristic information and determine which VM to choose

next according to a probabilistic behavior selection rule

called pseudo-random ratio. The expression is as follows:

dj ¼ argmax½si;j�a � ½gi;j�b q� q0
J q[ q0

�
; ð14Þ

where q0 is a value between [0, 1], q is a parameter uni-

formly distributed between [0, 1], a and b are weighting
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factors that determine the degree of importance between

pheromone and heuristic, and J is a random variable. The

value of ½si;j�a � ½gi;j�b represents the expected value of

selecting VM vj for task ti, it was jointly determined by

pheromone si;j and heuristic information gi;j. The formula

14 indicates that the probability of the ant chooses the

optimal task and VM mapping scheme is q0. At this time,

the ant continues to develop the existing knowledge.

Moreover, explore other possible scheduling schemes with

the probability of 1� q0 to avoid falling into the local

optimal.

In this paper, the random variable J selects the target

VM using the roulette way. The formula for calculating the

probability of roulette is:

pi;j ¼
½si;j�a � ½gi;j�bP
vj2V ½si;j�

a � ½gi;j�b
; ð15Þ

pi;j represents the probability of task ti choosing VM vj, a
and b are weight coefficients, which determine the influ-

ence of pheromone and heuristic information, respectively.

We use the pseudo-random proportional rule to select the

target VM for each task. When q� q0, the task will select

the VM with the product of the largest pheromone and

heuristic information. Otherwise, it will be based on roul-

ette to explore other possible mapping schemes.

After each task selects the destination VM, the local

pheromone will be updated. This process evaporates part of

the pheromone so that the probability of other ants

selecting the same VM will reduce, and the chance of other

unselected VMs is increased. The local pheromone update

rule is as follows:

si;j ¼ ð1� nÞ � si;j þ n� s0; ð16Þ

where n is the pheromone evaporation coefficient, satis-

fying 0\n\1, which indicates the degree of pheromone

evaporation, and s0 is the value of the initial pheromone.

The smaller the n, the more pheromone will be evaporated.

Otherwise, more pheromones will be left.

In this paper, our scheduling objective is to minimize the

makespan, energy consumption, and improve task com-

pletion rate. We can only achieve minimize makespan and

energy consumption if we use the standard ACO. Although

minimizing the makespan can improve task completion

rate, it cannot achieve the best performance. Inspired by

[39], we introduced task deadlines into the pheromone

update rules to improve the task completion rate. The

improved local pheromone update rules are as follows:

si;j ¼
ð1� nÞ � si;j þ n� s0; ft ji � di

si;j � / ft ji [ di

�
; ð17Þ

where / is the penalty coefficient, and 0\/\1 means to

punish the pheromone combination ðti; vjÞ that cannot meet

the deadline. The pheromone will be reduced to a mini-

mum so that other ants have the slightest chance of

choosing this VM. When all the ants in the population

complete an iterative optimization process, we will select

the optimal ant according to the formula 11. If the ant is the

optimal ant so far, then it is regarded as the optimal ant.

Otherwise, it was the optimal ant before this iteration. Let

S� represent the optimal scheduling scheme generated by

the optimal ant in this iteration, and update the global

pheromone according to this optimal scheme as follows:

si;j ¼ ð1� nÞ � si;j þ n� FðS�Þ: ð18Þ

The global pheromone update can increase the pher-

omone of each combination in the optimal scheduling

scheme S� to increase the chances of ants selecting these

combinations in subsequent iterations, and the ants will

gradually aggregate in the optimal path. In the local

pheromone update rule, we introduce the task deadline

condition, thereby reducing VMs that cannot meet the

selected task deadline. Similarly, in the global pheromone

update rules, we introduce task deadline conditions to

modify the global pheromone update rules. The revised

global pheromone update rules are as follows:

si;j ¼
ð1� nÞ � si;j þ n� FðS�Þ ft ji � di

ð1� nÞ � si;j ft ji [ di

�
; ð19Þ

the new update rule Eq. (19) indicates that only the com-

binations in the current optimal scheduling schema S� that
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can meet the task deadline are allowed to release pher-

omone. Otherwise, these combinations only vaporize

pheromone. This can increase the selection chance of other

VMs that can meet the task deadline. The process of the

EACO is shown in Algorithm 1.

