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A B S T R A C T   

Electricity is establishing ground as a means of energy, and its proportion will continue to rise in the next 
generations. Home energy usage is expected to increase by more than 40% in the next 20 years. Therefore, to 
compensate for demand requirements, proper planning and strategies are needed to improve home energy 
management systems (HEMs). One of the crucial aspects of HEMS are proper load forecasting and scheduling of 
energy utilization. Energy management systems depend heavily on precise forecasting and scheduling. Consid
ering this scenario, this article was divided into two parts. Firstly, this article gives a thorough analysis of 
forecasting models in HEMs with the primary goal of determining whichever model is most appropriate in a 
given situation. Moreover, for optimal utilization of scheduling strategies in HEMs, the current literature has 
discussed a number of scheduling optimization approaches. Therefore, secondly in this article, these approaches 
will be examined thoroughly to develop effective operating scheduling and to make wise judgments regarding 
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usage of these techniques in HEMs. Finally, this paper also presents the future technical advancements and 
research gaps in load forecasting and scheduling and how they affect HEMs activities in the near future.   

1. Introduction 

Electricity is probably the most widely adaptable energy source in 
present-day economies around the globe, it is inextricably related to 
both social and financial advancements. The rise in electrical power has 
surpassed that of all other fuels, resulting in steadily rising proportions 
in the entire fuel mix [1]. As increasing, particularly rural, portions of 
the global population in emerging nations begin climbing the energy 
ladder and connecting to electricity grids, this pattern is anticipated to 

persist during the coming periods. The majority of the main source of 
power utilized by humanity, involving which is utilized for producing 
power, pertains from fossil fuels [2]. Fossil fuels must be switched out as 
they severely harm the atmosphere, ecosystems, and people’s well-being 
as their availability will be mostly reduced through the current century. 
Burning fossil fuels is the main cause of how much Green House Gas 
(GHG) emissions from human activity, particularly CO2, are released 
into the earth’s atmosphere. As a consequence, the projected generation 
of electricity is inextricably connected to GHG emissions and climate 

Fig. 1. Information flow presented in this paper.  
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change caused by humans [3]. The foundations of the evaluation of 
projected environmental damage brought on by human activity are es
timates regarding how the worldwide energy infrastructure will evolve 
across the coming millennium. As both global warming and environ
mental degradation are acknowledged as serious issues, power infra
structure architects, administrators, energy legislation makers, 
authorities, and creators globally are concentrating on employing and 
minimal pollution sources of energy for the generation of electricity. As 
a result, the growth of carbon-free methods for power generation should 
pay special attention to how significantly electricity contributes to the 
worldwide emissions of green house gases [4]. Nowadays globe’s energy 
needs are met by Renewable Energy Sources (RES). Biomass, water
power, geothermal energy, wind, solar power, and nautical energy are 
all included in RES. The green renewable power source is primary, pure, 
and limitless source of electrical energy. Authorities all across the globe 
are promoting saving energy, providing incentives for individuals who 
consume less power, and putting clean energy sources into practice [5]. 
Other options include reducing energy and utility prices through the 
establishment of productive renewable energy systems, alerting cus
tomers to their consumption of energy, using appliances that save en
ergy, swapping out conventional devices for smart ones, and utilizing 
modern power communication technologies [6]. There are various 
benefits of using clean energy and power-efficient technology, reduction 
in global warming, better sustainability in the power industry, improved 
supply safety. Generating little residual waste, having little influence on 
the ecosystem, and sustained for the near future in light of socioeco
nomic and ecological concerns [7]. The electrical infrastructure be
comes more complicated and variable because of green power supplies. 
Power professionals consider minimizing and monitoring energy utili
zation to reduce costs and promote sustainability. Accurate and 
real-time information on the usage of energy is needed to manage uti
lization and efficiency [8]. Due to the inability of existing grids to supply 
this requirement, consumers are not actively involved. As a result, the 
existing grid are transforming towards smart grids (SGs) [9]. The com
plete information flow presented in this paper is shown in Fig. 1. 

A power network called the SG enables two-way communication 
between the utility and consumers. To effectively offer a sustainable, 
affordable, reliable supply of power, it incorporates the behaviors of all 
individuals who are related, including suppliers, customers as well as 
those who capitalize on both [10]. Household units in China use forty 
percent of the total power produced as per United Nations Statistics 
Division. SG vision thus demands consumer’s involvement in system 
functioning, power market, and administration of energy. Smart grid 
infrastructure and equipment must be sensitive to scenarios involving 
household power usage. Home Energy Management System (HEMS) 
technologies are those that are capable of responding to changed situ
ations on their own, without human involvement [11]. The HEMS model 
of SG is shown in Fig. 2. 

HEMS is an intelligent energy management system that enables 
homeowners to track the production, storage, and utilization of energy 
as shown in Fig. 3 [12]. A personal smart device for real-time control 
and surveillance of various functioning methods of intelligent home 
devices via communication and sensing methods employed in homes 
[13]. The framework of HEMS is a feedback control system in which the 
difference error between output and the input signal is controlled 
through feedback from sensing devices by analyzing the user interface 
panel to give instructions to intelligent appliances [14]. HEMS provides 
various functionalities such as: Keeping a tab on how electrical com
ponents operate and conveying essential information regarding the 
real-time energy consumption of every household appliance [15]; 
Controlling different household devices either manually or wirelessly; 
Administration towards power production, preservation, and utiliza
tion; An alarm will be sent if any anomalies are identified; Keep record 
related to energy and real-time pricing in order to reduce power con
sumption [16]. 

HEMS is essential nowadays due to their ability of computerization 
and suggestions in HEMS operation, which reduce power wastage, and 
results in efficiency improvement. HEMS are demand-response imple
ments that shift and reduce demand to better a consumer’s home’s 
generation and use of energy profile [17]. HEMS is crucial for real-time 
monitoring and implementation of renewable energy sources, permit
ting a greater application of green energy while raising the advantages 
of capital investments [18]. HEMS provide residents with a greater de
gree of autonomy regarding the amount of power consumed in the home 
by making it simple to allow them to manage it in keeping with their 
choices, plans, and living [19]. Homes will be ready to cope with the 
evolving power market, due to the HEMS’s capacity to respond to 
shifting power patterns, innovations, and legalities. For the purpose to 
conserve power, reducing the consumption of electricity, and producing 
environmentally friendly houses, smart homes are developed, con
structed, intended, and operated uniquely from conventional homes. 
The adoption of smart HEMS has become increasingly appealing for 
power companies and clients because of dealing with energy scarcity 
and rising demand for load. HEMS is vital these days as smart cities, 
smart homes, and modern civilizations all depend on it [20]. The rising 
growth of smart electricity systems leads to a greater demand for load 
forecasting (LF) because accurate, resilient, and effective smart elec
tricity systems are dependent upon accurate forecasts of generation, 
consumption, and preservation. Forecasting enables power strategists to 
recognize how certain factors affect energy usage and helps them make 
recommendations. Hence, HEMS makes crucial techniques and tactics 
for making an informed decision, enhancing household effectiveness 

Fig. 2. Smart grid model.  Fig. 3. HEMS model.  
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and possible use of energy [21]. HEMS use LF approaches to assist them 
make choices about energy management and preparing enhancements 
that can assist them to deliver effective and dependable energy opera
tions [22]. LF of residential energy consumers will become even more 
crucial in the design and management of the smart grid [23]. 

Load forecasting is a method employed to foresee the amount of 
electricity necessary in order to constantly equilibrium the availability 
and load conditions. The most crucial data for organizing and supplying 
energy is obtained from load predictions. Additionally, it is crucial for 
the administration of the energy system [24]. The main purpose of 
forecasting load is to predict the future load on a system for a specified 
time period. LF may be categorized into three primary categories: 
Long-term LF is employed to forecast load up to 50 years in advance for 
expanding planning [25]; Medium-term LF often estimates load on a 
weekly, monthly, and annual basis, for optimal planning of operations 
[26]; In order to conduct daily operations and reduce costs, short-term 
LF is utilized for real-time load forecast on a per-hour basis for a 
maximum of one week. There are several advantages to short-term load 
forecasting (STLF) at the residential level for managing decentralized 
energy production, local demand, and integration into the grid [27]. In 
HEMS, the role of load forecasting is typically utilized for balancing both 
the demand and supply of electrical power. A time-series forecasting 
technique is used to anticipate future electricity requirements by 
considering historic load variations using electrical consumption as an 
objective. The data from smart meters and sensors are used in the 
forecasting process [28]. Power sector administrators have to predict the 
futuristic requirement of energy with the lowest possible rate of error if 
they want to supply load shedding free, continuous power to the con
sumer. Energy providers may save several millions of money using load 
forecast that has a lower rate of inaccuracy [29]. The forecast of energy 
use is one of the major pillars of smart power management. Given that 
the use of energy changes with different appliances, better energy, and 
peak demand predictions are essential for effective scheduling, upgrades 
to distribution infrastructure, and energy production. In order to 
conserve resources, it is crucial to have reliable energy demand pre
dictions [30]. LF enables HEMS to schedule power appliances to operate 
at renewables during peak demand times at low cost to maintain the 
stability of the power grid [31]. LF helps to determine the optimum time 
to charge the energy storage system during low demand and peak gen
eration time and utilize that energy during peak demand and high 
consumption rate [32]. LF is effective in calculating the cost of energy 
and planning budgets according to their consumption [33]. For HEMS, 
one of the key elements is load forecasting, which is utilized for energy 
balance control and planning to improve convenience while paying low 
electricity bills [34]. One highly important consideration is prediction 
precision: Because the majority of choices in the field of energy must be 
determined by projections of future demand, decision-makers in this 
area require reliable forecasts. 

A household desire for premium and reliable power is on the rise as 
the IT era emerges into reality. Bidirectional exchange of information, 
modern metering structures, battery backups, and home area networks 
will transform the nature of utilization of electricity and conserve energy 
at usage premises via the entry of the intelligent grid era alongside the 
development of sophisticated connectivity and data infrastructures that 
connects different types of equipment and resources collectively [35]. As 
a result, with the consumers’ authorization, the HEMS could have a 
crucial part in the most effective collaboration and scheduling of 
different intelligent devices and the development of clean energy sour
ces [36]. In order to save money on energy and reduce the power 
Peak-to-Average Ratio (PAR), individuals have the ability to schedule 
their residential energy consumption due to the emergence of the smart 
electricity system [37]. 

Scheduling in HEMS is the ability to manage residential device op
erations to help user to accomplish desired objectives and priorities 
under the constraints of time and resources available to reduce energy 
consumption, electricity payment, peak load demand, and maximize 

user comfort [38]. Effective scheduling practices involve switching at 
any time both schedulable electrical devices like cooling systems, 
heating systems, washers, laundry dryers, and electric vehicles as well as 
non-schedulable electrical items including screens, lighting, presses, 
kitchen appliances, and portable devices [39]. In order to design the 
most effective appliance scheduling, a variety of schedule control 
techniques have been utilized. scheduling energy use while considering 
several strategies [40]. Prior to scheduling, Distributive Generation 
(DG), Real Time Pricing (RTP), and Demand response (DR) output 
power must be delivered to the energy management control. RTP uses 
the predicted statistics. To provide fully autonomous management of 
home appliances, every device has smart plugs, and a scheduling system 
controller will connect to every terminal via wireless communication 
networking [41]. HEMS used to schedule home devices by shifting or 
curtailing loads by taking advantage of the DR program to run appli
ances at the time of low rates of electricity ensuring users’ comfort [42]. 
HEMS schedules heavy-load appliances to consume power from clean 
energy resources when there is peak demand or rates are high for using 
grid power, this result in reducing the grid’s burden and ensuring its 
stability [43]. With the help of gadgets that measure energy usage pat
terns at the appliance levels and continually track how much electricity 
is used by different home electronics. Hence, HEMS gives a variety of 
consumption schedules in an effort to save power plus annoyance ex
penses [44]. To ensure for all electrical equipment functions properly for 
the duration of their lifespans, routine maintenance is performed upon 
them. Finding a schedule for a servicing interruption of electrical units 
over a certain length of period is the aim of the maintenance schedule by 
HEMS [45]. HEMS allows a schedule of power storage devices to store 
energy at peak generating times from the grid or renewable sources and 
consume at a high time of use rate [46]. HEMS helps in scheduling ap
pliances according to seasonal conditions temperature, wind, snow or 
rain, and sunlight or clouds to provide user comfort [47]. HEMS auto
matically performs the scheduling of appliances to balance demand and 
supply [48]. The reduction of power expenses and simpler device 
scheduling are the main goals for home users [49]. The extent to which 
the consumer desires to utilize an appliance at the needed time instant 
and for the appropriate time duration, resulting in the desired conve
nience, is known as customer pleasure in a home. Hence, HEMS utilizes 
load forecasting and scheduling which plays an important role in smart 
energy management systems [50]. 

