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The multiple scattering of flexural waves on an elastic plate with circular scat-
terers is analyzed in the frequency domain based on the Mindlin plate theory
accounting for the rotary inertia and shear deformation of the plate. To this pur-
pose, a semi-analytical numerical method is formulated as an extension of the
previous study based on the Kirchhoff plate theory. It consists of expressing the
flexural wave field in terms of the superposition of the wave function expan-
sion, and determining the expansion coefficients by a collocation technique.
As demonstrative examples, the transmission of a plane flexural wave across a
square array of circular through-thickness holes or thin-plate inclusions is ana-
lyzed using the proposed method. The comparison between the results based on
the Mindlin and Kirchhoff theories is shown for the case of multiple holes. The
analysis shows that the transmission amplitude of the flexural wave is reduced
at certain frequencies due to the Bragg reflection by the inclusions. In the case of
thin-plate inclusions, the resonance of the inclusions also brings about a sharp
decrease of the transmission amplitude.
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1 INTRODUCTION

Scattering of flexural waves by holes, inclusions or other inhomogeneous features in elastic plates has been a subject
actively investigated in appliedmechanics for its importance in the design of thin-walled structures against dynamic load-
ing. Among the earliest contributions, Pao and Chao [1] analyzed the scattering of a plane flexural wave by a circular
hole in an elastic plate and the associated dynamic concentration of bending moment and shear force around it. Later,
Paskaramoorthy et al. [2] analyzed the flexural wave scattering by an arbitrarily shaped cavity using a hybrid technique of
the analytical wave function expansion and the finite element method. Vemula and Norris [3] presented the formulation
of flexural wave scattering for a general class of inhomogeneity and some related aspects of energy flux conservation.More
recently, this subject also gainedmuch attention in the context of nondestructive testing and structural health monitoring
of plate-like structures using flexural waves. With such applications in the background, Wang and Chang [4] studied the
scattering of flexural waves by different types of cylindrical defects and presented some explicit results based on the Born
approximation together with experimental results. Cegla et al. [5] studied the flexural wave scattering and the accompa-
nying mode conversion behavior at a circular blind hole on a plate.
For the analysis of flexural motions in isotropic elastic plates, two classical approximate theories are well established,

i.e., the Kirchhoff-Love theory [6] (referred to as the Kirchhoff theory below) and the Reissner-Mindlin theory [7] (referred
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to as the Mindlin theory), in addition to the rigorous Rayleigh-Lamb theory for the so-called Lamb waves [8, 9]. In the
Kirchhoff plate theory, the governing equation is solely described in terms of the out-of-plane deflection of the mid-plane
of the plate. Its validity is, however, limited to very thin plates or a rather low frequency range. On the other hand, the
Mindlin plate theory takes into account the rotary inertia and shear deformation of the plate and is capable of giving more
reasonable prediction of the flexural wave propagation for thicker plates or for a wider range of frequency. The above-
mentioned studies of flexural wave scattering [1–5] were based on theMindlin theory. Corresponding problems of flexural
wave scattering based on the Kirchhoff theory have been studied by Norris and Vemula [10], Squire and Dixon [11], Grahn
[12], and Fromme and Sayir [13], among others.
In the works mentioned above [1-5, 10-13], the flexural wave scattering was analyzed for a single scatterer in a plate. The

level of analytical complexity rises substantially when one aims to study the flexural wave scattering bymultiple scatterers.
Different investigators [14–18] analyzed the multiple scattering of flexural waves and presented some numerical results
for the cases of two or three circular inclusions. Peng [19] applied the acoustic wave propagator method to the problem of
flexural wave scattering by nine patches on a plate. In many circumstances, however, there is a need to analyze flexural
wave scattering for a greater number of scatterers. In particular, the possibility of manipulating flexural waves in plates
by periodic arrangements of inclusions, e.g., filtering, focusing, cloaking, etc., is actively pursued in the current trend of
research, i.e., thin-plate versions of phononic crystals and acousticmetamaterials [20–22]. For infinitely extended periodic
arrangements of scatterers, the band structure of flexural waves was analyzed by Movchan et al. [23] and Smith et al. [24].
Flexural wave propagation in strongly heterogeneous periodic plates was analyzed by Rohan and Miara [25] based on the
two-scale homogenization technique. The flexural wave scattering by a random distribution of inclusions in plates was
analyzed by Weaver [26], Dixon and Squire [27] and Parnell and Martin [28] using the statistical treatments. Recently, the
multiple scattering of flexural waves by a large number of inclusions was analyzed by Cai and Hambric [29] based on the
formalism of multiple scattering theory of waves. Wang and Biwa [30] formulated a computational method for multiple
scattering of flexural waves by circular holes based on thewave function expansion and a numerical collocation technique.
Similar formulation has been applied by Wang et al. [31] to analyze the multiple scattering of flexural waves by annular
inclusions.
As mentioned above, the scattering of flexural waves by inclusions of different types is an important topic in differ-

