
12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 1/11

HMKCODE

Backpropagation Step by Step
03 NOV 2019

Exploring Kotlin
Less than 100 pages covering Kotlin syntax and features in straight and
to the point explanation.

If you are building your own neural network, you will definitely need to understand how to train
it. Backpropagation is a commonly used technique for training neural network. There are many
resources explaining the technique, but this post will explain backpropagation with concrete
example in a very detailed colorful steps.

You can see visualization of the forward pass and backpropagation here. You can build
your neural network using netflow.js

Overview

In this post, we will build a neural network with three layers:

Input layer with two inputs neurons

One hidden layer with two neurons

•

•

http://hmkcode.com/
https://leanpub.com/exploring-kotlin
http://hmkcode.github.io/images/ai/backpropagation.png
https://hmkcode.com/netflow/
https://github.com/hmkcode/netflow.js

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 2/11

Output layer with a single neuron

Weights, weights, weights

Neural network training is about finding weights that minimize prediction error. We usually start
our training with a set of randomly generated weights.Then, backpropagation is used to update
the weights in an attempt to correctly map arbitrary inputs to outputs.

Our initial weights will be as following: w1 = 0.11 , w2 = 0.21 , w3 = 0.12 , w4 = 0.08 , w5 =
0.14 and w6 = 0.15

•

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 3/11

Dataset

Our dataset has one sample with two inputs and one output.

Our single sample is as following inputs=[2, 3] and output=[1] .

Forward Pass

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 4/11

We will use given weights and inputs to predict the output. Inputs are multiplied by weights; the
results are then passed forward to next layer.

Calculating Error

Now, it’s time to find out how our network performed by calculating the difference between the
actual output and predicted one. It’s clear that our network output, or prediction, is not even
close to actual output. We can calculate the difference or the error as following.

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 5/11

Reducing Error

Our main goal of the training is to reduce the error or the difference between prediction and
actual output. Since actual output is constant, “not changing”, the only way to reduce the error
is to change prediction value. The question now is, how to change prediction value?

By decomposing prediction into its basic elements we can find that weights are the variable
elements affecting prediction value. In other words, in order to change prediction value, we
need to change weights values.

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 6/11

The question now is how to change\update the weights value so that the error is
reduced?
The answer is Backpropagation!

Backpropagation

Backpropagation, short for “backward propagation of errors”, is a mechanism used to update
the weights using gradient descent. It calculates the gradient of the error function with respect
to the neural network’s weights. The calculation proceeds backwards through the network.

Gradient descent is an iterative optimization algorithm for finding the minimum of a
function; in our case we want to minimize th error function. To find a local minimum of a
function using gradient descent, one takes steps proportional to the negative of the
gradient of the function at the current point.

https://en.wikipedia.org/wiki/Gradient_descent

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 7/11

For example, to update w6 , we take the current w6 and subtract the partial derivative of error
function with respect to w6 . Optionally, we multiply the derivative of the error function by a
selected number to make sure that the new updated weight is minimizing the error function;
this number is called learning rate.

The derivation of the error function is evaluated by applying the chain rule as following

So to update w6 we can apply the following formula

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 8/11

Similarly, we can derive the update formula for w5 and any other weights existing between the
output and the hidden layer.

However, when moving backward to update w1 , w2 , w3 and w4 existing between input and
hidden layer, the partial derivative for the error function with respect to w1 , for example, will be
as following.

We can find the update formula for the remaining weights w2 , w3 and w4 in the same way.

In summary, the update formulas for all weights will be as following:

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 9/11

We can rewrite the update formulas in matrices as following

Backward Pass

Using derived formulas we can find the new weights.

Learning rate: is a hyperparameter which means that we need to manually guess its
value.

Now, using the new weights we will repeat the forward passed

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 10/11

We can notice that the prediction 0.26 is a little bit closer to actual output than the
previously predicted one 0.191 . We can repeat the same process of backward and forward pass
until error is close or equal to zero.

Backpropagation Visualization

You can see visualization of the forward pass and backpropagation here.

You can build your neural network using netflow.js

https://hmkcode.com/netflow/
https://github.com/hmkcode/netflow.js

12/8/2019 Backpropagation Step by Step

https://hmkcode.com/ai/backpropagation-step-by-step/ 11/11

Exploring Kotlin
Less than 100 pages covering Kotlin syntax and features in straight and
to the point explanation.

© 2018 hmkcode. All rights reserved.

https://leanpub.com/exploring-kotlin
https://twitter.com/hmkcode
https://github.com/hmkcode

