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A linear quadratic guidance law for a missile with a time varying acceleration constraint is presented. By

introducing the constraint into the running cost, the optimization produces time varying gains that shape themissile’s

trajectory for avoidingno-capture zones.Theguidance law is derived for amissilewithhigh-orderautopilot dynamics

and a terminal intercept angle constraint against a maneuvering target. The acceleration constraint of aerodynamic

steeringmissiles is usually trajectory dependent rather than time dependent. Transforming the constraint into a time-

dependent function by analytical means might not be possible, due to the nonlinear nature of the constraint. The

problem is alleviated using a simple iterative calculation. For practical implementation reasons, and in order to

improve the guidance performance under model uncertainties and disturbances, the guidance command is

decomposed into two separate optimizations: one for the acceleration constraint, for which the guidance gains are

calculated by a predicted time to go, and the other for the autopilot dynamics, for which the gains are obtained by a

real-time time-to-go calculation, resulting in a suboptimal guidance law. The performance of the proposed law is

investigated using nonlinear planar simulation, for a missile with first-order autopilot dynamics.

Nomenclature

A, B = state-space model matrices
aM = missile lateral acceleration
aT = target lateral acceleration
CLα

= lift coefficient slope
c1, c3 = terminal states weight parameters
H = Hamiltonian
Hi = time varying integrals
J = cost function
L = lift force
m = mass
NZEAE = zero effort angle error guidance gain
N̂ZEAE = predicted zero effort angle error guidance gain
NZEM = zero effort miss guidance gain
N̂ZEM = predicted zero effort miss guidance gain
Qf, Q, R = cost function weight matrices
r = range between target and missile
S = reference area
tf = time of intercept
t̂f = predicted time of intercept
tgo = time to go
u = control input/guidance command
u� = optimal controller/guidance command
ulim = time varying acceleration constraint function
ûlim = predicted time varying acceleration constraint

function

ulimi
= ith iteration time varying acceleration constraint

function
VM = missile speed
Vr = radial speed
VT = target speed
Vθ = angular speed
x = state vector
xi = ith state of state vector x
z = relative displacement between target and initial

line of sight
α = angle of attack
γCI = terminal intercept angle constraint
γI = intercept angle
γM = missile path angle
γT = target path angle
Δulim = mean difference between consecutive time varying

acceleration constraint computations
Δx3 = terminal intercept angle error
θ = line-of-sight angle
λi = adjoint parameters
ρ = air density
τ = autopilot time constant
ϕ = angle between velocity and line of sight
ψ i = time varying functions

I. Introduction

T HERE are various scenarios in which endoatmospheric missiles
are subject to substantial aerodynamic pressure variation due to

altitude and/or speed change. These may include ballistic missile
interceptors, launched from the ground or from the air, toward a
ballistic missile in its initial boosting phase or its terminal reentry
phase. It may also be encountered by long range air-to-ground or
ground-to-groundmissiles that reach high altitude before entering the
endgame maneuver.
Aerodynamic steering missiles are usually maneuver limited due

to a maximal allowable angle of attack (AOA), sustainable by their
control systems. There are also structural load limits which are
common to all types of missiles. When such missiles operate in a
changing environment as previously described, they are subject to a
trajectory-dependent lateral acceleration constraint. Cho et al. [1]
have suggested the use of a time varying weight function composed
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of the air density and the missile’s speed, for the optimal trajectory
shaping of such missiles. Their goal was either to reduce the induced
drag due to the missile’s maneuver or to prevent command saturation
in case the available acceleration wasmarginal. A similar attempt has
been made by Shima and Shinar in [2] for a pursuit-evasion game of
missiles with time varying control bounds. In both of theseworks, the
analytical solution was obtained for an arbitrary control bound
function, though the examples given assumed a simplistic linear
behavior. Providing such a function for fully detailed atmospheric
and aerodynamic models is quite difficult and remains an open issue.
The problem becomes even more complicated when a terminal
intercept angle constraint (TIAC) is introduced. The TIAC is referred
to in this paper as the path angle, which is the angle between the
velocities of the missile and target, rather than the attitude [3], which
is the angle between the bodies of the missile and target.
Controlling the engagement geometry of a guided missile has

become a growing requirement in recent years and has been addressed
in numerous works [3–25]. Allowing the missile to attack its target
from a specific direction holds the advantages of improving kill
performance, providing penetration capabilities, reducing thewarhead
size, reducing collateral damage, and avoiding obstacles. The TIAC
usually creates a maneuver that initially steers the missile away from a
collision course with its target and later steers it back, resulting in the
desired engagement geometry [9,14,15,22,23,26]. Such amaneuver is
characterized by larger acceleration demands because a heading error
is deliberately increased along the missile’s trajectory, up to a certain
point. Kim et al. [7] have shown that the capture zone, defined by the
initial and final (desired) missile-target geometry, is reduced with
bounded control. They have also provided an analytical computation
of this zonewhen using a biased proportional navigation guidance law
with constant control bounds. If the control bounds are trajectory
dependent, as in the case of interest, the capture zone changes along the
trajectory and cannot be analytically computed in advance. More
important, as the control bounds change along the resulting trajectory,
the missile may be lead into a no-capture zone.
If the control bounds change monotonically along the trajectory, it

may be possible to avoid entering a no-capture zone by focusing the
control effort either early or late, as was suggested in [12,13,16,25].
However, because these methods do not explicitly take into account
the varying control bounds, and rather use design parameters for
controlling the timing of the effort, they would require empirical
calibration for each individual scenario. Furthermore, a combination
of a large heading error and a TIAC may produce extremely curved,
even S-shaped trajectories. When these trajectories also include
substantial altitude and/or speed variation, the control bounds may
not change monotonically and the attempt to avoid a no-capture zone
by these methods may not succeed.
Several suboptimal nonlinear numerical-based methods [19,21,24]

have been proposed for solving the TIAC problem. Lukacs and
Yakimenko [19] have provided a trajectory shaping scheme which
does not compromise the constraints on the controls, for a fully detailed
kinematics model including atmosphere, aerodynamics, thrust, and
gravity effects. Although these types of solutions do allow solving the
problem at hand, in order to obtain a feedback-type command the
scheme requires continuous real-time updating of the numerical
solution. Such a computation may be too demanding for the missile’s
onboard CPU, and it is also relatively complicated to implement,
which would require extensive and time consuming validation.
In this paper, a closed-form suboptimal guidance scheme is

proposed for a missile with an arbitrary time varying acceleration
constraint (TVAC), which enables the shaping of a trajectory for
avoiding no-capture zones while fulfilling the guidance goal. The
suggested scheme, which is based on linear quadratic (LQ) optimiza-
tion, is derived for a missile with high-order autopilot dynamics,
against amoving andmaneuvering target, and subject to a TIAC. The
TVAC is predicted using a simple and computationally affordable
iterative numerical procedure, which provides time varying guidance
gains for a feedback-type command, making it relatively easy to
validate. The paper is organized as follows: in the next section, the
kinematics of the guidance problem is presented. The derivation of
the optimal guidance law is presented in Sec. III. In Sec. IV, an

analytical analysis of the derived law is performed. Section V
describes the computation of the expected TVAC. In addition,
implementation problems are discussed, and a decomposition of the
optimization is presented and analyzed. A simulation study is
presented in Sec. VI. In Sec. VII, the feasibility and the optimality of
the solution is evaluated, followed by conclusions in Sec. VIII.