With various emphases, many publications have examined recent 
research on load forecasting systems for HEMS. Rolling-Ant Lion 
Optimizer-Grey Modeling (1, 1)) was presented in [51]. To assess its 
efficiency and viability, two instances of yearly electricity usage in 
China and Shanghai city were chosen. The result proved significantly 
improved annual power load forecasting accuracy. A novel energy load 
forecasting approach utilizing Deep Neural Networks presented in this 
study [52], namely LSTM-based Sequence to Sequence (S2S) architec
ture performing well in one-hour resolution data. In [53], the suggested 
model predictive controller had 96–98% optimal efficiency with excel
lent long-time LF. Support Vector Machine (SVM)-based load predictive 
EMS used in [54], 0.004866 seconds of training and produces 100% 
accuracy. A Markov chain-based sampling approach in [55], was sug
gested as a way to provide forecasting using little computer work and 
less need for past data. An educational building’s hourly real-world data 
was incorporated in [56], and reviewed using a Self-Recurrent Wavelet 
Neural Network (SRWNN), which reduced load forecasting inaccuracy 
from 8.7% to 3.7%. In [57], Deep Neural Networks resulted in efficient 
and resilient forecasts. For instance, Mean Absolute Percentage Errors 
(MAPE) and Relative Root Mean Square Error (RRMSE) decrease up to 
17% and 22% in comparison to shallow neural network and 9% and 29% 
compared to Double-Seasonal Holt-Winters (DSHW), respectively. In 
[58], A straightforward approach was suggested and evaluated using 
three distinct designs, including Multilayer perceptron, Support vector 
regression, and Multiple linear regression. The proposed load forecast 
method has high accuracy and low computational cost. The Suggested 
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hybrid dynamic fuzzy time series model in [59], accurately predicted 
the average monthly electrical consumption for all sectors with a mean 
error of less than 3% and a good decrease in forecast errors. In [60], the 
firefly algorithm was presented. The Mean Absolute Percentage Errors 
(MAPE) of the combined model decreased to 0.7138%, 1.0281%, 
4.8394%, 0.9239%, 9.6316%, and 7.3367%, accordingly, when con
trasted with each of the six distinct models by taking load data from two 
provinces of Australia. In [61], Modern online approaches and compli
cated tree-based combination techniques with a MAPE of 2.55 percent of 
1 hour for 6 months were more accurate using online support vector 
regression than before. The study showed the effectiveness of Con
volutional Neural Networks (CNN) in [62], According to experimental 
findings, CNN surpassed SVR despite delivering outcomes that were on 
par with those of ANN and deep learning techniques. This study in [63], 
proposed a brand-new non-intrusive load monitoring (NILM) technique 
that includes appliance use patterns to boost the accuracy of prediction 
and proactive load detection. A model founded on recurrent neural 
networks and long short-term memory (LSTM) in [64], evaluated on a 
collection of genuine household intelligent meter datasets, and its effi
cacy thoroughly contrasted to several comparisons load forecasting. In 
this investigation [65], a fresh SVR forecasting model suggested, sample 
information from four conventional commercial towers’ taken. The 
result showed SVR model offers a higher degree of prediction accuracy 
and stability in LSTF. A seasonal SVR with chaotic cuckoo search 
(SSVRCCS) model [66], in order to get more precise predicting results 
numerical findings verified by employing the information sets from USA 
and Australia. Ridgelet and Elman neural networks provide the foun
dation for the proposed two-step forecast algorithm in [67]. To increase 
the precision and capabilities of the prediction engine, all of its settings 
are selected using a cutting-edge smart method. In [68] research pre
sented a novel Deep Neural Network architecture for STLF useful in 
different time series forecasting roles, and versatile. Deep learning’s 
potential was utilized in the investigation [69]. It showed that incor
porating characteristics obtained through unsupervised deep learning as 
input in cooling demand forecasts may boost the effectiveness of 
building energy forecasting. Paper [70], provided an IoT-based deep 
learning system that can autonomously determine attributes of data 
collected and provide a precise prediction for the upcoming load level 
when weather conditions matter. In [71], on the basis of the particle 
swarm optimization regression vector machine technique, the STLF 
model was created. Then an adaptive pricing system was created to 
direct user behavior regarding power usage and modify grid demand. 
Utilize Seq2Seq learning in [72], to forecast photovoltaic (PV) produc
tion and a load of household appliances. In accordance with the out
comes of the forecasts, we next optimize HEMS offline using Q-learning. 
For the reason of designing power-management platforms, researchers 
in [73], offer a unique multi-behavior including bottleneck features long 
short-term memory (LSTM) framework that incorporates the predicted 
behavior of long-term, short-term, and weekly feature modeling. In [74] 
Regression employed linear, seasonal linear, and quadratic models were 
used to produce straight forward prediction model that was determined 
to be the best suitable for Korean seasons. The non-schedulable LF 
method in [75], depends on (LSTM) paradigm in combination with a 
semi-supervised clustering (SSC) strategy, taking into account the most 
significant factors that might have an impact on the electrical power use 
of the non-schedulable appliances. In [76], the LF residual CNN with 
layered LSTM framework has been proposed: the first phase of data 
purification and remaining CNN with LSTM network. The major objec
tive of architecture in [77], was to provide insights into energy usage 
and power reliability while introducing an artificial intelligence level to 
energy use across a testing open-pit mine. The accuracy of the suggested 
dynamic combined power load forecasting technique in [78], reaches 
99%. The combined system might predict unusual usage of electricity in 
advance and offer trustworthy support for planning manufacturing 
processes. Specifically, for employing multi-state gadgets in [79], the 
study suggested deep generative using a non-intrusive load monitoring 

strategy’s ability to employ short-term device loading estimates instead 
of only past attributes is a significant benefit. This work in [80] uses the 
innovative STLF-Net two-stream deep learning (DL) model to overcome 
the issues with STLF by anticipating the last hour’s head demand pre
diction This research [81] provided an understandable artificial intel
ligence (XAI)-based comprehensible deep learning method to the 
multi-step home load projection issue. In [82], Predicting household 
electrical consumption using the fuzzy cluster analysis (FC), 
least-squares support vector machine (LSSVM), and a fireworks algo
rithm (FWA). The hybrid approach presented in the current study ex
hibits excellent precision, and the approach is reliable and flexible. The 
time series clustering system proposed in this research [83], includes a 
multi-step time series sequence to sequence (Seq2Seq) load forecasting 
technique for homes. The suggested approach in [84], integrates picking 
features, deep learning algorithms, and multi-time scaling resemblance 
assessment to develop a high-accuracy and consistent load prediction 
algorithm for individual home residential consumers. In this paper [85], 
an effective hybrid AI-based system is suggested for precise power 
consumption and generation predictions that consist of three steps for 
energy data handling for better prediction and result in reduced MAPE 
error. 

For consumers in automated houses, a variety of resources for 
decision-making are being stated to maximize efficiency and incorporate 
household appliance scheduling with power suppliers. In [86], A 
mathematical model for home devices’ deferrable jobs is divided into 
interruptible and non-interruptible, as well as power-adjustable and 
power-nonadjustable, chores. based on Mixed Integer Non-Linear 
(MINL) was developed to minimize cost and improve the experience 
of users. In this research [87], a multi-objective automated 
Non-dominated Sorting Genetic Algorithm-II (NSGA-II)-based improved 
automated power scheduling was developed. It is aided by a NILM 
approach. In [88], an artificial neural network (ANN) developed a 
hybrid lighting search algorithm implemented to forecast the best 
ON/OFF condition for household devices. Appliances operated on-time 
more effectively as a result, saving money. In order to reduce client 
energy and durability expenses. In [89], an optimization strategy was 
suggested that takes into account the value of lost load of gadgets, power 
rates, and operational constraints of devices. In [90], to reduce con
sumer energy expenses, an enhanced artificial bee colony algorithm 
schedules the activity of household devices in accordance with energy 
pricing, clean output, and individual needs. In [91], As a consequence of 
predicted inaccuracies in power pricing and system loads, a 
chance-constrained optimization-based approach that has an elevated 
degree of precision is developed for scheduling load in a volatile envi
ronment. A home energy management controller in [92], utilized mixed 
integer nonlinear optimization. Home appliances can perform defer
rable, curtailable, and critical functions. In order to lower the customer’s 
power cost while taking the user’s comfort level into consideration, 
devices are managed in reaction to fluctuating pricing indicators. A 
distributed optimization approach for scheduling is suggested in [93]. 
The system for storing energy and energy trade among homes are 
planned in the global HEMS, while the programmable household devices 
(such as the air conditioner and washing machine) be scheduled in the 
local HEMS. In [94] research offered a system for scheduling domestic 
devices during certain scheduling times that reduced computing com
plexities, reducing total cost while compromising the functioning of 
non-schedulable equipment. For cost and peak reduction for home 
power units in [95], suggested wind-driven optimization using the 
min-max regret-based knapsack algorithm in order to maintain their 
choices while efficiently controlling the main home energy loads. In 
order to address the unpredictability of Solar generation for load 
scheduling in intelligent houses linked to residential solar energy sys
tems, a robust technique was proposed in [96]. In this study [97], a DSM 
framework for scheduling domestic devices using techniques (binary 
particle swarm optimization, genetic algorithm, and cuckoo search) was 
provided. The approach simulated in a scenario of time of use pricing. A 
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mixed-integer linear programming (MILP) in [98], used to design the 
scheduling issue with the goal of minimizing community peak demand 
while adhering to restrictions that take into account the initial timings 
and permitted latencies for various appliances. For domestic clients, 
provided a power scheduling plan in [99], for establishing the appro
priate balance between costs and discomfort. Integer and continuous 
variables are used in the formulation of the optimization issue known as 
power scheduling. In [100], Using a revolutionary grassroots method, 
algorithms quantify customer energy usage behavior to predict home 
demand, giving an accurate assessment of the real quantity of control
lable resources to schedule appliances. This study in [101] offered a 
multi-objective DR optimization model that was created as a 
multi-objective nonlinear programming challenge constrained by a se
ries of regulations. The framework was resolved via a Non-Dominated 
Sorted Genetic Algorithm (NSGA-II) to determine the scheduling of 
household appliances for the future to reduce cost and inconvenience as 
well. An enhanced genetic algorithm (GA) in [102], with great compu
tational effectiveness and strong resiliencies presented by combining the 
multi-constrained integer programming approach and the genetic al
gorithm. In [103], To manage a smart house, real-time electricity 
scheduling presented. The suggested management platform seeks to 
reduce the cost money by carefully planning the scheduling of smart 
equipment and enhancing the use of green power. A stochastic 
Mixed-Integer Linear Programming (MILP) methodology applied in 
[104], to explain the self-scheduling issue, allowing for the best esti
mation of the state of household devices over the duration of the day and 
a quick convergence to optimal solution. Dragon fly algorithm was 
suggested in [105], as a solution to the real-world issue of smart houses. 
Shift able devices may be planned in accordance with the immediate 
price signal from the utility, which allowed them to serve a vital part in 
demand-side load control. This study in [106], introduced a 
self-scheduling approach to the HEMS applying MILP, and it recom
mends a unique formulation of a linear discomfort index (DI) that takes 
consumer preferences into consideration when determining how to 
operate household devices on a regular schedule. This paper [107] 
suggested a novel scheduling scheme for the real-time HEMS based on 
the Internet of Energy (IoE). The scheme is a multi-agent method that 
considers two chief purposes including user satisfaction and energy 
consumption cost. The main objective of this work in [108] to integrate 
a HEMS via a smart thermostat. (DR) of the air conditioning system 
optimized with the help of the demand response (DR) and photovoltaic 
(PV) self-consumption provided by MILP. A two-phase design offered in 
[109], to minimize the computational burden, in the initial phase 
assessing the hourly device scheduling while using a looser collection of 
constraints, and the subsequent phase considering a smaller set of 
equipment in an intra-hourly time frame. Utilizing the ideal load sharing 
energy administration method in [110], offers an equilibrium action at 
the output level. The success of the centralized management of energy 
approach in a grid-connected islanded system is validated by simula
tions of the HEMS method utilizing smart superficial neural network 
(SSNN) and numerical calculations. This article [111] suggested an 
affordable HEMS scheme for the micro grid architecture. The C++

