
Decision tree

 One of the most intuitive classifiers that is easy to

understand and construct

 However, it also works very (very) well

 Categorical features are preferred. If feature values are

continuous, they are discretized first.

 Application: Database mining

2

Example

3

 Attributes:

 A: age>40

 C: chest pain

 S: smoking

 P: physical test

 Label:

 Heart disease (+), No heart disease (-)

C

P

+

A

- P
S

- S - A

+-+-

Yes No

Decision tree: structure

 Leaves (terminal nodes) represent target variable

 Each leaf represents a class label

 Each internal node denotes a test on an attribute

 Edges to children for each of the possible values of that

attribute

4

5

Decision tree: learning

6

 Decision tree learning: construction of a decision tree
from training samples.

 Decision trees used in data mining are usually classification
trees

 There are many specific decision-tree learning algorithms,
such as:

 ID3

 C4.5

 Approximates functions of usually discrete domain

 The learned function is represented by a decision tree

Decision tree learning

7

 Learning an optimal decision tree is NP-Complete

 Instead, we use a greedy search based on a heuristic

 We cannot guarantee to return the globally-optimal decision tree.

 The most common strategy for DT learning is a greedy

top-down approach

 chooses a variable at each step that best splits the set of items.

 Tree is constructed by splitting samples into subsets

based on an attribute value test in a recursive manner

How to construct basic decision tree?

 We prefer decisions leading to a simple, compact tree with few

nodes

 Which attribute at the root?

 Measure: how well the attributes split the set into

homogeneous subsets (having same value of target)

 Homogeneity of the target variable within the subsets.

 How to form descendant?

 Descendant is created for each possible value of 𝐴

 Training examples are sorted to descendant nodes

8

Constructing a decision tree

9

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Constructing a decision tree

10

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Tree is constructed by splitting samples into subsets based on an

attribute value test in a recursive manner

• The recursion is completed when all members of the subset at

a node have the same label

• or when splitting no longer adds value to the predictions

ID3

11

•ID3 (Examples,Target_Attribute,Attributes)

•Create a root node for the tree

•If all examples are positive, return the single-node tree Root, with label = +

•If all examples are negative, return the single-node tree Root, with label = -

•If number of predicting attributes is empty then

• return Root, with label = most common value of the target attribute in the examples

•else

•A = The Attribute that best classifies examples.

•Testing attribute for Root = A.

•for each possible value, 𝑣𝑖, of A

•Add a new tree branch below Root, corresponding to the test A =𝑣𝑖 .

•Let Examples(𝑣𝑖) be the subset of examples that have the value for A

•if Examples(𝑣𝑖) is empty then

• below this new branch add a leaf node with label = most common target value in the examples

•else below this new branch add subtree ID3 (Examples(𝒗𝒊),Target_Attribute,Attributes – {A})

•return Root

Which attribute is the best?

12

Which attribute is the best?

13

 A variety of heuristics for picking a good test

 Information gain: originated with ID3 (Quinlan,1979).

 Gini impurity

 …

 These metrics are applied to each candidate subset, and the

resulting values are combined (e.g., averaged) to provide a

measure of the quality of the split.

Entropy

𝐻 𝑋 = −෍
𝑥𝑖∈𝑋

𝑃 𝑥𝑖 log 𝑃(𝑥𝑖)

 Entropy measures the uncertainty in a specific distribution

 Information theory:

 𝐻 𝑋 : expected number of bits needed to encode a randomly drawn

value of 𝑋 (under most efficient code)

 Most efficient code assigns −log 𝑃(𝑋 = 𝑖) bits to encode 𝑋 = 𝑖

 ⇒ expected number of bits to code one random 𝑋 is 𝐻(𝑋)

14

Entropy for a Boolean variable

𝐻(𝑋)

𝑃(𝑋 = 1)

𝐻 𝑋 = −1 log2 1 − 0 log2 0 = 0𝐻 𝑋 = −0.5 log2
1

2
− 0.5 log2

1

2
= 1

15

Entropy as a measure

of impurity

Information Gain (IG)

 𝐴: variable used to split samples

 𝑌: target variable

 𝑆: samples

𝐺𝑎𝑖𝑛 𝑆, 𝐴 ≡ 𝐻𝑆 𝑌 − ෍

𝑣∈Values(𝐴)

𝑆𝑣
𝑆

𝐻𝑆𝑣 𝑌

16

Information Gain: Example

19

Conditional entropy: example

20

 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦

 =
7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ +

7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙

 𝐻 𝑌 𝑊𝑖𝑛𝑑

 =
8

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑊𝑒𝑎𝑘 +

6

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑆𝑡𝑟𝑜𝑛𝑔

Information Gain: Example

21

How to find the best attribute?