II. Model Formulation

The engagement geometry is shown in Fig. 1 in respect to a
Cartesian inertial reference frame XI −OI − ZI . The missile and
target are denoted by the subscriptsM andT, respectively. The speed,
lateral acceleration, and path angle are denoted by V, a, and γ,
respectively. The distance between the missile and target is denoted
by r, and the angle between XI and the line of sight (LOS) is denoted
by θ. TheX −OI − Z framewill be used to linearize the equations of
motion, where X is aligned with the initial LOS, denoted by LOS0.
The relative displacement between the target andLOS0 is denoted by
z. Themissile and target accelerations normal toLOS0 are denoted by
aMN

and aTN , respectively. The intercept angle is given by γM � γT
and is denoted as γI . The gravitational force is neglected. This model
is based on the work of Shaferman and Shima in [23].

A. Nonlinear Kinematics

The engagement kinematics within the reference frame are given
by

_θ � 1

r
�−VM sin�ϕM� � VT sin�ϕT�� ≜

Vθ

r
(1)

_r � −�VM cos�ϕM� � VT cos�ϕT�� ≜ Vr (2)

where

ϕM ≜ γM − θ (3)

ϕT ≜ γT � θ (4)

The rates of the relative displacement and the intercept angle are

_z � Vr sin�θ − θ0� � Vθ cos�θ − θ0� (5)

_γI �
aM
VM
� aT
VT

(6)

Assuming themissile’s autopilot dynamics can be approximated by a
linear system,

_xM � AMxM �BMu (7)

Fig. 1 Planar engagement geometry.
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where xM is the state vector of the autopilot variables with dim
�xM� � n and u is the guidance command. The lateral acceleration is
given by

aM � CMxM � dMu (8)

The target is assumed to have perfect dynamics.

B. Linearized Kinematics

Assuming the missile and the target are making small deviations
around the collision course, the difference between the momentary
LOS angle and its initial value can be considered small: θ − θ0 ≪ 1,
in which case the dynamic model can be linearized as follows:

z ≈ �θ − θ0�r (9)

_z ≈ Vr�θ − θ0� � Vθ (10)

�z ≈ aT cos ϕT0
− aM cos ϕM0

(11)

The state-space representation of the problem is given by

_x � Ax�Bu; x � � z _z γI aT xTM �T (12)

where

_x �

8>>>>>>><
>>>>>>>:

_x1 � x2
_x2 � aT cos ϕT0

− aM cos ϕM0

_x3 � aT∕VT � aM∕VM
_x4 � 0

_xM � AMxM �BMu

; A �
"

Ak A12

�0�nx4 AM

#
;

B �

2
66666664

0

−dM cos ϕM0

dM∕VM
0

BM

3
77777775

(13)

and

Ak �

2
664
0 1 0 0

0 0 0 cos ϕT0

0 0 0 1∕VT
0 0 0 0

3
775; A12 �

2
664

�0�1xn
−CM cos ϕM0

CM∕VM
�0�1xn

3
775
(14)

with �0� denoting a matrix of zeros with appropriate dimensions.

III. Guidance Law Derivation

A. Time Varying Acceleration Constraint Cost Function

In LQ optimization, the cost function to be minimized is of the
form

J � 1

2
xT�tf�Qfx�tf� �

1

2

Z
tf

t0

�xTQx� uTRu�dξ (15)

where Qf, Q, and R are weight functions.
If the control weight functionR is chosen as constant, the controlu

is given a unified weight throughout the engagement. In the case of a
TVAC, it is preferable to avoid saturation where possible, that is,
avoid issuing guidance commands which are larger than the
momentary available lateral acceleration. For this purpose, the
following weight function is used, for a single input system, which is
the basis of the TVAC trajectory shaping guidance law:

R � 1

u2lim�t�
(16)

where ulim�t� is the TVAC.
This means that the penalty for maneuvering is higher where

the acceleration constraint is lower, throughout the engagement. The
optimal guidance command would be that which minimizes the
terminal and running states and at the same time generates commands
that are as small as possible, relative to the TVAC.
It should be noted that the proposed TVAC optimization is not

restricted to TIAC guidance problems alone and can be used in any
guidance/control problem, where needed, as long as it is treated
within an LQ optimization framework.

B. Optimal Controller

The optimal guidance law for the terminal intercept angle problem
with TVACs will be derived in the following subsection. For the
sake of simplicity, and without sacrificing generality, the guidance
law will be demonstrated for a missile with first-order autopilot
dynamics, in which case the model is reduced to

xM � aM; AM � −1∕τ; BM � 1∕τ;

CM � 1; dM � 0 (17)

where τ is the autopilot time constant.
The cost function to be minimized is given by

J � c1
2
x21�tf� �

c3
2
Δx23�tf� �

1

2

Z
tf

t0

u2�ξ�
u2lim�ξ�

dξ (18)

where

Δx3�tf� ≜ x3�tf� − γCI (19)

and γCI is the TIAC.
The Hamiltonian of the problem is

H � λ1x2 � λ2�x4 cos ϕT0
− x5 cos ϕM0

�

� λ3�x4∕vT � x5∕vM� � λ5
u − x5

τ
� 1

2

u2

u2lim
(20)

The optimal controller satisfies u� � argu min H, therefore

u� � −
λ5
τ
u2lim (21)

The adjoint equations are

8>>>><
>>>>:

_λ1 � − ∂H
∂x1
� 0

_λ2 � − ∂H
∂x2
� −λ1

_λ3 � − ∂H
∂x3
� 0

_λ5 � − ∂H
∂x5
� λ2 cos ϕM0

− λ3
VM
� λ5

τ

;

λ1�tf� � c1x1�tf�
λ2�tf� � 0

λ3�tf� � c3Δx3�tf�
λ5�tf� � 0

(22)

with the solutions8>><
>>:
λ1�t� � c1x1�tf�
λ2�t� � c1x1�tf��tf − t�
λ3�t� � c3Δx3�tf�
λ5�t� � −c1τ2ψ1�ζ�x1�tf� cos ϕM0

− c3τψ2�ζ�Δx3�tf�∕VM
(23)

where

ψ1�ζ� ≜ e−ζ � ζ − 1; ψ2�ζ� ≜ e−ζ − 1; ζ ≜
tf − t
τ

(24)
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Substituting Eq. (23) into Eq. (21) provides

u� � u2lim�c1τψ1�ζ�x1�tf� � c3ψ2�ζ�Δx3�tf�∕VM� (25)

