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FPGA Realization of Hodgkin-Huxley
Neuronal Model

Farzin Shama , Saeed Haghiri , and Mohammad Amin Imani

Abstract— One of the appealing cases of the neuromor-
phic researcharea is the implementationof biologicalneural
networks. The current study offers Multiplierless Hodgkin-
Huxley Model (MHHM). This modified model may reproduce
various spiking behaviors, like the biological HH neurons,
with high accuracy. The presented modified model, in com-
parison to the original HH model, due to its exact similarity
to the original model, has more top performances in the case
of FPGA saving and more achievable frequency (speed-up).
In this approach, the proposed model has a 69 % saving in
FPGA resources and also the maximum frequency of 85 MHz
that is more than other similar works. In this modification, all
spiking behaviors of the original model have been generated
with low error calculations. To validate the MHHM neuron,
this proposed model has been implemented on digital hard-
ware FPGA. This approach demonstrates that the original
HH model and the proposed model have high similarity
in terms of higher performance and digital hardware cost
reduction.

Index Terms— FPGA, Hodgkin-Huxley, neuron.

I. INTRODUCTION

NEUROMORPHIC engineering is one of the new and
attractive branches for researchers who are interested in

the brain process information in recent years [1]–[3].
In comparison with conventional processors, the brain is

much more complicated and capable. Cognition, comparison,
and reasoning capability to learn and develop new concepts are
significant characteristics of a human’s brain [1]–[5]. Various
scientists, such as mathematicians, neuroscience, and biomed-
ical researchers, and many other researchers have handled
some significant works in this field. They have covered diverse
consequences in their probing, like behavioral and cellular
analysis of the neural system [4]–[7]. Among different pre-
vious studies, the realization of the Spiking Neural Networks
called (SNNs) has considerable necessities in neuro stud-
ies. Understanding the model well depends on the hardware
implementation of diverse neuron models. The human nervous
system is composed of neurons. The data in these cells have
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been coded, processed, and transferred with electrochemical
signals. For better perception of the system function, neuron
models might be so helpful.

Some mathematical and biological models for brain neurons
are HH model, Morris-Lecar model, Izhikevich model, and so
on [4]–[16]. Among all the various neuron models, the HH
model is the most valuable study in neuromorphic. The Nobel
award in medicine 1963 has been won by A. L. Hodgkin and
his co-worker, A. F. Huxley for their significant findings of
the ionic mechanisms of stimulation and deterrence in the
structure of brain cells or neurons. Thus, the most precise
brain cells mathematical model is the HH neuron model as
yet. Unfortunately, this model has composed of numerous
complicated equations that make it difficult for possible imple-
mentations of this model.

FPGA-based neural network implementations have been
discussed in many papers [11]–[19]. For instance, presenting
an implementation of the HH neuron model has been inves-
tigated in Yaghini et al. [19]. In their work, the CORDIC
algorithm and gradual integration that are computational tech-
niques were applied in the realization of arithmetic circuits.
The present research proposes a multiplierless digital realiza-
tion of the HH [1] neuron model with hyperbolic approx-
imations. Modifications, as a new model, have applied to
the original HH model to simplify it besides reducing the
implementation costs. The proposed model in this paper is
called as Multiplierless Hodgkin-Huxley Model (MHHM).
In analogy with the original HH model, the MHHM has
higher performances and more achievable frequency (speed-
up) due to its perfect similarity with the original model.
In this modification, all spiking behaviors of the original model
are generated with low error calculations. Furthermore, some
studies have been conducted on the original HH model and
the proposed MHHM in the rest.

Behaviors of single biological neurons, as well as the
dynamic discussions and the synapse interactions of HH
neurons, are some major studies in this research. Imple-
mentation of Spiking Neural Networks (SNNs) have been
reported in many papers [11]–[19]. For example, Gomar and
Ahmadi [11] proposes a multiplierless design of the Adex
neuron model based on realization of exponential function,
Imani et al. [12] presents two coupled Wilson neuronal model
on an FPGA board, Haghiri et al. [13] implements the novel
model of Izhikevich with noisy stimulus, Nouri et al. [15]
explains the realization of FitzHugh–Nagumo (FHN) neu-
ron model based on implementation of exponential function,
Soleimani et al. [17] proposed an implementation of Izhike-
vich model in multiplierless form. Hayati et al. [18] present
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digital FPGA implementation of the Morris Lecar (ML)
neuronal model with low-cost design. Also, different papers
have been discussed about the digital implementation of
the neuron models in [20]-[22]. Yang et al. [20] presented
basal ganglia digital realization using linear functions. Hei-
darpour et al. [21] propose digital implementation of STDP
learning based on the Izhikevich neuron model using the
CORDIC algorithm. Also, Yang et al. [22] proposed an
efficient digital implementation of a conductance-based globus
pallidus neuron using linear functions.