framework integrates instantaneous scheduling of home devices to 
demonstrate the effectiveness of the proposed cost and energy reduction 
measures. In [112], A probabilistic optimization technique used as a 
result of the unpredictability of supply, demand, and power prices. The 
patterns of appliance operation times, battery backup, and plugin EV 
charging cycles, as well as power buying and selling times for the periods 
that followed in the selection timeline, are determined by the solution to 
the issue. The HEMS that was suggested in this research [113], can 
provide optimized load scheduling for the usage of equipment in a 
specific home. In [114], community loads scheduling plan that is 
dynamically grouped. Using particle swarm optimization (PSO) with 
user-defined limitations, a comparatively flatter power demand was 
achieved. An innovative scheduling technique in [115], for the HEMS 
was proposed in this study and depends on the mixed-integer 

programming (MIP) paradigm. the algorithm combines and takes into 
account total cost reduction, peak load shifting, and inhabitants’ 
contentment with their level of thermal convenience. In order to effec
tively schedule appliances at home to reduce energy use, we developed 
an effective HEMS regulator in [116], employing a variety of heuristic 
optimization approaches, including Genetic Algorithms (GA), Binary 
Particle Swarm Optimization (BPSO), and Wind Driven Optimization 
(WDO). This research in [117], suggested multi-agent deep reinforce
ment learning optimization for immediate form multi-home energy 
administration including EV charging schedules. In order to communi
cate with each other and come at the optimal conclusion. The HEMS that 
was suggested in this study [118] can accomplish optimized scheduling 
of loads for the usage of devices in a specific residence. The approach, 
which relies on the genetic algorithm, offers suggestions to the client to 
help them better manage their home’s energy requirements. Using a 
Meta-Reinforcement Learning (Meta-RL) framework, this research in 
[119], developed a portable scheduling technique for HEMS with 
various workloads, that can reduce data reliance and extensive learning 
time for other information-driven methods. A programmable 
heuristic-based energy management controller (HPEMC) recommended 
in [120], to operate an apartment complex in a way that minimizes 
electricity costs, lowers carbon emissions, boosts UC, and lowers PAR. In 
this work, a PAR and a system for energy control are used to resolve the 
request-responsive device schedule issue. 

For the purpose of developing effective operating plans and making 
wise judgments on consumption and production, current research has 
provided a number of methodologies, including mathematical optimi
zation, model predictive control, and heuristic control. owing to the 
wide range of modeling characteristics, including appliance models, 
timing variables, and targets, it might be hard to assess the efficacy of 
the methodologies in the available research. 

The current study offers a review of the HEMS literary works with an 
emphasis on load forecasting and scheduling and their impact on HEMS 
functioning and results. The structure of the work that is being given 
makes it possible for the reader to comprehend and contrast key factors 
such as load forecasting, scheduling, and outcomes in well-known and 
recent works of literature despite going far enough inside each of them. 

2. Optimization technique in load forecasting 

In this section, a number of forecasting techniques are examined to 
determine the best equipment prediction regarding energy usage. 

2.1. Multiple regression 

A statistical method called regression modeling examines the 
connection between a dependent variable called y and any number of 
independent factors x1, x2,….xk [121]. The regression technique seeks 
to find a model that most effectively captures the connection among 
these factors in order for the outcomes of the independent variables may 
be used to forecast the results of the dependent variables [122]. The 
amount of load is determined using a multiple linear regression 
approach with respect to an informative variable like the climate and 
other variables that affect the amount of electricity used [123]. The 
system developed via this technique has the following form: 

y = b0 + b1x1 + b2x2 +…+ bkxk + ε. (1) 

Where y is the load, xi is he affecting factors, bi is regression pa
rameters with respect to xi, and ε is an error term. After parameters are 
calculated, this model can be used for prediction [124]. Assuming that 
all the independent variables have been correctly identified and there
fore the standard error will be small. Researchers employed this tech
nique to meet their needs, with the objective to test the efficacy of the 
MR methodology adaptations for STLF in a real-world network. 
comparing the 24-hour load prediction with different methods. 
Regression model evaluation of season fluctuation [125]. To forecast the 
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need for Irish energy, created a climate-load method utilizing regression; 
afterward, researchers updated it to create an adjustable regression 
approach to forecast morning-ahead load. Researchers created a 
regression-based approach to forecast energy use in relation to past 
meteorological information, radiation from the sun, local populace, and 
client category as shown in Fig. 4 [126]. The multi-linear regression 
models for short-term load forecasting are relatively easy to develop and 
update regularly with widely available commercial computational 
software used in these investigations [127,128]. 

Multiple regression analysis facilitates the investigation of connec
tions among different devices in the HEMS. Through the simultaneous 
consideration of many distinct factors, including user behavior, ambient 
circumstances, and the kind and efficiency of appliances, this thorough 
study supports the creation of prediction models that may direct effi
cient energy management tactics at the device level. 

Multiple regression offers an equilibrium between interpretability 
and predictive accuracy, it is a useful and easily obtainable method for 
load forecasting. However, it is important to carefully evaluate as
sumptions and data validity. 

2.2. Exponential smoothing 

A statistical technique for predicting time series is exponentially 
smoothed. It is a common method of estimating demand and it’s easy to 
use but effective. This load prediction approach relies upon time series & 
solely considers usage histories with the goal to find trends previously 
which could be beneficial and comparable to the current load trends 
[129]. As a subject age, this method utilizes weights that decrease 
exponentially. In predicting, greater weight is often allocated to recent 
data compared to earlier information [130]. To create the flattened data 
and derive estimations, an exponential smoothing technique is applied. 
Certain series of information show cyclic or yearly trends that a poly
nomial framework cannot adequately capture. The examination of 
various such information may be done using a variety of methods [131]. 
Certain series of information show cyclic or yearly trends that a poly
nomial framework cannot adequately capture. The examination of 
various such information may be done using a variety of methods [132]. 
The Day-Ahead prediction approach discussed in this study was devel
oped by Holt and Winters and is often referred to as the Winters’ tech
nique for this instance, the linear trajectory framework is given a 
seasonal modification. There are two different kinds of modifications 
employed, the multiplicative approach and the model based on additives 
[133]. This study employs a multiplicative theory, and the projected 
outcomes are computed using the calculation procedure shown below: 

ỹT+h = (at + h.bT).St− p+h (2) 

ỹT+h - the forecasted value; 
at - the level of the time series; 
h - the time horizon; 
bT - the trend of the time series; 
St− p+h - the seasonal adjustment; 
Given its low performance when compared with other fitting 

methods exponential smoothing is a probabilistic method for forecasting 
which is rarely employed for load projections. Nevertheless, it may be 
more practical to use an easy process to feed the demand projected 
compared to a complex one which is likely to provide shortcomings 
whether a time sequence is fixed and usage is comparable to previous 
levels with no any significant period variation [134]. A combination of 
models that combines energy spectra and adaptive autoregressive 
modeling with exponentially smoothed models has been outlined. The 
best pattern elimination strategy for short-term LF is soothing. Relative 
to a typical prediction method, this methodology helps to reduce de
mand estimation inaccuracy by 12% [135]. Two different structure 
combinations are offered, that are employed to anticipate short-term 
power consumption while employing seasonally exponentially 
smoothed variables as their foundation models. Results demonstrate 
that each of the suggested pairings is capable of beating competing 
standards, despite the possibility that collective generation may have an 
impact on predicting accuracy as shown in Fig. 5 [136]. 

Exponential smoothing integrates at device-level based on assigning 
exponentially decreasing weights to previous data, spotlighting recent 
data while progressively reducing the impact of earlier records to pre
dict device-level energy usage pattern depending on past usage trends. 

Exponential smoothing is a useful and efficient technique for short- 
term load forecasting, that can adapt to shifting patterns, but it re
quires careful parameter tweaking. 

2.3. Iterative reweighted least-squares 

Transforming an irregular optimization issue into a series of 
regression-based challenges is the fundamental concept underlying 
iterative reweighted least square (IRLS). The procedure begins by esti
mating the framework’s variables initially, updating these repeatedly 
unless convergence is achieved [137]. The values of the weights are 
changed according to the remainders from the prior step at every stage, 
identified the framework’s sequence and variables using an IRLS tech
nique [138]. In order to establish the best beginning point, the approach 

Fig. 4. load forecasting using Multiple regression [126].  Fig. 5. Load forecasting via exponential smoothing [136].  
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employs a controller that manages just one factor at once. To find a 
less-than-ideal model of the load dynamics, the partial self-correlation 
function and autocorrelation coefficient for the resultant distinct pre
vious load data is used [139]. In order to choose the ideal model to use 
and then estimated its parameters, a three-way decision variable is 
created using the weighting operate tuning parameters and the weighted 
sum of the squared residuals [140]. Take into account the linear mea
surement equation-based prediction of parameters issues, identified the 
framework’s sequence and variables using an iteratively reweighted 
least-squares technique. In order to establish the best beginning point, 
the approach employs a controller that manages just one factor at once. 
To find a less-than-ideal model of the load dynamics, the partial 
self-correlation function and autocorrelation coefficient for the resultant 
distinct previous load data is used [141]. In order to choose the ideal 
model to use and then estimated its parameters, a three-way decision 
variable is created using the weighting operate tuning parameters, and 
the weighted sum of the squared residuals. Take into account the linear 
measurement equation-based estimation of parameters: 

Y = Xβ+ e (3) 

β is a p x 1 vector of the undetermined variables, e is a n x 1 vector of 
random deviations, and Y is a n x 1 vector of observes. X is a n x p matrix 
of known parameters (depending on prior loading information). The 
iteration approach may be used to find the unidentified vector. IRLS 
techniques such as Newton or Beaton-Turkey might be utilized [142]. It 
is described how to anticipate the per-hour heating demand utilizing an 
informed-by-data algorithm. The time of the day, day of each week, and 
day of each year are used as predictors in the technique, which relies on 
the Generalized Additive Model. It was mentioned how adopting the 
autoregressive model for the model’s residuals may improve prediction 
accuracy. It additionally looked into how the amount of learning sam
ples affected the algorithm’s performance in Fig. 6 [143]. Suggested a 
collaborative strategy for evaluating the variables of a seasonal multi
plicative autoregressive model using least-squares and the IRLS tech
nique. In Scotia Energy company, the procedure was used to forecast 
load [144]. 

In order to better understand the interactions between different de
vices and their energy usage inside the HEMS, factors like appliance 
efficiency, user behavior, and ambient conditions are taken into 
consideration when using IRLS to regression models 

IRLS is a strong method for load forecasting, particularly for non- 
linear correlations, but it can be highly computational and needs pre
cise variable tweaking. 