4.2 Modified backfilling algorithm

Backfilling algorithms are widely used in cloud computing

to improve resource utilization [4]. The backfilling algo-

rithm finds time slots in computing resources and selects

appropriate tasks to execute in these time slots, thereby

improving resource utilization and task completion rate. In

this paper, based on the backfilling algorithm’s character-

istics, we use a modified backfilling algorithm to reorder

the tasks in the VM waiting queue so that more tasks can

meet the deadline. The more implementation details of

MBF will be discussed in the following example.

As shown in Fig 2a, at the current moment, VM1 and

VM2 are executing two tasks, respectively. At times t=10

and t=11, task T5 and task T6 arrive at the cloud data

center and are scheduled by the EACO scheduler to VM1

for execution. The execution time and deadline of task T5

are 4 and 18, respectively, while T6 is 2 and 15. Since T3

has not been executed yet, both tasks need to wait in the

waiting queue to be scheduled for execution. If the tasks in

the waiting queue are executed according to the first-come-

first-served(FCFS) scheduling algorithm, as shown in

Fig. 2b, only T5 can meet the deadline requirement, and T6

cannot. Since task T5 and task T6 have arrived in VM

when task T3 finishes executing, we use the MBF algo-

rithm for each task that arrives in VM (as shown in

Algorithm 2). As shown in Fig. 2c, T5 will directly insert

into the queue because task T3 has not been executed and

the VM waiting queue is empty (lines 2-3). When T6

arrives, because the waiting queue is not empty, task T6

calculates its finish time and checks whether it can satisfy

the deadline. Since the deadline is not met, the backfilling

strategy is executed as follows: backfilling task T6 before

task T5, if the deadline is met after backfilling, and task T5

is not broken, or task T5 does not meet the deadline in

previous, the backfilling is completed. Otherwise, the

backfilling strategy is not executed (lines 6–19). As shown

in Fig. 2c, by performing the MBF algorithm, both tasks T5

and T6 can meet the deadline.

4.3 Complexity analysis

In this section, the computational complexity of the pro-

posed EACO–MBF algorithm is analyzed. The complexity

of the EACO–MBF is depended on the complication of the

EACO and MBF. Consequently, the complexity of the

EACO–MBF is given as follows:

OðEACO ��MBFÞ ¼ OðEACOÞ þ OðMBFÞ where,

OðEACOÞ ¼ OðnI � nA�M � NÞ, OðMBFÞ ¼ OðM2Þ,
where nI denotes the iteration count, nA means the ant

count, M indicates the number of tasks, and N signifies the

number of VMs. The MBF algorithm is the variants of the

insertion sort algorithm, so its complexity is OðM2Þ.

5 Experiment setup and performance
evaluation

In this section, the experiment environment, evaluation

metrics, performance evaluation, and results analysis are

reported.

5.1 Experiment environment

The effectiveness of the proposed task scheduling method

using EACO–MBF is evaluated and compared with four

state-of-the-art published methods in this section. This

includes (i) LA [39], (ii) DSOS [35], (iii) IWC [18], and (iv)

standard ACO. We implemented the proposed method and

other compared algorithms on the cloud computing simu-

lation toolkit Cloudsim, which is a scalable cloud simula-

tion platform [46] and widely used in the cloud computing

research [36, 47].