In comparison with the previous works, in this work,
a combination of two methods has been applied for a more
complex neuron model (HH). The first one is a piece-wise
linear approximation. Since the original HH model was made
by a large number of high-degree polynomial functions, this
piece-wise method is a right and low-cost choice for the
realization of the nonlinear terms. The second is the converting
multiplications of the original model to logical shifts and adds.
Using power-2 based functions leads to achieving equations
without any multipliers. Consequently, the proposed MHHM
model can be implemented in a hardware platform in low-cost
and high-speed level. In all works, the original mathematical
model has been converted to a new model with the lowest num-
ber of multiplications. The reason for this conversion is that the
multiplications need a high calculation time. This fact reduces
the frequency of the neuronal system (speed of the proposed
system). On the other hand, the existence of multipliers leads
to a high-cost operational neuronal system. Thus, to achieve
a low-cost and high-speed system, the multiplications have
been eliminated. Therefore, the advantage of the multiplierless
implementation of neurons has observed. Among the different
neuronal models, the HH neuron is a highly accurate model
with a high degree of biological levels and is a reliable choice
for realizing biological neural networks in a real state. In this
paper, at the first step, a multiplierless model of the HH
neuronal model as an MHHM neuron is proposed. In this
approach, all nonlinear terms of the original HH model were
converted to the power of 2 functions, and the other division
functions are replaced by piece-wise linear approximations.
In our method, all nonlinear terms were reformulated as a
power of 2 functions that lead to some digital shifts to right
or left and a number of adders. Consequently, we have a
simple digital system without any multipliers. Thus, this leads
to achieving a high-speed and low-cost digital system. Since
the original HH model has a large number of multipliers,
in comparison to our proposed model, the frequency of this
proposed model will be increased significantly. In the second
step, two coupled MHHM neurons are realized on the FPGA
board, and the synaptic transmission has been evaluated. At the
third step, the behavior of 1000 randomly connected neurons
considered for testing a large-scale implementation. In large-
scale realization of neural networks, two main issues must be
evaluated: the speed of the system and overhead cost. In our
proposed model, since all multiplications have been ignored,
these two primary factors are solved. In other words, since the
overall saving in FPGA is more than the original HH model
that means more implemented neurons on an FPGA board in
a large-scale system. Besides, the FPGA embedded multiplier
number is the limiting factor of the number of neurons,

and that’s because of the requirement of high-performance
multipliers in the original HH model. On the other hand, all
FPGA boards have several multipliers that can be used in the
digital design of neurons. In this state, it is noticeable that
although these embedded multipliers can be applied in our
digital systems for implementation of the original HH model,
this leads to reduce the maximum number of implemented
neurons on an FPGA board, and it is a problem in large-
scale implementation. As a consequence, our proposed model
is a high-speed and low-cost neuron and capable of applying
in the large-scale neural networks. In comparison with [19],
since the overall saving in the FPGA area for our proposed
model is more than their model, the maximum number of
digital neurons in an FPGA will be increased in large-scale
implementation.

The composition of this article will be explained as follows.
The original HH neuron model is narrated in the next part.
In part III, the modified Hodgkin-Huxley neuron model is
presented. In the next part, Hopf bifurcation of the HH neuron
has been discussed. After that, in section V, the behaviors of
two coupled HH models and networking have been explained.
This section consists of synapse model evaluations of the HH
coupling model and the network behavior discussions. HH and
astrocyte interactions considered in part VI. Digital hardware
design procedures for the modified HH model are presented
in Section VII. This section also includes equation discretiza-
tion, bit-width definition, hyperbolic function realization, and
resource comparison. The results of the implementation are
reported in Section VIII. Part IX consists of a conclusion of
the paper.

II. HH MODEL
Hodgkin-Huxley model (HH) is a mathematical

conductance-based neuron model, which describes how
propagation and initiation of action potentials in neurons
happen. This complex neuron model consists of four coupled
differential equations and some internal functions [1]. This
accurate model is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
du

dt
= −gNa (u−vNa) m3h

−gk (u−vk) n4 − gL(u−vL) + I
dm

dt
= αm (1 − m) − βmm

dn

dt
αn (1 − n) − βnn

dh

dt
αh (1 − h) − βhh

(1)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αm = 2.5 − 0.1u

exp (2.5 − 0.1u) − 1

αn = 0.1 − 0.01u

exp (1 − 0.1u) − 1

αh = 0.07exp(
−u

20
)

βm = 4exp(
−u

18
)

βn = 0.125exp(
−u

80
)