Integrating Eq. (12) from t to tf yields two coupled algebraic
equations:

x1�tf� � ZEM − c1 cos2 ϕM0
x1�tf�H1�t� − c3

Δx3�tf�
VM

H12�t�

Δx3�tf� � ZEAE − c1
cos ϕM0

VM
x1�tf�H12�t� − c3

Δx3�tf�
V2
M

H2�t�

(26)

where the zero effort miss (ZEM) and the zero effort angle error
(ZEAE) are the expected intercept errors for a zero guidance
command, given by

ZEM ≜ x1�t�� tgox2�t��
t2go
2
cos ϕT0

x4�t�− τ2ψ1�ζ�cos ϕM0
x5�t�

ZEAE ≜ x3�t�� tgo
x4�t�
VT

− τψ2�ζ�
x5�t�
VM

− γCI (27)

The terms H1, H12, and H2 are the time varying integrals:

H1�t� ≜
Z
tf

t
τ2ψ2

1u
2
lim dξ

H12�t� ≜
Z
tf

t
τψ1ψ2u

2
lim dξ

H2�t� ≜
Z
tf

t
ψ2
2u

2
lim dξ (28)

Extracting the terminal states from Eq. (26) yields

x1�tf� �
�V2

M � c3H2�t��ZEM − c3 cos ϕM0
VMH12�t�ZEAE

�c1 cos2 ϕM0
H1�t� � 1�V2

M � c1c3 cos2 ϕM0
�H1�t�H2�t� −H2

12�t�� � c3H2�t�
(29)

Δx3�tf� � −VM
c1 cos ϕM0

H12�t�ZEM − VM�c1 cos2 ϕM0
H1�t� � 1�ZEAE

�c1 cos2 ϕM0
H1�t� � 1�V2

M � c1c3 cos2 ϕM0
�H1�t�H2�t� −H2

12�t�� � c3H2�t�
(30)

Substituting Eqs. (29) and (30) into Eq. (25) yields

u��t� � u2lim�t�
c1 cos ϕM0

�τψ1�ζ��c3H2�t� � V2
M� − c3ψ2�ζ�H12�t��ZEM

�c1 cos2 ϕM0
H1�t� � 1�V2

M � c1c3 cos2 ϕM0
�H1�t�H2�t� −H2

12�t�� � c3H2�t�
−

u2lim�t�
c3VM�c1τψ1�ζ�cos2 ϕM0

H12�t� − ψ2�ζ��c1 cos2 ϕM0
H1�t� � 1��ZEAE

�c1 cos2 ϕM0
H1�t� � 1�V2

M � c1c3 cos2 ϕM0
�H1�t�H2�t� −H2

12�t�� � c3H2�t�

(31)

For a perfect intercept and a perfect intercept angle, the weights will
be given infinite values: c1; c3 → ∞, yielding

u��t� � 1

cos ϕM0

NZEM

t2go
ZEM� NZEAE

tgo
VMZEAE (32)

whereNZEM andNZEAE are the timevarying guidance gains, given by

NZEM�t� � u2lim�t�t2go
τψ1�ζ�H2�t� − ψ2�ζ�H12�t�
H1�t�H2�t� −H2

12�t�

NZEAE�t� � u2lim�t�tgo
ψ2�ζ�H1�t� − τψ1�ζ�H12�t�
H1�t�H2�t� −H2

12�t�

(33)

Using the linear approximation of Eqs. (9) and (10), and assuming the
time to go can be approximated by tgo ≈ − r

Vr
, the first two terms of the

ZEM expression can be written as

x1�t� � tgox2�t� � z� tgo _z � �θ − θ0�r� tgoVr�θ − θ0�

� tgoVθ � −Vrt2go _θ (34)

Therefore, the ZEM can be written as

ZEM � −Vrt2go _θ� aT cos ϕT0

t2go
2

− aM cos ϕM0
τ2ψ1�ζ� (35)

The ZEAE is simply

ZEAE � �γI − γCI � � tgo
aT
VT

−
aM
VM

τψ2�ζ� (36)

IV. Guidance Law Study

This section discusses the resulting guidance law. The effects of the
TVAC and the autopilot dynamics will be examined, separately and
combined, followed by conclusions. The study will be conducted for
the case of a perfect intercept and a perfect intercept angle, that
is, c1; c3 → ∞.

A. Constant Acceleration Constraint Without Autopilot Dynamics

For the purpose of understanding the derived guidance law, it will
be reduced to its simplest form and then rebuilt from there on. First, it
will be assumed that the weight functionR is constant and equal to 1,
that is to say, the TVAC is ignored and assumed constant. It will be
further assumed that the missile has perfect dynamics, that is, τ → 0.
Under these assumptions, the time varying ψ functions are

lim
τ→0

τψ1�ζ� � tgo lim
τ→0

ψ2�ζ� � −1 (37)

in which case the integrals H1, H12, and H2 are

H1 �
1

3
t3go H12 � −

1

2
t2go H2 � tgo (38)

and the constants in these equations have the appropriate units. The
resulting guidance gains are reduced to

NZEM � 6 NZEAE � 2 (39)

The terms related to the missile’s own lateral acceleration within the
expressions of ZEM and ZEAE are removed all together, giving us
the exact same optimal guidance law obtained in [23]. The guidance
command with the gains of Eq. (39) will be denoted from here on as
the constant acceleration constraint (CAC), or u�CAC. In the following
figures, the gains of the different cases will be normalized by their
CAC values, i.e., by 6 for NZEM and by 2 for NZEAE.
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It is noted that if the TIAC is not imposed (c3 → 0) the gainsNZEM

and NZEAE become 3 and 0, respectively, which is a well-known
optimal augmented proportional navigation guidance law.

B. Constant Acceleration Constraint with Autopilot Dynamics

The effect of the autopilot dynamics, or lag, is shown in Fig. 2 for
τ � 0.5 s, assuming ulim � 1. The resulting guidance commandwill
be denoted from here on as constant acceleration constraint with
dynamics (CACD), or u�CACD.
The autopilot lag causes a delay between the guidance command

and the actual lateral acceleration. This in return deteriorates the
guidance performance, because the required lateral acceleration near
intercept is unmet. The optimization produces guidance gains that
increase to infinity as tgo → 0, expediting the autopilot near intercept
in order to overcome the effect of the lag. This increase is timed so
that the actual acceleration, given the lag, would be as required in
order to minimize the cost function. For tgo → ∞ (which is
mathematically similar to τ → 0), the guidance gains are constant and
equal in value to thosewithout autopilot lag, suggesting that for large
values of tgo the effect of the autopilot lag is negligible.
Higher-order autopilot dynamicswould introduce additional terms

to the ZEM and ZEAE expressions given in Eqs. (35) and (36). The
expressions of theH1; H12, andH2 integrals given in Eq. (28) and the
guidance gains given in Eq. (33)will be different aswell. However, as
was shown in [27] the effect of the autopilot lag on the guidance
gains, for any order, would maintain the preceding characteristics for
tgo → 0 and tgo → ∞. The main difference would be in small and
finite values of tgo, e.g., an inverse response in the case of a
nonminimum phase system.