 Information gain as our criteria for a good split

 attribute that maximizes information gain is selected

 When a set of 𝑆 samples have been sorted to a node,

choose 𝑗-th attribute for test in this node where:

𝑗 = argmax
𝑖∈remaining atts.

𝐺𝑎𝑖𝑛 𝑆, 𝑋𝑖

 = argmax
𝑖∈remaining atts.

𝐻𝑆 𝑌 − 𝐻𝑆 𝑌|𝑋𝑖

 = argmin
𝑖∈remaining atts.

𝐻𝑆 𝑌|𝑋𝑖

22

ID3 algorithm: Properties

23

 The algorithm

 either reaches homogenous nodes

 or runs out of attributes

 Guaranteed to find a tree consistent with any conflict-free
training set
 ID3 hypothesis space of all DTs contains all discrete-valued functions

 Conflict free training set: identical feature vectors always assigned the
same class

 But not necessarily find the simplest tree (containing minimum
number of nodes).
 a greedy algorithm with locally-optimal decisions at each node (no

backtrack).

Decision tree learning:

Function approximation problem

 Problem Setting:

 Set of possible instances 𝑋

 Unknown target function 𝑓: 𝑋 → 𝑌 (𝑌 is discrete valued)

 Set of function hypotheses 𝐻 = { ℎ | ℎ ∶ 𝑋 → 𝑌 }

 ℎ is a DT where tree sorts each 𝒙 to a leaf which assigns a label 𝑦

 Input:

 Training examples {(𝒙 𝑖 , 𝑦 𝑖)} of unknown target function 𝑓

 Output:

 Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

24

Decision tree hypothesis space

 Suppose attributes are Boolean

 Disjunction of conjunctions

 Which trees to show the following functions?

 𝑦 = 𝑥1 𝑎𝑛𝑑 𝑥5
 𝑦 = 𝑥1 𝑜𝑟 𝑥4
 𝑦 = (𝑥1 𝑎𝑛𝑑 𝑥5) 𝑜𝑟(𝑥2 𝑎𝑛𝑑 ¬𝑥4) ?

25

Decision tree as a rule base

 Decision tree = a set of rules

 Disjunctions of conjunctions on the attribute values

 Each path from root to a leaf = conjunction of attribute

tests

 All of the leafs with 𝑦 = 𝑖 are considered to find the rule for

𝑦 = 𝑖

26

How partition instance space?

27

 Decision tree

 Partition the instance space into axis-parallel regions, labeled with

class value

[Duda & Hurt ’s Book]

Over-fitting problem

 ID3 perfectly classifies training data (for consistent data)

 It tries to memorize every training data

 Poor decisions when very little data (it may not reflect reliable

trends)

 Noise in the training data: the tree is erroneously fitting.

 A node that “should” be pure but had a single (or few) exception(s)?

 For many (non relevant) attributes, the algorithm will

continue to split nodes

 leads to over-fitting!

30

Over-fitting problem: an example

 Consider adding a (noisy) training example:

31

PlayTennisWindHumidityTempOutlook

NoStrongNormalHotSunny

Temp

Yes Yes No

Cool Mild Hot

Over-fitting in decision tree learning

 Hypothesis space 𝐻: decision trees

 Training (emprical) error of ℎ ∈ 𝐻 : 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ)

 Expected error of ℎ ∈ 𝐻: 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ)

 ℎ overfits training data if there is a ℎ′ ∈ 𝐻 such that

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛 ℎ < 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ′)

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒 ℎ > 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ′)

32

A question?

33

 How can it be made smaller and simpler?

 Early stopping

 When should a node be declared as a leaf?

 If a leaf node is impure, how should the category label be assigned?

 Pruning?