βh = 2.5 − 0.1u

exp (2.5 − 0.1u) − 1

(2)
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In these equations, cm = 1 and HH model has been described
by other parameters that are given below:

• u: Membrane potential;
• cm: Effective capacity per area of the membrane;
• gNa; gk; gL : conductivity of Na, K, and the leak channels;
• VNa; Vk; VL : Reversal potentials of Na, K, and the leak

channels;
• I : excitation current per area;
• m; n; h: Coefficients;

III. MODIFIED HH
A modification is suggested to simplify the Hodgkin-Huxley

model. In this approach, for achieving a neuronal system
with high-speed and lower cost, we will propose a modified
model with minimum quadratic terms. In this approach, two
papers are presented with their digital implementations [23],
[24]. In [23], scalable digital neuromorphic architecture for
a large-scale biophysically meaningful neural network with
multi-compartment neurons is presented. Its approximation
is based on the linear functions for nonlinear terms of the
original neuron model. Also, in [24], digital implementations
of thalamocortical neuron models and its application in thala-
mocortical control using FPGA for Parkinson’s disease are
proposed with piecewise linear modifications. Indeed, in our
proposed model in this paper, the piece-wise linear functions
are applied for realizing the nonlinear functions of the HH
neuron model. Moreover, the power-2 based functions are
considered for implementing the multiplications of the original
model by Shifts and Adds, only.

From the other side, the presented neuronal model is linear
and multiplierless. The main motivations in this way, are the
implementation cost and speed-up in analogy with the original.

HH model and by this means, multiplierless HH
Model (MHHM) can be presented. The membrane potential
equation and other coupling differential equations are given
by

MHHM :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
du

dt
= −gNa (u−vNa) sinh (h) f (m)

−gk (u−vk) g(n) − gL(u−vL) + I

dm

dt
= αm−appxsinh (1 − m) − βm−appx sinh (m)

dn

dt
= αn−appxsinh (1 − n) − βn−appx sinh (n)

dh

dt
= αh−appxsinh (1 − h) − βh−appx sinh (h)

(3)

where

f (m) = sinh(m)sinh(m)sinh(m) (4)

g(n) = sinh(n)sinh(n)sinh(n)sinh(n) (5)

In this procedure, the hyperbolic functions turn to binary
functions [12], [13]. As depicted in Fig. 1 (a), the hyperbolic
function f (m) can match the original function with good
accuracy. Therefore, the hyperbolic function can be rewritten

Fig. 1. Matching accuracy. (a) Matching accuracy between m3 and f(m).
(b) Matching accuracy between n4 and g(n).

as below:
sinh (m) = 2m − 2−m

2
(6)

sinh (n) = 2n − 2−n

2
(7)

Accordingly, after simplifications, the hyperbolic function
f (m) can be given by

f (m) = 1

8
[23m + 2−3m + 2m − 2−m + 21−m − 21+m] (8)

Based on this method, the multiplication between m3 and
sinh(h) will be converted to logical shifts and adds, as demon-
strated in Section IV. As depicted in Fig.1 (b), the original
function and hyperbolic function g(n) have a good matching
precision. In this way, for approximating the function g(n),
after simplifications, the hyperbolic function can be given by:

g (n) = 1

16
[24n + 2−4n − 22+2n − 22−2n + 6] (9)

Based on this method, the multiplication between n4 and
gk (u-vk) will be converted to logical shifts and adds, as

demonstrated in Section IV.
On the other hand, for implementing the αi and βi func-

tions (internal functions), we will use the piece-wise linear
functions.

αm−appx =

⎧⎪⎨
⎪⎩

(αm1) u + (αk1) ; 0 < u < u1

(αm2) u + (αk2) ; u1 < u < u2

(αm3) u + (αk3) ; else

(10)

αn−appx = (αn1) u + (αp1) (11)

αh−appx =

⎧⎪⎨
⎪⎩

(αh1) u + (αq1) ; 0 < u < u1

(αh2) u + (αq2) ; u1 < u < u2

(αh3) u + (αq3) ; else

(12)

βm−appx =

⎧⎪⎨
⎪⎩

(βm1) u + (βk1) ; 0 < u < u1

(βm2) u + (βk2) ; u1 < u < u2

(βm3) u + (βk3) ; else

(13)

βm−appx = (βn1) u + (βp1) ; (14)

βm−appx =

⎧⎪⎨
⎪⎩

(βh1) u + (βq1) ; 0 < u < u1

(βh2) u + (βq2) ; u1 < u < u2

(βh3) u + (βq3) ; else

(15)

As depicted in Fig. 2, the αi−appx and βi−appx functions
have good matching accuracy with the original functions. Also,
the approximation coefficients are given by Table II. In this
approximation, u1 = 20, u2 = 40, u3 = 60, and u4 = 80.
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TABLE I
DIFFERENT NEURON PARAMETERS FOR HH MODEL

TABLE II
DIFFERENT NEURON PARAMETERS FOR HH MODEL

Fig. 2. Matching accuracy. (a1)-(a3) Matching accuracy between αi and
αi -appx functions. (b1)-(b3) Matching accuracy between βi and βi-appx
functions.