ent perspectives ranging over the dynamic stress concentration, nondestructive testing/structural health monitoring, and
phononic crystals/acoustic metamaterials. With a few exceptions [15, 25], however, most of the above-mentioned works
for the multiple scattering of flexural waves are based on the classical Kirchhoff theory. It is then of definite interest to
analyze the multiple scattering of flexural waves based on the Mindlin theory due to its validity for a wider range of plate
thickness and frequency. This issue is alsoworthy of investigation since themore straightforward numerical analysis of the
corresponding problemwithin the framework of three-dimensional elasticity, with the help of commercial software, is still
heavily time- andmemory-consuming. Therefore, the aim of the present study is to extend the previous work byWang and
Biwa [30] and to establish a numerical method to analyze the multiple scattering of flexural waves based on the Mindlin
theory. Namely, the flexural wave fields in an elastic plate with multiple scatterers are expressed as the superposition of
the wave function expansion, and their expansion coefficients are obtained numerically by a collocation technique. With
the proposed method, some numerical results are demonstrated for the scattering of a plane flexural wave by multiple
holes and multiple thin-plate inclusions.
This paper is structured as follows. In Section 2, the basic equations of theMindlin theory are outlined, and themultiple

scattering analysis is formulated on this basis. In Section 3, the setting of some numerical examples, i.e., a square array of
through-thickness holes or thin-plate inclusions, is described. In Section 4, the numerical results are demonstrated and
discussed, in particular in the light of the stop band formation for the flexural wave. Section 5 summarizes the conclusion
of this study.

2 FORMULATION

2.1 Mindlin plate theory

The fundamental equations of theMindlin plate theory [1, 3, 5, 7] are first recapitulated as the basis of the present analysis.
For a flat plate of thickness hmade of an isotropic linear elastic solid (density ρ, Young’s modulus E, Poisson’s ratio ν), the
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governing equations for the free flexural motion are, in the frequency domain with the angular frequency ω, given by
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where the x-y coordinate system is taken in the mid-plane of the plate. In the above expressions,W(x, y) denotes the mid-
plane deflection, Πx(x, y) and Πy(x, y) denote the rotation angles with respect to the y and x axes, respectively, and ∇2

denotes the two-dimensional Laplacian operator. The parameter κ is the shear correction factor. The shear modulus G
and the flexural rigidity D are defined by

𝐺 =
𝐸

2(1 + 𝜈)
, 𝐷 =

𝐸ℎ3

12(1 − 𝜈2)
. (4)

The solution to the above governing equations can be expressed as [1, 3]

𝑊 = 𝑊1 +𝑊2, (5)
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where the functionsW1(x, y),W2(x, y) and V(x, y) satisfy the Helmholtz equations
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with the wave numbers k1, k2 and k3 given by
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The coefficients α1 and α2 in Equations (6) and (7) are given by

𝛼1 = −1 +
𝑘𝑠

2

𝑘1
2
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𝑘𝑠
2
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2
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, (12)

where 𝑐T =
√
𝐺∕𝜌 is the shear wave velocity in the solid. The present analysis focuses on a low-frequency range where

𝜔 <
√
12𝜅 𝑐T∕ℎ, then 𝑘21 is positive while 𝑘

2
2
and 𝑘2

3
are negative. In this situation, the wave field given byW1 represents

a propagating flexural wave with a real wave number, and the wave fields given byW2 and V represent non-propagating
(spatially decaying) waves with pure imaginary wave numbers.
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For later use, the bending momentsMx,My, torqueMxy and shear forces Qx, Qy in the plate are described here in terms
of the deflectionW and rotations Πx, Πy,
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In polar coordinates, the corresponding quantities are given by
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2.2 Multiple scattering of flexural waves

Based on the fundamental relations described above, the scattering of a flexural wave by non-overlapping scatterers dis-
tributed on the plate is considered, following the formulation inRef. [30] based on theKirchhoff theory and other foregoing
works onmultiple scattering in fiber-reinforcedmedia [32–34]. The number of the scatterers is denoted byN. It is assumed
that all scatterers have the same circular shape of radius R. Two cases are considered in the present analysis, where (i)
all scatterers are through-thickness holes, and (ii) all scatterers are circular plate-shaped elastic inclusions of the same
thickness ℎ̄, density �̄�, Young’s modulus �̄� and Poisson’s ratio �̄�. It is also assumed that the host plate and the inclusions
have the common mid-plane and the whole structure is symmetric with respect to it. In this situation, only the flexural
motions are generated as an outcome of the interaction of the incident flexural wave with the scatterers: the coupling with
the in-plane motions does not occur. The flexural motions of both the host plate and the inclusions are described by the
Mindlin plate theory in this paper.
When the incident flexural wave interacts withN scatterers, a multiply scattered wave field is realized on the plate. The

resulting wave field can be given in terms of the three wave functionsW1,W2 andV defined in Equations (5)-(7). As shown
in Figure 1, the location of a generic point in the x-y plane is expressed by the position vector r, and the deflection fieldW(x,
y) is also denoted byW(r). The three wave functions associated with the scattered wave by the ith scatterer (𝑖 = 1, 2, … ,𝑁),
whose center is located at r = ri, satisfy the Helmholtz equations and should meet the radiation condition far away from
that scatterer. Therefore, they can be expressed as

𝑊
𝑖,sca
1

(𝐫) =

∞∑
𝑛=−∞

𝐴𝑖
𝑛𝐻

(1)
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2
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∞∑
𝑛=−∞

𝐵𝑖𝑛𝐻
(1)
𝑛 (𝑘2|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (15b)

𝑉𝑖,sca(𝐫) =

∞∑
𝑛=−∞

𝐶𝑖
𝑛𝐻

(1)
𝑛 (𝑘3|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (15c)

where 𝐻(1)
𝑛 (⋅) denotes the nth-order Hankel function of the first kind, 𝐴𝑖

𝑛, 𝐵
𝑖
𝑛 and 𝐶𝑖

𝑛 (𝑖 = 1, 2, … ,𝑁, n = 0, ± 1, ± 2,
. . . ) are unknown expansion coefficients, 𝑘𝑗 (j = 1, 2, 3) are the wave numbers in the host plate defined in Equations
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F IGURE 1 An infinitely extended elastic plate with circular scatterers and the coordinate system