C. Time Varying Acceleration Constraint Without Autopilot

Dynamics

Figure 3 displays the gains of a linear and a parabolic TVAC,
without autopilot dynamics. The resulting guidance commandwill be
denoted from here on as TVAC without dynamics, or u�TVAC. In one
case, shown in Fig. 3a, the TVAChas an initial value that is lower than
the final value, referenced as “Increasing.” In another case, shown in
Fig. 3b, the TVAC has an initial value that is higher than the final
value, referenced as “Decreasing.”
Analyzing the gain profiles, the following heuristic conclusions

will be offered:
1) The TVAC optimization provides a guidance law in which the

authority to maneuver‡ depends on the available lateral acceleration.
If, for instance, the available acceleration is initially high and
decreaseswith time, the authority tomaneuverwill be initially high as
well and decreasewith time. This in return would cause the missile to
maneuver early and position itself near the collision course and near
the required intercept angle, while it is still capable of maneuvering.

This would also require less maneuvering later, when it is less
maneuver capable.
2) The authority to maneuver is not unified across the guidance

command terms. This is because each command term has a different
long-term effect on the guidance command magnitude; the intercept
angle termZEAE,which causes a deviation from the collision course,
has an increasing effect on the required acceleration, whereas the
ZEM term,which reduces this deviation, has a decreasing effect. This
behavior can be seen quite clearly in three of the examples:

a) Increasing TVAC: in both cases (linear and parabolic), the
initial relatively higher value of NZEM keeps the missile closer
to the collision course, and only later, when it has more
maneuverability, is it allowed to correct the intercept angle as well.

b) Parabolic decreasing TVAC: both gains are initially relatively
higher, which is similar to the case of the linear decreasing TVAC.
However, because of the "choking" point near intercept, where the
TVAC reaches a minimal value, the gain NZEM becomes at some
point relatively higher thanNZEAE, which brings the missile closer
to the collision course and reduces the required maneuverability
later. For this reason, NZEAE is initially relatively higher than
NZEM, as it compensates for the lack of intercept angle correction
near the end of the engagement.
The behavior described previously is the result of the TVAC being

a part of the running cost. This allows taking into account the
available acceleration throughout the engagement with appropriate
planning.

D. Time Varying Acceleration Constraint with Autopilot Dynamics

Figure 4 shows the gains with autopilot dynamics for the case of
the parabolic decreasing TVAC, τ � 0.5 s. The TVAC guidance
command with autopilot dynamics will be denoted from here on as
u�TVACD. In the same figure are also the CACD and TVAC gains. For
largevalues of tgo, the gains of TVACDseem almost identical to those
of TVAC, whereas, for small values of tgo, the gains of TVACD seem
almost identical to those of CACD.
This behavior suggests that the influence of the autopilot dynamics

on the optimal gains seems to be somewhat independent of the
TVAC, which leads to the assumption that the optimization may be
separated. This hypothesis will be examined in Sec. V.C, in which it
will be used to overcome implementation problems.

V. Implementation

A. Computation of the Time Varying Acceleration Constraint

As was explained in the introduction, aerodynamic steering
missiles are usually subject to anAOA limitation, whether constant or
time varying, depending on the autopilot’s ability to maintain
dynamic stability. Their lateral acceleration is achieved by a lift force,
which is a function of the dynamic pressure and the AOA:

m · aM � L �
1

2
ρV2

MSCLα
α (40)

where m is the missile’s mass, ρ is the air density, V is the missile’s
speed, S is the reference area,CLα

is the lift coefficient slope, and α is
the AOA.
When the acceleration limit in Sec. III.A was defined as a time-

dependent function, it allowed obtaining the simple feedback-type
guidance command given in Eq. (32). However, from Eq. (40) it is
clear that this definition is inaccurate, because the actual acceleration
constraint for a given AOA limit would be

ulim �
1

2

ρV2
MSCLα

m
αlim (41)

Finding a simple feedback-type solution for the accurate constraint
given in Eq. (41) would be difficult, if not impossible, because
of the nonlinear behavior of the various elements comprising this
constraint. Although the definition of the acceleration constraint as
being time dependent rather than state dependent has allowed
overcoming this problem, it raised a different one: the relationship

0 20 40 60 80 100
0

1

2

3

0 20 40 60 80 100
0

1

2

3

Fig. 2 CACD gains.

‡A feedback-type command is composed of errors multiplied by gains. The
gains determine the proportion between the command and the error, or, in
otherwords, the gains represent the authority to correct the error; infinite gains
mean unlimited authority, and zero gains mean no authority whatsoever.
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between the acceleration constraint and time must be found in order
to obtain a closed-form solution. Finding this relationship is difficult
because of the interaction between the guidance command and the
various elements, described as follows.
In the scenarios of interest, in which endoatmospheric missiles are

subject to a substantial altitude variation, the air density varies
substantially as well. As the missile maneuvers, it is subject to a drag
force, which together with gravity changes its speed. This means that
the lateral acceleration constraint, which for a given AOA limit is a
function of the dynamic pressure, is also a function of the trajectory.
The trajectory itself is the result of the TVACguidance law,which is a
function of the TVAC constraint:

�ρVM�T � f1�u; t�; u � f2�x; VM; ulim�; ulim � f3�ρ; VM�
(42)

Because the relations between these elements are nonlinear it would
be, again, very difficult, if not impossible, to analytically predict the
TVAC. To solve this enigmatic problem, the following numerical
iterative procedure is proposed for the prediction of the TVAC along
the expected trajectory:
1) Using the fully detailed atmospheric and aerodynamic models,

make an initial guess of the TVAC function, including the expected
engagement duration t̂f. It could be a constant or a more ingenious
guess such as a linear function based on initial (known) and expected
final conditions (design requirements, scenario terminal con-
straints, etc).
2) Calculate the time varying guidance gains in Eq. (33) for the

givenTVAC function and the predicted t̂f. Aswill be explained in the
following steps, the TVAC function will be discrete; therefore,
the H1; H12, and H2 integrals will be calculated numerically (e.g.,
trapezoid integration). Alternatively, the discrete TVAC can be

approximated by a polynom, and the integrals can be obtained
analytically. For each instance t, starting from t � 0 and up to t � t̂f,
the values of the guidance gains for this instance are obtained by
integratingH1; H12, andH2 from t to t̂f. Note that, when ulim�t� and
t̂t are given, calculating the guidance gains as functions of time is
straightforward and explicit, and no additional information is needed.
This is because thevarying acceleration constraint is assumed to be an
explicit function of time, which is not affected by the actual trajectory
or speed.
3) Run a simple three-degree-of-freedom (DOF) nonlinear point-

mass simulation using the TVAC optimized guidance command in
Eq. (32) and the precalculated gains of step 2. The ZEM and the
ZEAE are calculated at each step of the simulation for themomentary
state. If the actual engagement time is longer than t̂f, freeze the values
of the gains at some minimal value of tgo, and use these constant
values until intercept is achieved or until the missile passes the target.
Keep updating the ZEM and ZEAE while the gains are frozen.
4) Along the resulting trajectory, calculate and record the actual

TVAC using the aforementioned detailed models. This calculation
will also be used during the simulation to constrain the guidance
command and avoid reaching an AOA that is larger than the limit.
Note that by using a fully detailed nonlinear simulation as suggested a
realistic physical behavior can be obtained, as all the relevant forces
(thrust, drag, lift, and gravity) are simulated.
5) Repeat steps 2–4 while updating the TVAC and the guidance

gains between iterations, until a final condition has been met. The
final condition could be, for instance, a convergence in the overall
error between consecutiveTVACs or the achievement of the guidance
goal. If the first criterion is chosen, it is expected that the predicted
TVAC would match the actual TVAC along the resulting trajectory,
which is a desired result.

