
Variables:

xijk: 1 if vehicle k goes from node i to node j, 0 otherwise

 yk: 1 if vehicle k is used, 0 otherwise

𝑠𝑖𝑘: is defined for each vertex i and each vehicle k and denotes the time vehicle k starts to

service customer i

Parameters:

𝑟1𝑖: demand 1 customer i

𝑞1: capacity 1 of vehicles

𝑞1: capacity 2 of vehicles

[𝑎𝑖, 𝑏𝑖]: time window customer i

𝑡𝑖𝑗: travel time from customer i to j includes service time

C1ij: Travel time from node i to node j

C2ij: Travel distance from node i to node j

dij: is the linear distance from client i to client j

N: total number of customers (nodes)

V: total number of available vehicles

𝐶: set of Customers

Objective function:

𝑀𝑖𝑛 [𝑊1 × ∑ ∑ ∑ 𝐶1𝑖𝑗𝑥𝑖𝑗𝑘

𝑉

𝑘

𝑁

𝑗

+ 𝑊2 × ∑ ∑ ∑ 𝐶2𝑖𝑗𝑥𝑖𝑗𝑘

𝑉

𝑘

+ 𝑊3 ×

𝑁

𝑗

∑ 𝑦𝑘

𝑉

𝑘

𝑁

𝑖

𝑁

𝑖

+ 𝑊4 × 𝑍1𝑚𝑎𝑥 + 𝑊5 × (𝑍2𝑚𝑎𝑥 − 𝑍2𝑚𝑖𝑛)

S.t.

1 ∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑉

𝑘

  = 1 ∀𝑖 ∈ 𝐶 Each customer is visited

exactly once

2 ∑ 𝑟1𝑖 ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑁

𝑖

⩽ 𝑞1 × 𝑦𝑘 ∀𝑘 ∈ 𝑉

no vehicle is loaded

with more

than its box capacity

3 ∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑁

𝑖

⩽ 𝑞2 × 𝑦𝑘 ∀𝑘 ∈ 𝑉

no vehicle serves with

more

than its customer

capacity

4 ∑ 𝑥0𝑗𝑘

𝑁

𝑗

  = 𝑦𝑘 ∀𝑘 ∈ 𝑉
each vehicle leaves the

depot 0

5 ∑ 𝑥𝑖ℎ𝑘

𝑁

𝑖

− ∑ 𝑥ℎ𝑗𝑘

𝑁

𝑗

  = 0
∀ℎ ∈ 𝐶, ∀𝑘
∈ 𝑉

Each vehicle after

arriving at a customer

the vehicle leaves again

6 ∑ 𝑥𝑖,𝑛+1,𝑘

𝑁

𝑖

= 𝑦𝑘 ∀𝑘 ∈ 𝑉
Each vehicle arrives at

the depot n + 1

8 𝑍2𝑚𝑎𝑥 ≥ ∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑁

𝑖

 ∀𝑘 ∈ 𝑉 Longest tour

9 𝑍2𝑚𝑖𝑛 ≤ ∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑁

𝑖

 ∀𝑘 ∈ 𝑉 Shortest tour

10 𝑍1𝑚𝑎𝑥 ≥ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘

𝑁

𝑗

𝑁

𝑖

 ∀𝑘 ∈ 𝑉

Maximum distance

between customers in

each tour

11 𝑠𝑖𝑘 + 𝑡𝑖𝑗 − 𝐾(1 − 𝑥𝑖𝑗𝑘) ⩽ 𝑠𝑗𝑘
∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘
∈ 𝑉

A vehicle k cannot

arrive at j before 𝑠𝑖𝑘 +
𝑡𝑖𝑗if it is travelling from

i to j

12 𝑎𝑖 ⩽ 𝑠𝑖𝑘 ⩽ 𝑏𝑖
∀𝑖 ∈ 𝑁, ∀𝑘
∈ 𝑉

Ensures that time

windows are observed,

13
𝑥𝑖𝑗𝑘 , 𝑦𝑘 ∈ {0,1}

, ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉

Integrality

constraints.

Computers and Operations Research 104 (2019) 113–126

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Multigraph modeling and adaptive large neighborhood search for the

vehicle routing problem with time windows

Hamza Ben Ticha

a , ∗, Nabil Absi a , Dominique Feillet a , Alain Quilliot b

a Ecole des Mines de Saint-Etienne and UMR CNRS 6158 LIMOS, CMP Georges Charpak F-13541, Gardanne, France
b LIMOS, Institut Supérieur d’Informatique de Modélisation et leurs Applications, ISIMA, Campus des Cèzeaux, Aubière Cedex, France

a r t i c l e i n f o

Article history:

Received 14 September 2017

Revised 28 October 2018

Accepted 8 November 2018

Available online 8 November 2018

Keywords:

Vehicle routing problem with time

windows

Multigraph

Large neighborhood search

Dynamic programming

Road-network information

a b s t r a c t

In this paper we propose a multigraph model and a heuristic for the Vehicle Routing Problem with Time

Windows (VRPTW). In the classical VRPTW, travel information is commonly represented with a customer-

based graph, where an arc is an abstraction of the best road-network path between two nodes. We con-

sider the case when parallel arcs are added to this graph to introduce different compromises between

travel time and cost. It has been shown in the literature that this multigraph modeling enables substan-

tial gains in the solution quality, while highly complicating the problem. We develop an Adaptive Large

Neighbourhood Search (ALNS) heuristic in which a special data structure and dynamic programming al-

gorithms are used to efficiently address the multigraph setting. Computational experiments on several set

of instances demonstrate the effectiveness of our solution method and the impact of alternative paths on

the solution quality.

© 2018 Published by Elsevier Ltd.

1

t

a

u

i

y

t

a

(

s

t

i

o

p

r

p

h

A

t

r

a

k

o

f

t

a

s

t

e

b

a

f

i

r

s

t

i

fi

i

s

a

i

h

0

. Introduction

Distribution is one of the most essential components in logis-

ic systems. It is estimated that almost half of the logistic costs

re due to distribution and, for some industries, this accounts for

p to 70% of total costs (De Backer et al., 1997). The Vehicle Rout-

ng Problem (VRP), introduced by Dantzig and Ramser about sixty

ears ago (Dantzig and Ramser, 1959), attempts to optimize dis-

ribution costs. The study of the VRP has been highly influential,

s attested by the impressive number of publications on this topic

 Toth and Vigo, 2014).

Basically, vehicle routing problems compute a minimum-cost

et of vehicle routes that start and end at a depot. Each cus-

omer has to be supplied exactly once and each route has to sat-

sfy constraints such as vehicle capacity, customer time windows

r route duration. In most studies, geographic information is ex-

ressed with a so-called customer-based graph, where nodes rep-

esent points of interest (customers, depot) and arcs symbolize a

ath between these nodes in the road-network. In many cases

owever, this model does not capture all the relevant roadways.

ssume for example that a problem involves both travel times and

ravel distances. Given two customers, the min-time path in the

oad-network between these customers is not necessarily the same
∗ Corresponding author.

E-mail address: hamza.ben.ticha@gmail.com (H. Ben Ticha).

E

b

fi

e

ttps://doi.org/10.1016/j.cor.2018.11.001

305-0548/© 2018 Published by Elsevier Ltd.
s the min-distance path. Yet, only one of these two paths will be

ept and represented by an arc in the customer-based graph. The

ther one will be lost. Also, many other efficient paths, with dif-

erent trade-offs between time and distance, will also be forgot-

en. Clearly, this implies a loss of flexibility in route optimization

nd, possibly, an increase in travel costs. For example, one might

ometimes prefer a fast but more costly connection, when delivery

imes are restricted, or the opposite during slack times.

A few papers (Ben Ticha et al., 2017a; Garaix et al., 2010; Lai

t al., 2016) have analyzed the negative effect of the customer-

ased graph when arcs have several attributes (as time, distance

nd so on). Considering different transportation schemes in dif-

erent geographical contexts, they all show significant increases

n solution costs, compared to models that embed the complete

oad-network information. Ben Ticha et al. (2018a) have gone one

tep further and have reviewed the literature devoted to what

hey call vehicle routing problems with road-network information,

.e. , vehicle routing problems in which travel information is de-

ned at the level of road segments. They exhibit several other lim-

ts of customer-based graphs. For example, these graphs are not

uitable for complex criteria as carbon emissions, when speed is

 decision variable: as the speed can be modified at any place

n the road-network, paths cannot be precomputed (Qian and

glese, 2016). Two alternatives to the customer-based graph have

een proposed in the literature (Ben Ticha et al., 2018a). The

rst considers the customer-based graph and adds an arc for ev-

ry efficient path that exists between two nodes. The graph is

https://doi.org/10.1016/j.cor.2018.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.11.001&domain=pdf
mailto:hamza.ben.ticha@gmail.com
https://doi.org/10.1016/j.cor.2018.11.001

114 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

c

h

m

h

i

o

g

d

F

t

t

t

g

p

h

p

t

p

n

(

a

c

C

v

d

A

b

P

N

s

b

i

a

n

a

3

r

c

w

t

T

e

s

T

t

d

o

g

d

F

1

p

i

i

o

w

V

G
then referred as a multigraph. The second possibility is simply

to ignore the customer-based graph and to rely on a graph that

mimics the road-network. The first idea of using a multigraph

is relatively recent. Exact solution schemes were investigated in

Garaix et al. (2010) and Ben Ticha et al. (2017a) , for example.

Some rare early papers have considered a road-network graph (e.g. ,

(Cornuéjols et al., 1985; Fleischmann, 1985; Orloff, 1974). More re-

cently, Letchford et al. (2014) and Ben Ticha et al. (2018b) have

investigated exact solution methods with branch-and-price algo-

rithms. For both types of graph, the literature on heuristic methods

is extremely limited.

In this paper, we focus on the modeling with a multigraph. Our

objective is to develop a heuristic capable of obtaining adequate-

quality solutions quickly. Subsequently, we deal with a standard

routing problem that involves two attributes on arcs: the Vehi-

cle Routing Problem with Time Windows (VRPTW). The VRPTW

finds a minimum-cost set of vehicle routes that satisfy customer

requests within their time windows. Information on travel time

and on travel cost is associated with each arc. Travel time informa-

tion is necessary to make sure that customers are served within

their time windows. Travel cost determines the quality of solu-

tions. Since we consider that this data is available on road seg-

ments, we call our problem the VRPTW with road-network infor-

mation (VRPTW RN).