(9)-(11), and 𝜃𝑖 denotes the polar angle of a generic point r viewed from the center of the ith scatterer ri as shown in
Figure 1.
If the ith scatterer is a through-thickness hole, there is no wave field inside it. If the scatterer is a plate-shaped elastic

inclusion, the wave functions inside it should satisfy the Helmholtz equations of Equation (8) and be finite therein, so
they can be expressed as

𝑊
𝑖,inside
1

(𝐫) =

∞∑
𝑛=−∞

𝑆𝑖𝑛𝐽𝑛(�̄�1|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (16a)

𝑊
𝑖,inside
2

(𝐫) =

∞∑
𝑛=−∞

𝑇𝑖𝑛𝐽𝑛(�̄�2|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (16b)

𝑉𝑖,inside(𝐫) =

∞∑
𝑛=−∞

𝑈𝑖
𝑛𝐽𝑛(�̄�3|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (16c)

where 𝐽𝑛(⋅) denotes the nth-order Bessel function of the first kind, 𝑆𝑖𝑛, 𝑇𝑖𝑛 and 𝑈𝑖
𝑛 (𝑖 = 1, 2, … ,𝑁, n = 0, ± 1, ± 2, . . . ) are

unknown expansion coefficients, and �̄�𝑗 (j = 1, 2, 3) are the wave numbers in the scatterer defined in Equations (9)-(11)
with the parameters of the scatterer.
The scattered wave by the ith scatterer is created in response to the so-called exciting field for that scatterer, which is

defined as the wave field in the host plate when that scatterer is not present there. The exciting field is given by the sum
of the incident wave and the scattered waves by all the other scatterers, i.e,

𝑊
𝑖,exc
1

(𝐫) = 𝑊inc
1
(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

𝑊
𝑗,sca

1
(𝐫), (17a)

𝑊
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2

(𝐫) = 𝑊inc
2
(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

𝑊
𝑗,sca

2
(𝐫), (17b)

𝑉𝑖,exc(𝐫) = 𝑉inc(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

𝑉𝑗,sca(𝐫), (17c)

where𝑊inc
1
(𝐫),𝑊inc

2
(𝐫) and 𝑉inc(𝐫) are the wave functions of the incident wave which satisfy the Helmholtz equations.

Since the waves of the exciting field,𝑊𝑖,exc
1

(𝐫),𝑊𝑖,exc
2

(𝐫) and𝑉𝑖,exc(𝐫), should satisfy theHelmholtz equations and be finite
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at r = ri, they can be expressed as

𝑊
𝑖,exc
1

(𝐫) =

∞∑
𝑛=−∞

𝐸𝑖𝑛𝐽𝑛(𝑘1|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (18a)

𝑊
𝑖,exc
2

(𝐫) =

∞∑
𝑛=−∞

𝐹𝑖𝑛𝐽𝑛(𝑘2|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (18b)

𝑉𝑖,exc(𝐫) =

∞∑
𝑛=−∞

𝐺𝑖
𝑛𝐽𝑛(𝑘3|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖), (18c)

where 𝐸𝑖𝑛, 𝐹𝑖𝑛 and 𝐺𝑖
𝑛 (𝑖 = 1, 2, … ,𝑁, n = 0, ± 1, ± 2, . . . ) are unknown expansion coefficients.

The expansion coefficients𝐴𝑖
𝑛,𝐵𝑖𝑛,𝐶𝑖

𝑛 of the scatteredwave and 𝑆𝑖𝑛,𝑇𝑖𝑛 and𝑈𝑖
𝑛 of thewave inside the scatterer are related

to the coefficients 𝐸𝑖𝑛, 𝐹𝑖𝑛, 𝐺𝑖
𝑛 of the exciting field via the boundary conditions at the interface of each scatterer and the

host plate. If the ith scatterer is a through-thickness hole, its boundary is assumed traction-free, so the resulting radial
bending moment, torque and radial shear force should vanish, i.e.,

𝑀
𝑖,exc
𝑟 + 𝑀

𝑖,sca
𝑟 = 0, 𝑀

𝑖,exc

𝑟𝜃
+ 𝑀

𝑖,sca

𝑟𝜃
= 0, 𝑄

𝑖,exc
𝑟 + 𝑄

𝑖,sca
𝑟 = 0, (19)

at |𝐫 − 𝐫𝑖| = 𝑅, 0 ≤ 𝜃𝑖 < 2𝜋. In the above expressions,𝑀𝑖,exc
𝑟 denotes the radial bendingmoment associated with the excit-

ing field for the ith scatterer, and the other quantities are defined similarly.
If the ith scatterer is a plate-shaped inclusion, the elastic constants and the plate thickness can be discontinuous at

the boundary: it is then assumed that the radial bending moment, torque and radial shear force as well as the mid-plane
deflection and rotation angles are continuous, i.e.,

𝑀
𝑖,exc
𝑟 + 𝑀

𝑖,sca
𝑟 = 𝑀

𝑖,inside
𝑟 , 𝑀

𝑖,exc

𝑟𝜃
+ 𝑀

𝑖,sca

𝑟𝜃
= 𝑀

𝑖,inside

𝑟𝜃
, 𝑄

𝑖,exc
𝑟 + 𝑄

𝑖,sca
𝑟 = 𝑄

𝑖,inside
𝑟 , (20a)