2.4. Autoregressive 

An autoregressive (AR) model predicts future actions by employing 
information about previous behavior. This form of evaluation is 
employed whenever there’s a relationship between time series quanti
ties and the foregoing and following numbers [145]. Just past infor
mation is used in autoregressive modeling to forecast future behavior. 
Thus, an autoregressive model of order p can be written as 

yt = c+φ1yt− 1 +φ2yt− 2 +…+φpyt− p + εt (4)  

white noise (t) is. Similar to multiple regression, except that the factors 
that predict are based on the lag of yt. This is known as the AR(p) model, 
or the autoregressive model of order p. The least mean square (LMS) 
technique may be used to live tweak the unidentified factor [146]. 
Amazingly adaptable at addressing a variety of various time series 
trends are autoregressive models. When load is considered as a linear 
aggregation of prior loads, an AR model may be employed to represent 
the load profile [147]. Presented two periodic autoregressive frame
works including a self-regressive approach to hourly load projections, 
each with an optimal cutoff stratified algorithm. Developed a technique 
for optimal criterion satisfying in an autoregressive system [148]. This 
approach eliminates subjectivity and increases the precision of pre
dictions by determining the minimum number of variables needed to 
describe the chance factor [149]. Regarding hourly load prediction, two 
regular autoregressive (PAR) models were created [150]. A minimal 
range of variables is needed by the method to convey unpredictable 
elements and increase prediction precision. In hourly-based LF, periodic 
autoregressive is provided [151]. Using a foundation of past electrical 
load information, suggest a wavelet multiscale decomposition-based 
autoregressive technique for predicting of 1-h forward load. This 
method takes into consideration the asymmetry of the time-dependent. 
dataset by applying a multiple-resolution compression of a signal 
applying the redundancy haratus wavelets transformation. If the elec
trical statistics are updated often, then is an extra computational benefit 
because it is not necessary to calculate again the wavelet transformation 
of the complete signal in Fig. 7 [152]. 

Autoregressive method involves the modeling of present energy 
usage of a device as a linear combination of its historical energy con
sumption, considering a prior number of previous time steps. This en
ables the system to record fluctuations and trends in device-level energy 
usage in HEMS. 

Autoregressive models identify temporal patterns in load forecasting, 
especially in short-term scenarios, though they may have downsides 
with non-linear pattern. 

Fig. 6. load forecasting via iterative reweighted least-squares [143].  Fig. 7. load forecasting via Autoregressive [152].  
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2.5. Moving average 

When analyzing information from time series, the moving average 
(MA) approach is employed to smooth off short-term swings and spot 
long-term patterns. It’s a straight forward approach that entails 
computing the mean of a particular number of continuous measure
ments throughout time [153]. The present state of the time sequence Y 
(t) is calculated using a moving average models approach as a linear 
blend of each of the most recent and prior values corresponding to the 
white noise sequence. In mathematics, it is represented as 

Y(t) = a(t) − ϕ1a(t − 1) − ϕ2a(t − 2) − … − ϕqa(t − q). (5) 

The backshift operator on white noise modifies: 

Y(t) = ϕ(B) ∗ a(t) (6)  

ϕ(B) = 1 − ϕ1B − ϕ2B2 − … − ϕqBq (7) 

Utilizing a weighted moving average for forecasting potential de
mand is an especially useful version of the MA approach [154]. The 
simple moving average provides an upcoming one-period-ahead pre
diction by taking the median of the previous k data. It suggested that 
each of the k observations has a comparable value [155]. The pro
jections for anticipated demand are expressed in feet. Yt becomes 
accessible whenever a fresh real-world demand phase is detected, which 
allows the measurement of the prediction inaccuracy, which is Yt − Ft 

In essence, the approach uses prediction inaccuracy to modify the 
estimate for the prior demanding phase [156]. It subsequently creates 
the following prediction horizon. 

Ft+1 = Ft +α(Yt − Ft) (8)  

whereα is a constant between 0 and 1. 
Every fresh prediction consists only of the previous prediction 

including a correction considering the mistake resulting from the pre
vious estimate. A modification factor that’s close to 1 will represent an 
important modification value, rendering the prediction more susceptible 
to changes in past demand depending on the inaccuracy from the pre
ceding period [157]. The upcoming projection, which depends on pre
vious needs, will become more flexible when the number is near 1. The 
estimate will contain relatively minimal change whenever the level is 
near 0, keeping it less susceptible to previous fluctuations in need [158]. 
In this instance, the estimates for the foreseeable future will be signifi
cantly flattened and won’t take into account any previous fluctuations in 
demand. These predictions will always lag any trends or modifications 
to historical demand [159]. The use of moving averages (MA) for pre
dicting load is examined in this research illustrate in Fig. 8. The actual 

research at Malaysia’s University Teknologi PETRONAS (UTP). load 
prediction used in the investigation were Semester On (SOn) and Se
mester Off (SOf). Later, the amount of usage load for both SOn and SOf 
was predicted using MA [160]. 

MA approach smooths out variations and reveals fundamental pat
terns of use by estimating the mean energy usage over a given window of 
time. Taking into account past data within this movable time range helps 
the system understand the short-term fluctuations in energy usage at the 
device level in HEMS. 

MA is a simple and helpful method of load forecasting, particularly 
for smoothing data and spotting short-term patterns. However, its 
drawbacks should be taken into account for more precise forecasts in 
dynamic circumstances. 

2.6. Autoregressive moving average 

In order to accurately reflect the simultaneous synchronization and 
the moving average aspects of a time sequence, the Autoregressive 
Moving-Average (ARMA) method integrates the Autoregressive (AR) 
and Moving-Average (MA) models. The ARMA model is frequently 
employed in predicting time sequence analysis [161]. The time 
sequence’ present level y(t), is linearly represented by the ARMA 
framework as a function of its values at earlier times [y(t-1), y(t-2),] and 
in units of earlier values of white noise [a(t), a(t-1),]. The design for the 
ARMA of degree (p, q) is expressed as: 

y(t) = φ1y(t − 1)+…+φpy(t − p)+ a(t) − φ1a(t − 1) − … − φq(t − q).
(9) 

The variables involved are determined either via the use of a highest 
possible-likelihood method or via a recursive methodology [162]. 
Introduced a novel duration-temperature load estimation approach. 
According to that technique, the initial time sequences of monthly 
highest demands are divided into predictable and random load ele
ments, the stochastic component of which is calculated using an ARMA 
model [163]. Updated the settings in their adaptable ARMA framework 
using a WRLS approach. Employed a flexible ARMA framework for load 
estimation, modifying its parameters based on the current errors in 
predictions [164]. The adaptive method surpassed traditional ARMA 
algorithms when deviation training factors were derived via minimal 
mean-square errors [165]. An adjustable ARMA algorithm is generated 
to anticipate the electrical system’s short-term demand. The 
Box-Jenkins transmission function technique is currently rated as one of 
the more effective techniques for anticipating short-term loads. The 
precision of the Box-Jenkins method remains restricted since it does not 
take into account the predicting inaccuracies that can be updated. By 
using the minimal mean square error theory, the tailored technique first 
calculates the margin of error training parameters, followed by 
improving the predictions based upon both the one-step-ahead error 
predictions and their coefficients. The technique can handle every odd 
operating circumstance thanks to its capacity to change [166]. The 
sequential of simulating Greece’s energy demands is discussed 
throughout the paper. Depersonalization of the given real load infor
mation is performed as shown in Fig. 9, and then an offline ARMA model 
is fitted to the data. The sequential phase and estimation of the pa
rameters of ARMA models with distortion is carried out with the pre
sumption of the information at hand may be described by an ARMA 
framework. The obtained findings demonstrate that the suggested 
approach is effective [167]. An ARIMA model is created to predict the 
short-term electricity load in New South Wales, Australia, and to correct 
remaining inaccuracies utilizing the weighted average technique. Reli
ability is improved over one ARIMA framework by this combination 
approach [168]. 

ARMA offers a thorough insight of device-level energy consumption 
behavior by integrating past observations and the influence of recent 
fluctuations, enabling the HEMS to make deft forecasts and wise 
judgements instantly. Fig. 8. load forecasting via moving average [160].  
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ARMA models offer a balanced method for short-to medium-term 
planning that works well for addressing temporal relationships in load 
forecasting. However, they have drawbacks due to their sensitivity to 
parameter selections and non-linear trends. 

2.7. Autoregressive integrated moving average 

A well-liked time series technique for predicting and studying data 
from time series is called Autoregressive Integrated Moving-Average 
(ARIMA). Both static and dynamic series of data can be handled by 
this generalization of the ARIMA model [169]. The ARIMA framework 
includes three parts: moving average (MA), integration (I), and auto 
regression (AR). The MA component symbolizes the dependency of the 
present level on previous mistakes, whereas the AR part simulates the 
reliance on a present amount in the period sequence on prior results. By 
comparing variances among successive findings, the I factor is employed 
to maintain time sequence stable [170]. In addition, the ARIMA method 
provides advantages compared with artificial neural networks, the latest 
version of algorithms for forecasting, including a more straightforward 
methodology as well as an increasingly established technique [171]. By 
integrating AR (p) and MA (q), it is demonstrated in the research that the 
theoretical representation of ARIMA (p, d, q) is accurate. The variations 
from the actual information readings with past readings is substituted 
using the observed values, whereas Integral (I) indicates the division of 
raw readings that enables time series to get stable. The irregular time 
series are converted to the stable state using the limited contrast of the 
information points by ARIMA (p, d, and q) [172]. Description of ARIMA 
(p, d, q) in the discipline of mathematics 

φ(L)(1 − L)dyt = θ(L)εt (10)  

(1 −
∑p

i=0
φiLi)(1 − L)dyt = (1+

∑q

j=1
θjLj)εt (11)  

y(t) = ϕ0 +ϕ1yt− 1 +ϕ2yt− 2 +…+ϕpyt− p + εt − θ1εt− 1 − θ2εt− 1 − … − θpεt− p

(12)  

where y(t) and t stand for the real amount and the variation in it at the 
time point t, accordingly; i and j are simulation variables; and p, d, and q 
are positive numbers, indicating the sequence corresponding to the 
autoregressive, incorporated, and moving average components of the 
framework, accordingly Using the information’s autocorrelation 

functionality (ACF) and partial autocorrelation function (PACF), p and q 
are typically determined [173]. The PACF plotting assists with figuring 
out whether the ACF plot is capable of categorizing irregular time series 
according to the maximal sequence of AR (p). Employed the pattern part 
to predict the rise in overall load, the climate characteristics to predict 
the climate-sensitive load part, and the ARIMA model to construct the 
faux-weather cyclic element of the week highest load as shown in Fig. 10 
[174]. Utilized past data along with a season ARIMA simulation to 
foresee the burden using seasonal fluctuations [175]. Constructed a 
real-time load prediction ARIMA system with the effect of the weather as 
a factor explaining it [176]. 

By taking into account past energy consumption patterns at the 
device-level energy usage, ARIMA integrates autoregressive (AR), dif
ferencing (I), and moving-average (MA) components to capture 
complicated temporal dynamics. The HEMS can produce precise fore
casts and well-informed judgements thanks to this technique. 

ARIMA models are a flexible and effective tool for load forecasting 
with periodic variations and trends in short- to medium-term instances, 
but careful parameter tweaking is essential. 