The remainder of this paper is organized as follows. In

Section 2 we review the related literature. In Section 3 , the

VRPTW RN is formally introduced. The ALNS algorithm is described

in Section 4 . Computational experiments and analyses are detailed

in Section 5 .

2. Literature review

As far as we know, the first papers interested in vehicle

routing problems with travel information supported by a multi-

graph are of Baldacci et al. (2006) and Garaix et al. (2010) . Both

works were mainly interested in exact solution algorithms (namely,

branch-and-price), but Garaix et al. (2010) also investigated heuris-

tic approaches. In particular, Garaix et al. (2010) showed an im-

portant effect of the multigraph model. Even very simple op-

erations as customer removals and insertions become difficult

to evaluate. Indeed, these moves can affect the arc to select

between consecutive customers, anywhere in the vehicle route.

Garaix et al. (2010) proved that for a given sequence of nodes,

computing an optimal sequence of arcs is NP-hard. They called

this problem the Fixed Sequence Arc Selection Problem (FSASP).

To illustrate the difficulty of arc selection, let us consider the ex-

ample presented in Fig. 1 . Fig. 1 (a) shows a vehicle route defined

by node sequence (0,1,2,0). Time windows are shown above nodes.

Parallel arcs between pair of nodes are provided, with their cost

and travel time in parentheses, given in this order. Arcs that al-

low minimizing the cost of the route are represented with a thick

line. Assume that we want to evaluate the insertion of customer X

between customers 1 and 2. This can be done by selecting the less

costly arcs that allow linking 1 with X and X with 2 without violat-

ing any time window. In this case, the obtained route is provided

on Fig. 1 (b) and has a total cost equals to 80. However, a differ-

ent sequence of arcs, shown on Fig. 1 (c), enables decreasing the

route cost down to 75. In view of the difficulty of arc selection,

Garaix et al. (2010) solved their problem with a simple descent

algorithm. Essentially, their method is composed of an initializa-

tion phase, based on greedy insertion, and an improvement phase,

based on customer relocation. In both phases, the main mecha-

nism is the customer insertion that requires solving an FSASP at

each iteration. Garaix et al. (2010) proposed solving these FSASP by

dynamic programming. Experiments showed that this procedure is

very time-consuming.
Lai et al. (2016) faced the same difficulty and proposed to cir-

umvent the complexity of the FSASP by computing arc sequences

euristically. Instead of solving the FSASP by dynamic program-

ing, they applied a fast greedy method inspired from knapsack

euristics. Experiments were limited to multigraphs with two arcs

n parallel. Wang and Lee (2014) and Setak et al. (2017) also devel-

ped heuristic methods for vehicle routing problems with a multi-

raph structure. However, in their case, at each time instant, an arc

ominates other parallel arcs, which breaks the complexity of the

SASP. In addition to these works, one could cite another heuris-

ic method developed by Caramia and Guerriero (2009) . However,

heir context is long-haul freight distribution and the structure of

he problem is very far from a vehicle routing problem. The multi-

raph was introduced to model the presence of multiple trans-

ortation modes and logistics operators. The authors proposed a

euristic composed of two phases: first, a set of efficient candidate

aths is computed in the network; then, demands are assigned to

ransportation means.

The literature on the VRPTW is much more abundant. This

roblem has drawn the attention of many researchers and a large

umber of solution methods have been proposed in the literature

 Desaulniers et al., 2014). Baldacci et al. (2012) reviewed the liter-

ture related to exact solution algorithms. Kallehauge (2008) fo-

used on mathematical formulations and polyhedral analyses.

onstruction heuristics and local-improvement methods were re-

iewed in Bräysy and Gendreau (2005a) and metaheuristics were

iscussed in Bräysy and Gendreau (2005b) .

In this work, we develop a heuristic following the framework of

daptive Large Neighborhood Search (ALNS). ALNS was introduced

y Ropke and Pisinger (2006) to solve the Pickup and Delivery

roblem with Time Windows. It was itself adapted from the Large

eighborhood Search heuristic (LNS) proposed by Shaw (1998) to

olve the VRPTW. ALNS has shown its efficiency for a large num-

er of vehicle routing problems (Toth and Vigo, 2014). The method

s based on a destroy and repair mechanism: subsets of customers

re repeatedly removed from a solution and reinserted to form a

ew solution. The difficulty in our context is to manage removals

nd reinsertions efficiently.

. Problem description and multigraph representation

We define the VRPTW RN using a directed graph G RN =
(V RN , A RN) . V RN contains the depot node 0 and nodes that represent

oad junctions. Among these nodes, a subset of size n represents

ustomers. Arcs (i, j) ∈ A RN model road segments and are defined

ith a travel cost and a travel time. We associate with each cus-

omer i a demand d i , a time window [e i , l i] and a service time t i .

he depot also receives a time window [e 0 , l 0] that indicates the

arliest starting and latest ending time of a vehicle tour. We con-

ider a homogeneous fleet with K vehicles of loading capacity Q .

he objective of the VRPTW RN is to compute a set of paths in G RN ,

hat start from the depot, return to the depot, satisfy time win-

ows and vehicle capacity, so as to serve all the customers exactly

nce with a minimal total travel cost.

In order to tackle the VRPTW RN , we introduce a directed multi-

raph G = (V, A) . V = { 0 , 1 , . . . , n } is composed of node 0 for the

epot and nodes 1 to n for the customers. A is defined as follows.

or each pair (i, j) ∈ V × V , we introduce a set A (i, j) = { (i, j) p , p =
 , . . . , m i j } of parallel arcs, where m ij is the number of efficient

aths in G RN between i and j . A path is efficient if it is not dom-

nated with regards to travel time and cost; it is only considered

f it is compatible with the time windows, i.e. , it allows reaching j

n time (before l j) when leaving i at time e i . Given an arc (i, j) p ,

e denote its travel cost by c (i, j) p and its travel time by t (i, j) p . The

RPTW RN then equivalently consists in finding a set of paths in

 , that start from the depot, return to the depot, satisfy customer

H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126 115

Fig. 1. Illustration of the insertion of a customer in a route defined on a multigraph.

t

e

s

f

d

4

f

A

w

a

T

(

s

s

w

o

l

d

n

c

n

N

c

s

r

f

i

m

n

4

p

o

t

t

a

p

I

s

a

fi

i

I

t

(

i

a

d
ime windows and vehicle capacity, and serve all the customers

xactly once with a minimal total travel cost. In this paper, we as-

ume that graph G and associated travel time and travel cost in-

ormation are given as inputs. An efficient method to compute this

ata was proposed by Ben Ticha et al. (2017b) .

. Solution method

Our solution method follows the framework of ALNS. This

ramework is described by Algorithm 1 . The algorithm is initialized

lgorithm 1 Adaptive large neighborhood search.

1: compute an initial solution s init

2: s curr ← s init

3: s best ← s curr

4: while the stopping criterion is not met do

5: select a destroy operator d ∈ D and a repair operator r ∈ R

6: s ← r(d(s curr))

7: if accept(s, s curr) then

8: s curr ← s

9: if cost(s curr) < cost(s best) then

10: s best ← s curr

11: end if

12: end if

13: end while

14: return s best

ith a solution s init constructed using an adaptation of the Clarke

nd Wright algorithm (Clarke and Wright, 1964), see Section 4.2 .

his solution is temporarily considered as the current solution

 s curr) and as the best solution (s best). Then, at each iteration, a de-

troy and a repair operators are selected. These operators are cho-

en in sets D and R described in Sections 4.3 and 4.4 , respectively,

ith a policy presented in Section 4.5 . The destroy and the repair
perators are successively applied to s curr (Line 6), to produce a so-

ution s . A simulated annealing mechanism, detailed in Section 4.6 ,

ecides whether the new solution becomes the current solution or

ot. Also, the best known solution is updated if needed (Line 9,

ost (.) is the cost of a solution). The algorithm stops after a given

umber of iterations. Because finding a feasible VRPTW solution is

P-complete, we allow infeasible solutions in the algorithm. In the

onstructive algorithm that initializes the method, we do not con-

ider the limit on the fleet size (see Section 4.2). Then, we try to

ecover a feasible solution, if needed, by limiting the degree of in-

easibility during insertions (see Section 4.4). The main innovation

n the algorithm stands in the management of arc selections in re-

oval and insertion operations. We detail how we proceed in the

ext subsection.

.1. Arc selection procedure

When applying destroy and repair operators, one has to re-

eatedly evaluate the feasibility and the cost of new sequences

f nodes. As already explained, an exact evaluation necessitates

o reoptimize the arc selection, i.e. , to solve an NP-hard problem:

he FSASP. Garaix et al. (2010) express the solution of the FSASP

s a Shortest Path Problem with Resource Constraints. They ap-

ly a standard labeling dynamic programming procedure (see, e.g. ,

rnich and Desaulniers (2005)) that works as follows. Let us con-

ider a sequence π = (0 , i 1 , . . . , i n π , 0) . A label is defined with two

ttributes: cost and time. An initial label (0,0) is assigned to the

rst copy of the depot. This label is then extended to the next node

n the sequence, using all parallel arcs (0, i 1)
p (p = 1 , . . . , m 0 i 1

) .

t results in m 0 i 1 labels associated with node i 1 . These labels are

hen all extended to the next customer i 2 , through all parallel arcs

 i 1 , i 2)
p , and the process is repeated until the end of the sequence

s reached. When extending a label, the arc travel cost and time

re added to the corresponding attribute of the label. Time win-

ows are checked to eliminate infeasible labels and waiting times

116 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

m

n

l

t

u

4

f

s

4

d

s

T

(

i

m

f

4

s

b

o

b

u

4

n

F

a

F

e

j

t

g

4

C

T

a

π
are added when necessary. Dominance rules are applied to elim-

inate dominated labels (see Algorithm 2 and next paragraphs for

Algorithm 2 Forward labeling algorithm.