𝑊𝑖,exc +𝑊𝑖,sca = 𝑊𝑖,inside, Π
𝑖,exc
𝑟 + Π

𝑖,sca
𝑟 = Π

𝑖,inside
𝑟 , Π

𝑖,exc

𝜃
+ Π

𝑖,sca

𝜃
= Π

𝑖,inside

𝜃
, (20b)

at |𝐫 − 𝐫𝑖| = 𝑅, 0 ≤ 𝜃𝑖 < 2𝜋, where𝑊𝑖,exc = 𝑊
𝑖,exc
1

+𝑊
𝑖,exc
2

is the deflection of the exciting field, etc. These conditions are
a special case of the more general case treated by Cegla et al. [5] where the inclusion and the host plate have misaligned
mid-planes. Since the inclusions and the host plate are assumed to have the common mid-plane in the present analysis,
no in-plane resulting forces appear in the boundary conditions. The above boundary conditions establish the following
relation in the matrix form,

[𝐾hole
𝑛 ]

⎛⎜⎜⎜⎝
𝐴𝑖
𝑛

𝐵𝑖𝑛

𝐶𝑖
𝑛

⎞⎟⎟⎟⎠ = [𝐵hole𝑛 ]

⎛⎜⎜⎜⎝
𝐸𝑖𝑛

𝐹𝑖𝑛

𝐺𝑖
𝑛

⎞⎟⎟⎟⎠ , (21)

for the through-thickness hole, and

[𝐾inclusion
𝑛 ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴𝑖
𝑛

𝐵𝑖𝑛

𝐶𝑖
𝑛

𝑆𝑖𝑛

𝑇𝑖𝑛

𝑈𝑖
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= [𝐵inclusion𝑛 ]

⎛⎜⎜⎜⎝
𝐸𝑖𝑛

𝐹𝑖𝑛

𝐺𝑖
𝑛

⎞⎟⎟⎟⎠ , (22)

for the plate-shaped inclusion. The 3×3 matrices [𝐾hole
𝑛 ] and [𝐵hole𝑛 ] are given by the 3×3 submatrices of the 6×3 matrices

[𝐾inclusion
𝑛 ] and [𝐵inclusion𝑛 ], respectively. Thesematrices can be derived in themanner demonstrated in Refs. [3, 5] and their
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explicit presentations are omitted here. By multiplying both sides of Equations (21) and (22) by the inverse of the matrix
[𝐾hole

𝑛 ] or [𝐾inclusion
𝑛 ], respectively, the coefficients 𝐴𝑖

𝑛, 𝐵𝑖𝑛, 𝐶𝑖
𝑛, 𝑆𝑖𝑛, 𝑇𝑖𝑛 and 𝑈𝑖

𝑛 can be expressed in terms of 𝐸𝑖𝑛, 𝐹𝑖𝑛, 𝐺𝑖
𝑛 in

the following way,

⎛⎜⎜⎜⎝
𝐴𝑖
𝑛

𝐵𝑖𝑛

𝐶𝑖
𝑛

⎞⎟⎟⎟⎠ = [𝑀hole
𝑛 ]

⎛⎜⎜⎜⎝
𝐸𝑖𝑛

𝐹𝑖𝑛

𝐺𝑖
𝑛

⎞⎟⎟⎟⎠ , (23)

for the hole and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴𝑖
𝑛

𝐵𝑖𝑛

𝐶𝑖
𝑛

𝑆𝑖𝑛

𝑇𝑖𝑛

𝑈𝑖
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= [𝑀inclusion

𝑛 ]

⎛⎜⎜⎜⎝
𝐸𝑖𝑛

𝐹𝑖𝑛

𝐺𝑖
𝑛

⎞⎟⎟⎟⎠ (24)

for the inclusion.
Substituting Equations (15), (18), (23) and (24) into Equation (17), one obtains

∞∑
𝑛=−∞

𝐸𝑖𝑛𝐽𝑛(𝑘1|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖) = 𝑊inc
1
(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

∞∑
𝑚=−∞

(
𝑀

(𝑚)
11

𝐸
𝑗
𝑚 +𝑀

(𝑚)
12

𝐹
𝑗
𝑚 +𝑀

(𝑚)
13

𝐺
𝑗
𝑚

)
𝐻
(1)
𝑚 (𝑘1|𝐫 − 𝐫𝑗|) exp(i𝑚𝜃𝑗)

(25a)
∞∑

𝑛=−∞

𝐹𝑖𝑛𝐽𝑛(𝑘2|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖) = 𝑊inc
2
(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

∞∑
𝑚=−∞

(
𝑀

(𝑚)
21

𝐸
𝑗
𝑚 +𝑀

(𝑚)
22

𝐹
𝑗
𝑚 +𝑀

(𝑚)
23

𝐺
𝑗
𝑚

)
𝐻
(1)
𝑚 (𝑘2|𝐫 − 𝐫𝑗|) exp(i𝑚𝜃𝑗)

(25b)
∞∑

𝑛=−∞

𝐺𝑖
𝑛𝐽𝑛(𝑘3|𝐫 − 𝐫𝑖|) exp(i𝑛𝜃𝑖) = 𝑉inc(𝐫) +

𝑁∑
𝑗=1

𝑗≠𝑖

∞∑
𝑚=−∞

(
𝑀

(𝑚)
31

𝐸
𝑗
𝑚 +𝑀

(𝑚)
32

𝐹
𝑗
𝑚 +𝑀

(𝑚)
33

𝐺
𝑗
𝑚

)
𝐻
(1)
𝑚 (𝑘3|𝐫 − 𝐫𝑗|) exp(i𝑚𝜃𝑗)

(25c)

which contain the expansion coefficients of the exciting field 𝐸𝑖𝑛, 𝐹𝑖𝑛, 𝐺𝑖
𝑛 alone, where𝑀

(𝑛)
𝑝𝑞 is the (p, q) element of [𝑀hole

𝑛 ]

or [𝑀inclusion
𝑛 ] (p = 1, 2, 3, q = 1, 2, 3). It is noted that𝑀(𝑛)

𝑝𝑞 is common for all scatterers in the present analysis, although it
depends on the type of scatterers considered (hole or plate-shaped inclusion).