B. Open-Loop Guidance Gains Computation

Once the predicted TVAC function ûlim�t� has been obtained,
where t ∈ �0; t̂f �, the guidance gains can be calculated in advance
from t � 0 to t � t̂f usingEq. (33). In fact, this has already been done
at the beginning of each iteration of the procedure described in
Sec. V.A. Suppose ûlim is the parabolic decreasing function given in
Fig. 3b. According to the prediction, the predicted time of intercept,
t̂f, is 100 s. At t � 20 s (t̂go � 80 s), the precalculated gains N̂ZEM

and N̂ZEAE should be approximately 12 and 4, respectively. At
t � 100 s (t̂go � 0 s), their values should be 6 and 2. The
precalculated gains are used with the optimal guidance command
given in Eq. (32), whereas the remaining terms, including the
guidance errors ZEM and ZEAE, are measured or estimated in real
time. This means that the guidance gains are scheduled in an open
loop, but the guidance command remains of feedback type:

u�t� � 1

cos ϕM0

N̂ZEM

t2go
ZEM� N̂ZEAE

tgo
VMZEAE (43)
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a) Increasing TVAC
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b) Decreasing TVAC

Fig. 3 TVAC gains without autopilot dynamics (τ � 0).
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Fig. 4 TVACD gains, parabolic decreasing TVAC.
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where

N̂�·� � N�·��t̂f − t; ûlim� (44)

The fact that the guidance command remains of feedback type makes
it robust against model uncertainties and external disturbances, up to
a certain extent. If the uncertainties and the disturbances are
substantial, the actual trajectory and the resulting TVACmay change
substantially as well, and the current predicted TVACwould produce
inadequate trajectory shaping. This problem may be overcome by
providing an observer; i.e., periodically update the TVAC prediction
by running the iterative procedure described in Sec. V.A, while using
the feedback-type command given in Eq. (43) between updates. On
the other hand, if the uncertainties and the disturbances are small
enough, they can be overlooked, and the main problem to be dealt
with is the fact that the actual intercept time tf could be shorter or
longer than t̂f, as shall be shortly explained.
When autopilot lag compensation is used, i.e., using the u�TVACD

command, and the engagement is shorter than expected (tf < t̂f), the
gains may not rise in a proper timing before intercept and the lag
would be compensated incorrectly, resulting in larger intercept errors.
If the engagement is longer than expected (tf > t̂f), the gains will
rise too early and reach extremely large values for quite some time
before intercept. Not only would the compensation of the autopilot
dynamics be incorrect, this could also destabilize the system by
increasing measurement noise and, again, result in larger intercept
errors.
If autopilot lag compensation is not used, i.e., using the u�TVAC

command, when tf < t̂f the guidance gains would be near their
converged values upon intercept, and when tf > t̂f gains will be
frozen at t � t̂f, at their converged values. Although this allows
avoiding the extremely large gain problem, the autopilot lag is still
not compensated.
To overcome this problem, one may suggest using a real-time

calculated tgo, such as −r∕Vr. Although this calculation may be
accurate near intercept at small values of tgo (when the missile and
target are on the collision course), it would be quite erroneous for
large values of tgo, especially when imposing a TIAC. As was
previouslymentioned in the introduction, the TIAC usually produces
a trajectory for which a heading error is initially increased. Some
combinations of initial and terminal conditions could produce
extremely curved trajectories, even S shaped. The calculation error of
tgo in such trajectories could become quite large, even when using
more sophisticated methods, such as the one suggested in [11]. To
illustrate the effect of such an error on the TVAC gain calculation,
consider a case in which the missile is initially on the collision course
but not at the required intercept angle. The guidance commandwould
steer the missile away from the collision course and increase the
heading error in order to achieve the TIAC later. As the missile steers
away, a calculation of tgo by −r∕Vr could produce a value that

increases with time.§ This is obviously wrong, because the actual tgo
can only decrease with time. As a result, instead of advancing the
values of the guidance gains along the predicted tgo scale toward
tgo � 0, they are actually frozen or moving backward along this
scale. Thiswould lead to a completely wrong TVACgain calculation,
wrong trajectory shaping, subsequent command saturation, and a
large miss distance.
In Sec. IV.D, it was shown that the influence of the TVAC on

the optimal gains is dominant for large values of tgo, whereas the
influence of the autopilot lag is dominant for small values of tgo. If the
guidance command is somehow separated so that the TVACgains are
obtained using the open-loop tgo calculation (by t̂f), and the autopilot
lag compensation is obtained in a closed-loop tgo calculation, such as
−r∕Vr, the advantage of each method can be obtained. For this
purpose the following optimization decomposition is offered.

C. Optimization Decomposition

Taking advantage of the common converged gain values of u�CACD
(tgo → ∞) and u�TVAC (tgo → 0), the following normalization can be
used:

NZEMTVACND
≜
NZEMTVAC

· NZEMCACD

6
�

NZEMTVAC

lim
tgo→0

NZEMTVAC

· NZEMCACD

� NZEMTVAC
·

NZEMCACD

lim
tgo→∞

NZEMCACD

NZEAETVACND
≜
NZEAETVAC

· NZEAECACD

2
�

NZEAETVAC

lim
tgo→0

NZEAETVAC

· NZEAECACD
� NZEAETVAC

·
NZEAECACD

lim
tgo→∞

NZEAECACD

(45)

Putting Eq. (45) into words, for large values of tgo the ratio
NZEMCACD

∕6 is nearly 1, therefore NZEMTVACND
would be similar to

NZEMTVAC
, and for small values of tgo the ratioNZEMTVAC

∕6 is nearly 1,
therefore NZEMTVACND

would be similar to NZEMCACD
. In a similar

manner, the characteristics of NZEAETVACND
are obtained.

Figure 5a shows the error (in percent) between thegains of TVACD
and TVACND for the various TVAC examples given in Fig. 3 and for
τ � 0.5 s. The effect of the autopilot time constant is shown in
Fig. 5b. The errors are quite small and increase with τ, which can be
explained by the fact that the autopilot’s lag effect on the optimal
gains extends to larger values of tgo for a larger time constant. If the
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a) Various TVAC examples,  τ = 0.5

0 20 40 60 80 100
0

50

100

0 20 40 60 80 100
0

1

2

0 20 40 60 80 100
0

2

4

τ =0.1s
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τ =0.5s

b) Autopilot time constant effects
Fig. 5 Decomposed gains errors.