1: i ← 0

2: F L [i] ← (0 , 0)

3: while i � = n + 1 do

4: j ← next(π, i)

5: for all labels (c, t) ∈ F L [i] do

6: for all arcs (i, j) p ∈ A (i, j) do

7: if t + t i + t (i, j) p ≤ l j then

8: t ′ ← max { t + t i + t (i, j) p , e j }
9: insert with dominance label (c + c (i, j) p , t

′) in F L [j]

10: end if

11: end for

12: end for

13: i ← next(π, i)

14: end while

15: return F L

details). In their computational experiments, the authors show the

limits of this method. Computing times are not compatible with

a metaheuristic that requires the evaluation of a large number of

sequences, as ALNS. For this reason it is critical for us to man-

age arc selection more efficiently. We follow the ideas initiated in

Savelsbergh (1985) and develop an improved procedure based on

bidirectional search and incremental data.

4.1.1. Label preprocessing

This preprocessing is applied on the vehicle routes of the start-

ing solution s init of Algorithm 1 (Line 1). Each route can be rep-

resented by a sequence π = (0 , i 1 , . . . , i n π , 0) . A dynamic program-

ming algorithm similar to that of Garaix et al. (2010) is applied

to each sequence. An equivalent algorithm, starting from the last

node of the sequence and traversing arcs in backward is also ap-

plied. The label sets generated with these two algorithms are kept.

The forward and backward labeling algorithms are fully described

in Algorithms 2 and 3 . The copy of the depot (ending the se-

Algorithm 3 Backward labeling algorithm.

1: j ← n + 1

2: BL [j] ← (0 , l n +1)

3: while j � = 0 do

4: i ← pre v ious (π, j)

5: for all labels (c, t) ∈ BL [j] do

6: for all arcs (i, j) p ∈ A (i, j) do

7: if t − t (i, j) p − t i ≥ e i then

8: t ′ ← min { t − t (i, j) p − t i , l i }
9: insert with dominance label (c + c (i, j) p , t

′) in BL [i]

10: end if

11: end for

12: end for

13: j ← pre v ious (π, j)

14: end while

15: return BL

quence) is renamed n + 1 in these algorithms and for the subse-

quent subsections.

The outputs of these algorithms are lists of labels FL [i] and BL [i]

associated with each node i in the sequence. Function next (π , i)

(resp., previous (π , i)) returns the node that follows (resp., precedes)

node i in sequence π . The insertion with dominance of a label in a

list of labels, is performed by comparing the new label with ev-

ery label in the list. If the new label is dominated, the list is not
odified. Otherwise, the label is added to the list and all domi-

ated labels are removed. In order to optimize certain operations,

ists FL [i] and BL [i] are implemented in non-decreasing order of the

ravel cost. When vehicle route are modified, this information is

pdated, so that it is always available.

.1.2. Evaluation of the removal of a node from a sequence

To evaluate the removal of a node u between two nodes a =
pre v ious (π, u) and b = next(π, u) in a sequence π , we apply the

ollowing algorithm:

1. Extend every label in FL [a] to b , using every arc in A (a, b) and

following the extension scheme detailed in Algorithm 2 . We call

L F the resulting label list.

2. Consider every pair ((c F , t F), (c B , t B)) of labels in L F × BL [b]. A

pair is feasible if t F ≤ t B . Compute the cost c F + c B of every fea-

sible pair and return the minimal value.

The value returned by the algorithm is the best possible cost of

equence π with node u removed.

.1.3. Update of incremental data after a removal

When a node u is removed from a sequence π , we need to up-

ate incremental data. First, we empty all sets FL [i] for nodes i po-

itioned after u in π , and sets BL [i] for nodes i positioned before u .

hen, we apply Algorithms 2 and 3 with a different initialization

Lines 1 and 2): i is initialized to previous (u, π) in Algorithm 2 , j

s set to next (u, π) in Algorithm 3 . After this initialization, u is re-

oved from the sequence and the main loop is executed normally

or each algorithm.

.1.4. Evaluation of the insertion of a node at a given position in a

equence

To evaluate the insertion of a node u between two nodes a and

 = next(π, a) in a sequence π , we apply the following algorithm:

1. Extend every label in FL [a] to u , using every arc in A (a, u) . We

call L F the resulting label list.

2. Extend every label in BL [b] backwardly to u , using every arc in

A (u, b) . We call L B the resulting label list.

3. Consider every pair ((c F , t F), (c B , t B)) of labels in L F × L B . A pair

is feasible if t F ≤ t B . Compute the cost c F + c B of every feasible

pair and return the minimal value.

The value returned by the algorithm is the best possible cost

f sequence π with node u inserted after a . Note that the feasi-

ility of the insertion with regards to vehicle capacity is evaluated

pstream.

.1.5. Update of incremental data after an insertion

When a node u is inserted between two nodes a and b =
ext(π, a) in a sequence π , we need to update incremental data.

irst, we empty all sets FL [i] for nodes i positioned after a in π ,

nd sets BL [i] for nodes i positioned before b . We also empty sets

L [u] and BL [u]. Then, we apply Algorithms 2 and 3 with a differ-

nt initialization (Lines 1 and 2): i is initialized to a in Algorithm 2 ,

 is set to b in Algorithm 3 . After this initialization, u is inserted in

he sequence and the main loop is executed normally for each al-

orithm.

.2. Initial solution

To provide an initial solution to our heuristic, we adapt the

larke and Wright savings algorithm (Clarke and Wright, 1964).

his algorithm was developed in the context of the VRP and works

s follows. Consider a solution of the VRP and two routes π1 and

whose last and first customers are i and j , respectively. If the
2

H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126 117

v

i

g

i

s

T

s

i

a

s

c

l

a

t

t

n

r

n

t

m

4

c

s

r

t

4

a

a

m

w

V

n

s

t

S

I

f

w

s

α

a

t

i

r

s

y

A

I

f

s

t

s

γ

c

t

p

4

p

T

A

4

p

T

e

s

i

t

l

i

i

c

c

4

i

p

p

s

c
ehicle capacity allows it, a single route can be obtained by merg-

ng π1 and π2 : after having reached i at the end of π1 , the vehicle

oes to j and continues π2 . The impact on cost, the so-called sav-

ng sav ij , can be precomputed and is given by:

a v i j = c (i, 0) + c (0 , j) − c (i, j) (1)

he principle of the Clarke and Wright algorithm is to compute

av ij for all pairs of customers (i, j), to sort them in a non-

ncreasing order and to progressively merge routes when possible,

ccording to this order. A pair (i, j) is eligible for a merging, and a

aving sav ij can be obtained, if three conditions holds: i is the last

ustomer of a route, j is the first of a second route, the cumulated

oad of these two routes does not exceed the vehicle capacity. The

lgorithm is initialized with a solution composed of back-and-forth

rips between the depot and a customer. We adapt this algorithm

o take care of the time windows and of the parallel arcs between

odes. We implement the following modifications:

• At the initialization, every customer i is reached with the min-

cost arc from the depot (i.e. , in A (0, i)). Then, the min-cost arc in

A (i , 0) that enables returning to the depot on time is used.
• When computing the list of savings, much more combinations

are introduced. A saving s
xyz
i j

is evaluated for all pairs of cus-

tomers (i, j), and all arcs (i , 0) x ∈ A (i , 0) , (0, j) y ∈ A (0, j) and (i,

j) z ∈ A (i, j) .
• When evaluating the feasibility of merging two routes for a

combination (i, j, x, y, z), some conditions are added:
• arcs (i , 0) x and (0, j) y have to be selected in the current so-

lution,
• merging the routes that contain i and j with arc (i, j) z has to

be compatible with time windows.

The latter condition is checked with incremental data equiva-

lent to that described in Section 4.1 . Note that using this data

also allows to reoptimize arc selection.

With the mechanism of savings, the Clarke and Wright algo-

ithm tends to minimize the number of vehicle routes, but there is

o guarantee that the provided solution respects the fleet size. In

his case, attempts to recover feasibility will be carried out in the

ain loop of the ALNS algorithm (see Section 4.4).

.3. Removal heuristics

We propose three removal heuristics, which differ in the way

ustomers are selected. A removal heuristic takes as inputs a fea-

ible solution s and a number ν of customers to be removed, and

eturns a set � of feasible routes and a set O of ν removed cus-

omers.

.3.1. Adapted Shaw removal heuristic

This heuristic was first proposed by Shaw (1998) for the VRPTW

nd next adapted by Ropke and Pisinger (2006) for the Pickup

nd Delivery Problem with Time Windows. The principle is to re-

ove similar costumers. The rationale is to favor diversification

hen reinserting customers. Indeed, due to the tight structure of

RPTW solutions, removing very different customers might give

o other choice than reinserting each customer at its original po-

ition. Given solution s , we evaluate the similarity R ij (s) between

wo customers i and j with the following measure (adapted from

haw (1998)):

R i j (s) = α1 min

1 ≤p≤m i j

c (i, j) p + α2 | t i (s) − t j (s) | + α3 | d i − d j | + α4

(1 − | RC i (s) ∩ RC j (s) |
min {| RC i (s) | , | RC j (s) |}) + X i j (s) (2)

n this formula, t i (s) and t j (s) are the starting times of the service

or customers i and j in solution s; RC u (s) is the set of positions
here u can be inserted in s (u = i, j); X i j (s) = 1 if i and j are

erved by the same vehicle in s , 0 otherwise. Parameters α1 to

4 are weights chosen in [0,1]. At a given iteration of the ALNS

lgorithm, R ij (s) can be computed in constant time except for the

erm weighted by α4 . This term is particularly time consuming as

t requires evaluating all the possible insertion positions, in all the

outes of the current solution, for i and j , with the algorithm pre-

ented in Section 4.1 . In Section 5.4 , we conduct a sensitivity anal-

sis that justifies using this term.

The adapted Shaw removal heuristic is detailed in Algorithm 4 .

lgorithm 4 Adapted Shaw removal heuristic.

1: I ← { 1 , . . . , n } , O ← ∅
2: i ← random customer in I
3: I ← I \ { i } , O ← O ∪ { i }
4: while |O| < ν do

5: u ← random customer in O
6: y ← random number in [0,1[

7: r ← � y γ1 × |I|
8: i ← r th most similar customer to u in I according to measure

R ui (s)

9: I ← I \ { i } , O ← O ∪ { i }
10: end while

11: � ← { π : π ∈ s }
12: remove customers in O from their routes in �

13: return O and �

t first randomly selects a customer and stores it in set O. Then,

or ν − 1 iterations, it randomly selects a customer u in O, finds a

imilar customer i and add i to O. Customer i is selected among

he customers still in the solution (i.e. , in set I), according to mea-

ure R ui (s) and with some randomness controlled by a parameter

1 : the higher γ 1 , the more similar the customer. Once set O is

omputed, the routes of the solution are all stored in a set � and

he customers are successively removed. At this step, the removal

rocedure of Section 4.1 is used.