2.3 Collocation technique

In order to determine the unknown expansion coefficients 𝐸𝑖𝑛, 𝐹𝑖𝑛, 𝐺𝑖
𝑛, the numerical collocation technique, which was

used in the previous works [30–34], is also employed here. Namely, the infinite series in Equation (25) are truncated
with a finite number of terms, i.e., the infinite sums for −∞ < 𝑛 < ∞ are replaced by those for −𝑛max < 𝑛 < 𝑛max , where
the integer parameter nmax is set large enough to achieve sufficient accuracy. This truncation makes the total number of
unknown expansion coefficients to be 3𝑁(2𝑛max + 1). In the present numerical analysis, (2𝑛max + 2) collocation points are
chosen at equal interval on the boundary of each scatterer, and Equation (25) is evaluated at those points to construct a set
of 3𝑁(2𝑛max + 2) linear equations for 3𝑁(2𝑛max + 1) coefficients 𝐸𝑖𝑛, 𝐹𝑖𝑛,𝐺𝑖

𝑛 (𝑖 = 1, 2, … ,𝑁, 𝑛 = 0,±1, ±2,… , ±𝑛max). This
over-determined system of equations can be solved by the least-square method based on the generalized inverse matrix.
Making the system of equations over-determined in this way has been found to work well in the previous works [30–34]
to avoid ill-conditioning of the equations. In passing, however, it should be mentioned here that when the wave function
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F IGURE 2 Example problem of the flexural wave transmission across a square array of circular scatterers

expansions are applied to multiple scattering problems, a more standard approach is to express the expansions of the
scattered fields by the other (j ≠ i) scatterers in Equation (17) in the single local coordinates around the ith scatterer using
Graf’s addition theorem [35]. Applying the boundary conditions of Equation (19) or Equation (20), a set of linear equations
for the expansion coefficients is obtained without a need to resort to the collocation points. Analytical formulation and
numerical implementation of this approach can be found in many references, e.g. [23, 24, 28, 29] for the flexural wave
scattering based on the Kirchhoff theory.
Once the coefficients 𝐸𝑖𝑛, 𝐹𝑖𝑛, 𝐺𝑖

𝑛 are determined, the other expansion coefficients 𝐴𝑖
𝑛, 𝐵𝑖𝑛, 𝐶𝑖

𝑛, 𝑆𝑖𝑛, 𝑇𝑖𝑛 and 𝑈𝑖
𝑛 can be

obtained by Equation (23) or (24). The deflection field on the host plate can be given by

𝑊(𝐫) = 𝑊1(𝐫) +𝑊2(𝐫)

= 𝑊inc
1
(𝐫) +

𝑁∑
𝑗=1

𝑛max∑
𝑚=−𝑛max

(
𝑀

(𝑚)
11

𝐸
𝑗
𝑚 +𝑀

(𝑚)
12

𝐹
𝑗
𝑚 +𝑀

(𝑚)
13

𝐺
𝑗
𝑚

)
𝐻
(1)
𝑚 (𝑘1|𝐫 − 𝐫𝑗|) exp(i𝑚𝜃𝑗)

+𝑊inc
2
(𝐫) +

𝑁∑
𝑗=1

𝑛max∑
𝑚=−𝑛max

(
𝑀

(𝑚)
21

𝐸
𝑗
𝑚 +𝑀

(𝑚)
22

𝐹
𝑗
𝑚 +𝑀

(𝑚)
23

𝐺
𝑗
𝑚

)
𝐻
(1)
𝑚 (𝑘2|𝐫 − 𝐫𝑗|) exp(i𝑚𝜃𝑗)

(26)

3 NUMERICAL EXAMPLES

Based on the formulation given above, the transmission of a plane flexural wave across a square array of circular scatterers
is analyzed as demonstrative examples. For the analysis, two types of scatterers are assumed, i.e., (i) through-thickness
holes, and (ii) thin-plate inclusionsmade of the samematerial as the host plate (ℎ̄ < ℎ, �̄� = 𝜌, �̄� = 𝐸, �̄� = 𝜈). Asmentioned
above, all scatterers have the same radius R. It is assumed that these scatterers are spatially arranged in a square array with
their center-to-center distance d (> 2R) as shown in Figure 2. The origin of the x-y coordinate system is chosen so that the
center of the bottom left scatterer in the array is located at (x, y) = (d/2, d/2). In the present analysis, the 7×3, 7×5 and 7×7
arrays are considered.
The incident wave is assumed to be a propagating flexural wave of the form

𝑊inc(𝐫) = 𝑊0 exp(i𝑘1𝑥), (27)
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F IGURE 3 Dispersion relations of the flexural wave based on the Mindlin theory, Kirchhoff theory, and the exact theory for the zeroth-
order antisymmetric (A0) Lamb wave

where the amplitudeW0 is arbitrarily set as unity owing to the linear nature of the problem. In this case, the three wave
functions associated with the incident wave are