§The closing velocity may decreasewith the increased heading error and/or
speed reduction due to maneuver and induced drag.
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errors remain relatively small, the resulting guidance law uTVACND
can be considered suboptimal.
Now that the effects of the autopilot dynamics and the TVAC

trajectory shaping have been separated, the gains can be calculated
separately: the gainsNTVAC will be calculated by the open-loop time
to go (t̂go � t̂f − t), and the gains NCACD are calculated using the
real-time time to go (such as −r∕Vr). The decomposed guidance
command will be referred to from here on as TVACwith normalized
dynamics, or uTVACND. It is clear that the decomposition can be used
for an autopilot of any order and that the mere difference would be in
the characteristics of theCACDgains for small values of tgo and in the
error profiles shown in Fig. 5.
It is noted that for the purpose of separating the guidance gains a

similar result can be obtained using the method of matched
asymptotic expansions, inwhich the gains ofu�CACD serve as the inner
solution and the gains of u�TVAC are the outer solution:

NZEMTVACAD
≜ NZEMCACD

� NZEMTVAC
− 6

NZEAETVACAD
≜ NZEAECACD

�NZEAETVAC
− 2 (46)

VI. Simulation Results

In this section, the TVAC guidance scheme performance will be
examined with the aid of a nonlinear simulation, for the case of a
perfect intercept (c1; c3 → ∞). First, the properties of the optimal
guidance law, which disregards the varying acceleration constraint,
will be examined. Second, the proposed guidance scheme with an
iterative solution of the TVAC will be demonstrated. Last, the
guidance scheme’s ability to cope with model uncertainties will be
investigated, and the contribution of the decomposed command will
be evaluated.

A. Simulation Scenario

The examination will be based on a single scenario against a
constantly maneuvering target. Both the missile and target will have
constant speeds, and the missile will be subject to an altitude-
dependent acceleration constraint, simulating the varying dynamic
pressure effect due to altitude change. A head-on intercept (γCI � 0°)
of a ballistic missile target will be simulated, where the interceptor is
launched vertically from the ground. The interceptor and target
will be moving at speeds of 900 and 700 m∕s, respectively, and the
target will perform a 10 m∕s2 maneuver. The altitude-dependent
acceleration constraint is given in Fig. 6. Because the missile and
target are not initially on a collision course, the angles ϕM0

and ϕT0

will be updated at each step of the simulation.

B. Guidance Performance, Ignoring the Varying Acceleration Limit

For the purpose of demonstrating the problem arising when the
guidance disregards the varying acceleration constraint, the simulation
will be runwithout autopilot lag, firstwithout imposing the acceleration
constraint (denoted NAC) and then with a limited guidance command
(denoted CAC). The resulting trajectories and guidance commands are
plotted in Fig. 7. Analyzing the results, it can be observed that the
missile starts a moderate turn toward the target in order tominimize the
miss distance and achieve the desired intercept angle. As it reaches an
altitude at which the guidance command is higher than the available
lateral acceleration, it is unable to bend its trajectory toward the target
and consequentially misses by approximately 800 m.
It is noted that this problemmight be addressed indirectly by using

a proper combination of finite terminal weights c1; c3. However, such
a solution has several major disadvantages:
1) Determining the weights c1; c3 is not straightforward; one must

find a method applicable for the entire battle space, defined by awide
range of initial and final conditions.
2) Even if a solution is found, it does not necessarily provide

enough AOA clearance throughout the engagement. When intro-
ducing model uncertainties such as lower density or less lift, the
missile might enter a no-capture zone.
3) If guidance accuracy is a critical requirement, the use of finite

weights might not allow achieving the guidance goal.

C. Time Varying Acceleration Constraint Iterative Computation,
Performed by the Guidance Algorithm

In order to utilize the trajectory shaping of the TVAC guidance
problem, the TVACmust be predicted first, as described in Sec. V.A.
Our initial guesswill be a constant value, and the chosen convergence
criterion is the mean overall difference between consecutive TVAC
solutions:

Δulim � mean�ulimi
− ulimi−1

� (47)
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Fig. 7 Varying acceleration constraint effect on guidance performance.
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The results of the iterative computation procedure are shown inFig. 8,
for the case of a missile with perfect dynamics (τ → 0). The first step
is identical to the CAC case in Sec. VI.B, which is obvious because a
CAC has been used as the first guess of the TVAC function. The
figure also shows how the TVAC develops from one iteration to
another, producing a nearly nonsaturated guidance command along
the entire trajectory. The reason a saturation still exists is that ulim was
used as a soft constraint rather than a hard one.

D. Time Varying Acceleration Constraint Trajectory Shaping

In an actual engagement, the iterative procedure demonstrated in
Sec. VI.C will be calculated once at the beginning of the engagement.
Then, the precalculated guidance gains will be used with the guidance
command ofEq. (43), and the remaining termswill be estimated in real
time. Figure 9a shows the gains obtained by the converged TVAC
function. When simulating the actual engagement using these gains,
the TVAC trajectory given in Fig. 9b is produced. If themodels used in
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Fig. 8 TVAC iterative computation performed by the guidance algorithm.
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the iterative procedure match the models of the actual engagement,
which is the case at hand, the actual trajectory and guidance command
will match the last simulated iteration of the TVAC prediction process.
Analyzing Fig. 9a, the gains’ initial high values cause themissile to

maneuver early in the engagement. Together with Figs. 8h and 9b, it
shows how the TVACoptimization shapes the trajectory in away that
keeps the target within themomentary capture region along the entire
trajectory; the missile is commanded to bend quicker, obtaining most
of the TIAC early and reaching near the collision course, while it is
still at a lower altitude and has higher maneuverability.
The fact that the TVAC computation procedure is based onmodels

makes it inherently erroneous; i.e., the atmosphere is a statistical
model with considerable variations, the missile’s aerodynamics are
based on either computational fluid dynamcis and/or wind-tunnel
datawith a limited accuracy, the targetmaymaneuver differently than
expected, etc. If the differences are small enough, and/or if there’s
enough acceleration margin, a no-capture zone may still be avoided
and the proposed guidance law could provide a successful intercept.
In cases in which a large error begins to develop between the
predicted TVAC and the actual real-time calculated value, the
iterative procedure may be repeated online from time to time in order
to update the gains history. Between these updates, a real-time
feedback command will still be used, using the last updated history.

E. Optimization Decomposition

In this subsection, the contribution of the decomposed optimization
for a missile with first-order autopilot dynamics will be examined.
Three guidance lawswill be compared: u�TVAC, u

�
TVACD, and uTVACND.