.3.2. Random removal heuristic

As in Ropke and Pisinger (2006) , this removal heuristic sim-

ly selects ν customers randomly and insert them in set O.

he algorithm then constructs � and returns O and � as in

lgorithm 4 (Lines 11–13).

.3.3. Worst removal heuristic

This heuristic was introduced by Ropke and Pisinger (2006) . Its

rinciple is to remove the most costly customers from the solution.

he heuristic is driven by a measure �−
i
(�) that gives the differ-

nce between the cost of a set of routes � and the cost of the

ame set with customer i removed. The evaluation of the removal

s carried out with the procedure described in Section 4.1 . In par-

icular, arc selection on the modified route is reoptimized. Equiva-

ently to the adapted Shaw removal heuristic, a random component

s added, controlled with a parameter γ 2 . The heuristic is detailed

n Algorithm 5 . Note that contrary to the adapted Shaw heuristic,

ustomers are progressively removed and the measure that drives

ustomer selection is updated accordingly.

.4. Insertion heuristics

We propose four insertion heuristics. These heuristics take as

nputs a set � of feasible routes and a set O of customers not

resent in �. Their output is a solution s (with a number of routes

otentially larger than the fleet size). Each heuristic iteratively in-

erts a customer from O in �, until O is empty and � thus be-

omes a feasible solution. The heuristics differ in the order in

118 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

Algorithm 5 Worst removal heuristic.

1: I ← { 1 , . . . , n } , O ← ∅
2: � ← { π : π ∈ s }
3: compute �−

i
(�) for all customers i ∈ I

4: while |O| < ν do

5: y ← random number in [0,1[

6: r ← � y γ2 × |I|
7: i ← r th most costly customer in I according to measure

�−
i
(�)

8: I ← I \ { i } , O ← O ∪ { i }
9: remove i from � and call π ∗ the modified route

10: compute �−
j
(�) for all customers j ∈ π ∗

11: end while

12: return O and �

t

t

t

e

i

S

e

4

e

I

r

s

a

S

a

4

h

i

a

d

b

d

w

t

l

r

t

4

a

d

e

w

a
which the customers are selected in O and in the way they are

inserted in �.

If insertions result in a set � with | �| > max { K , | s curr |}, the in-

sertion procedure is stopped and a next iteration of the ALNS is

started from the same current solution s curr . This condition allows

to manage infeasible solutions for a number of iterations. However,

the degree of infeasibility (number of routes in excess with regards

to K) is not allowed to increase. As soon s curr becomes feasible, in-

feasibility is not allowed anymore.

4.4.1. Greedy insertion heuristic

This heuristic follows a best insertion policy. We compute for

each customer i ∈ O and for each route π ∈ �, the insertion cost

�+
i
(π) . This cost is computed with the algorithm presented in

Section 4.1 , applied for all insertion positions. �+
i
(π) is set to the

cost of the best insertion. Once these values are obtained, we com-

pute best insertion costs in �: �+
i
(�) = min π∈ � �+

i
(π) .

A customer i that minimizes �+
i
(�) is inserted in �. The in-

sertion costs are then updated and the procedure is repeated un-

til all the customers have been inserted. The insertion is carried

out with the procedure detailed in Section 4.1 . When updating in-

sertion costs, we only recompute values �+
i
(π) for the modified

route.

4.4.2. Regret insertion heuristic

This heuristic is similar to the greedy insertion heuristic, except

that it introduces a look-ahead strategy. Given i ∈ O, if we denote

by π ∗ the route in � that allows to reach a minimum insertion

cost for i (i.e. , �+
i
(π ∗) = �+

i
(�)), a regret R +

i
(�) is defined as fol-

lows:

R

+
i
(�) = min

π∈ �\{ π ∗} �
+
i
(π) − �+

i
(�) (3)

Contrary to the best insertion heuristic, the customer inserted in

� at a given iteration is the one with a maximum regret R +
i
(�) .

All other steps of the method are kept the same.

4.4.3. Non-myopic insertion heuristic

This heuristic also extends the greedy insertion heuristic. Given

i ∈ O, if we denote by �′ the set of routes that would be obtained

after the best insertion of i in �, an impact value I +
i
(�) is defined

as follows:

I +
i
(�) = �+

i
(�) +

∑

j∈O\{ i }
(�+

j
(�′) − �+

j
(�)) (4)

The rationale behind this measure is to take account of the im-

pact that the insertion of i can have on future insertions. The dif-

ference �+
j
(�′) − �+

j
(�) evaluates this impact for the remaining

customers j ∈ O \ { i } . The customer inserted in � at a given itera-

tion is the one with a minimum impact I +
i
(�) . All other steps of
he method are the same as in the greedy insertion heuristic. Note

hat to compute �+
j
(�′) , we only need to compute �+

j
(π ′) for

he route π ′ that would result from the best insertion of i . How-

ver, this heuristic might appear particularly time consuming as

t involves many calls to the evaluation of customer insertions. In

ection 5.4 , we conduct a sensitivity analysis showing that it how-

ver contributes positively to the solution quality.

.4.4. Simple insertion heuristic

The aim of this heuristic is to help diversifying the search. At

ach iteration, the customer i taken from O is randomly selected.

f the number of routes in � is lower than the fleet size K , a new

oute (0, i , 0) is added to �. Otherwise, a route π is randomly

elected in � and the insertion of i in π is tried. For that matter,

 best insertion policy is applied and the procedure described in

ection 4.1 is used. If the insertion fails, another route is selected,

nd so on until the insertion is done.

.5. Adaptive strategy for the selection of removal and insertion

euristics

In Sections 4.3 and 4.4 , we introduced three removal and four

nsertion heuristics. We now explain how heuristics are selected

t each iteration of the ALNS algorithm. Because it is difficult to

etermine a priori which removal and insertion strategies would

e more efficient, we follow the adaptive control strategy intro-

uced by Ropke and Pisinger (2006) . The principle is to assign a

eight w i (i = 1 , . . . , 6) to each heuristic and to periodically adjust

hese weights according to the successes of the heuristic. The se-

ection of removal and insertion heuristics is then made using a

oulette wheel mechanism based on these weights. Weight evolu-

ion is managed as follows:

1. All weights are initialized to the same value at the beginning of

the search.

2. The concept of segment is introduced to decide of when up-

dating weights. A segment represents a fixed number of ALNS

iterations. An update is performed at the end of each segment.

3. The update is based on a score reached on the segment for the

different heuristics. The score sc i of heuristic i (i = 1 , . . . , 6) is

set to zero at the beginning of the segment. At each iteration,

the scores of the selected removal and insertion heuristics are

increased by a value that depends on the quality of the solution

s obtained:
• μ1 if s is a new global best solution;
• μ2 if s is accepted and improves the current solution;
• μ3 if s is accepted but has a total cost worse than the cur-

rent solution;
• 0 otherwise.

4. Given the scores sc i , the weights are updated with the following

formula:

w i ← w i × (1 − r) + r × sc i
ηi

(5)

where ηi is the number of times heuristic i has been selected

on the segment and r is a reaction factor in [0,1] that controls

how the score reacts to the effectiveness of the heuristics.

.6. Acceptance criteria

To avoid getting trapped early in a local optimum, a simulated

nnealing mechanism is implemented. It consists of accepting a

eteriorating solution s with a probability

xp (− cost(s) − cost(s curr)

T
) (6)

here s curr is the current solution, cost (.) is the cost of solutions

nd T is the temperature. Improving solutions are always accepted.

H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126 119

T

w

s

a

5

fi

I

t

h

q

t

C

5

b

c

5

t

l

r

r

c

t

r

o

p

p

A

i

a

t

b

t

u

a

5

g

t

s

p

A

b

m

n

i

w

a

t

g

r

w

t

l

s

5

u

a

o

f

i

b

c

F

a

n

p

t

a

t
he temperature starts at a value T start , fixed so that a solution 5%

orse than the initial solution s init has a probability 50% of being

elected. Then, the temperature is decreased at every iteration by

 factor γ 3 , with 0 < γ 3 < 1.

. Computational experiments

In this section, we describe our experimental computations. We

rst present, in Section 5.1 , the benchmark instances that we use.

n Section 5.2 , we then explain how ALNS parameters have been

uned. In Section 5.3 , we evaluate the performance of the ALNS

euristic and the impact of road-network information on solution

uality. In Section 5.4 , we present some sensitivity analyses to jus-

ify the integration of some components in the method.

Algorithms are implemented in C++. Tests are run on an Intel

ORE i5 2.6 GHz computer with 4GB of memory.

.1. Benchmark instances

In our experiments, we use four classes of instances provided

y Ben Ticha et al. (2017a) .

SOL. A first class consists of 90 instances derived from

a subset of Solomon’s VRPTW benchmark instances

Solomon (1987) : 45 instances with 25 customers and

45 instances with 50 customers. To generate these in-

stances, Ben Ticha et al. (2017a) first modify travel times.

For that matter, they draw random numbers correlated

with Euclidean distances. Three correlation degrees are

used: no-correlation (NC), weak correlation (WC) and

strong correlation (SC). Multigraphs are then constructed

by computing the set of efficient paths between every pair

of nodes. Other parameters are not modified. Note that

these instances are not stricly VRPTW RN instances as the

multigraphs are not computed from road networks.

LET. A second class of 30 instances was initially provided

by Letchford et al. (2014) . These instances are generated

from sparse graphs that simulate urban road networks. Four

graphs are used, with different sizes | V RN | ∈ {25, 50, 75, 100}

for the node set. The probability that a node is also a cus-

tomer is 66%. Travel costs are given by the Euclidean dis-

tance and travel times are defined in correlation with these

costs. Three different levels of correlation are used: NC, WC

and SC. Customer time windows are narrow (NTW) or wide

(WTW).

NEWLET. A third class of 45 instances was generated by

Ben Ticha et al. (2017a) using the same procedure as

Letchford et al. (2014) but decreasing the density of cus-

tomers. Three series of five road-network graphs are con-

structed: five with 25 customers and 100 nodes, five with

50 customers and 100 nodes, five with 50 customers and

200 nodes. For each graph, three degrees of correlations are

defined for travel times: NC, WC, SC.