2.8. Genetic algorithm 

The workings of inheritance and genetics served as the inspiration 
for genetic algorithms, often known as genetic algorithms (GAs). They 
are frequently employed to resolve optimization issues that need 
comparing a large number of potential solutions in order to choose the 
optimum one. an autoregressive moving average with a variable 
framework for demand-side projections is identified using genetic al
gorithm approaches. The approach provides an opportunity to move to 
the global extreme of a complicated fault field by emulating a naturally 
evolving mechanism. It is a method related to global exploration which 
replicates the progression of development in nature and works as a 
probabilistic optimization method [177]. The GA is competent in 
asynchronously converging to the ideal global result and thus boost the 
estimation precision of the prediction because it assesses numerous 
exploratory indicates at once and doesn’t demand that the query space 
be distinct. There is an overview of the broad structure of the genetic 
algorithm procedure. The D-dimensional vector data P, whereby the 
fitness parameter f(p) has been allocated, indicates actual value pa
rameters that are decided by the algorithm for genetics [178]. A selected 
spectrum for every degree is used to create the baseline collection of k 
parental vector Pi, i = 1, k. Right after that, every parental vector es
tablishes a child by fusing (crossover) members of the present 

Fig. 9. load prediction via ARMA [167].  

Fig. 10. ARIMA prediction [174].  
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population. As a result, 2000 additional people are acquired. To choose 
the new parents for the subsequent generations, k people are randomly 
picked from among them, having a larger likelihood of going to those 
with the greatest performance values. until is not enhanced this pro
cedure recurs. defined the overall demand profile according to the 
ARMAX format shown below. 

A(q) ∗ y(t) = B(q) ∗ u(t)+C(q) ∗ e(t) (13) 

While q-1 is the back shift function, A(q), B(q), and C(q) represent 
the coefficients for the autoregressive (AR), exogenous (X), and moving 
average (MA) portions, accordingly, y(t) is a load at period t, u(t) is the 
external thermal intake at time t, e(t) is white noise at time t, and u(t) is a 
temperature input [179]. Select the approach in [180] which corre
spond to your needs as the uncertain prototype(s) that ought to ulti
mately pass inspection for future estimation of load. A fuzzy 
autoregressive moving average with an exogenous variable approach in 
[181] was given for predicting demand for power. Heuristic analysis and 
adaptive programming are used in conjunction to address the method, 
which is presented as a sequential optimization issue. Utilized an algo
rithm in [182], based on genetics that utilized enforced mutation, a 
newly designed expertise-augmented mutant-like activator. In [183], 
the ideal neural network design and linking parameters were developed 
using a GA to solve a single day power demand prediction issue. In [184] 
Many GA-based demand forecasting strategies in the STELF domain are 
currently described, although intriguing findings have emerged. 

To resemble the processes of natural selection, these solutions go 
through selection, crossover, and mutation rounds. Fitness functions 
assess each solution’s performance according to standards such as en
ergy efficiency. Genetic algorithms develop via multiple generations and 
determine the best device-level tactics, which helps smart homes use 
energy efficiently. 

When working with complicated models, genetic algorithms provide 
a potent optimization method for load forecasting; nevertheless, one 
should take into account the computing costs associated with them. 

2.9. Support vector machine 

A guided machine learning approach called Support Vector Machine 
(SVM) is employed for both regression and classification analyses. A 
categorization and regression evaluation technique centered around 
statistical learning theory (SLT), that examines information and finds 
trends. It integrates generalization regulate handle a method to deal 
with the scalability problem [185]. In [186], demonstrated that using 
time series projections instead of heat and other climatic data can in
crease the accuracy of halfway demand forecasts. In [187] Researchers 
called the technique C-ascending support vector machines, which 
changed the detrimental value of traditional support vector machines by 
penalizing hypersensitive mistakes with greater severity compared to 
distal oblivious faults. According to an experiment, the team conducted, 
C-ascending support vector machines using raw data that has been 
genuinely organized regularly to predict conventional support vector 
machines. In [188], suggested an SVM-based method to rank particular 
components in accordance with how they affect loading predictions by 
reducing the number of characteristics that reduce system capacity. In 
[189], researchers further enhanced the SVM by employing an empirical 
learning approach to assess the relationships across both input and 
output variables. Utilizing the idea of regionally ranked regression, this 
approach was developed by altering the probability function of the 
conventional SVM. The discipline of system observation, improvement, 
and standard assurance benefits from the suggested approach. intro
duced a novel short-term load forecasting approach in [190] using 
scaled SVM in conjunction with the fuzzy C-mean clustered technique. 
They grouped each of the input samples based on their level of resem
blance. demonstrated that an SVM-based model in [191], offers more 
declaring mathematics for predicting load on electricity compared to an 
artificial neural network. The framework eliminates the drawbacks of 

general artificial neural networks (ANN), such as their poor general
ization, the tendency to become stuck in incomplete minimums, and the 
inability to do global optimization. In [192], offered an SVM-based 
short-term load forecasting method using the Adaptive 
Quantum-behaved Particle Swarm Optimization Algorithm (AQPSO). 
The QPSO was modified to include a variety-guided framework and the 
AQPSO technique is used for automatically identifying the unbound 
variables for the SVM model. The mathematical framework has been 
shown as able to increase precision, boost global convergent capacity, 
and shorten the duration of operation. a revised form of support vector 
regression (SVR) was introduced in [193], to address the prediction of 
load challenge. Authors created the framework by using locally 
weighted regression (LWR) to alter the risk factor of the SVR technique 
yet preserve the regularization term’s fundamental structure. centered 
upon the Stimulated Annealing Particle Swarm as shown in Fig. 11 in 
[194], Optimization (SAPSO) method, which blends the benefits of 
Particle Swarm Optimization with the Swarm Optimization method. For 
selecting the SVM model’s variables, a novel technique is used. Mathe
matical experimentation has demonstrated that the algorithm could 
enhance precision, increase converging capacity, and decrease oper
ating time. 

There are several ways to increase SVM model’s capacity for global 
optimization and precision. Here are a few crucial methods: Feature 
engineering (consider transforming attributes that symbolize the 
fundamental connection); Hyperparameter tuning (through techniques 
like grid search or randomized search to determine which one best 
matches the data); Cross-validation (to evaluate the model’s effective
ness using several dataset subsets); Data preprocessing (take handle 
outliers, missing data, and scale or normalize features); Ensemble ap
proaches (Combining many SVM models for improved prediction per
formance is by bagging or boosting); Kernel selection (kernel parameters 
to determine which combination produces the best outcomes for the 
particular issue); kernel parameters to determine which combination 
produces the greatest outcomes for the particular issue; Incremental 
learning (adjust over time to fresh data without having to completely 
retrain the model); Model stacking (integrate SVM’s features with those 
of other forecasting techniques to provide a forecast that is accurate and 
reliable overall.); Regularization techniques (Use strategies including 
dropout or incorporate a penalty term in the price equation to avoid 
overfitting). One may improve SVM model’s accuracy of predictions and 
capacity for global optimization by carefully weighing these tactics. 

SVM can build models to forecast energy consumption at the device 
level based on use trends and historical data. It may also be used to spot 
anomalous energy usage patterns in devices and assist in the diagnosis of 

Fig. 11. load forecasting via Support vector machine [194].  
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faults. 
Divide up the energy usage of devices into several groups so that 

various kinds of devices may have customized management plans. It is 
appropriate for capturing intricate interactions inside the HEMS, guar
anteeing efficient device-level energy management, due to its flexibility 
to different kernel functions. 

SVMs are a reliable method for load forecasting, but careful 
parameter adjustment is necessary, particularly when working with 
intricate and non-linear interactions. 

2.10. Adaptive demand 

A kind of prediction of demand known as adaptive demand fore
casting modifies the projected demand in response to alterations in the 
root factors that influence need. The method of adaptation modifies the 
prediction to better represent the present condition while taking into 
consideration the shifting environment. In order to maintain up with the 
shifting load circumstances, the mathematical assumptions for predic
tion are readily modified. In the energy control network, flexible load 
projection is a piece of software that may be utilized remotely. Using the 
Kalman filtering principle, a regression approach is employed. In order 
to calculate the subsequent state vector, the Kalman filtering method 
typically employs the present forecast inaccuracy and the most recent 
meteorological data collection methods. To establish the state vector, 
not just the latest observed demand and climate data are examined, but 
also the whole history collection of data. Shifting from multiple and 
adaptive regression evaluations is possible with this method of activity 
[195]. created a flexible Hammerstein framework in [196] that includes 
a lattice architecture for coupled operations and an axial gradient 
design. Their strategy made advantage of a combined Hammerstein 
irregular operational link between demand and heat that changes with 
time. Their method outperformed the commonly employed RLS 
(Recursive Least-square) algorithm in terms of performance. In [197] 
improved and used the method. The capacity to predict the entire sys
tem’s hour load up to five days in advance has improved. In [198] 
modeled the impacts of a direct load control approach while presenting 
an appropriate-time sequence framework. Created an integrated 
framework in [199] for predicting load that comprises three elements: 
baseline load, category load, and residue load. The Kalman filter is 
employed to simulate the initial load, and the model’s settings are 
adjusted using the exponential scaled recursion the least-squares 
approach. showed a real-time climate-adaptable STLF solution in 
[200] that is effective in practice. Utilizing the WRLS (Weighted 
Recursive Least Squares) algorithm, execution is carried out by an 
ARMA approach, and its variables are computed and revised remotely. 
Utilizing time series evaluation in [201], circumstances. With this 
method, periodic structures are handled by self-correlation optimiza
tion, in alongside revising model settings, the time series’ order and 
framework can be modified to account for changing circumstances. used 
a wavelet evolve-Kalman dictate approach in [202] to predict demand. 

Adaptive Demand necessitates the real-time tracking of energy use 
trends on each device using smart meters and sensors. Whenever and the 
way devices are generally used is something the system learns by 
analyzing user behavior and preferences. Through constant learning 
from equipment connections, machine learning algorithms optimize 
adaptive techniques over time, improving the HEMS’s capacity to pro
actively control energy usage at the device level. 

Although it comes with infrastructure challenges, adaptive demand 
forecasting improves load forecasting accuracy by dynamically modi
fying estimates in real-time and providing efficiency advantages in 
managing home energy networks. 

2.11. Expert system 

As a consequence of developments in the AI sector, an entirely novel 
discipline has formed. Authoritative engineers developed a 

computational program known as expert system as shown in Fig. 12. 
Researchers create an information-based expert framework by extract
ing LF information from export in the real world. The system of spe
cialists is provided with characteristics that blend scientific and 
statistical approaches [203]. All of this data is given as statistics and 
if-then regulations and are made up of a collection of connections. The 
aforementioned rule foundation is utilized every day to provide pre
dictions due to fluctuations in system demand and variations in both 
organic and imposed conditions which influence how much power is 
consumed. Although a few of the regulations remain constant as time 
passes, some need to be apprised on a regular basis. With the purpose of 
creating multiple regulations for various methods, the rational and 
syntactical links involving climate demand and the prevalent everyday 
load forms are being extensively studied. The procedure often includes 
the time of year being considered, the day of the week, the temperature, 
and changes in the temperature at the time [204]. Developed several 
load expansions models in [205] using a knowledge-driven method to 
load prediction that incorporates present system expertise, demand 
development trends, and horizons period information. In [206] utilized 
a two-stage predicting process for the Korea Electric Power Corporation. 
An ANN first undergoes training to anticipate the beginning load, then 
following that, a system of fuzzy experts adjusts the projected load to 
account for seasonal fluctuations and holidays that are public. There are 
various hybrid approaches in [207] that forecast load by combining an 
expert structure with different LF algorithms. In particular, dashes 
integrate fuzzy logic with expert systems. In [208] processed the climate 
and load facts, added a fuzzy inference procedure, and used a trained 
system to make predictions. The job is done offline and is depending on 
the operator’s perception and specialization developed several load 
expansion situations in [209] using an empirical power-forecasting 
technique that integrates system details already in place, load devel
opment trends, and perspective period statistics. In [210] used an in
tegrated skilled system and NN approach with three stages for preparing 
a site, projections, and planning for growth. To predict load for Egypt 
Electric Corporation, a neural network and exporting system are com
bined in [211] to build an hour predictions framework. 