 Build a full tree and then post-process it

Avoiding overfitting

1) Stop growing when the data split is not statistically

significant.

2) Grow full tree and then prune it.

▪ More successful than stop growing in practice.

3) How to select “best” tree:

 Measure performance over separate validation set

 MDL: minimize

𝑠𝑖𝑧𝑒 𝑡𝑟𝑒𝑒 + 𝑠𝑖𝑧𝑒(𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑟𝑒𝑒))

34

Reduced-error pruning

 Split data into train and validation set

 Build tree using training set

 Do until further pruning is harmful:

 Evaluate impact on validation set when pruning sub-tree

rooted at each node

 Temporarily remove sub-tree rooted at node

 Replace it with a leaf labeled with the current majority class at that node

 Measure and record error on validation set

 Greedily remove the one that most improves validation set

accuracy (if any).

35

Produces smallest version of the most accurate sub-tree.

C4.5

36

 C4.5 is an extension of ID3

 Learn the decision tree from samples (allows overfitting)

 Convert the tree into the equivalent set of rules

 Prune (generalize) each rule by removing any precondition that

results in improving estimated accuracy

 Sort the pruned rules by their estimated accuracy

 consider them in sequence when classifying new instances

 Why converting the decision tree to rules before pruning?

 Distinguishing among different contexts in which a decision node is

used

 Removes the distinction between attribute tests that occur near the

root and those that occur near the leaves

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Overfitting

■ Decision Trees make very few assumptions about the training data!

■ If left unconstrained, their structure will adapt itself to the training data, fitting it very
closely, and most likely overfitting it!

■ To avoid overfitting the training data, you need to restrict the Decision Tree’s freedom
during training.

■ Which parameters can be restricted?

▶ Max Tree Depth: Maximum depth of the tree.

▶ Max Leaf Nodes: Maximum number of leaf nodes.

▶ Min Sample Leaf: Minimum number of samples a leaf node must have.

▶ Min Sample Split: Minimum number of samples a node must have before
it can be split.

▶ Max Features: Maximum number of features that are evaluated for
splitting at each node)

ML Instruction Team, Fall 2022 Decision Trees 11 / 15

Continuous attributes

 Tests on continuous variables as boolean?

 Either use threshold to turn into binary or discretize

 It’s possible to compute information gain for all possible
thresholds (there are a finite number of training samples)

 Harder if we wish to assign more than two values (can be
done recursively)

37

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

CART Algorithm

■ The algorithm first splits the training set in two subsets using a single feature k and a
threshold tk.

■ How does it choose k and tk?
It searches for the pair (k, tk) producing the purest subsets, which are weighted by their
size.

■ Once it has successfully split the training set in two, it splits the subsets using the same
logic, then the sub-subsets and so on, recursively.

■ CART algorithm is a greedy algorithm: it greedily searches for an optimum split at the
top level, then repeats the process at each level.

■ It does not check whether or not the split will lead to the lowest possible impurity several
levels down.

ML Instruction Team, Fall 2022 Decision Trees 5 / 15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Decision Trees in Practice

Figure: Iris Dataset, Source

ML Instruction Team, Fall 2022 Decision Trees 6 / 15

https://tinyurl.com/2ebkm4bs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Decision Trees in Practice

Figure: Decision Trees on Iris Dataset, Source

ML Instruction Team, Fall 2022 Decision Trees 7 / 15

https://tinyurl.com/2zhuxgn6

38

Other splitting criteria

 Information gain are biased in favor of those attributes

with more levels.

 More complex measures to select attribute

 Example: attribute Date

 Gain Ratio:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝑆, 𝐴 ≡
𝐺𝑎𝑖𝑛 𝑆, 𝐴

−σ𝑣∈Values(𝐴)
𝑆𝑣
𝑆

log
𝑆𝑣
𝑆

آموزش یادگیری ماشین
faradars.org/fvml9505

(Gain Ratio)مثالی از نحوه محاسبه شاخص نسبت بهره

:incomeمحاسبه برای ویژگی •
:از قبل داشتیم–

59

926.0

)
14

4
(log

14

4

)
14

6
(log

14

6

)
14

4
(log

14

4
)(

2

2

2







DSplitInfoincome

GainRatio(income) = 0.029/0.926 = 0.031

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

029.0)(incomeGain

آموزش یادگیری ماشین
faradars.org/fvml9505

(Gini Index)شاخص جینی

:کلاس مختلف باشدnهایی از ، شامل نمونهDاگر مجموعه داده •
.استDدر jبرابر با فرکانس نسبی عناصر کلاس pjکه در آن، –