AIX. A fourth class of 12 instances was generated by

Ben Ticha et al. (2017a) using real spatial data from the re-

gion of Aix-en-Provence (south of France). The first graph

(Z1) represents the urban area and has 5437 nodes. The

second graph (Z2) includes the city and its surroundings,

and has 19,500 nodes. Each arc comes with two attributes:

length and maximal speed. These two attributes are used to

define travel costs (length) and travel times (length divided

by speed). Six instances are generated from each graph: two

instances with 25 customers, two instances with 50 cus-

tomers and two instances with 75 customers.

This yields a total of 177 instances. For more details on instance

haracteristics, readers are referred to Ben Ticha et al. (2017a) .
.2. Parameter tuning

We perform a first set of experiments to adjust parameters of

he ALNS algorithm (see the list of these parameters and the se-

ected values in Table 1). To this aim, we select a subset of 27 rep-

esentative instances: SOL instances r101, r105, c103, c104, rc101,

c105 with 50 customers and NEWLET instances 1, 2 and 3 with 50

ustomers and 100 nodes; these 9 instances are considered for the

hree correlation levels NC, WC and SC. This total of 27 instances

epresents 15% of the benchmark instances. Furthermore, two out

f the four instance classes are not represented. We believe that it

ermits to avoid overlearning from the tuning.

With these instances, we proceed as follows. We first tune the

arameters of the adapted Shaw removal heuristic. We apply the

LNS scheme limited to this removal heuristic and to the greedy

nsertion heuristic. We successively focus on one of the parameters

nd try a number of values for this parameter. For each value, the

uning instances are solved five times; the value that provides the

est average solution quality is kept.

We apply the same methodology for the worst removal heuris-

ic. Other parameters are fixed in the same way, one by one, but

sing the complete ALNS scheme instead of using single removal

nd insertion heuristics.

.3. Computational results

In this section, we evaluate the performance of the ALNS al-

orithm. We compare the solutions obtained with this algorithm

o optimal solutions, when these solutions are available. Optimal

olution values are reported by Ben Ticha et al. (2017a) and com-

uted using a branch-and-price algorithm. We also compare the

LNS algorithm to two other heuristic schemes: MC and MT. In

oth schemes, a customer-based graph is constructed from the

ultigraph by keeping at most one arc between every pair of

odes. In MC, the min-cost arc is kept. In MT, the min-time arc

s kept. Then, in both cases, the resulting VRPTW is solved exactly

ith a branch-and-price algorithm. Note that these two schemes

re heuristic because the customer-based graphs do not capture all

he available information. Note also that these comparisons also

ive insights on the interest of defining travel information at the

oad-network level instead of using customer-based graphs.

For each instance, the ALNS algorithm is applied 10 times and

e report both the best and average solution costs and solution

imes. Computing times for the branch-and-price algorithms are

imited to 7500 seconds. Tables 2 , 3 , 4 , 5 and 6 report the re-

ults obtained on instances of class SOL with 25 nodes, SOL with

0 nodes, LET, NEWLET and AIX, respectively. In these tables, Col-

mn BKS provides the value of best known solutions, i.e. , the best

mong the solutions found with the branch-and-price algorithm

f Ben Ticha et al. (2017a) , the 10 found by ALNS, and the two

ound with MC and MT. Values in bold indicate that the solution

s known to be optimal. Columns Gap(%) give the percentage gap

etween the solution returned by each heuristic method and BKS,

omputed as follows:

Gap =

solution cost wit h t he heuristic −best known solution cost

best known solution cost

×100 (7)

or methods MC and MT, values are in italic when the branch-

nd-price algorithm (applied on the customer-based graph) did

ot finish in 7500 seconds. Columns CPU(s) indicate the com-

uting times in seconds, for the different methods. For a bet-

er readability, computing times are not reported for methods MT

nd MC. Basically, they have the same order of magnitude as

hose reported for optimal solutions. These values can be found

120 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

Table 1

Parameter values.

Operator Parameter Selected value

Shaw removal Weight associated with cost: α1 4

Weight associated with service time: α2 5

Weight associated with demand: α3 3

Weight associated with insertion positions: α4 10

Randomness degree: γ 1 6

Worst removal Randomness degree: γ 2 5

Adaptive strategy Initial weights 100

Gain for a new global best solution: μ1 500

Gain for an improving solution: μ2 200

Gain for an accepted non-improving solution: μ3 150

Reaction factor: r 0.1

Acceptance method Cooling rate: γ 3 0.99975

Table 2

Results for class SOL (instances with 25 customers).

OPT ALNS best ALNS avg. MC MT

Corr Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

NC r101-025 690.4 0.6 0.0 8.1 0.1 0.0 85.7

r102-025 588.7 1.7 0.0 10.4 0.6 1.0 37.5

r103-025 491.3 12.7 0.0 12.1 1.2 0.0 48.1

r104-025 507.3 31 0.0 15.7 0.2 0.0 33.3

r105-025 642.8 2.3 0.0 9.7 0.2 1.6 55.9

c101-025 279.2 – 0.0 13.7 0.0 0.1 133.4

c102-025 238.6 – 0.0 22.8 0.0 10.6 111.2

c103-025 202.0 2,197 0.0 27.1 0.0 10.8 80.4

c104-025 195.1 – 0.0 43 0.0 0.0 78.8

c105-025 224.0 54.6 0.0 19.2 0.0 3.5 116.6

rc101-025 671.1 0.7 0.0 7.6 0.0 10.3 69.9

rc102-025 558.0 10.9 0.0 11.8 0.0 12.6 53.7

rc103-025 545.9 613.9 0.0 15.4 1.3 2.2 50.8

rc104-025 420.4 2,728 0.0 18.8 0.3 5.1 25.2

rc105-025 575.7 9.8 0.0 8.4 0.4 3.8 38.7

WC r101-025 682.0 0.2 0.0 7.8 0.2 0.0 10.9

r102-025 572.6 1.2 0.0 7.1 0.1 0.0 6.5

r103-025 476.2 2.3 0.0 7.1 0.1 0.0 6.0

r104-025 481.0 4.7 0.0 8.2 0.3 0.0 3.8

r105-025 601.0 0.9 0.0 6.8 0.0 0.0 11.3

c101-025 250.7 206.5 0.0 6.7 0.4 4.8 18.1

c102-025 229.9 – 0.0 11.3 0.0 1.0 14.6

c103-025 199.1 480.4 0.0 14 0.1 0.0 26.4

c104-025 192.8 – 0.0 10 0.0 0.0 6.6

c105-025 216.6 27.3 0.0 7.8 0.0 0.0 30.2

rc101-025 561.1 7.7 0.0 5.7 0.0 8.6 11.6

rc102-025 552.4 983.5 0.0 8.1 0.2 13.6 3.9

rc103-025 461.8 713.3 0.0 8.8 1.6 2.5 3.4

rc104-025 398.4 835 0.0 9.9 0.3 0.2 2.7

rc105-025 555.4 2.8 0.0 6.4 0.0 1.5 8.4

SC r101-025 684.7 0.2 0.0 7.9 0.0 0.0 0.0

r102-025 570.8 0.5 0.0 6.7 0.0 0.0 1.1

r103-025 458.3 0.9 0.0 5.2 0.0 1.8 0.0

r104-025 420.2 4.2 0.0 5.6 0.0 0.0 0.6

r105-025 549.3 0.8 0.0 5.4 0.0 0.0 0.1

c101-025 216.6 6.4 0.0 4.7 0.0 0.0 1.8

c102-025 193.1 5.5 0.0 5.2 0.0 0.0 0.0

c103-025 193.1 96.4 0.0 6.1 0.0 0.0 1.1

c104-025 189.7 1,717.6 0.0 6.4 0.0 0.0 0.0

c105-025 194.1 0.5 0.0 4.1 0.0 0.0 0.0

rc101-025 507.5 13.9 0.0 5.4 0.0 4.9 0.8

rc102-025 443.6 397.7 0.0 5.6 0.0 0.0 0.0

rc103-025 342.2 5.9 0.0 5.8 0.2 0.0 0.1

rc104-025 314.9 13.1 0.0 5.9 0.1 0.0 0.0

rc105-025 457.6 21.7 0.0 5.8 0.2 0.0 0.2

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance

in 7500 seconds

n

i

i

t

A

a

in Ben Ticha et al. (2017a) . Also CPU times are replaced by – when

the exact branch-and-price algorithm was not able to find the op-

timal solution in 7500 seconds.

The first columns of the tables precise the instance characteris-

tics. Column Corr indicates the correlation degree: NC, WC or SC.

Column Instance gives the instance name. For class LET, the first
umber is | V RN | and the second number is n ; instance names fin-

sh with the type of time windows: NWT or WTW. For NEWLET

nstances, | V RN | and n are provided in Columns | V RN | and n , respec-

ively. The number of customers n is also reported in Column n for

IX instances. Finally, when several instances have the same char-

cteristics, the instance index is given in Column Inst.

H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126 121

Table 3

Results for class SOL (instances with 50 customers).