The TVAC will be computed iteratively as before, though this time a
missile with autopilot dynamics will be modeled, and each guidance
law will use its own type of gains: u�TVAC, without dynamics; u�TVACD,
with dynamics; and uTVACND, with normalized dynamics. Then, the

simulation will be run again with the predicted gains but with a
different missile speed (�10%), simulating variations in the
atmosphere, the missile’s aerodynamic model, and target speed/
maneuver. An autopilot time constant of 1 s will be used, which is
relatively large, in order to obtain a noticeable degradation in guidance
performance in cases in which the lag is not compensated properly.
It is noted that, although the variation in the actual engagement

duration could be addressed by a periodic online update of the
u�TVACD gains (rerunning the iterative procedure at small enough
intervals), such an approach might not always be applicable, as it is
computationally more demanding and might overload the missile’s
CPU. Furthermore, as was shown in Sec. IV, the dominant influence
near intercept is mostly due to the autopilot lag, whereas the TVAC
influence is negligible (the gains converge to CAC). Therefore, this
solution would be less efficient at this point.
Referring to Fig. 10a, the gains of u�TVACD rise too early, both for the

nominal¶ and for the lower-speed cases. The reason for the early rise in
the nominal case is that although the solution has converged with a
small consecutive error the error still exists, which means that the
nominal case may be shorter or longer than the last run of the iterative
solution. This error can be reduced with additional iterations, but
because computational affordability is required the iterative procedure
would be stopped as soon as possible, that is, without compromising
the trajectory shaping. The early rise in the lower-speed case was
indeed expected, and in this case the gains have reached extremely
large values some 4 s before the scenario has ended, which is an
undesirable outcome. In the case of the higher speed, the engagement
has ended before the final running time of the nominal u�TVACD
solution, and therefore the gains have risen,** but not enough and with
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Fig. 9 TVAC trajectory shaping.
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Fig. 10 TVAC gains dynamic decomposition.

¶This may not seem clear in the figure due to resolution limitations.
**See the preceding footnote.
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an incorrect timing. As for the decomposed solution uTVACND, shown
in Fig. 10b, the gains have risen exactly before intercept with proper
timing, in all three cases, because the dynamic effect is timed by the
real-time calculated value of tgo and not by the predicted one.
Table 1 summarizes performance of the three guidance laws.

Looking at the nominal scenario, it is clear that the autopilot dynamics
compensation improves theguidance performance (u�TVACD vsu

�
TVAC),

as expected, and that uTVACND is suboptimal (a higher cost when
compared with u�TVACD), also as expected. For VM ≠ VMNominal

, the
performance of u�TVACD deteriorates substantially, even worse than
u�TVAC, because of thewrong timing of the increasing of the gains. The
performance of uTVACND, on the other hand, remains indifferent to
changes in the actual engagement time, as anticipated, thanks to the
real-time computation of the CACD gains.
It should also be noted that although u�TVAC has obtained a smaller

miss distancewith an increased speed this result is not consistent and
strongly depends on the specific state of the system near intercept,
the value of the gains, and the autopilot’s model. In this specific
example, the gains were higher than their CAC values upon intercept
because of the TVAC shaping. These smaller intercept errors can be
reproduced for any first-order autopilot dynamics, simply by using
slightly higher gains. However, this would also increase the guidance
cost, and, as previously stated, the results are not consistent and could
deteriorate with a slight alteration of the engagement time.

VII. Evaluation of the Time Varying Acceleration
Constraint Prediction Method

In Sec. V.A, an iterative method for predicting the TVAC function
along the expected trajectory was proposed. When doing so, three
immediate questions arise:
1) Is the method computationally affordable?
2) Is the iterative procedure stable; i.e., would it always converge?
3) When the iterative procedure does converge, would it provide

the optimal trajectory?
Although this paper will not provide rigorous answers to these

questions, it will provide a few observations and insights in the
following section.

A. Computational Affordability

The sole purpose of the iterative procedure is to sample the TVAC
along the expected trajectory and provide the guidance gains history.
Then, the real-time guidance command would use these gains in an
open-loop scheduling, in which the intercept errors (ZEM∕t2go and
ZEAE∕tgo) are estimated in real time. In practice, this means that the
simulations used in the iterative procedure need not be highly
accurate and a relatively large time step can be used, making this
procedure potentially quite affordable.
When a fully detailed three-DOF simulation was used, including

atmosphere, aerodynamics, thrust, and gravity models, a single
iteration that simulated a total intercept time of 85 s, while using a
time step of 0.01 s (8500 steps in total), needed approximately 2ms of
CPU time when running on a single core of an Intel® Core2 Duo
E8400 processor clocked at 3.00 Mhz.
The example given in Sec. VI.C needed only four iterations in

order to converge. In most of the scenarios tested, this procedure
needed no more than approximately 5 to 10 iterations, and reaching
up to 15 to 20 iterations in extremely marginal cases. This means that
the TVAC computation procedure would usually take between 0.4 to
1.65 ms per one simulated second of the engagement. For example,
an engagement with a total length of 100 s would require between 40

and 165ms at most. Considering that the proceduremay be used only
once at the beginning of the engagement or several times throughout
the engagement, periodically with large intervals between updates,
the proposed guidance law is indeed affordable.

B. Convergence

The TVAC iterative calculation has been tested on various
scenarios with different combinations of initial and final conditions,
including different TVAC functions. Inmost cases, a convergence has
been successfully achieved. In fact, it has been very difficult finding
cases that do not converge. The few nonconverging cases that were
found involved extremelymarginal lateral acceleration clearance. An
example of such a case is given in Fig. 11, in which two consecutive
iterations are presented for a 90 deg intercept angle. The guidance
command in this scenario was not limited, but the TVAC trajectory
shapingwas used. Looking at Fig. 11b, themaximal penalty at the ith
iteration, i.e. the ratio 1∕u2lim, is reached approximately between 20
and 30 s from the beginning of the engagement.As a result, in the next
iteration (i� 1) the trajectory was shaped so that the penalty would
be lower at that area: the missile was commanded to bend further and
remain at lower altitude. This, however, resulted in a higher penalty
near intercept, as the intercept occurred at higher altitude where the
missile had less maneuverability. This, however, resulted in a higher
acceleration demand near intercept, as most of the TIAC had not yet
been obtained. This higher demand had exceeded the local
acceleration limit, and thus the maximal penalty had shifted to the
end of the engagement. The following iterations repeated this pattern,
in which the maximal penalty shifted back and forth without
converging. If the acceleration clearance were larger just enough in
these critical areas, a convergence would have been obtained.
However, from a designer’s point of view, even if the acceleration
clearance were large enough to allow convergence, the missile’s
operational envelope should not include these scenarios, or the
missile should be redesigned to achieve more lift, as it does not leave
enough margin to overcome model uncertainties.