In our simulation experiment, one data center was cre-

ated and containing 48 hosts. Half of the hosts are HP
Fig. 2 Tasks await scheduling (a) and execution orders without MBF

(b) and with MBF (c)
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ProLiant ML110 G4, and the other half is HP ProLiant

ML110 G5. Four kinds of VM type is created in this

simulation environment. The specific parameters of Hosts

and VMs are listed in Table 2 and Table 3. The main

parameters used for each algorithm were presented in

Table 4. The parameters of IWC and LA are set according

to [18, 39], and the other parameters of EACO are the same

as ACO. We set the search agents (whales, ants) in the

IWC, DSOS, ACO, and EACO algorithms to 100, and the

number of iterations is 100. We repeat each experiment 20

times and use the average value as our final experimental

result to avoid the influence of uncertain factors.

5.2 Evaluation metrics

Four performance metrics: completion rate, makespan,

total energy consumption, and imbalance rate are used to

evaluate the effectiveness of the proposed algorithm. We

have discussed the calculation of makespan and total

energy consumption in Sect. 3.

Task completion rate CR is the ratio between the num-

ber of tasks that meet their deadline and the total number of

tasks. The mathematical expression is as follows:

CR ¼ Msucc

M
; ð20Þ

where Msucc represents the number of tasks that can meet

the deadline, and M is the total number of tasks.

Degree of imbalance reflect whether the task scheduling

algorithm can fully use all computing resources. The

smaller the imbalance rate, the best the performance

algorithm.

Ustd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðUj � �UÞ2
vuut : ð21Þ

In this paper, we evaluate the algorithm’s performance on

imbalance metrics by calculating the standard deviation

Ustd of the CPU utilization of the virtual machine. As

shown in Eq. (21). Average CPU utilization rate �U of VM

is calculated as follows:

�U ¼
PN

j¼1 Uj

N
; ð22Þ

Uj ¼
PM

i¼1ðsi;j � etcjiÞ
FT

; ð23Þ

where Uj represents the CPU utilization rate of VM vj,

which can be calculated by the Eq. (23), and FT represents

the finish time of the final task.

SLA reflect the preference of user service requirements.

We calculate the average SLA violation (ASLAV) to

evaluate the performance of the proposed algorithm and

other comparison methods. The formula definition of

ASLAV can be expressed as the following formula:

ASLAV ¼ 1

K

XK
i¼1

fti � di
di � ai

; ð24Þ

Table 2 Host configuration used

in simulation
Host type CPU (MIPS) Core RAM (GB) BW (Gb/s)

HP ProLiant ML110 G4 1860 2 4 1

HP ProLiant ML110 G5 2660 2 4 1

Table 3 Four kinds of VM types
VM type CPU (MIPS) RAM (GB) BW (Mb/s)

High-CPU Medium Instance 2500 0.85 100

Extra Large Instance 2000 3.75 100

Small Instance 1000 1.7 100

Micro Instance 500 0.613 100

Table 4 Main parameters used in experiment for each algorithm

Algorithm Parameter Value Description

IWC b 1 Spiral searching path

PSmax 51 The largest population

PSmin 10 Initial population

a 0.25 Individual generate

c 20 Nonlinear factor

LA U 0.1 Reward coefficient

/ 0.1 Penalty coefficient

ACO a 1 Weighting factor

b 1 Weighting factor

n 0.1 Evaporation coefficient

q0 0.5 Probability parameter

EACO / 0.1 Penalty coefficient
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where K denotes the number of tasks that can not meet the

deadline, fti � di indicates the delay time that the task

exceeds the deadline. di � ai is the maximum approval

time to be executed.

5.3 Performance evaluation based on synthetic
datasets

In this scenario, a workload generator was developed to

generate deadline-constrained tasks and submit them to the

cloud datacenter. The arrival of the task is model using

Poisson distribution where inter-arrival time is exponential

distribution [48], and the following formula generates the

deadline of the task:

di ¼ ai þ baseD; ð25Þ

where baseD is a random variable uniformly distributed in

(2, 5), task size generate from 3000 to 10000 MI (Millons

Instruction), and the arrival rate of the task is 40. Vary the

task count in the range [200, 1000] in the interval of 200 to

evaluate each algorithm’s performance.