𝑊inc
1
(𝐫) = 𝑊0 exp(i𝑘1𝑥), 𝑊inc

2
(𝐫) = 0, 𝑉inc(𝐫) = 0. (28)

When the incident wave is given, the multiple scattering analysis formulated in the foregoing section yields the wave
field in the plate by Equation (26). In the numerical results shown in the following section, the absolute value of the
deflection is averaged for a finite length 0 < y < 7d at the distance of L from the center of the rightmost scatterers in the
array,

|𝑊|ave = 1

7𝑑

7𝑑

∫
0

|𝑊(𝑥eval, 𝑦)|𝑑𝑦, (29)

where xeval = 13d/2 + L, and used as a measure of the magnitude of flexural wave transmitted across the square array of
scatterers, partly following the examples demonstrated by Cai and Hambric [29].
In terms of non-dimensional parameters, the transmission behavior of the flexural wave is governed by the non-

dimensional frequency𝜔𝑑∕𝑐T (or the non-dimensional wave number of the incident wave 𝑘1𝑑), Poisson’s ratio ν, the shear
correction factor κ, the thickness-scatterer interval ratio h/d, the scatterer radius-interval ratio R/d, and the displacement
evaluation distance-scatterer interval ratio L/d. When the scatterers are thin-plate inclusions of the same material, their
thickness ratio ℎ̄∕ℎ is another governing parameter. In the present analysis, the flexural wave transmission across the
square array of scatterers is computed using the fixed values of ν = 0.34, κ = 5/6 and L/d = 3. It is noted that several
values have been used for the shear correction factor κ in the literature. While the choice of 𝜅 = (𝑐R∕𝑐T)

2, where cR is the
Rayleigh surface wave velocity, yields the high-frequency limit of the phase velocity of the propagating wave W1 which
coincides with the Rayleigh wave velocity, the value of 𝜅 = 𝜋2∕12 gives the cut-off frequencies of the waves W2 and V
which matches to the lowest cut-off frequency of guided wave modes of the plate in the exact theory [36]. Stephen [37]
discusses different choices of κ in the light of approximation to the exact theory. In the present analysis, the classical value
of κ = 5/6, due to the static theory of Reissner [38], is used since the frequency range examined here is relatively low and
remains below the half of the cut-off frequencies. As a matter of fact, it has been confirmed in the numerical analysis
that the two values of 𝜅 = 5∕6 ≅ 0.833 and 𝜅 = 𝜋2∕12 ≅ 0.822 do not make any noticeable differences in the |W|ave-ωd/cT
relation in the frequency range 0 < 𝜔𝑑∕𝑐T < 5.
The dispersion curve of the propagating flexural wave W1 of the Mindlin theory is shown in Figure 3 in terms of the

normalized wave number k1h and the normalized frequency ωh/cT. The normalized wave number kh of the Kirchhoff
theory, given by

𝑘ℎ = {6(1 − 𝜈)}1∕4
√

𝜔ℎ

𝑐T
, (30)
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F IGURE 4 Variation of a typical numerical result with the series truncation number

F IGURE 5 Dependence of the transmitted
wave amplitude across the 7×7 array of holes
(R/d = 7/16) on (a) the normalized frequency and
(b) the normalized wave number in the host plate,
based on the Mindlin and Kirchhoff theories
(h/d = 0.25)

and the normalized wave number of the lowest-order antisymmetric (A0)mode of Lambwaves are shown for comparison
in Figure 3. Since the present analysis is performed for 0 < 𝜔𝑑∕𝑐T < 5 and ℎ∕𝑑 ≤ 0.25, the relevant range of ωh/cT is
0 < ωh/cT < 1.25. It is found in Figure 3 that the Mindlin theory reproduces the exact dispersion relation of the A0 mode
Lamb wave with excellent accuracy in the frequency range examined in this paper.
In the numerical analysis, the truncation parameter nmax should be set large enough to achieve sufficient convergence

of the solution. Generally speaking, a greater nmax is necessary for a higher concentration of scatterers (higher R/d) or for
a higher frequency. This has been checked for a representative problem of the plate with h/d = 0.25 containing the 7×7
square array of holes of radius R/d = 7/16 = 0.4375 for the normalized frequency of 𝜔𝑑∕𝑐T = 4.25, corresponding to the
largest R/d and a frequency close to the upper limit of the present analysis. The values of |W|ave calculated using different
nmax are shown in Figure 4. It can be seen in Figure 4 that the value of nmax greater than 10 is sufficient to obtain the
converged solution. It has also been confirmed that the |W|ave-ωd/cT curve for this problem, to be shown below, obtained
with nmax = 20 is indistinguishable from that obtained with nmax = 30. Therefore, the numerical results obtained with
nmax = 20 will be shown in the following section.