OPT ALNS best ALNS avg. MC MT

Corr Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

NC r101 1,317.3 17.6 1.1 29.6 2.3 0.4 72.7

r102 1,148.3 52.8 0.1 36.7 2.0 0.5 45.6

r103 952.7 593.7 1.0 59.4 2.2 2.3 34.1

r104 770.5 6,798.9 1.3 137 2.5 3.2 68.1

r105 1,162.8 26.9 1.8 36.9 2.9 0.6 75.6

c101 599.2 – 0.0 36.9 0.3 9.9 123.2

c102 506.0 – 0.0 74.7 0.5 22.4 120.1

c103 426.2 – 0.0 126.2 2.5 17.2 72.3

c104 394.2 – 0.0 413.9 2.4 13.5 146.6

c105 511.0 – 0.0 67.3 0.2 13.3 140.1

rc101 1,375.8 108 0.2 27.5 0.9 15.0 68.0

rc102 1,164.1 321.6 0.9 40.5 2.2 9.5 50.6

rc103 1,063.1 6,821.9 1.1 56.5 2.8 0.9 37.7

rc104 829.3 – 0.0 89.5 1.6 0.5 75.3

rc105 1,229.0 2,358.4 0.9 37.1 1.6 9.4 49.7

WC r101 1,179.4 1.2 0.3 26.8 1.4 3.3 29.0

r102 1,075.1 6.3 0.6 28.7 1.5 1.6 10.6

r103 948.2 65.4 0.3 32.5 2.6 1.7 11.4

r104 769.3 1,304.3 0.4 47.1 3.0 0.0 6.6

r105 1,062.3 17 0.5 27 1.7 0.4 9.4

c101 535.4 – 0.0 27.3 1.5 5.3 69.6

c102 468.1 – 0.0 51.8 1.0 22.8 53.5

c103 402.0 – 0.0 66.5 4.1 16.9 81.8

c104 372.7 – 0.0 143.2 2.1 20.4 60.3

c105 486.0 – 0.0 42.3 0.8 4.0 23.3

rc101 1,222.2 110.3 0.0 23 0.6 7.8 7.8

rc102 1,172.4 – 0.0 29.1 1.4 5.3 33.2

rc103 996.2 – 0.0 31.4 2.3 3.4 50.5

rc104 892.2 – 0.0 39.7 1.7 25.1 17.2

rc105 1,034.4 68.4 0.0 26.1 0.5 9.6 8.4

SC r101 1,085.7 1 0.1 23.9 1.0 1.2 1.0

r102 929.8 6.8 0.0 23.6 0.6 0.0 0.7

r103 827.1 71.1 0.0 24.7 1.1 0.0 0.1

r104 718.8 – 0.0 28.8 1.8 0.0 13.5

r105 932.7 14.9 0.2 23.5 1.0 0.8 0.2

c101 405.4 106.4 0.0 21.1 0.0 0.0 0.5

c102 366.9 53.8 0.0 25.7 0.0 0.0 2.0

c103 368.8 699.9 0.0 29 0.6 0.0 1.1

c104 365.4 – 0.0 46.6 1.7 28.1 21.2

c105 367.9 12 0.0 18.5 0.0 0.0 0.5

rc101 990.9 2,385.9 0.0 21.4 0.2 0.0 1.0

rc102 916.9 – 0.0 22.5 1.0 38.9 31.9

rc103 871.4 – 0.0 22.4 1.4 26.1 25.9

rc104 714.4 – 0.0 30 0.8 24.8 14.2

rc105 940.9 6,544.4 0.0 20.6 1.1 0.0 0.7

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance

in 7500 seconds

5

t

o

a

g

f

s

2

t

t

v

1

M

a

c

s

T

d

t

h

A

c

s

s

5

L

t

d

fi

c

i

b

0

a

.3.1. Evaluation of the ALNS heuristic

Tables 2 to 6 demonstrate the effectiveness of the ALNS heuris-

ic. Regarding the best run, optimal solutions are found for 108 out

f the 148 instances for which the optimal solution is known. The

verage gap on the remaining instances is 0.4% and the maximal

ap is 1.8%. On average, the ALNS algorithm is a little bit less ef-

ective, the average gap for this algorithm is 1.1%. As expected, the

maller the customer set, the better the results: all instances with

5 customers are solved optimally. Conversely, the effectiveness of

he method is comparable for the four classes of instances, which

ends to demonstrate its robustness.

Comparisons with the MC and MT heuristics are clearly in fa-

or of the ALNS. ALNS best finds better or equivalent solution for

63 out of 177 instances against MC and for 173 instances against

T. ALNS avg. finds better or equivalent solution for 124 instances

gainst MC and for 133 instances against MT. Furthermore, the

ustomer-based graph constructed in MC does not admit any fea-

ible solution for 8 instances.

Computing times are globally better for the ALNS heuristic.

he behavior of the branch-and-price algorithms are very unpre-
ictable. Instances of the same class and with the same charac-

eristics can be solved in a few seconds or not be solved in two

ours. On the contrary, computing times are rather regular for the

LNS. They are relatively high even for small instances, but in-

rease slowly with the size of the instances. For example, SOL in-

tances are solved in 10 seconds on average when n = 25 , and 35

econds when n = 50 .

.3.2. Impact of road-network information

Garaix et al. (2010) , Ben Ticha et al. (2017a) and

ai et al. (2016) have presented extensive computational results

hat show the improvements achieved when travel information is

efined at the road-network level. Tables 2 to 6 consolidate these

ndings on a dozen of larger (or more difficult) instances that

ould not be solved with the branch-and-price method developed

n Ben Ticha et al. (2017a) .

On these instances, the gaps observed for the heuristic methods

ased on customer-based graphs oscillate a lot. They vary between

.0% and 38.9% for MC, between 0.0% and 146.6% for MT. On aver-

ge, they are respectively equal to 4.4% for MC and 19.1% for MT.

122 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

Table 4

Results for LET instances.

OPT ALNS best ALNS avg. MC MT

Instance Corr BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

25_16_NTW NC 1,252 0.1 0.0 1.8 0.0 0.0 8.6

25_16_WTW NC 1,252 0.1 0.0 2.1 0.0 0.0 8.6

25_16_NTW WC 1,252 0.1 0.0 1.6 0.0 0.0 1.0

25_16_WTW WC 1,252 0.1 0.0 1.7 0.0 0.0 1.0

25_16_NTW SC 1,252 0.1 0.0 1.5 0.0 0.0 0.0

25_16_WTW SC 1,252 0.1 0.0 1.6 0.0 0.0 0.0

50_33_NTW NC 2,137 0.5 0.0 5.6 0.0 2.2 2.6

50_33_WTW NC 2,072 398 0.0 6.6 0.0 0.0 1.1

50_33_NTW WC 2,293 1.8 0.0 6.3 2.4 0.0 0.1

50_33_WTW WC 2,095 – 0.0 7.6 0.0 0.0 0.1

50_33_NTW WC 2,453 0.6 0.0 7.1 0.0 Infeasible 5.6

50_33_WTW WC 2,169 50.6 0.0 9.2 0.7 Infeasible 4.2

50_33_NTW SC 2,438 19.4 0.0 6 0.0 0.0 0.3

50_33_WTW SC 2,104 533.9 0.0 6.3 0.1 0.0 0.0

75_50_NTW NC 3,346 0.7 0.0 14.8 0.0 Infeasible 9.2

75_50_WTW NC 3,233 152.3 0.0 16.9 3.8 2.6 4.8

75_50_NTW WC 3,277 1.4 0.0 15.7 0.0 0.0 1.2

75_50_WTW WC 2,999 – 0.0 20.2 2.9 0.1 0.2

75_50_NTW WC 3,169 3.2 0.0 18.4 2.2 2.9 13.3

75_50_WTW WC 2,951 353.5 1.7 25 5.1 1.7 10.2

75_50_NTW SC 3,266 1.1 0.0 12.9 0.3 0.0 0.1

75_50_WTW SC 2,949 5,305.9 1.2 14.6 5.2 0.0 0.0

100_66_NTW NC 3,379 64.7 0.0 27.2 2.7 Infeasible 7.8

100_66_WTW NC 3,184 550.1 1.8 30.8 7.7 5.7 9.9

100_66_NTW WC 3,373 6.2 0.0 23.8 2.7 Infeasible 5.8

100_66_WTW WC 3,223 4,391.6 0.0 27.7 6.7 Infeasible 7.0

100_66_NTW WC 3,308 13 0.0 27.2 0.4 Infeasible 8.6

100_66_WTW WC 3,153 593.6 1.0 34 5.6 Infeasible 8.8

100_66_NTW SC 3,319 4.5 0.0 20.9 3.7 0.0 0.9

100_66_WTW SC 3,215 – 0.0 25.9 8.0 16.5 20.1

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7500

seconds

t

c

o

e

5

e

c

u

t

w

w

f

t

i

l

h

a

5

i

s

o

o

o

t

l

n

c
5.4. Sensitivity analyses

In this section, we present some sensitivity analyses. We carry

out these tests to check the impact of some components of the

ALNS algorithm. We also aim at identifying the respective contri-

butions of the removal and insertion heuristics during the search.

We limit these tests to instances of class SOL and of class NEWLET

with | V RN | = 100 .

Evaluation of insertion positions in the adapted Shaw removal

heuristic

The adapted Shaw removal heuristic is based on values R ij (s)

that measure the similarity between customers i and j in a solution

s. R ij (s) is composed of four terms (see Eq. (2)). In Section 4.3 , we

underlined the negative impact that the last term (evaluation of

insertion positions) might have on computing times.

To evaluate this impact, we apply the ALNS algorithm with the

following modifications:

• The portfolio of removal heuristics is limited to the adapted

Shaw removal heuristic;
• The portfolio of insertion heuristics is limited to the greedy in-

sertion heuristic;
• The similarity measure includes (α4 > 0) or not (α4 = 0) the

term evaluating insertion positions. When α4 > 0, it is defined

as detailed in Table 1 .

Each instance is solved five times with the two methods.

Tables 7 and 8 report aggregated results for SOL and NEWLET in-

stances, respectively. Column Gap(%) provides the percentage gaps

with best known solution values. Column CPU(s) gives CPU times

in seconds. These two values are reported for the best run (best

gap out of five and best CPU time out of five) and on average.
From Tables 7 and 8 , we can observe that considering inser-

ion positions (α4 > 0) in the similarity measure improves signifi-

antly the quality of solutions for a very limited additional amount

f computing times. Incidentally, it illustrates the efficiency of the

valuation methods described in Section 4.1 .

.4.1. Non-myopic insertion heuristic

The non-myopic insertion heuristic computes values I +
i
(�) to

valuate the insertion of a customer i in a list of routes �. The

omputation of I +
i
(�) necessitates executing many times the eval-

ation method described in Section 4.1 (see Eq. (4)). To evaluate

he impact of this insertion heuristic, we run the ALNS algorithm

ith or without the heuristic. Each instance is solved five times

ith the two methods. Tables 9 and 10 provide aggregated results

or SOL and NEWLET instances, respectively. Column headings are

he same as in Tables 7 and 8 .

Tables 9 and 10 show the important impact of the non-myopic

nsertion heuristic on solution quality. Without this heuristic, so-

ution costs can sometimes be increased by more than 5%. This

euristic has however also an impact on computing times, which

re sometimes more than doubled.