For validating the proposed MHHM system, errors are
obtained in different states based on the parameters of the
mathematic model of the neuron for the original and the sug-
gested. In the present case, two main procedures can be used:
1. In terms of resemblances of the output signals, the Root
Mean Square Error (RMSE), which has been considered as a
comparison of the HH model measurement and [12], [15]. 2.
The second procedure for comparing predictions with their
eventual outcomes is Mean Absolute Error (MAE), which
describes how much foreseen values and observed values are
far from [13]. These two solutions are shown below:

RMSE(uMHHM,uHH) =
√∑n

i=1 (uMHHM − uHH)2

n
(16)

MAE = 1

n

∑n

i=1
|uMHHM − uHH| (17)

Consequently, these methods can calculate errors for differ-
ent values of stimulus dt = 10ms. The acceptable accuracy of
the MHHM model is obvious from Table III. Also, different
spiking patterns which are generated by different levels of
stimulation depicted in Fig. 3. As can be shown in this
figure, the proposed MHHM reproduces the original HH model
patterns in high precision.

IV. HOPF BIFURCATION OF HH MODEL

The interplays of rest and spike states have the importance
of evaluating the dynamic behaviors of the HH neural model
[27]-[29]. In this approach, we should consider a two-variable
dynamical system. Thus, the voltage variable (u) is considered
as a base variable, and other variables (m, n, h) are evaluated
with the voltage values. On the other state, the stability process

Fig. 3. Different spiking patterns for the proposed MHHM (u-MHHM)
and original HH (u-HH) models based on different stimulus currents.

TABLE III
MAE COMPUTATIONS AND RMSE FOR VARIOUS STIMULUS CURRENTS

TABLE IV
EQUILIBRIUM POINTS FOR THE HOPF BIFURCATION DIAGRAM

investigated based on the different levels of input stimulus
and the effects of currents on the membrane potentials. The
nullclines are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
= 0 → −gNa (u−vNa) m3h − gk (u−vk) n4

−gL(u−vL) + I
dm

dt
= 0 → αm − m (αm + βm) = 0

dn

dt
= 0 →αn − n (αn + βn) = 0

dh

dt
= 0 →αh − h (αh + βh) = 0

(18)

The interplays between two nullclines have a major signifi-
cance in explaining bifurcation or the switching from the rest
state to spiking [27], [29]. For describing the u and m variables
coupling, these points are given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

du

dt
= 1

cm
[−gNa (u−uNa) m3h − gk (u−uk) n4

−gL(u−vL) + I]
dm

dt
= αm − m (αm + βm)

(19)

Jacobian matrix and eigenvalues are needed for bifurcation
analysis of the equilibrium points [29]. This matrix is shown
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TABLE V
SPECIFIC VALUES OF THE SYNAPSE PARAMETERS

below

J (u, m) =
[

A B
C D

]
(20)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = − 1

cm

[
gNam3h + gkn4 + gL

]
B = − 1

cm

[
3gNam2h (u−uNa)

]
C = −0.1

[
exp (2.5 − 0.1u) − 1

]
[
exp (2.5 − 0.1u) − 1

]2 (1 − m)

+0.1
[
exp (2.5 − 0.1u)

]
[2.5 − 0.1u][

exp (2.5 − 0.1u) − 1
]2 (1 − m)

+ 4

m

[
exp

(−u

18

)]

D = −2.5 + 0.1u

exp (2.5 − 0.1u) − 1
− 4 exp

(−u

20

)

(21)

Here the Jacobian matrix for interaction of u and n is given
by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = − 1

cm

[
gNam3h + gkn4 + gL

]
B = − 1

cm

[
4gk (u−uk) n3

]
C = −0.01

[
exp (1 − 0.1u) − 1

]
[
exp (1 − 0.1u) − 1

]2 (1 − n)

+0.1
[
exp (1 − 0.1u)

]
[1 − 0.1u][

exp (1 − 0.1u) − 1
]2 (1 − n)

+0.125n

80

[
exp

(−u

80

)]

D = −1 + 0.1u

exp (1 − 0.1u) − 1
− 0.125 exp

(−u

80

)

(22)

And the Jacobian matrix for interaction of u and h is given
by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = − 1

cm

[
gNam3h + gkn4 + gL

]
B = − 1

cm

[
gNa

(
u−uNam3

)]
C = −0.07

[
exp

(−u

20

)]