4 RESULTS AND DISCUSSION

4.1 Through-thickness holes

For the plate of h/d = 0.25 with the 7×7 square array of holes with R/d = 7/16, the transmitted wave amplitude |W|ave is
plotted against the normalized frequency ωd/cT in Figure 5a, and against the normalized wave number k1d in the host
plate in Figure 5b. In Figure 5a, the transmitted wave amplitude shows a dip at around ωd/cT = 1, and another wider one
at around ωd/cT = 4. These dips are associated with the stop bands of the periodic square array of holes, where the back-
scatteredwaves fromdifferent scatterers interfere constructively and prohibit thewave transmission. Rigorously speaking,
the term of stop band is defined for infinitely extended periodic structures. In this paper, this term is also used to refer to
the frequency (or frequency range) for which the transmission is reduced due to the same mechanism. The stop bands
occur when the so-called Bragg condition is satisfied, i.e., 𝑘ef f 𝑑 = 𝑚𝜋 (m: integer) [30], where keff is the effective wave
number in the perforated plate. At relatively low frequencies, this wave number does not deviate significantly from the
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F IGURE 6 Deflection distributions at different
normalized frequencies, (a) ωd/cT = 0.33, (b)
ωd/cT = 0.98, (c) ωd/cT = 2.6 and (d) ωd/cT = 4.3

F IGURE 7 Dependence of the transmitted
wave amplitude across the 7×7 array of holes
(R/d = 7/16) on (a) the normalized frequency and
(b) the normalized wave number in the host plate,
based on the Mindlin and Kirchhoff theories
(h/d = 0.125)

corresponding wave number of the host plate. As a consequence, the stop bands are expected to appear when 𝑘1𝑑 ≈ 𝑚𝜋.
An approximate fulfillment of this condition can be confirmed in Figure 5b, where the dips are located near k1d = π and
k1d = 2π. In Figure 5b, the first dip appears to be located slightly lower than k1d = π. This can be explained by the effect
of holes which lowers the flexural wave velocity and makes the effective wave number greater than the wave number of
the host plate for a given frequency.
The deflection fields around the array of holes, i.e., the spatial distribution of Re[W], are shown in Figure 6 for different

normalized frequencies. At a low frequency (ωd/cT = 0.33), the flexural wave is almost fully transmitted across the array.
Since the presence of holes lowers the wave velocity, the flexural wave is diffracted around the square array and tends
to be focused ahead of it giving higher local amplitudes. In the first stop band (ωd/cT = 0.98), the wave length in the
array region matches twice the hole interval. Although the Bragg condition is met for this frequency, the flexural wave
is partially transmitted across the array, corresponding to the value of |W|ave which is around 0.5 in Figure 5a. At the
frequency ωd/cT = 2.6, the wave is transmitted across the array to a certain amount (|W|ave = 0.6 roughly), as also shown
in Figure 6c. Finally, in the wider stop band (ωd/cT = 4.3), the wave transmission is suppressed significantly. At this
frequency, the wave has decayed in the array region within the distance of a few columns of holes.
In Figure 5, the numerical results based on the Mindlin and the Kirchhoff theories are compared (in Figure 5b, the

normalized wave number kd, given by Equation (30) with h/d = 0.25, is taken in the horizontal axis for the Kirchhoff
theory). In Figure 5a, the two theories give different results regarding both the overall curves and the location of the stop
bands. This is due to the difference of the dispersion relations of the two theories as shown in Figure 3. Furthermore,
the wave numbers of the non-propagating modes are also different for the two theories. On the other hand, when plotted
against the normalized wave number as in Figure 5b, the transmission behavior at lower frequencies and the location of
the stop bands for the two theories are somewhat closer. To examine the correspondence between the two theories further,
the numerical results are shown in Figure 7 by reducing the plate thickness to half, i.e., h/d= 0.125. In this case, the results
are in even closer agreement in Figure 7b, while they show significant difference in Figure 7a. The fair agreement of the
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F IGURE 8 Dependence of the transmitted
wave amplitude on the normalized frequency
(h/d = 0.25), (a) for the 7×3, 7×5 and 7×7 arrays of
holes with R/d = 7/16 and (b) for the 7×7 array of
holes with R/d = 5/16, 6/16 and 7/16

F IGURE 9 Dependence of the transmitted wave amplitude across the 7×7 array of thin-plate inclusions (R/d = 7/16) on the normalized
frequency (h/d = 0.25, ℎ̄∕ℎ = 0.1)

two theories in terms of thewave number ismore or less expected, since the stop band features are governed by the relation
𝑘1𝑑 ( or 𝑘𝑑) ≈ 𝑚𝜋 irrespective of the dispersion relation.
The |W|ave-ωd/cT relations for the case of h/d = 0.25 are shown for different arrangements (7×3, 7×5 and 7×7) of holes

with R/d = 7/16 in Figure 8a, and for the 7×7 array of holes with different hole radii R/d = 5/16 = 0.3125, 6/16 = 0.375 and
7/16 = 0.4375 in Figure 8b. In these results, it is seen that the dip corresponding to the first stop band becomes deeper
as the number of hole columns or the hole radius is increased. This is expected because the Bragg reflection is more
enhancedwithmore columns of holes, and larger holes have stronger scattering effects. In contrast, the dip corresponding
to the wider stop band is relatively unchanged when these parameters are varied, which indicates that the flexural wave
transmission is almost fully suppressed with the smallest number of hole columns or with the smallest radius of holes.