.4.2. Contribution of the different removal and insertion heuristics

In Tables 11 and 12 , we report the contribution of each

nsertion-removal combination in the ALNS. Each column corre-

ponds to a combination, with the name of the removal heuristic

n the first row and the name of the insertion heuristic on the sec-

nd. For each combination, four criteria are analyzed: the number

f accepted solutions that improved the best solution (row Best),

he number of accepted solutions that improved the current so-

ution (row Improving), the number of accepted solutions that did

ot improve the current solution (row Non-improving) and the total

omputing time used by each combination along the search (row

H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126 123

Table 5

Results for NEWLET instances.

OPT ALNS best ALNS avg. MC MT

| V RN | n Corr Inst BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

100 25 NC 1 1,828.7 6.3 0.0 7.4 0.0 6.8 3.6

2 2,109.6 1.4 0.0 7.5 0.4 0.0 11.9

3 2,200.9 5.7 0.0 9.1 0.0 2.4 15.6

4 2,139.5 2.8 0.0 6.8 0.0 0.4 6.0

5 1,869.2 2.5 0.0 10.5 0.0 1.2 11.8

WC 1 1,742.8 2 0.0 5.5 0.0 0.0 3.4

2 1,510.2 71.5 0.0 8 0.0 1.7 5.9

3 2,056.3 3.1 0.0 6.1 0.7 2.6 0.4

4 1,749.7 0.8 0.0 5.1 0.0 0.0 2.7

5 2,173.0 10.4 0.0 6.6 0.3 3.2 3.3

SC 1 2,075.4 21.1 0.0 4.5 0.0 0.0 0.4

2 2,108.0 1.3 0.0 4.7 1.0 0.0 0.2

3 1,770.8 9.7 0.0 6.2 1.3 0.0 2.1

4 2,029.1 0.6 0.0 4.8 0.0 0.0 0.0

5 2,108.2 0.6 0.0 5.5 0.0 0.0 0.7

50 NC 1 2,563.3 242 0.7 23.3 1.6 2.0 9.6

2 3,320.5 2,296.5 0.0 31.2 0.6 4.9 2.5

3 2,729.1 1,045.6 0.1 28.3 1.1 4.2 3.3

4 2,616.4 399.9 0.0 29.2 0.5 4.2 7.5

5 2,948.6 82.2 0.0 26.4 2.3 2.8 7.1

WC 1 2,626.8 104.8 0.0 22 0.8 0.0 5.7

2 2,890.1 245.5 0.0 19.8 0.5 3.2 3.2

3 2,516.7 79.1 0.2 19.3 0.5 3.2 1.9

4 2,398.3 42.2 0.0 19.1 0.0 0.0 4.9

5 2,427.2 291.3 0.0 19.9 0.5 0.0 2.0

SC 1 3,177.5 1,120.1 1.0 16.6 1.7 0.3 0.0

2 3,116.5 424.2 0.4 15.6 1.4 0.0 0.1

3 3,174.3 21.4 0.1 15.7 1.9 4.1 0.1

4 2,977.5 44.9 0.0 16.8 0.4 0.0 0.5

5 3,352.2 5.4 0.0 15.5 0.8 0.0 0.4

200 50 NC 1 4,125.8 1,659.3 0.3 56.8 1.6 8.3 6.6

2 4,0 0 0.5 191.3 0.0 48.3 0.6 5.0 12.8

3 4,277.9 1,045.1 0.3 39.2 2.5 4.2 8.0

4 4,068.4 6,775.5 0.5 60.7 3.6 5.9 6.7

5 4,674.7 – 0.0 52.2 1.3 4.0 9.4

WC 1 4,358.5 4,378.7 0.8 40.8 3.0 3.6 6.6

2 3,894.4 181.7 0.0 32 1.3 3.6 6.3

3 4,050.5 651.6 0.6 38.1 3.1 4.2 5.4

4 3,683.4 695.4 0.0 44.2 2.7 4.1 6.9

5 4,327.3 453.4 0.0 42.3 2.6 9.7 9.0

SC 1 4,539.9 – 0.0 28.5 0.5 3.8 0.7

2 4,416.8 3,892.8 0.2 26.4 4.4 0.0 1.0

3 4,282.3 203.3 0.1 23.2 2.3 0.0 0.3

4 3,719.8 81.8 0.0 22.3 2.3 0.0 0.6

5 3,765.7 67.5 0.0 20 1.7 0.0 0.2

Note : – indicates that the corresponding branch-and-price algorithm could not solve the instance in 7500

seconds

Table 6

Results for AIX instances.

OPT ALNS best ALNS avg. MC MT

n Instance BKS CPU(s) Gap(%) CPU(s) Gap(%) Gap(%) Gap(%)

Z1 25 1 44,931 1.7 0.0 8.4 0.0 3.6 8.4

2 44,574 0.8 0.0 7.7 0.0 8.6 6.7

50 1 79,925 13.4 0.2 31 0.6 2.4 5.5

2 84,722 18.8 0.1 30.4 1.0 1.6 4.6

75 1 110,718 131.4 0.8 65.9 1.8 0.5 5.4

2 101,700 73.4 1.7 67.1 2.5 0.7 6.3

Z2 25 1 123,592 1.2 0.0 5.8 0.0 7.1 11.1

2 192,625 1.1 0.0 7.4 0.0 1.7 9.6

50 1 271,836 22.7 0.0 28.8 1.0 0.1 10.5

2 362,426 13.3 0.3 30 0.9 2.3 9.0

75 1 390,642 174.1 1.4 57.9 2.2 11.7 4.3

2 374,845 102.6 1.4 54.2 2.8 0.9 4.6

Note : – indicates that the algorithm has not terminated within 7500 seconds

124 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

Table 7

Sensitivity analysis on the similarity measure for SOL instances.

Best run Average (5 runs)

α4 = 0 α4 � = 0 α4 = 0 α4 � = 0

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

25 NC 0.6 10.6 0.5 10.6 1.3 11.1 0.9 11.1

WC 0.3 4.9 0.2 4.9 0.9 5.1 0.6 5.1

SC 0.2 2.9 0.1 2.9 0.8 3.0 0.5 3.0

50 NC 6.1 49.9 4.5 50.2 8.2 51.7 6.6 52.4

WC 3.5 19.7 3.2 19.8 4.8 21.4 4.1 21.9

SC 1.7 9.3 1.2 9.3 2.6 9.6 2.2 9.7

Table 8

Sensitivity analysis on the similarity measure for NEWLET instances.

Best run Average (5 runs)

α4 = 0 α4 � = 0 α4 = 0 α4 � = 0

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

25 NC 0.5 5.4 0.3 5.3 0.5 5.5 0.3 5.5

WC 0.0 4.0 0.0 4.0 1.0 4.3 0.8 4.3

SC 0.6 3.1 0.6 3.1 0.8 3.2 0.7 3.3

50 NC 4.7 16.9 4.1 16.8 5.2 17.7 4.2 17.4

WC 2.0 11.2 1.4 11.2 4.4 11.8 3.4 12.0

SC 6.3 9.2 4.6 9.5 7.1 9.9 6.3 10.1

Table 9

Sensitivity analysis on the non-myopic insertion heuristic for SOL instances.

Best run Average (5 runs)

With non-myopic Without non-myopic With non-myopic Without non-myopic

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

25 NC 0.0 12.1 0.2 8.7 0.1 16.3 0.6 8.9

WC 0.0 7.4 0.1 4.6 0.0 8.4 0.3 4.7

SC 0.0 4.7 0.0 3.1 0.0 5.7 0.1 3.2

50 NC 0.9 66.6 2.7 34.9 2.2 84.6 3.8 35.8

WC 0.3 25.6 1.7 17.1 1.6 42.8 2.6 17.5

SC 0.0 12.9 0.5 8.9 0.6 25.5 1.2 9.4

Table 10

Sensitivity analysis on the non-myopic insertion heuristic for NEWLET instances .

Best run Average (5 runs)

With non-myopic Without non-myopic With non-myopic Without non-myopic

n Corr Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

25 NC 0.0 6.7 0.0 5.0 0.0 7.4 0.0 5.1

WC 0.0 4.6 0.0 3.9 0.2 4.9 0.2 3.9

SC 0.0 3.6 0.0 3.2 0.2 4.2 0.5 3.3

50 NC 0.1 22.6 5.0 15.1 1.0 24.2 5.0 15.4

WC 0.1 14.2 2.6 11.2 0.4 15.6 4.2 11.5

SC 0.3 11.1 3.8 9.7 1.2 13.2 5.3 10.0

t

5

t

t

s

6

t

a

l

d

e

c

t
Computing time). These criteria are expressed in percentage (each

row reaches 100%).

The main observation that can be made with these tables is

that almost all heuristics contribute to the improvement of solu-

tions. Except for the simple insertion heuristic, the two tables re-

port significant percentages for all the heuristics on all indicators.

Fortunately, the time consumed by the simple insertion heuristic is

very limited. Probably, the learning mechanism is able to identify

quickly that this heuristic is not effective and gives a small proba-

bility to its selection. Among the removal heuristics, the worst re-

moval method is specially effective. It consistently permits to find

around 50% and around 40% of the best and improving solutions,

respectively. This improvements are furthermore obtained with a

computational effort that only slightly exceeds the ones of the two

other removal heuristics. Regarding insertion heuristics (simple in-

sertion excluded), the ranking is not as clear. The regret heuristic
ends to be the most effective, except for NEWLET instances of size

0, where it is the worst. The non-myopic heuristic is globally bet-

er than the random heuristic, but its computing times are higher

han those of the two other heuristics. Globally, the main conclu-

ion is still that the three heuristics are important.

. Conclusion

Due to their numerous applications, and strong correlation to

he bottom line, vehicle routing problems are critical to industry

nd have drawn the attention of many researchers. In many real-

ife circumstances, different criteria have to be considered when

efining transportation plans: operational costs, traveling times or

nergy consumption, for example. Therefore, it is imperative to

apture travel information at the road-network level. Modeling

ravel information with customer-based graphs may indeed fur-

H
.
 B

en
 T

ich
a

,
 N

.
 A

b
si
 a

n
d
 D

.
 Feillet

 et
 a

l.
 /
 C

o
m

p
u

ters
 a

n
d
 O

p
era

tio
n

s
 R

esea
rch

 10
4
 (2

0
19

)
 113

–
1

2
6

1
2

5

Table 11

Contribution of removal-insertion combinations for SOL instances.