Integrate domain-driven information about consumer tastes, energy 
usage, and equipment behaviors into a rule-driven framework. Develop 
a collection of rules that specify how devices should behave depending 
on variables like the time of day, user behaviors, and energy prices by 
encoding domain-specific information. Incorporate sensors and feed
back systems to continually track data at the equipment level, giving the 
expert system actual time inputs. 

By combining human experience, expert systems provide insightful 
load predictions and provide conclusions that are easy to understand. 
However, in situations where expert input is not continuously available, 
they may not be able to adapt to changing conditions. 

2.12. Artificial neural network 

A computer framework termed an Artificial Neural Network (ANN) is 
modeled after the nervous system in the brain of a human being. The 
framework consists of a network of interconnected "neurons" which can 
derive results from inputs providing the network of neurons with data as 

Fig. 12. Expert system model.  
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shown in Fig. 13 [212]. Neural networks have a capacity to reduce de
pendency on an operational version of prediction system, claims in 
[213]. Artificial neural networks can take a variety of forms, including 
multidimensional perceptron structures and autonomous nets. The sys
tem contains a number of secret levels. Every buried level has a large 
number of neurons. When inputs have been multiplied by weight ωi and 
combined with a limit, an inner product value known as the net value is 
created. In this case, the function that activates y is transmitted via the 
net functional NET employed in [214] to generate the device’s final 
result, y(NET). The primary advantage in this situation is the fact that 
the majority of forecasting strategies found in the scientific literature 
lack a requirement for a load estimate. But training usually requires a 
long time. Employing completely interconnected feed-forward sort 
neural networks as the basis, we provide the approach mentioned in 
[215]. The weights used to link inputs, hidden units, and output com
ponents together to form the system’s outputs are linear in nature. As a 
result, the weights of output are subject to linear problems that may be 
resolved. When solving the linear equations over the resultant the 
weights, the results weight optimization training technique initially 
employs traditional back propagation technique to enhance the unde
tectable weights during every loop via the data used for training 
(epoch). The ANN-based system was created and placed into use in 
[216] for the Pacific Gas and Electric Company’s energy management 
unit. Special occurrences like vacations, extreme heat, freezing snaps, 
and additional events that disrupt a load’s regular rhythm were carefully 
modeled. A method was suggested in [217] employing the unsupervi
sed/supervised training idea and the past relationship between load and 
heat for a certain period, day type, and hour of the day. 

In order to anticipate hour electrical consumption having a waiting 
period of 24 hours, they employed this method. In [218] conducted an 
actual investigation regarding estimating power usage in Singapore to 
contrast a statistical model to a neural network model. Based on their 
findings, an entirely trained NN algorithm that performs well when 
adapting historical data might not do as well when predicting future 
events. presented a recurring NN in [219] for simulating the South Af
rican utility’s STLF. It represented the load as the result of an evolving 
system, impacted by the climate, duration, and other external factors, by 
utilizing the inherently irregular dynamical characteristic of NN 
research in [220] employed ANN to perform forecasting of short-term 
loads for the Ahmednagar site. Later demand may be anticipated 
employing this method, which was actual wage-based prediction. In 
order to create a specialist system in [221] developed a group of ANNs 
and hired them as tools in combination with an overseeing skilled 
method. Additionally, they looked into how well the ANN approach to 
short-term load forecasting carried out after the models underwent 
training via reverse propagation on real load knowledge. 

Providing the neural network with historical information about user 
behavior, ambient factors, and energy use at the device level. Create a 

neural network design that is specifically suited to capture the intricate 
connections in energy utilization, including layers, nodes, and activation 
functions. Utilizing optimization and backpropagation techniques, train 
the neural network to identify trends in past data and enhance predic
tion accuracy. Put the trained ANN to use in real-time prediction so that 
the HEMS may anticipate and modify device-level energy usage ac
cording to the circumstances at hand. 

When working with non-linear structures, artificial neural networks 
are an invaluable resource for load forecasting. However, proper model 
tuning and data concerns are essential. 

2.13. Fuzzy logic 

A centralized fuzzing system called fuzzy theory is capable of iden
tifying and approximating any uncertain vibrant system, or load, within 
a compacted collection of arbitrary precision. Fuzzy logic is a method for 
evaluating variables that permits the computation of several potential 
facts via one parameter. Fuzzy logic takes advantage of an open, 
imperfect range of facts and biases to address issues, allowing a variety 
of exact results to be drawn [222]. Researcher discovered demonstrated 
fuzzy logic may effectively draw parallels from vast amounts of data. 

In mathematics, it is denoted as first-order 

Vk =
Lk − Lk − 1

T
,Ak = (Vk − Vk − 1)

/

T (14) 

Fuzzy logic algorithms operate in two phases, namely learning and 
virtual prediction. Steps of instruction employ past data from meters to 
simulate 2 m inputs. utilizing the initial and subsequent differences of 
the provided data, a fuzzy rule is constructed that relies on a two-output 
fuzzy-logic structure. Following the training phase, it is connected to the 
control system to forecast load. By fitting the highest likelihood func
tion, the centroid defuzzifier creates an outcome sequence. For load 
estimation, many fuzzy techniques are employed [223]. Proposed a 
fuzzy set theory-based skilled system in [224], for STLF. The modifying 
task was handled by the specialist system. An immediate projection was 
made and assessed for the Taiwan electrical grid. Created a fuzzy linear 
program framework in [225] to describe uncertainty in the projections 
and input information regarding the electrical generating planning 
issue. Developed a non-linear optimization system in [226] for STLF 
using fuzzy decision-making techniques with the goal of reducing 
modeling faults. Simulation-based annealing and the most abrupt 
decline approach are used in searching for the ideal approach. Employed 
a hybrid approach in [227] for predicting load that combines fuzzy logic 
in addition to neural networks and trained systems. Fuzzy weight vari
ables are sent into the neural network as inputs, and a fuzzy rule 
interpretation process corrects its result. Developed a fuzzy model in 
[228] to represent the electrical power scheduling challenge. Since it 
can capture the unpredictability of the procedure, this method works 
better than traditional predetermined designs, according to computer 
assessments. Proposed a fuzzy reasoning framework in [229] for merg
ing data implemented in regional load prediction that forecasts either 
the amount and areas of upcoming electric demands. Various areas’ load 
development is influenced by a variety of contradictory elements, such 
as prices, proximity to a roadway, and the range to power lines. Pro
vided an approach of fuzzy inference in [230] for STLF in electrical 
systems. To minimize prediction mistakes, their strategy combines tabu 
search with supervised training to optimize the inferential architecture. 
Offered a different approach to the conventional experimentation 
strategy for figuring out fuzzy member roles. It uses a computerized 
model development in [231] process that makes recourse to clustering 
calculation, evaluation of deviation, and iterative least-squares. 

Utilizing linguistic variables and fuzzy sets, create a rule foundation 
that accounts for the inherent variability in device-level energy 
administration. To express the extent to which variables, such as energy 
consumption and user tastes, are part of fuzzy sets, establish Fig. 13. Load forecasting Artificial neural network model.  

A. Raza et al.                                                                                                                                                                                                                                    



Alexandria Engineering Journal 92 (2024) 117–170

130

membership functions. To interpret the rules and decide how to opti
mize device energy, use a fuzzy inference engine. Adjust device-level 
settings adaptively by implementing fuzzy control techniques that take 
user comfort, energy expenses, and environmental circumstances into 
account. 

By using human-like reasoning to address unpredictability, fuzzy 
logic provides a reliable method for load forecasting; nevertheless, 
careful rule development and expert input are necessary. 

Various aspects, such as the particular properties of the data, the 
scope of the system, and the prediction task’s objectives, influence the 
selection of the optimal load forecasting approach. Every method has 
benefits and drawbacks. Whenever there are distinct linear correlations 
between the predictor factors, regression models work well. Time series 
information can benefit from exponential smoothing techniques, which 
provide weighted averages that adjust to shifting trends. 

For time series forecasting, autoregressive methods are highly 
effective, particularly when working with stationary data. For intricate, 

non-linear problems, genetic algorithms are an adaptive optimization 
method that works well. Artificial neural network is good at extracting 
intricate correlations and patterns from data. Both linear and non-linear 
forecasting problems can benefit from support vector machines, 
particularly in high-dimensional domains. Fuzzy logic works well with 
data that contains imperfect information and uncertainties. The ideal 
method will vary depending on the particulars of your data and the 
demands of your load forecasting assignment. Experimenting with 
various strategies and maybe utilizing a combination of ways can greatly 
enhance accuracy and resilience. When selecting the best approach for 
your situation, take into account variables like interpretability, pro
cessing capacity, and the volume of historical data that is accessible. 
Overall, ANN are often regarded as useful for load forecasting in resi
dential energy administration systems because of their capacity to 
identify intricate patterns and links in previous data. (Table 1) 

Table 1 
Characteristics of different forecasting approaches used in HEMS.  

Method Process Features Applications Pros Cons 

Multiple regression Collect historical data to 
build a regression model 

Interpretability using 
parameters and builds a 
model employing analytical 
statistics 

Residential and 
commercial load 
prediction 

Adaptability and flexibility Premise Vulnerability and 
dependency on accurate 
information 

Exponential 
Smoothing 

Iteratively time series 
predicting methodology 

Manage seasonality and 
apply exponentially 
decreasing weights to 
estimate future outcomes. 

Demand forecasting and 
short-term load prediction 

Minimal past data 
requirement and responds 
effectively to seasonality 
and trends 

Sensitivity to initial factors, 
and limited long-term 
prediction. 

Iterative 
reweighted least- 
squares 

Incorporates iteratively 
altering coefficients 

Responding to non-linear 
relations and reliable 
estimations via iterative 
refinement 

Simulate complicated and 
dynamic associations 
among factors in load 
estimation. 

Resilient to outliers Computation challenge, 
vulnerability to initial 
conditions and weighting 
scheme tuning 

Autoregressive Data from a time series 
based on previous linear 
estimations 

Track’s dependencies across 
time in data 

Modeling time-series data Effective in identifying 
time-related trends and 
suitable for short-term 
forecasting 

Susceptible to the model 
order selection and might not 
accurately portray non- 
linear patterns. 

Moving average Calculates the mean of the 
data elements within a 
sliding frame. 

Offers a smooth trend line Short-term load 
forecasting, finding trends 
and reducing noise in past 
data. 

Useful for mitigating 
abrupt fluctuation and less 
computational capacity 
required 

Lag behind abrupt changes 
and might miss complex 
trends 

Autoregressive 
moving-average 

Taking moving average of 
previous values 

Tracks temporal 
connections 

Model time-series data Short to medium term load 
estimations 

Difficulty comprehending 
non-linear trends 

Autoregressive 
integrated 
moving-average 

Integrate the moving- 
average, autoregressive and 
differencing parts to predict 
time series datasets 

Manages irregular data and 
detects patterns over time 

Robust, adaptable and 
medium-term load 
projection. 

Ability to adapt to different 
time series and capture 
intricate temporal trends 

Parameter sensitive, 
intractable in some cases, 
and requires an adequate 
volume of past data 

Genetic algorithms Solutions evolving over 
successive generations. 

Heuristic optimization 
method exploring a wide 
solution space 

Optimize parameters to 
increase precision in 
complicated models 

Powerful in intricate and 
non-linear interactions and 
resilient against local 
maxima 

Difficulty to comprehend the 
optimization process and 
computationally intensive 

Support vector 
machine 

Determine hyper 
plane that optimally divides 
the data points to maximize 
the margin between various 
classes. 

Adequate in high 
-dimension space, and 
appropriate for both 
classification and regression 
tasks 

Widely used in 
classification tasks 

Robust against overfitting Limited suitability for multi- 
class problems 

Adaptive demand Continuously updating 
estimations and model 
based on real-time 
information and evolving 
conditions 

Adaptability to real time 
changes in demand trends 

Provide accurate 
prediction 

Increased precision and 
adaptability to shifting 
conditions 

Dependable on 
communication 
infrastructure and real-time 
data 

Expert systems Integrating human 
knowledge into a rule-based 
framework 

Flexibility to different 
forecasting situations. 