Figure 3a presents the task completion rate of all algo-

rithms for executing different task counts (200–1000). The

figure shows that our algorithm obtains the best perfor-

mance in all task cases. LA achieve the second-best com-

pletion rate, while other algorithms competitive together.

DSOS, IWC, and ACO try to minimize the makespan,

which indirectly improves the task completion rate. How-

ever, the experimental results show that this method cannot

achieve the best performance. EACO–MBF and LA

introduce the deadline condition in the pheromone update

rule and reinforcement signal, respectively, to obtain better

performance. Moreover, the MBF strategy tuning the task

order in the VM waiting queue further improves our

algorithm’s completion rate.

Figure 3b illustrates the makespan value of all algo-

rithms. The figure indicates a minimization of makespan

using EACO–MBF in all task instances. The percentage

improvement of EACO–MBF over LA in makespan sum-

marize in Table 5. The tables show that the makespan

values of EACO–MBF compared with LA are decrease

26.61%, 23.94%, 23.45%, 23.51%, and 20.00% on average

in task count 200, 400, 600, 800, and 1000 respectively.

Additionally, EACO–MBF acquired the best performance

improvement at task 200, reducing 26.61% in makespan

values. Our algorithm obtains the minimum makespan due

to the initialization method of heuristic information. Those

VMs that cannot meet the task deadline will have a longer

execution time. The heuristic information of these VMs set

to a small enough value in the initial state to reduce the

probability of selecting these VMs in the optimization

process.

The experimental results of energy consumption are

shown in Fig. 3c. It indicates that EACO–MBF acquires

the minimization of energy consumption compared with

other scheduling strategies, followed by IWC. The per-

centage improvement of EACO–MBF over LA in energy

consumption summarize in Table 6. The tables show that

Fig. 3 Performance evaluation based on synthetic datasets

Table 5 Comparison of makespan obtained by LA and EACO–MBF for synthesis datasets

Task size LA EACO–MBF Improvement t-test calculate t-value

Best Worst Avg Best Worst Avg Best(%) Worst(%) Avg(%)

200 17.21 26.58 21.24 15.07 16.30 15.59 12.40 38.66 26.61 9.68

400 30.73 46.78 36.03 26.24 28.35 27.40 14.60 39.39 23.94 8.57

600 44.18 58.80 50.41 37.61 39.30 38.59 14.87 33.17 23.45 12.73

800 56.95 81.20 66.26 49.35 51.75 50.68 13.34 36.26 23.51 11.83

1000 68.79 95.98 78.87 61.49 64.26 63.10 10.61 33.05 20.00 9.45
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the energy consumption of EACO–MBF compared with

LA is reduced 20.37%, 17.52%, 16.85%, 16.79%, and

14.05% on average in task count 200, 400, 600, 800, and

1000 respectively. Moreover, EACO–MBF acquired the

best performance improvement at task 200, reducing

20.37% in energy consumption. This part shows that our

algorithm can save more energy while executing the task.

The degree of imbalance of EACO–MBF performance

compared with other well-knowing algorithms are present

in Fig. 3d. DSOS, IWC, and ACO obtain a terrible balance

rate because these methods minimize makespan to achieve

load balance. However, it can not get the minimal value

because the fitness function contains several performance

metrics in the multi-objective optimization problem.

EACO–MBF and LA have deadline conditions in their

pheromone update rule and reinforcement signal, respec-

tively. The increased makespan will cause more tasks can

not complete before time constraints. Therefore, these two

methods try to search for other solutions. LA is a deadline-

sensitive algorithm. It will not choose a solution with a

smaller makespan but cannot meet the time constraints of

the tasks. The figure shows that our algorithm obtains the

best performance among most task cases. It means that our

scheduling method can evenly allocate the task among all

computing resources to improve the resource utilization

rate.