C. Optimality of Converged Trajectories

To evaluate the optimality of the converged trajectories, the
optimal trajectories of the accurate nonlinear problem must be found
first. For this purpose, the General Pseudospectral Optimization
Software (GPOPS) is used as a reference. GPOPS is a program
written in MATLAB for solving multiple-phase optimal control
problems,†† based on the Radau pseudospectral method. The
nonlinear kinematics model used in GPOPS is given by

x �

2
6666666666664

xM
zM
xT
zT

xT − xM
zT − zM

γM
γT
γI

3
7777777777775
; _x �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

_x1 � vM cos�x7�
_x2 � vM sin�x7�
_x3 � vT cos�π − x8�
_x4 � vT sin�π − x8�
_x5 � _x3 − _x1
_x6 � _x4 − _x2
_x7 � u∕vM
_x8 � aT∕vT
_x9 � _x7 � _x8

(48)

Table 1 Intercept errors and guidance cost

Speed variation Miss distance, m/Intercept angle error, deg �J � 1
tf
∫ tf0 u2

u2
lim

dt

u�TVAC u�TVACD uTVACND u�TVAC u�TVACD uTVACND

Vm − 10% 0.20∕0.11 2.20∕ − 0.68 0.01∕0.02 3.59E� 00 9.16E� 05 1.41E − 01
Vm � 0% 0.25∕0.04 0.05∕0.02 0.02∕0.02 1.24E� 01 2.29E − 01 2.44E − 01
Vm � 10% 0.02∕0.06 6.27∕1.13 0.04∕0.01 3.78E − 01 1.84E� 04 3.57E − 01

††Although optimization programs such as GPOPS are capable of
providing the optimal trajectory, much like the solutions in [19,21,24] they
need to be continuously run during the engagement in order to provide a
feedback-type command, which makes them computationally expensive. In
addition, their complexity would require extensive validation.
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subject to the boundary conditions

x�t0� � x0; x5�tf� � 0; x6�tf� � 0; x9�tf� � γCI
(49)

and the cost function

J �
Z
tf

0

u2

u2lim
dt (50)

where (xM, zM) and xT , zT are the missile and target coordinates
within the reference frame, respectively.
The Hamiltonian of the nonlinear problem is given by

H � λT _x� 1

2

u2

u2lim
(51)

and the optimal controller must satisfy

Hu �
λ7 � λ9
VM

� u

u2lim
� 0 (52)

Figure 12 shows a comparison between TVAC and GPOPS for
the example given in Sec. VI.A, in which the missile has perfect
dynamics. To obtain a correct comparison, the guidance commands
in both simulations were not limited, as the proposed guidance law
was obtained without using a hard command constraint. Although
not shown in the paper, the minimum principal (i.e., Hu � 0) along
the GPOPS trajectory has been checked, and it has been confirmed
that the trajectory is indeed optimal.

The trajectories are obviously quite different. It is clear from this
example that the TVAC converged solution does not necessarily
provide the optimal trajectory. This result leads to the following
question: does the iterative procedure fail to converge to the optimal
trajectory due to the search method used, or is it a result of the
linearization around the collision course?
To provide a possible answer, the following test will be performed:

the TVAC function will be calculated along the optimal trajectory
providedbyGPOPS. Then, the gainsNZEMTVAC

andNZEAETVAC
and the

resulting TVAC guidance command u�TVAC will be calculated along
this trajectory. The result of this computation is shown in Fig. 13,
compared with the GPOPS command.
The TVACcommand is quite different from the optimal command,

on the optimal trajectory. The convergence criterion used in the
TVAC iterative computation procedure requires that the predicted
TVAC would match the actual TVAC along the resulting trajectory.
This means that in order to converge to the optimal trajectory the
associated TVAC function must reproduce the optimal command. As
the preceding example has shown, these two commands are quite
different, which explains why the converged and the optimal
trajectories are different as well. Two additional questions arise as a
result: why are these commands different, and in which cases will
they match?
The answer to the first question lies within the linearization; the

optimal guidance command was derived under the assumption of the
dynamic constraints given in Sec. II.B and the approximation
tgo � −r∕Vr. When the missile and target are far from the collision
course, as in the example given, the actual kinematics is not linear, the
approximation of tgo would be incorrect, and the resulting guidance
command will not be optimal. This does not necessarily mean that if
the guidance command is not optimal it will not be similar to the
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optimal command; in some special cases, a nearly optimal command
could be reproduced by a combination of erroneous calculations.
Studying Fig. 13, the commands seem to match from approximately
35 s (∼25 km downrange), where the missile is near the collision
course. In light of this observation, or hint, the second question will
be rephrased as follows: if the assumption of linearization is valid on
the optimal trajectory, would the TVAC calculation procedure
converge to this trajectory?
In an attempt to answer this question, the following simulation

tests will be performed for a fixed target, subject to the TVAC
function given in Fig. 6:
1) The missile will be positioned on the collision course (zero

heading error) while setting the TIAC as the initial LOS angle. Then,
the initial heading errorwill be gradually increased, resulting in larger
and larger deviations from the collision course.

2) The test will be repeated, but this time the initial heading error
will be set to zero and the TIAC will be gradually increased from the
initial LOS angle to different intercept angles.
Because the purpose of the test is to evaluate the TVAC converged

trajectories, rather than evaluating the validity of the linearization
around the collision course, it is imperative to confirm that substantial
trajectory shaping has been made due to the TVAC cost function. For
this purpose, these tests will be run for the CAC guidance command
as well. The results of these simulative tests are shown in Figs. 14 and
15, in which the missile is initially positioned at the axis origin.
Figure 14 shows that the TVAC converged trajectories are very
different from the CAC trajectories, confirming that it is the TVAC
search method that is evaluated, rather than the validity of the LQ
guidance law.
Figure 15 shows that when the optimal trajectory is near the

collision course theTVACsearchmethod converges to this trajectory.
It also shows that the farther the optimal trajectory is from the
collision course the farther the TVACconverged trajectory is from the
optimal trajectory. Although this test does not serve as proof, it does
give an insight as to how the TVAC converged trajectories are
compared with the optimal trajectories.

VIII. Conclusions

In this paper, an optimal control based trajectory shaping guidance
scheme has been proposed for a missile with a time varying
acceleration constraint (TVAC). The optimization minimizes the
ratio between the guidance command and its limit, while still
achieving the guidance goal. The time varying guidance gains
that allow this trajectory shaping can be calculated easily and
relatively quickly, even for complex nonlinear piecewise-continuous
acceleration constraints. Because the commands remain of feedback

0 10 20 30 40 50 60
−400

−300

−200

−100

0

100

200

300

400

t [s]

u 
[m

/s
2 ]

GPOPS

TVAC on GPOPS Trajectory

Fig. 13 TVAC guidance command on the optimal trajectory.
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type, the guidance scheme remains robust even if the TVAC
prediction is somewhat inaccurate or if external disturbances are
introduced. The optimization of the guidance command for a missile
with autopilot lag has been decomposed to a suboptimal guidance law
in order to improve the compensation of the lag under model
uncertainties and disturbances. Finally, a comparison with the
accurate solution of the nonlinear optimal control problem, supplied
with the aid of pseudospectral optimization software, has shown for
the different tested scenarios that when the optimal trajectory is near
the collision course the guidance scheme proposed in this paper does
indeed converge to the optimal trajectory.
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