Optimize forecast utilizing 
expert analysis and take 
benefit of domain-specific 
expertise 

Employing human 
knowledge and 
comprehensible decisions 

Reliance on specialized 
expertise, and possible 
difficulties in fully 
encapsulating a dynamic 
system 

Artificial neural 
network 

Training a structure of 
linked nodes to understand 
complex connection and 
linkages 

Non-linear modelling, 
flexibility with numerous 
data types, and ability to 
identify complex patterns 

Employing load forecasting 
to simulate intricate, 
nonlinear connections in 
energy usage 

Manage intricate patterns, 
flexible in handling 
numerous data types, and 
excellent accuracy 

Overfit with insufficient data 
and Black-box nature 

Fuzzy logic Incorporates rules and 
linguistic factors to 
simulate uncertainties and 
imprecise information 

Linguistic expressions and 
human-like approach to 
decision-making 

Indicate the variability and 
unpredictability in patterns 
of energy usage 

Imitate human reasoning in 
ambiguous situations. 

Rule development requires 
expert assistance and is 
sensitive to rule allocation.  
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3. Optimization technique in load scheduling 

The optimum scheduling for HEMS is determined in this part by 
examining a variety of scheduling methodologies. 

3.1. Linear programming 

Developing an optimization problem with linear constraints and an 
objective function to minimize or maximize is known as linear pro
gramming [232,233]. The amount of restraints and the amount of pa
rameters determine the cost of computation of a linear programming 
task [234]. There aren’t any local minimum multiples in that particular 
sort of programming challenge [235]. LP is frequently the easiest to 
solve; another quality of this kind is clarity. The choice factor should 
have one goal and be non-negative [236]. In [237] The cost of desire to 
spend, which was set for every customer and identified to a value that 
every member in the Licensed Electrical Contractor (LEC) was ready to 
spend in addition to the cost of energy of the grid in order to add to a 
drop in the minimal pollutants resulting from the grid, was assessed in 
order to determine how to maximize the social advantages achieved by a 
LEC using peer-to-peer dealing. It additionally communicates the user’s 
tendency to purchase local PV power. The criteria originate from 
Vienna, an Austrian city. The length of the research lasted a year. The 
optimization technique made use of linear programming as its frame
work. In [238] centered upon figuring out the percentage of customers 
who supply DR to those customers. These metrics were determined by 
considering note of the past behavior rate of the customer’s behavior in 
response to an actual time call for a power reduction; the DR, the 
last-day Rate (LDR), and the cut-rate are terms used in the computation 
of the Time Rate (TR). The significance of the TR is that, based on this 
number, an end-user is chosen to take part in the DR to lower energy 
consumption corresponding to the demand; the research’s innovation 
lies in this selection of the customer’s result shown in Fig. 14. The 
research had one day as its timeframe. In [239] aimed to reduce oper
ational expenses by addressing the optimization of a big Electrical 
Conductivity (EC). There was actual time and day-ahead optimization 
done. The adaptability of function that the transmission system opera
tors would be offered was decided by the day-ahead paradigm. The 
development of a parallelizable LP. This model considers the transfer of 
energy both inside the EC and throughout the EC and the power grid. 

Establish a specific purpose that embodies the HEMS’s objectives, 
such as balancing the use of devices. Determine the decision factors that, 
based on user choices, indicate the energy usage of each device. To 
guarantee practical and workable solutions, create limitations based on 
variables such as energy availability, device specs, and user preferences. 

To identify the best solutions that fulfil all constraints and the specified 
objectives, use LP solvers. For effective device-level energy manage
ment, incorporate dynamic optimization by regularly updating the LP 
model based on real-time data. This will enable the HEMS to adjust to 
changing conditions and user behavior. 

linear programming is an effective technique for load scheduling and 
distributing resources optimization, it is important to take into account 
its premises and its drawbacks when attempting to capture non-linear 
connections. 

3.2. Mixed integer linear programming 

Mixed Integer Linear Programming (MILP) expand linear program
ming by permitting certain variables to take discrete, integer values, in 
order to include decision variables that are not continuous. The outcome 
factors in MILP are regular, numbers, and scalar, while the goal product 
and restrictions are both linear [240]. This technique can help 
decision-makers comprehend energy systems and develop environ
mentally friendly paths to achieving energy goals [241]. The outcome 
factors in MILP are regular, numbers, and scalar, while the goal product 
and restrictions are both linear. The branch-and-bound technique is the 
approach that is utilized most often to solve issues involving MILP [242]. 
It is not vital to employ a nonlinear framework which is harder to figure 
out since integer parameters permit modelling estimates of nonlinear 
behavior. Furthermore, integer parameters render optimization issues 
nonconvex, which makes them much more challenging to resolve [243]. 
The device schedule optimization issue in [244] presented into a MILP 
challenge, which is computationally feasible. The utilization-scheduling 
method in a residential system has been examined by the researchers. 
The decrease of EC charged by the consumer is the investigation’s pri
mary target. regarded as six gadgets each for six homes. The findings 
indicate that the price decrease has increased by 3–16%. 

The MILP approach for scheduling devices in intelligent houses was 
rolled out in [245]. The research is centered on reducing the expense of 
power. The suggested comprehensive HEMS design takes distributed 
power production and the power storage facility into account. To 
decrease costs overall, controlling loads for both thermostat and 
une-thermostatic systems were modeled utilizing MILP. 

It is demonstrated [246] that a multiple-layer design founded on 
MILP optimization technique can be used as a Clustered Sequence 
Management (CSM) multi-objective optimizing approach at the power 
utilization level. It also explains how to classify devices using an ordered 
technique’s load record and its levels of independence for consumer 
prioritization. In accordance with the American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers (ASH-RAE) norm, the 
results demonstrate that the design is typically capable of decreasing 
expenses by nearly 13 percent and PAR proportions by nearly 45%, 
eliminating consumer’s unease, and accomplishing the ideal amount of 
time for employing non-interruptible postponement loads. Utilizing 
MILP in [247] as shown in Fig. 15, an effective power management 
approach, lowers the price of energy and PAR by planning electronic 
devices and electric vehicles charging and discharging activities. For 
particular day-ahead electricity forecasting for efficient energy utiliza
tion alongside the potential for buyers to generate power themselves 
using a micro grid created up of solar and wind energy, an Improved 
Differential Evolutionary Artificial Neural Networks (EDE-ANN) struc
ture is established. To verify the viability of the suggested cost-effective 
technique, which relies on the created MILP system. 

Create a desired function that maximizes effectiveness in device- 
level energy management by taking into account both discrete and 
continuous decision factors. Determine constant factors for continuous 
decisions (e.g., energy use levels) and integer parameters for discrete 
actions (e.g., equipment on/off modes). Set limits according to user 
preferences, energy availability, and device specs. To discover the best 
solutions that balance discrete and continuous variables, incorporate 
MILP solvers that can handle mixed-integer optimization issues. For Fig. 14. load scheduling via Linear programming [238].  
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efficient device-level energy management, design a dynamic MILP 
framework that changes in actual time based on changing 
circumstances. 

With its ability to handle discrete choice variables MILP improves 
load scheduling skills and provides best practices in situations involving 
both discrete and continuous judgements. 

3.3. Nonlinear programming 

A system having non-linear interactions can be optimized by non- 
linear programming (NLP), which makes it possible to reflect real- 
world situations more accurately [248]. Distinctive feature of 
nonlinear systems is that they may be exceedingly challenging to solve 
and that the only conceivable approach in cases when nonlinear con
straints are present is the local optimal point. The generalized reducing 
gradient (GRG) and quadratic programming (QP) approaches are 
employed to solve nonlinear issues [249]. The repeated nature of NLP’s 
computational techniques is common. Another distinctive feature of 
nonlinear systems is that they may be exceedingly challenging to solve 
and that the only conceivable approach in cases when nonlinear con
straints are present is the local optimal point [250,251]. Utilized NLP in 
[252] to decide how to operate devices at various intervals. The 
decrease of EC and customer weariness are the goal objectives taken into 
account in this strategy. With ToU, and RTP, several cost and 
incentive-based programs are utilized. In order to account for the 
unpredictability associated with EVs, battery backup structures, and 
modest-scaled RESs, a stochastic-based HEMS model is presented. The 
outcome demonstrates that the suggested approach significantly lessens 
customer and EC stress. To predict the demand and dispersed production 
accounts, investigators [253] introduced a short-term memory neural 
network. It applies a variety of workable demand-side management 
strategies and dispersed energy resources in the most effective way 
possible using a flexible technique. The nonlinearly constrained opti
mization strategy was addressed utilizing the sequential quadratic pro
gramming (SQP) method. Each working day was intended to last 
15 minutes. [254] proposed a non-linear foreseeable energy conserva
tion technique for a house with a Solar rooftop and a battery-powered by 
lithium-ion ESS as shown in Fig. 16. The important compromise between 
storage aging for lithium-ion batteries and managing energy effective
ness is additionally investigated and analyzed, as well as the difference 
in prescriptions for building regulation, advanced charging estimator 
methods, and non-stationary PV/battery systems. The concept of saving 
energy as a model forecast presented considering perfect long-term 
projections, the computational results show that the intended regu
lated arrangement provides a target value between 96% and 98%. 

Additionally, with minimal financial losses and a suitable cost compo
sition, the incidence of failure for battery energy may be reduced by 
25%. [255] proposed an NLP probabilistic framework of a HEMS, which 
takes into consideration supply concerns for EVs and green resources. By 
including an exhaustion response measure, the algorithm maintains 
residential satisfaction while optimizing the client’s cost in several DR 
aspects. The energy consumption might be greatly reduced by the rec
ommended HEMS to 42 percent. The recommended probabilistic 
approach was found up to 31% less expensive for customers to imple
ment versus the conventional strategy. The most significant differences 
between determinism and probabilistic HEMS were demonstrated using 
TOU, CPP services. The elevated TOU and CPP prices and the techniques 
for punishing I/C plants have a significant influence on the timeline. 

Create a goal function that takes nonlinear correlations between the 
variables into account. Determine the decision factors that correspond to 
the power use of every gadget and the types of trends in its use of energy. 
Establish restrictions that take into account consumer preferences, 
specification at the device level, and other nonlinearly related elements. 
Use NLP solvers that can handle nonlinear optimization issues to iden
tify the best strategies that fulfil all constraints and the specified ob
jectives. Create a dynamic NLP model that can adjust to changing 
circumstances in real time, enabling the HEMS to optimize device-level 
power management in accordance with altering environmental factors 
and user’s behavior. 

In situations with complicated dynamic systems, non-linear pro
gramming provides a more accurate optimization method by accounting 
for non-linear interactions, which improves load scheduling precision. 