(1 − h) − h
0.1

[
exp (3 − 0.1u) + 1

]
[
exp (3 − 0.1u) + 1

]2

D = −0.07

[
exp

(−u

20

)]
− 1

exp (3 − 0.1u) + 1

(23)

In this case, the stability of the fixed point is determined by
the trace of J(u,m), J(u,n), and J(u,h): the fixed points will be
stable if A+D is minus and unstable if A + D > 0. If both of
the eigenvalues of this matrix have minus real parts, the fixed
point is stable. However, if at the minimum of the eigenvalues
has a real positive part, it is unstable. Bifurcation theory has

been explained with how solutions change as parameters in a
model are altered. By applying the bifurcation theory, the types
of transitions occurring as the parameters have changed can be
classified. For which values of I , fixed point loses its stability
and fluctuations appear. In particular, we can predict which
amount of I the fixed point loses its stability and oscillations
emerge (as can be seen in the next step).

HH neuron model, the Hopf bifurcation, will be observed.
The Hopf bifurcation is a mechanism that can be used to
switch from a stable fixed point to the oscillation. So, the stable
point gets unstable, initially. In this state, the bifurcation chart
might be characterized by changes of I , in the HH model.
In this case, increments of the input stimulus obtain two fixed
points for the current, which a Hopf bifurcation takes place
at I = I1, I = I2. It is expected that a fixed point to
be stable when all the eigenvalues have a minus real part,
and it is unstable if at least one of the eigenvalues has a
positive real part. With increments of the current excitement
intensity, the nullcline goes upward, and the intersection gently
goes to the right. The intersection stays stable so long as
excitement strength reaches a critical value. As depicted in
Fig. 4, the Hopf bifurcation for the interaction of u and n can
occur by varying the stimulus current, I . As can be shown
in this figure, the fixed point will be stable for I < I1 =
7 μA or I > I2 = 380 μA. Also, it is unstable for other
regions. Therefore, a Hopf bifurcation occurs at I1and I2. Also,
in Table I, we can see that for I < I1, I > I2, the fixed points
are stable, and for I1 < I < I2, there are unstable fixed points.
The equilibrium points for the Hopf bifurcation are presented
in Table IV.

V. BEHAVIORS OF TWO COUPLED HH
MODEL AND NETWORKING

A. Synapse Model
A synapse model has been used for describing the inter-

action between two coupled HH neurons. In this model,
a presynaptic HH neuron has joined to a postsynaptic one.
The model is defined as below:⎧⎨

⎩ τs
dz

dt
= [1 + tanh (Ss (u1 − hs))] (1 − z) − z

ds
Isynapse = ks(z−z0)

(24)

Here, z is the synaptic activation value. The other coefficients
are given by

• τs : Time delay (s);
• Ss : The Variable for Activation and Relaxation of z
• ds : The Value for Relaxation of z
• hs : Threshold Value for Activation of z
• ks : Conductivity
• z0: Reference Level of z

In the present equation, Transmission of the signal between the
two neurons becomes complete when the presynaptic neuron
(u1) takes its threshold value (hs). In the present case, synaptic
current, Isynapse triggers the postsynaptic neuron.

Table V demonstrates the synapse parameters. In the present
paper, the proposed synapse model described in [30] has been
used.
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Fig. 4. The Hopf bifurcation for the HH neuron model. (a)-(c) Stable region by increasing the stimulus current from I = 0μA to I = 6μA.
(d)-(g) Unstable region in the Hopf bifurcation from I = 7μA to I = 380μA. (h) Stable region in the Hopf bifurcation after I = 380μA.

B. HH Coupling Model
The neurons and synchronization of them have an important

duty in neural network defects. With systematic vision, syn-
chronization factors can be adjusted with a suitable choice of
the synaptic factors. The following section has evaluated the
behavior of the coupled neurons. Two coupled neurons are
incorporated by a terminal for this purpose. Each presynaptic
neuron is triggered with various excitement currents, and the
transmission path will be created as the spiking patterns that
earn their threshold amount. The coupled HH and MHHM
models are defined as below:

HH :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm

du
(

1/
2

)
dt

= −gNa

⎛
⎝u(

1/2
) − vNa

⎞
⎠ m3(

1/2
)h(

1/2
)

−gk

⎛
⎝u(

1/2
) − vk

⎞
⎠ n4(

1/2
)