Figure 6e shows the average SLA violation rate of all

algorithms. We can observe that EACO–MBF obtained the

minimal SLA violation rate compared to others methods.

EACO–MBF tries its best to find a solution that can min-

imize the execution time of the tasks. Although some tasks

can not meet deadline requirements, they get the slightest

time delay to complete the task. LA, IWC, and DSOS have

moderate optimization effects, while ACO has the worst

performance. It is the ACO obstacle that easily traps into a

local-optimal solution. This part shows that our algorithm

can achieve a better trade-off between energy consumption

and SLA.

5.4 Performance evaluation based on real trace
datasets

The most reliable approach to evaluate task scheduling

algorithms is to use real datasets obtained from the large-

scale distributed system. In this part of the experiment, the

tasks obtained from google trace [49] and planetlab [50]

datasets are used to access the proposed method in

Cloudsim. Google trace contains 25 million tasks grouped

in 650 thousand jobs that span 29 days. It is not easy to

experiment on google trace for all tasks because the task

count was too much. In this paper, we adopt workload

generated based on [51], which presents a comprehensive

analysis of the workload characteristics derived from

Google datacenter that features approximately 25 million

tasks. Task length and CPU utilization rate generate from

Lognormal and Weibull distribution. In this scenario, to

generate a deadline for each task, we utilize the approach

adopted in [47]. First, a baseline duration is defined for

each task. It is calculated as the ratio of task length to the

average capacity of VMs within the data center. Comple-

tion deadline is defined as ð1þ vÞ � baseline duration,

where v is termed stringency factor, representing a degree

of difficulty in meeting the deadlines. A larger v indicates a

more relaxed deadline. We set v as 1.2 in our experiment.

PlanetLab is from the common system, which monitors the

operation of the PlanetLab infrastructure and collects data

from each node of the PlanetLab [50]. To prove the

effectiveness of our algorithm, we conduct experiments on

the data 20110303, 20110306, 20110309, 20110322, and

20110325.

Figures 4a, 5a and 6a present all algorithms’ task

completion rates using the google trace dataset and Pla-

netLab dataset. Figure 4a shows that in small task instances

(100-600), the completion rate of EACO–MBF is slightly

lower than LA; when task instances are more than 600, our

algorithm gets the better performance. This can be confirm

by Fig. 5a. The figure shows that EACO–MBF performs

better than other algorithms in large task instances

(1000–2000). While in Fig. 6a, the proposed algorithm

EACO–MBF is slightly lower than LA. The reason is that

Table 6 Comparison of energy consumption obtained by LA and EACO–MBF for synthesis datasets

Task size LA EACO–MBF Improvement t-test calculate t-value

Best Worst Avg Best Worst Avg Best(%) Worst(%) Avg(%)

200 0.03 0.04 0.03 0.03 0.03 0.03 9.19 31.46 20.37 9.69

400 0.05 0.07 0.06 0.05 0.05 0.05 10.13 30.65 17.52 8.56

600 0.08 0.09 0.08 0.07 0.07 0.07 10.06 24.81 16.85 12.55

800 0.10 0.13 0.11 0.09 0.09 0.09 9.17 27.41 16.79 11.82

1000 0.12 0.15 0.13 0.11 0.12 0.11 6.85 24.69 14.05 9.47
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all tasks have the same length in the PlanetLab dataset, and

LA expenses more energy to guarantee the task completion

rate.

Figures 4b, 5b and 6b show the makespan value obtains

by all task scheduling algorithms. The figures show that the

proposed EACO–MBF algorithm also reached the minimal

makespan value using two real datasets. The percentage

improvement of EACO–MBF over LA in makespan is

summarized in Tables 7 and 8. From Tables 7 and 8, we

can see that our algorithm has excellent performance

improvement compared to LA. Especially at task 200 in

Google Trace and at date 20110309 in PlanetLab, we get

the best improvement, 53.51% and 21.60% in makespan

values, respectively.