Random Worst Shaw

n Indicator Greedy Regret Non-myopic Simple Greedy Regret Non-myopic Simple Greedy Regret Non-myopic Simple

25 Best 5.1% 10.7% 8.1% 0.0% 10.3% 22.6% 15.5% 0.0% 4.8% 13.7% 9.2% 0.0%

Improving 7.2% 11.8% 10.4% 0.0% 10.1% 15.3% 13.0% 0.0% 7.8% 12.9% 11.5% 0.0%

Non-improving 10.6% 8.8% 9.5% 0.1% 14.0% 13.1% 13.4% 0.2% 11.2% 9.0% 9.9% 0.1%

Computing time 5.5% 6.4% 16.8% 2.1% 6.2% 7.1% 19.0% 2.3% 6.5% 7.3% 18.3% 2.5%

50 Best 6.1% 8.7% 8.0% 0.0% 11.9% 21.2% 16.1% 0.0% 7.3% 11.5% 9.2% 0.0%

Improving 8.0% 10.7% 9.6% 0.0% 11.4% 15.2% 13.3% 0.0% 8.9% 12.1% 10.8% 0.0%

Non-improving 10.4% 8.6% 8.8% 0.1% 15.2% 13.5% 13.4% 0.2% 11.1% 9.0% 9.6% 0.1%

Computing time 6.4% 7.0% 14.3% 2.9% 7.3% 8.2% 16.6% 3.3% 7.3% 8.0% 15.5% 3.1%

Table 12

Contribution of removal-insertion combinations for NEWLET instances.

Random Worst Shaw

n Indicator Greedy Regret Non-myopic Simple Greedy Regret Non-myopic Simple Greedy Regret Non-myopic Simple

25 Best 4.8% 8.4% 4.7% 0.0% 13.3% 22.0% 18.3% 0.0% 9.0% 6.3% 6.5% 0.0%

Improving 8.4% 9.4% 10.0% 0.0% 11.6% 15.3% 15.0% 0.0% 9.7% 9.6% 11.0% 0.0%

Non-improving 10.1% 9.9% 8.8% 0.1% 14.6% 14.6% 13.9% 0.1% 9.1% 9.9% 8.8% 0.0%

Computing time 6.5% 7.1% 13.6% 3.2% 7.5% 8.3% 16.5% 3.8% 7.3% 7.8% 14.9% 3.5%

50 Best 7.2% 5.3% 9.6% 0.0% 13.5% 16.8% 24.1% 0.0% 6.7% 3.1% 13.7% 0.0%

Improving 8.1% 6.8% 11.6% 0.0% 13.1% 15.0% 18.1% 0.0% 8.5% 5.9% 12.9% 0.0%

Non-improving 9.0% 9.7% 8.7% 0.1% 14.2% 14.7% 14.7% 0.1% 9.4% 11.0% 8.3% 0.1%

Computing time 5.4% 5.5% 16.8% 2.5% 6.5% 6.9% 19.4% 2.9% 6.4% 6.7% 17.9% 3.0%

126 H. Ben Ticha, N. Absi and D. Feillet et al. / Computers and Operations Research 104 (2019) 113–126

B

B

C

C

D

D

F

G

I

K

L

L

R

S

S

S

W

nish infeasible routes or overestimate cost. Efficient heuristic solu-

tion approaches that solve vehicle routing problems with this de-

gree of information are however missing in the literature. Hence,

we propose an ALNS algorithm, with the objective of filling this

gap. We considered the VRPTW RN and introduced a multigraph,

that captures all efficient paths between pairs of points of interest

(depot, customers). The presence of parallel arcs introduces com-

putational challenges, especially when exploring the neighborhood

of a given solution: elementary operations like customer removal

or insertion induce the solution of an NP-hard problem. To han-

dle this difficulty, we proposed an incremental data structure and

developed a procedure based on dynamic programming. We con-

ducted an extensive experimental study on several set of instances

with different characteristics. Numerical results showed the abil-

ity of the heuristic to find near-optimal solutions in a reasonable

amount of time. In addition, results confirm the gains provided

by road-network travel information compared to traditional solu-

tion approaches based on customer-based graphs. An alternative to

the multigraph is to tackle directly vehicle routing problems with

road-network graphs. A future study could be to investigate heuris-

tic solution schemes on these graphs.

Acknowledgments

We warmly thank the reviewers for their suggestions that have

helped improve the quality of this paper. The first author was sup-

ported by the Labex IMobS3, by the European Fund for Regional

Development (FEDER Auvergne region) and by the Auvergne Re-

gion.

References

Baldacci, R. , Bodin, L.D. , Mingozzi, A. , 2006. The multiple disposal facilities and mul-
tiple inventory locations rollon–rolloff vehicle routing problem. Comput. Oper.

Res. 33 (9), 2667–2702 .
Baldacci, R. , Mingozzi, A. , Roberti, R. , 2012. Recent exact algorithms for solving the

vehicle routing problem under capacity and time window constraints. Eur. J.

Oper. Res. 218 (1), 1–6 .
Ben Ticha, H. , Absi, N. , Feillet, D. , Quilliot, A. , 2017. Empirical analysis for the VRPTW

with a multigraph representation for the road network. Comput. Oper. Res. 88,
103–116 .

Ben Ticha, H. , Absi, N. , Feillet, D. , Quilliot, A. , 2017. A Solution Method for the Mul-
ti-destination Bi-objectives Shortest Path Problem. Technical Report. Ecole des

Mines de Saint Etienne, CMP, Gardanne, France .

Ben Ticha, H., Absi, N., Feillet, D., Quilliot, A., 2018. Vehicle routing problems with
road-network information: state of the art. Networks 72 (3), 393–406. doi: 10.

1002/net.21808 .
en Ticha, H., Absi, N., Feillet, D., Quilliot, A., Van Woensel, T., 2018. A branch-and-
price algorithm for the vehicle routing problem with time windows on a road

network. Networks doi: 10.1002/net.21852 .
Bräysy, O. , Gendreau, M. , 2005. Vehicle routing problem with time windows, part I:

Route construction and local search algorithms. Transp. Sci. 39 (1), 104–118 .
räysy, O. , Gendreau, M. , 2005. Vehicle routing problem with time windows, part

II: Metaheuristics. Transp. Sci. 39 (1), 119–139 .
Caramia, M. , Guerriero, F. , 2009. A heuristic approach to long-haul freight trans-

portation with multiple objective functions. Omega (Westport) 37 (3), 600–614 .

larke, G. , Wright, J.W. , 1964. Scheduling of vehicles from a central depot to a num-
ber of delivery points. Oper. Res. 12 (4), 568–581 .

ornuéjols, G. , Fonlupt, J. , Naddef, D. , 1985. The traveling salesman problem on a
graph and some related integer polyhedra. Math. Program. 33 (1), 1–27 .

antzig, G.B. , Ramser, J.H. , 1959. The truck dispatching problem. Manage. Sci. 6 (1),
80–91 .

e Backer, B. , Furnon, V. , Prosser, P. , Kilby, P. , Shaw, P. , 1997. Local search in

constraint programming: Application to the vehicle routing problem. In: Proc.
CP-97 Workshop Indust. Constraint-Directed Scheduling. Schloss Hagenberg

Austria, pp. 1–15 .
Desaulniers, G. , Madsen, O.B.G. , Ropke, S. , 2014. The vehicle routing problem with

time windows. In: Toth, P., Vigo, D. (Eds.), Vehicle Routing: Problems, Methods,
and Applications. In: MOS-SIAM series on optimization, 18. SIAM, Philadelphia,

pp. 119–159 .

leischmann, B. , 1985. A cutting plane procedure for the travelling salesman prob-
lem on road networks. Eur. J. Oper. Res. 21 (3), 307–317 .

araix, T. , Artigues, C. , Feillet, D. , Josselin, D. , 2010. Vehicle routing problems with
alternative paths: An application to on-demand transportation. Eur. J. Oper. Res.

204 (1), 62–75 .
rnich, S. , Desaulniers, G. , 2005. Shortest path problems with resource constraints.

In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (Eds.), Column Generation.

Springer, New York, pp. 33–65 .
allehauge, B. , 2008. Formulations and exact algorithms for the vehicle routing

problem with time windows. Comput. Oper. Res. 35 (7), 2307–2330 .
ai, D.S. , Demirag, O.C. , Leung, J.M. , 2016. A tabu search heuristic for the hetero-

geneous vehicle routing problem on a multigraph. Transp. Res. E: Logis.Transp.
Rev. 86, 32–52 .

etchford, A.N. , Nasiri, S.D. , Oukil, A. , 2014. Pricing routines for vehicle routing with

time windows on road networks. Comput. Oper. Res. 51, 331–337 .
Orloff, C. , 1974. A fundamental problem in vehicle routing. Networks 4 (1), 35–64 .

Qian, J. , Eglese, R. , 2016. Fuel emissions optimization in vehicle routing problems
with time-varying speeds. Eur. J. Oper. Res. 248 (3), 840–848 .

opke, S. , Pisinger, D. , 2006. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40 (4), 455–472 .

Savelsbergh, M.W.P. , 1985. Local search in routing problems with time windows.

Ann. Oper. Res. 4 (1), 285–305 .
etak, M. , Shakeri, Z. , Patoghi, A. , 2017. A time dependent pollution routing problem

in multi-graph. Int. J. Eng.-Trans.B: Appl. 30 (2), 234–242 .
haw, P. , 1998. Using constraint programming and local search methods to solve

vehicle routing problems. In: International conference on principles and practice
of constraint programming. Springer, pp. 417–431 .

olomon, M.M. , 1987. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Oper Res 35 (2), 254–265 .

, 2014. Vehicle Routing: Problems, Methods, and Applications. In: Toth, P., Vigo, D.

(Eds.). MOS-SIAM series on optimization, 18, 2. SIAM, Philadelphia .
ang, H., Lee, Y., 2014. Two-stage particle swarm optimization algorithm for the

time dependent alternative vehicle routing problem. J. Appl. Comput. Math. 3
(4), 1–9. doi: 10.4172/2168-9679.10 0 0170 .

http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0004
https://doi.org/10.1002/net.21808
https://doi.org/10.1002/net.21852
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30286-7/sbref0028
https://doi.org/10.4172/2168-9679.1000170