−gL

⎛
⎝u(

1/2
) − vL

⎞
⎠ + I

dm(
1/2

)

dt
= αm

⎛
⎝1−m(

1/2
)
⎞
⎠ − βmh

⎛
⎝m(

1/2
)
⎞
⎠

dn(
1/2

)

dt
= αn

⎛
⎝1−n(

1/2
)
⎞
⎠ − βnn(

1/2
)

dh(
1/2

)

dt
= αh

⎛
⎝1−h(

1/2
)
⎞
⎠ − βhh(

1/2
)

τs
dz
dt = [1 + tanh (Ss (u1 − hs))] (1 − z) − z

ds

Isynapse = ks (z−z0)

(25)

Different patterns have obtained by these formulas. Various
behaviors of two coupled neurons for the HH and MHHM

Fig. 5. The coupling behaviors of the original and proposed models.
(a) Different synchronization types for the original HH model based on
the different levels of stimulus current and the effect of the synapse.
(b) Different synchronization types for the proposed MHHM model.

Fig. 6. Raster plot demonstrating the activity of 1000 neurons for tonic
neurons in the HH model (a) the MHHM model (b). Random connection
of neurons.

models have been described in Fig. 5. As illustrated, neu-
rons might have various states: coupled, uncoupled, and
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full synchrony.

MHHM :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm

du
(

1/
2

)
dt

= −gNa

⎛
⎝u(

1/2
) − vNa

⎞
⎠ f (m)∗(1/2

)

sinh (h(
1/2

)) − gk

⎛
⎝u(

1/2
) − vk

⎞
⎠ g(n)(1/2

)

−gL(u(
1/2

) − vL) + I

dm(
1/2

)

dt
= αm−appxsinh

⎛
⎝1 − m(

1/2
)
⎞
⎠

−βm−appx sinh

⎛
⎝m(

1/2
)
⎞
⎠

dn(
1/2

)

dt
= αn−appxsinh

⎛
⎝1 − n(

1/2
)
⎞
⎠

−βn−appxsinh(n(
1/2

))

dh(
1/2

)

dt
= αh−appxsinh

⎛
⎝1 − h(

1/2
)
⎞
⎠

−βh−appxsinh(h(
1/2

)
Isynapse = ksor Isynapse = 0

(26)

C. Network Behavior
Neuron population network behavior is also very substantial

in a system. A network of 1000 randomly connected HH
and MHHM neurons is simulated to comprehend the model
on a network scale. Fig. 6 represents the raster plots of the
simulations. The MHHM model and the network behaviors of
the original HH model have high similarity in structure.

The relative error is computed for evaluating the differences
between MHHM models in network behavior and HH. This
value is calculated for each spike fired, and the average of
these values achieves the MRE error as below:

MRE (MHHM) % =

N∑
i=1

∣∣�t M H H Mi

∣∣
|tsi |
N

∗ 100 (27)

That �t is a time difference between the ith spike in the
MHHM model and the HH model, while N is the number
of samples. The MRE is less than 1.38 for different levels of
stimulus.

VI. HH AND ASTROCYTE INTERACTION

The Postnov model [30], [31] describes the interactions
between two coupled neurons with a simplified and gener-
alized form. In the present model, the activation pathways of

astrocytes have activated, and oscillatory behavior has consid-
ered mutually as the neurons start to fire, returning of calcium
oscillations affects the postsynaptic neuron and the synaptic
terminal. This event might adjust synaptic transmission as
well as the postsynaptic neuron behavior. The formulas of this
model are as below:

τc
dc

dt
= −c−c4f(c, ce) + [r + α(m2 + n2 + h2) + βSm]

(28)

εcτc
dce

dt
= f(c, ce) (29)

f (c, ce) = c1
c2

1 + c2 −
(

c2
e

1 + c2
e

) (
c4

c4 + c4
2

)
− c3ce (30)

τ sm
dsm

dt
= [

1 + tanh
(
Ssm

(
z − hsm

))]
(1 − sm) − sm

dsm

(31)

τGm
dGm

dt
= [

1 + tanh
(
SGm

(
z − hGm

))]
(1 − Gm) − Gm

dGm

(32)

In these formulas, describing calcium concentrations has been
shown by c and ce symbolized the concentration of calcium
in the ER or the endoplasmic reticulum. The term [r+
α(m2 + n2 + h2) + βSm] represents the calcium invasion
from the external space. Furthermore, the interplays of the
cytoplasmic calcium (c) and internal calcium (ce) are depicted
by two-variable function, f (c;ce). The threshold value for the
Sm production, which is operated with synaptic activity (z),
Distinguishing of the activated and inactivated states of the
values u1; z and c are done by threshold parameters hs ; hSm ,
and hGm , respectively. Astrocyte can have an important duty
in the adjustment of synaptic transmission of the two neurons.
In this manner, the activity of the postsynaptic neurons can
be synchronized, if the astrocyte regulation factors are not
adjusted. On the other side, the spiking activity of coupled
neurons will be regulated with the appropriate election of
the astrocyte factors. Fig. 7 shows the astrocyte effects on
regulating the patterns of spikes. Thus, for evaluating the
traces of astrocyte in adjusting the activity of the neurons,
two coupled MHHM neurons with synaptic connecting and
astrocyte interacting (proposed astrocyte model in [31]) are
considered. As can be seen in this figure, the neuronal activity
will be regulated by the appropriate selection of the astrocyte
coefficients.