Fig. 4 Performance evaluation for executing small tasks on google trace datasets

Fig. 5 Performance evaluation for executing large tasks on google trace datasets

Fig. 6 Performance evaluation based on planetlab datasets

Table 7 Comparison of makespan obtained by LA and EACO–MBF for google trace datasets

Task size LA EACO–MBF Improvement t-test calculate t-value

Best Worst Avg Best Worst Avg Best(%) Worst(%) Avg(%)

200 15.26 15.27 15.26 5.53 9.43 7.10 63.78 38.22 53.51 29.56

400 17.58 17.77 17.72 9.59 20.42 16.00 45.47 - 14.93 9.70 2.969

600 17.14 17.15 17.14 12.05 20.94 14.78 29.66 - 22.15 13.75 4.244

800 18.27 18.34 18.28 8.82 16.29 12.49 51.72 11.16 31.68 12.221

1000 37.11 37.13 37.12 9.77 29.07 19.38 73.66 21.69 47.79 17.281

1200 17.55 17.57 17.56 10.71 21.74 16.87 38.95 - 23.75 3.93 1.022

1400 17.86 18.76 17.96 9.06 22.77 14.49 49.25 - 21.37 19.32 5.13

1600 25.71 29.30 27.14 15.49 32.68 25.69 39.77 - 11.55 5.35 1.422

1800 58.95 64.41 59.99 26.81 76.11 57.55 54.51 - 18.17 4.07 0.69

2000 24.67 24.77 24.68 13.21 28.88 18.05 46.44 - 16.62 26.85 8.811
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The comparison results of energy consumption among

the proposed EACO–MBF algorithm with other compara-

tive algorithms are given in Figs. 4c and 5c for google trace

datasets and Fig. 6c for PlanetLab datasets. It can be

observed from these figures that the proposed algorithm

achieved better energy saving compared with other meth-

ods. The percentage improvement of EACO–MBF over LA

in energy consumption is summarized in Tables 9 and 10.

From Tables 9 and 10, we can see that our algorithm

obtained a significant performance improvement compared

with LA. The best improvement is 52.46% at task instances

200 in google trace and 17.22% at date 20110309 in Pla-

netLab datasets.

Figures 4d, 5d and 6d show that EACO–MBF also

acquires the best performance for imbalance rate in Google

Trace; however, in the PlanetLab dataset, DSOS outper-

forms our algorithm. This is because the processing

capacity of micro instance types of VMs was too weak, so

these VMs can not satisfy the deadline requirement when

executing PlanetLab tasks. In this way, the proposed

algorithm EACO–MBF and LA do not schedule tasks to

these VMs, which results in a high imbalance rate.

All algorithms’ average SLA violation rate is presented

in Figs. 4e, 5e, and 6e. In this scenario, we can see that LA

outperforms EACO–MBF. The reason is the tasks in Pla-

netLab datasets have the equivalent task length, and the

problem becomes how to allocate these tasks on different

VM types. Our algorithm intends to trade-off energy con-

sumption and SLA. Therefore, it needs to sacrifice a little

SLA to balance the scales.

In order to show the improvement of our proposed

algorithm, one side t-test was conducted to examine whe-

ther the makespan and energy consumption obtained by

EACO–MBF is significantly less than LA for all task

instances using the same stopping criteria. Acceptable er-

rors of 1% are used to test the critical value obtained from

the statistical table as 3.319. The statistical analysis of the

performance of EACO–MBF and LA under different

datasets are present in Tables 5-10. The tables show that

the calculated t-value is greater than 3.319, which means a

significant difference between the performance of EACO–

MBF and LA for all datasets.