Dتفکیک کند، مقدار جینی D2و D1را به دو بخش D، داده Aاگر ویژگی •

: عبارتست از

:، برابر است بامیزان کاهش ناخالصیدر اینصورت، •
عاب، ، جهت انش(میزان کاهش ناخالصیبیشینه)کمینه شاخص جینیویژگی با •

.شودتعیین می

60

𝑔𝑖𝑛𝑖 𝐷 = 1 −෍

𝑗=1

𝑛

𝑝𝑗
2

)(
||

||
)(

||

||
)(

2
2

1
1 Dgini

D

D
Dgini

D

D
DginiA



)()()(DginiDginiAgini
A



آموزش یادگیری ماشین
faradars.org/fvml9505

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

(Gini Index)نمونه محاسبه شاخص جینی

:لذاداریم، نمونه مثبت و پنج نمونه منفی 9زیر، به ازای داده

459.0
14

5

14

9
1)(

22


















Dgini

آموزش یادگیری ماشین
faradars.org/fvml9505

(ادامه)نمونه محاسبه شاخص جینی

نمونه در 10، داده را به دو بخش شامل ”income“فرض کنید ویژگی •
D1: {low, medium} نمونه در4وD2: {high}تفکیک کند ،:

:به همین ترتیب•
Gini{low,high} = 0.458; Gini{medium,high} = 0.450

، کمترین میزان شاخص {high}و {low, medium}لذا انشعاب بصورت دو بخش •
.دهدجینی را بدست می

62

443.0)(
14

4
)(

14

10
)(21},{ 

















 DGiniDGiniDgini mediumlowincome

آموزش یادگیری ماشین
faradars.org/fvml9505

های انتخاب ویژگیمقایسه شاخص

:هر سه شاخص، عملکرد نسبتاً مطلوبی دارند، در عین حال•
.های چند مقداره، بایاس داردبه طرف ویژگی(: Information gain)بهره اطلاعات –
ار گرایش بسوی انجام انشعاباتی دارد که طی آنها، یک بخش، بسی(: Gain ratio)نسبت بهره –

.کوچکتر از بقیه باشد

(:Gini index)شاخص جینی –
.های چند مقداره، بایاس داردبه طرف ویژگی•
.دبندیهایی با اندازه نسبتاً برابر دارد که هر کدام، نسبتاً خالص باشنمنجر به تولید بخش•

های در اختیارانتخاب شاخص مناسب بنا به شرایط مساله و داده•

63

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Decision Trees for Regression

■ It is the same as classification with a few subtle modifications:
▶ The main difference is that instead of predicting a class in each node, it

predicts a value.

▶ The prediction for each node is simply the average target value of the all
training instances associated to this leaf node.

▶ Instead of trying to split the training set in a way that minimizes impurity,
CART algorithm now tries to split the training set in a way that minimizes
the MSE.

▶ The MSE at a given node is also often referred to as intra-node variance,
and the splitting criterion is thus called variance reduction.

▶ Likewise to classification tasks, decision trees are prone to overfitting
when dealing with regression tasks.

ML Instruction Team, Fall 2022 Decision Trees 13 / 15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Positiveness of Information Gain

Figure: Boston Dataset, Source

ML Instruction Team, Fall 2022 Decision Trees 14 / 15

https://tinyurl.com/2ersy9gf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Algorithm Pros and Cons

Decision Trees for Regression

Figure: Concavity of Entropy, Source

ML Instruction Team, Fall 2022 Decision Trees 15 / 15

https://tinyurl.com/2zcn3bbx

Decision tree advantages

40

 Simple to understand and interpret

 Requires little data preparation and also can handle both

numerical and categorical data

 Time efficiency of learning decision tree classifier

 Cab be used on large datasets

 Robust: Performs well even if its assumptions are

somewhat violated