VII. DIGITAL HARDWARE DESIGN

In this part, a multiplierless digital design for implementing
the MHHM neuronal system in the hardware stage has been
presented. Implementation of this hardware comprises of logic
Add and Sub as well as shifts, which are evident in Fig. 8.
Also, for implementing the hyperbolic functions, the Expo-
nential Unit (Exp. Unit) has been used.

A. Equation Discretization
The differential equations must be discretized for digital

implementation by the time-step of dt = 1/128. For reductions
in complexity, the Euler method is used. Using this method
leads to low-error system implementation.
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Fig. 7. Astrocyte interaction and simulation outcomes for the MHHM postsynaptic neuron activity and the presynaptic represented in Column
(a). In this state, increasing γ and presume that δ = � will increase the postsynaptic MHHM neuron excitation current, and the time interval of
spiking activity is independent of the presynaptic neuron. Therefore, long-term potentiation of the postsynaptic neuron has been led by this. Effect
of astrocyte on the synaptic transmission demonstrated in column (b). In this state, by increasing, the firing patterns of the postsynaptic neuron are
similar to the presynaptic neuron and can be adjusted.

Fig. 8. Hardware implementation for the proposed MHHM neuronal
system.

B. Bit-Width Definition
Discretizing differential equations is necessary due to imple-

ment digital functions. Also, using the Euler method reduced
the computational overhead and complexity. To determine
parameters and variables bit-width, taking two fundamental
factors into account must be done. The logic shifts spans,

and minimum bound and maximum bound of the parameter
values are the mentioned factors. In the proposed HH model,
the spans of U (voltage) are from -20 mV to 90 mV, and 8 bits
are required for implementing the membrane potentials at
least. Since the range of parameters can be varied from 2(-4n)
to 2(+4n), this leads to a bit-width of 16. In the determination
of bit-width, overflow may happen if the maximum logic shifts
to left or right have not been considered. There is a bit-width
of 40 bit, 20 bits for the integer section and 20 bits for the
fraction part, this segmentation increases calculations accuracy
and overflow avoiding.

C. Hyperbolic Function Realization
On the other hand, converting the hyperbolic functions to

modified functions (with the capability of implementation of
the shift and add modules) is necessary. The new modified
function will be used for implementing the proposed MHHM
neuronal system. In MHHM models, hyperbolic functions have
the exponential terms that there is a possibility to change them
in digital design by powers of 2. In [11] has been discussed
about a multiplierless implementation method. The exponen-
tial functions in this approach are converted to 2x functions
that have been realized by logic shifts. If multipliers replace
with logic shift operations, it will lead to an implementation
that is significant and low-cost. Hence, based on this approach,
the hyperbolic functions can be computed.

To implement f (m) and g(n) functions, this method is
applicable in differential equations, as depicted in Fig. 9.

D. Resources Comparison
As mentioned, the original HH model is a complex model

with a large number of nonlinear terms such as multipliers,
divisions, etc. On the other hand, for implementing a high
speed and low-cost system, these terms have been eliminated
in the proposed MHHM model. Indeed, by using add and
shift operations, all multiplications and nonlinear terms in the
original HH have been replaced. Thus, an efficient neuronal
system can be implemented. This approach is essential for
large-scale neuronal implementation in case of the maximum
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TABLE VI
LOW-LEVEL DEVICE UTILIZATION OF XILINX VIRTEX-II PRO AND BASIC ELEMENTS

USED PERCENTAGE FOR IMPLEMENTATION OF NEURON MODEL

Fig. 9. f(m) and g(n) Calculation: By using the Exponential Unit
(Exp. Unit ) [12], the hyperbolic terms in the proposed model can be
implemented.

Fig. 10. The output of implementing presented MHHM neuron on XILINX
Virtex-II Pro XC2VP30.

number of implemented neurons on the FPGA board. Conse-
quently, the proposed MHHM neuron is an excellent choice
for large-scale realization in comparison with the original HH
model because all nonlinear terms and multiplications in this
original model have been removed.