Table 8 Comparison of makespan obtained by LA and EACO–MBF for planetlab datasets

Date LA EACO–MBF Improvement t-test calculate t-value

Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%)

20110303 498.17 747.16 583.17 435.28 645.30 494.00 12.62 13.63 15.29 5.103

20110306 421.65 595.31 515.36 357.32 579.46 424.80 15.26 2.66 17.57 6.36

20110309 595.67 798.67 699.32 444.16 682.30 548.26 25.44 14.57 21.60 7.056

20110322 732.87 906.53 826.63 601.04 817.45 676.90 17.99 9.83 18.11 8.865

20110325 538.02 682.95 594.77 452.44 588.66 513.13 15.91 13.81 13.73 5.886

Table 9 Comparison of energy consumption obtained by LA and EACO–MBF for google trace datasets

Task size LA EACO–MBF Improvement t-test calculate t-value

Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%)

200 58.38 58.54 58.46 21.93 36.36 27.79 62.44 37.89 52.46 29.861

400 69.36 70.18 69.92 38.97 78.40 62.18 43.82 - 11.71 11.08 3.666

600 69.02 69.25 69.13 48.69 81.21 59.05 29.44 - 17.27 14.58 4.968

800 74.03 74.39 74.17 38.19 65.26 51.61 48.42 12.28 30.42 12.941

1000 145.31 145.63 145.50 43.39 113.19 78.77 70.14 22.28 45.86 17.813

1200 75.45 76.01 75.71 49.95 88.50 71.18 33.80 - 16.43 5.99 1.871

1400 77.32 80.88 77.80 44.69 94.82 63.89 42.20 - 17.23 17.88 5.554

1600 110.49 123.97 115.83 69.61 132.70 106.24 37.00 - 7.04 8.29 2.618

1800 232.54 252.96 236.58 112.58 294.89 225.85 51.58 - 16.58 4.54 0.822

2000 107.50 108.07 107.68 65.36 121.32 82.25 39.21 - 12.26 23.61 9.376
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5.5 Evaluate the effectiveness of MBF

To prove the effectiveness of our proposed algorithm MBF,

we compare the completion rate of five algorithms LA,

DSOS, IWC, ACO, and EACO, whether they combine

MBF or not. In this experiment, we set the number of tasks

to 1000 and the number of VMs to 60 and varied the arrival

rate in the range [40,120] in the interval 20. The experi-

mental results are shown in Table 11. Table 11 shows that

the MBF algorithm can further increase the number of

tasks that meet the deadline to improve the completion rate

of tasks, especially as the arrival rate of tasks increases, the

better the performance of the algorithm. This is because as

the task arrival rate increases, the number of tasks arriving

at the same time will also increase. As a result, some short

tasks or tasks with tight deadlines are queued after long

tasks or tasks with loose deadlines, which causes these

tasks to fail to complete before the deadline, and our MBF

algorithm can improve this situation.

6 Conclusion and future works

This article discusses the research work of task scheduling

problems in the cloud environment. Furtherly introduce the

challenge of task schedulers to find an energy-efficient

solution for real-time tasks. We present a two-stage

scheduling method for deadline-constrained tasks in cloud

computing to tackle such an issue. The EACO and MBF

are proposed to solve and optimize the task scheduling

scheme by considering the makespan, completion time, and

energy. The experimental results show that compared with

other well-known task scheduling methods, our method can

effectively reduce makespan by 25.28% and energy con-

sumption by 23% on average. Finally, the results are ana-

lyzed using statistical t-tests, which show that EACO–MBF

significantly improved the results.

The disadvantage of our work is the stability of the

proposed algorithm EACO. It means that the experimental

results of our method fluctuate significantly in repeated

experiments. Sometimes it may obtain a relatively unde-

sirable result. The reason is the algorithm is trapped into a

local-optimal solution. In the future, we hope to combine

the advantages of other heuristics and meta-heuristics to

solve this problem, such as A* [52] and hybrid harmony

algorithm [53].
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