4.2 Thin-plate inclusions

The transmitted wave amplitude for the plate (h/d = 0.25) with the 7×7 array of thin-plate inclusions with R/d = 7/16 and
ℎ̄∕ℎ = 0.1 is shown in Figure 9 as a function of the normalized frequency ωd/cT. The corresponding result for the 7×7
array of through-thickness holes of the same radius is also shown for comparison. In Figure 9, the plate with thin-plate
inclusions shows a dip at around ωd/cT = 1 due to the Bragg reflection as in the case of the plate with through-thickness
holes. For the plate with thin-plate inclusions, however, even shaper dips appear at several other frequencies, namely, at
ωd/cT = 0.67, 1.4, and so on. The wave fields around the inclusions (distribution of Re[W]) are shown in Figure 10 for
ωd/cT = 0.67, 0.98 and 1.4 for which the transmitted wave amplitude is relatively low. In Figure 10, the wave fields in the
same area as in Figure 6 are shown on the left with the same color scale for -1.5 < Re[W] < 1.5, but the inclusions have
much larger deflection out of this range. The wave fields in the full scales are shown on the right for the array region to
better reveal the deflection of the inclusions. In Figure 10a for ωd/cT = 0.67, the inclusions show greater deflections near
the left border of the array region, where the inclusions in the neighboring columns are deflected out of phase to each
other. In Figure 10b for ωd/cT = 0.98, the deflection field of the host plate is fairly similar to that in Figure 6b for the plate
with through-thickness holes at the same frequency. At this frequency, the deflection amplitudes of the inclusions remain
only a few times of that of the host plate. In Figure 10c for ωd/cT = 1.4, large deflections are seen for inclusions at different
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F IGURE 10 Deflection distributions at
different normalized frequencies, (a) ωd/cT = 0.67,
(b) ωd/cT = 0.98 and (c) ωd/cT = 1.4

locations in the array. Each inclusion is divided into two semi-circles showing opposite deflections, with their orientations
being different depending on their location in the array.
Significantly large deflections of the inclusions at the frequenciesωd/cT= 0.67 and 1.4 indicate that they are at resonance

with the incident flexural wave. For the Mindlin theory, the natural frequencies of circular plates are available in the
literature only for specialmaterial constants and size [39]. Instead, theKirchhoff theory can be a reasonable approximation
for the thin inclusions. Furthermore, the thicker host plate plays a role close to the clamped boundaries to the inclusions.
According to the Kirchhoff theory [40], the natural frequencies of a circular plate of thickness ℎ̄ and radius R are given by

𝜔𝑚𝑛ℎ̄

𝑐T
=

𝜆𝑚𝑛√
6(1 − 𝜈)

(
ℎ̄

𝑅

)2

, (31)

wherem and n are the integer parameters representing the number of node circles and node diameters, respectively. The
factors λmn (m = 0, 1, 2, . . . ; n = 0, 1, 2, . . . ) are determined by the boundary condition. The factors λmn for the four lowest
natural frequencies of a clamped circular plate are, λmn = 10.22 for (m, n)= (0, 0), λmn = 21.26 for (m, n)= (0, 1), λmn = 34.88
for (m, n) = (0, 2) and λmn = 39.77 for (m, n) = (1, 0) [40]. These give 𝜔00𝑑∕𝑐T = 0.67 for (m, n) = (0, 0), 𝜔01𝑑∕𝑐T = 1.40

for (m, n) = (0, 1), 𝜔02𝑑∕𝑐T = 2.29 for (m, n) = (0, 2) and 𝜔10𝑑∕𝑐T = 2.61 for (m, n) = (1, 0), which correspond to the dip
frequencies in Figure 9, ωd/cT = 0.67, 1.36, 2.12 (and 2.19) and 2.56, in reasonable agreement. Furthermore, the deflection
distribution in Figure 10a (right) shows the lowest resonant mode for (m, n) = (0, 0), and that in Figure 10c (right) shows
the resonant mode for (m, n) = (0, 1) with a single node diameter. This confirms that the dips of the transmitted wave
amplitude are due to the resonance of the inclusions. In fact, the introduction of local resonators in the host medium is
known as a way to implement an efficient wave suppression mechanism in acoustic metamaterials [22].
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As a final remark, it is noted that the flexuralwave scattering by the inclusions arranged in a finite square regionhas been
demonstrated in the example presented here. The analysis has shown that the inclusions exhibit oscillation with different
magnitudes and orientations depending on their position in the region, as most clearly shown in Figure 10c. This is a
feature created by a large but finite number of scatterers arranged in a finite region, which may not be predicted by the
more common band-structure analysis based on the Bloch theorem assuming infinitely extended periodic arrangements.
The numerical method formulated in the present work is particularly suitable for the analysis of such situations.

5 CONCLUSION

In this paper, the multiple scattering of flexural waves on an elastic plate with circular scatterers has been analyzed in
the frequency domain based on the Mindlin plate theory. To this purpose a semi-analytical numerical method has been
formulated as an extension of the previous work based on the Kirchhoff plate theory, which consists of expressing the
flexural wave field in terms of the superposition of the wave function expansion and determining the expansion coeffi-
cients by a collocation technique. As demonstrative examples, the transmission of a plane flexural wave across a square
array of circular scatterers, i.e., through-thickness holes and thin-plate inclusions, have been analyzed. In the case of cir-
cular holes, the stop band formation has been observed due to the Bragg reflection. It has been shown that the results
based on the Mindlin and Kirchhoff theories are in better agreement for a thinner plate. In the case of circular thin-plate
inclusions, a sharp reduction of transmission amplitude has been found due to the flexural resonance of inclusions in
addition to the Bragg reflection. Since the Mindlin theory gives a reasonable description of wave motions in elastic plates
in a low-frequency range, the present numerical technique can be employed to analyze a wide class of plate-type phononic
crystals or acoustic metamaterials. The present analysis has been limited to the situation of inclusions whose geometry
is symmetric with respect to the mid-plane of the host plate, so that the flexural waves are not coupled to the extensional
or shear horizontal waves. Extension of the analysis to the coupled problems remains as an intriguing issue for further
study.
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