VIII. IMPLEMENTATION RESULTS

To the substantiation of concept, the MHHM neuronal
system has been fulfilled on an FPGA device with this model:
XILINX XUP Virtex-II Pro. The mentioned system produces
a hardware platform comprising a high-performance Virtex-II
Pro XC2VP30 FPGA. Spiking activity for the MHHM neu-
ronal system has been displayed in Fig. 10. To generate this
analog output, an 8-bit Digital to Analog Converter (DAC)
has been used. An effectual comparison of the CORDIC-
based HH model (Yaghini et al. [19]). And our suggested
MHHM model has been shown in Table VI. Utilizing the
device has been evaluated for implementing these models.

The overall saving makes this model possible to implement
more neurons in SNNs. The overall saving in this paper is
69%. Also, the presented work in [19] shows the 58 percent
saving in the FPGA board that is less than the proposed
model, and the presented work in [25] depicts the 70 percent
saving in the FPGA board that is close to the proposed model,
although it operates at less frequency. It should be noted that
the proposed model is implemented on the Virtex-2 FPGA
board with fewer resources than other works that use from
high-performance platforms such as Virtex-7, Artix-7, and
Kintex-7 FPGA boards. The number of 150 proposed MHHM
neurons in this paper is realized in one core of the Virtex-2
development board. On the other hand, Yaghini et al. [19]
implemented 150 HH neurons on its Virtex-7 FPGA board,
Akbarzadeh et al. [25] realized the number of 500 HH neurons
on its Artix-7 FPGA board and Khoyratee et al. [26] imple-
ments 1034 neurons (FS mode in one core) on its Kintex-7
FPGA board. As can be seen in Table VI, our proposed model
is capable of being applied in large-scale neural networks.
According to other papers ([19], [25], and [26]), that are
used high-performance FPGA boards for implementing their
neuronal models, in this paper, the proposed MHHM neuron
has been implemented on VirtexII FPGA board by fewer
resources compared with other FPGA boards. It is noted that
the resource usage in our implementation is more than or
equal to other high-performance FPGA boards, but we succeed
in implementing it in the Virtex2 FPGA board. Furthermore,
we are not using DSP blocks compared to [19], [25], and
[26]. These two advantages prove that our realization is
acceptable. Clearly, by using the high-performance FPGA
boards, the number of implemented neurons will be increased
significantly. Based on the proposed system implementation,
it is demonstrated that our model is capable of reproducing all
patterns of the original model in high accuracy and low-cost
state. This operation is predictable due to eliminating a large
number of high-cost multipliers in the original model. On the
other hand, the division operation also is a complex and high-
cost module. Consequently, the original model is not suitable
for large-scale neural networks because of its vast realization
compared to the proposed MHHM model. As can be shown in
Fig. 8 and Fig. 9, to implement the proposed digital system,
the ADD, SUB, and SHIFT modules only employed. It leads
to achieving a high-speed and low-cost architecture that is used
in real biological neural networks.The aim of this work was
primarily to provide a scalable and tunable platform allowing
the study of neurological diseases. The precise studying of
the brain and understanding the possibilities of connecting
nerve cells with the machine is a very important issue in
neuroscience [32]-[34]. By implementing the large-scale
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neural networks, containing a large number of MHHM neu-
ronal models and biological synapses, which have been con-
nected to biological astrocytes, a real central nervous system
will be achieved. This model is applied in investigating
neuronal diseases such as epilepsy, Alzheimer’s, essential
tremor, Parkinson, etc. In other words, by applying these basic
biological blocks in hardware cores, studying the curing of the
diseases is achievable.

IX. CONCLUSION

A Multiplierless Hodgkin-Huxley Model (MHHM) has been
presented in this paper. Results validate that the proposed
MHHM neuron investigation in the time and phase domains
follows similar dynamical behavior as the original HH model.
This model is a multiplierless form of the original HH neuron
and only requires logical shifts and adds. The number of
implemented neurons on an FPGA chip can be increased by
multiplierless realization of MHHM neuron on FPGA. The
proposed model is far faster and consumes less area than the
original HH model.

ACKNOWLEDGMENT

The authors would like to thank the Kermanshah Branch,
Islamic Azad University, Kermanshah, Iran; for the financial
support of this research project.

REFERENCES

[1] L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,”
J. Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952.

[2] R. B. Szlavik, A. K. Bhuiyan, A. Carver, and F. Jenkins, “Neural–
Electronic inhibition simulated with a neuron model implemented in
SPICE,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 1,
pp. 109–115, Mar. 2006.

[3] S. Monk and H. Leib, “A model for single neuron activity with refractory
effects and spike rate estimation techniques,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 25, no. 4, pp. 306–322, Apr. 2017.

[4] J. Nagumo and S. Sato, “On a response characteristic of a mathematical
neuron model,” Kybernetik, vol. 10, no. 3, pp. 155–164, Mar. 1972.
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