3.4. Mixed integer non-linear programming 

Optimization is extended by Mixed-Integer Non-Linear Programming 
(MINLP) to manage either discrete and non-linear continuous decision 
variables. Additionally, nonlinear problems and a few numerical in
novators might be included [256]. For scheduling devices in a variety of 
situations, including regular, economical, and intelligent with varied 
user convenience, MINLP is employed in [257]. The issue may generally 
be classified into the category of multi-objective mixed integer 
non-linear programming problem (MOMINLP) depending on the previ
ous limitation and goals, can be expressed as follows: 

minF(x) = (f1(x), f2(x), ..., fn(x))T (15)  

gi(x) ≤ 0, i = 1, 2, ..., I  

hj(x) = 0, j = 1, 2, ..., J 

Fig. 15. load scheduling by Mixed integrated linear programming [247].  Fig. 16. Load scheduling by Non-linear programming [255].  
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While n is the number of target factors, gi(x)<=0 and hj(x) = 0are 
inequalities limits and equality limits with the degree of I and J inde
pendently, and x is the optimization factor vector encompassing the 
beginning time, operating state, and operational capacity for Non- 
Interruptible (NIA), Interruptible (IA) and Power Shiftable (PSA) 
correspondingly [258–260]. The MINLP approach is taken into account 
in [261] for the optimization of power centers. The suggested strategy 
aims to lower the overall expense of a power center. The main goal is to 
plan day-ahead devices using an RTP system at a resource hub. Varying 
loads and periods of energy use are taken into account. The method 
demonstrates that there is a reduction in the total price of an energy 
center and the overall price of grid-purchased power. The investigators 
of [262] employed MINLP to schedule 10 home appliances to reduce 
electrical conductivity. The ToU mechanism is utilized in the suggested 
layout with the option of providing consumers with incentives in busy 
times. The findings indicate in Fig. 17 a greater than twenty-five percent 
reduction in electric conductivity. [263] discussed the differences 
among savings in costs and energy usage minimization techniques. 
Through a progressive energy sector that uses Energy Storage System 
(ESS) and responds to consumer demand, the researchers created a 
successful strategy for restricting money revenue losses in the context of 
electricity volatility. The nonlinear optimization problem paradigm that 
is being employed shows that the DR nodes are known by now. It 
additionally possible to determine where the nodes should be placed for 
the DR scheme to produce a MINLP. To gauge the advantages of the 
suggested strategy, the proposed technique is evaluated using the 33-bus 
distribution infrastructure. 

Create a goal function that takes into account both discrete and 
continuous factors and reflects objectives such as cost minimization or 
efficiency maximization in device-level energy management. Determine 
continuous variables for nonlinear interactions (e.g., energy use levels 
with nonlinear dependencies) and integer variables for discrete de
cisions (e.g., device on/off states). In addition to discrete limitations, 
establish constraints that capture nonlinear interactions, such as pat
terns of energy use or environmental dependence. To discover the best 
answers, use specialized MINLP solvers that can handle both discrete 
and nonlinear optimization problems. For efficient and flexible device- 
level energy management inside the HEMS, implement a dynamic 
MINLP model that adapts in real-time to changes in user behaviors, 
device specifications, and ambient factors. 

Through the consideration of both discrete choices and non-linear 
relationships, MINLP improves load scheduling accuracy and provides 
a potent method for optimizing a broad range of scheduling scenarios. 

3.5. Particle swarm optimization 

In Particle Swarm Optimization (PSO), a population of solutions 
(particles) is iteratively adjusted depending on their efficacy both indi
vidually and collectively, emulating social behavior as shown in Fig. 18 
[264]. PSO examines the bounds of its goal parameter by altering the 
routes of discrete entities referred to as objects. Each particulate follows 
a path that can be described as a time-based location vectors. Since it 
was introduced, it has undergone a lot of upgrades. Researchers used 
teamed up-evolutionary PSO with probabilistic particle repulsion to 
solve the appliances scheduling. PSO is a population-level optimization 
technique that uses heuristics to find answers by letting potential out
comes roam freely in the solution domain without interacting with one 
another [265]. The movement of the particles is typically in the direc
tion of the top functioning unit and the highest position they have ever 
been in individual best. We employed a co-evolutionary variant of PSO 
[266] to solve the issue. The technique of division and conquest used by 
co-evolutionary PSO involves breaking the vector to be optimized into 
numerous element vectors and having a swarm optimize every part. We 
further enhanced the co-evolutionary PSO’s effectiveness by including 
stochastic resistance between the elements [267]. In our method, the 
particles depart from the individual and globally optimal locations on 
certain repetitions, subject to a risk that depends on the number of 
repetitions. We employed the binary form of PSO [268] to optimize such 
schedules since certain of the considerations, such as switching on and 
off the water heating system and the swimming pool pump, are bipolar 
in nature. [269] discusses and analyses an optimal household energy 
administration system (OHEMS), that additionally encourages the 
integration of RES and ESS as well as integrates homeowners into DSM 
activities. By organizing residence and ESS devices in accordance with 
changing energy prices the recommended OHEMS reduces the electrical 
power cost. Through the use of several knapsack challenges, a limited 
optimization challenge is numerically established. It is subsequently 
resolved via heuristic optimization methods like Binary Particle Swarm 
Optimization (BPSO), GA, Bacterial Foraging Optimization (BFO), Wind 
Driven Optimization (WDO), and Hybrid GA-PSO (HGPO) algorithms. 
The suggested method’s and heuristic methods’ efficiency is evaluated 
using MATLAB models. Experiments revealed that the ESS and RES 
deployment reduces the electrical bill. A smart and mega-layer power 
administration framework alongside a human-machine interaction 
(HMI) as the user interface level, the control level, and a load level made 
up of multiple power appliances is put forward in [270,271]. The 
structure uses an innovative method that combines harmonically search 
methods and the particle swarm algorithmic structure. Eq. serves as an 
example. 

Fig. 17. load scheduling by Mixed integrated non-linear programming [262].  Fig. 18. Particle swarm optimization model.  
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.R(t) (16) 

Whereas n is the count of loads that comprise the SHEMS; a n is the 
sequence quantity of demands in the SHEMS; C is the total expense for 
electricity usage; R(t) is the cost of energy at t periods; ea,t is the amount 
of energy for the ath demand at t periods; because L is the total opti
mization timeframe. The NLP paradigm is used to provide the solution 
for SHEMS’s optimum management model. In comparison to the tradi
tional NLP approach, artificial intelligence algorithms are used often to 
handle these issues due to their fundamental principle, versatility, and 
quick solution velocity. The hybrid technique is combined with the 
harmonic searching and the particle swarm optimization technique to 
resolve the problem. The results of the experiment showed a successful 
modification of power cost and demand graph. 

Model gadgets as particles in a multivariate space, where the location 
and velocity of every particle indicate device-level characteristics like 
energy usage. Create an objective function that reflects the aims of 
HEMS, such as maximizing efficiency or lowering energy costs, and that 
the particles are trying to optimize by moving collectively. Particles can 
iteratively change their locations and velocities by defining particle in
teractions and updating criteria to emulate the social behavior of a 
swarm. During each cycle, allow particles to react to variations in device 
specs, ambient circumstances, and user behavior to achieve real-time 
adaptability. In order to provide an ideal configuration for device- 
level energy administration within the HEMS, extract the best solution 
from the particle’s final locations. 

Particle Swarm Optimization is a reliable method for load scheduling 
that efficiently optimizes allocation of resources; nevertheless, in dy
namic circumstances, precise parameter adjustment is essential to get 
optimal outcomes. 

3.6. Genetic algorithm 

In order to replicate natural selection, Genetic Algorithms (GA) 
evolve a population of possible solutions through selection, crossover, 
and mutation. GAs operates on sequential patterns similar to biological 
ones that develop gradually in accordance with the rule of surviving 
through an impulsive interchange of organized data [272]. It may be 
employed to identify the best or nearly best solutions to issues that might 
otherwise require an eternity to resolve [273]. GAs operates on 
sequential patterns similar to biological ones that develop gradually in 
accordance with the rule of surviving through an impulsive interchange 
of organized data as shown in Fig. 19 [274]. Additionally, it is employed 

in ML and scientific research to address optimization issues. Genetic 
algorithms frequently use evolving choice, mutation, and replacement 
mechanisms to supplement or substitute groups with the goal to improve 
the general best result [275]. Employing the Accelerating Genetic Al
gorithm, the researchers of [276] modelled a multifaceted scheduler in a 
grid structure. in a position capable of handling issues with a huge query 
area, this electrical grid work planning issues with a huge query area, 
this electrical grid work planning, it needed to enhance and rate up the 
calculation and resolution process for GA optimization. Similar search 
issues may be performed live as a result of the rapid convergence. It was 
accomplished by narrowing the first search field to ensure the original 
randomized pool only contained feasible options. To generate the 
chromosomes of the initial group, heuristic techniques were included to 
do this trimming, and when the process begins, a Minimum-Minimum, 
Maximum-Minimum, and a Lowest First in First out chromosome are 
formed. The researchers in [277] used GA in a demand-side adminis
tration plan with the goal of reducing the climax-to-average load pattern 
proportion with the objective to enhance the requirement to ensure the 
utilization of spinning reservations, hence improving the intelligent 
grid’s performance. The analysis of household, business, and factories 
loads revealed that GA may be utilized to reduce these demands so the 
spinning reserves is employed, which lowers total electricity costs. With 
the goal to implement proactive response to demand involvement, the 
researchers in [278] used GA to device management. The study was run 
using the Nigerian power sector, and the optimized procedure was 
designed to get a set of planned per hour utilization values for every 
appliance with the lowest possible total electrical expense. In other 
words, load will be adjusted according to price, more loads being 
assigned to hours of a day when prices for electricity are lowest. The 
electricity expense in a hrs.-based tariff profiling was lower, according to 
the findings. The investigators of [279] coupled GA with particle swarm 
optimization to build a mixed approach for regulating energy in intel
ligent grids. The combination is necessary to allow the load planner to 
maximize the benefits of both load planning approaches and improve 
efficiency. Both price of energy and usage were lowered, according to 
the findings. Performance is one of the main issues when applying GA 
and additional optimization methods to identify issues. Because of this, 
it might not be the optimal option to employ in real-time applications. 
the investigators in [280] also showed that a unit commitment problem 
may be handled utilizing fuzzy reasoning, thereby raised convergence 
speed. 

Illustrate device settings as chromosomes, with each gene denoting a 
device-level parameter (such as the timetable for energy usage). Create a 
starting population of chromosomes, or possible solutions, that repre
sent various HEMS device setups. Establish a fitness function that as
sesses each solution’s performance according to standards including 
affordability, user ease, and energy efficiency. Utilize genetic operators 
like as crossover and mutation to combine and modify the genetic 
makeup of preexisting solutions to produce new ones. Let the population 
to iteratively develop over several generations, breeding and choosing 
solutions with greater fitness, until an optimum or nearly optimal so
lution for managing energy at the device level emerges. 

Although their computing requirements and sensitivity to factors 
should be taken into consideration, genetic algorithms provide a potent 
optimization method for load scheduling, especially in complicated 
settings. 

3.7. Simulated annealing 

Through a method that mimics the annealing process in metallurgy, 
simulated annealing steadily reduces the likelihood of adopting less- 
than-ideal solutions through iterative solution space exploration as 
shown in Fig. 20 [281]. In a vast searched space, it is a metaheuristic 
method that matches better efficiency for an optimization issue. It is 
usually employed in discrete searching areas, such as the traveling 
salesman issue [282,283]. Simulated rinsed might be preferable to Fig. 19. genetic algorithm model.  
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accurate methods like descent of the segmentation in situations when it 
is crucial to obtain a projected overall balance instead of a specific 
localized ideal level for a specified length of duration [284]. In [285] 
presented a system for managing home energy to schedule fluctuating 
loads with a grid source of solar energy. The suggested method uses the 
straightforward, effective technique of simulated annealing, that is 
employed to find the general optimal. For the purpose to achieve low 
electricity expenses, this research aims to identify the ideal times of day 
to utilize appliances in the house. Then, an analogy is drawn among the 
optimization goal function and practical annealing. The results show the 
amount of both energy and cash the intended household management 
strategy will conserve at the conclusion of each month, demonstrating 
the efficiency of the procedure. SA was additionally utilized in [286] to 
schedule appliance usage optimally with the aim to minimize both the 
price of energy production and monthly bill payments. In [287], two 
neighborhood HEMS connections are being created, and a simulated 
annealing restoration procedure is employed in conjunction with them. 
Hill climbing along with additional tactics for certain queries, such as 
tabu search, are studied in many variations. Yet, initial evaluations 
showed that SA was clearly superior to any of the other techniques. The 
suggested SA approach delivers an arbitrary motion on every iteration 
after starting at a selected initial phase. As a combined region, the de
cision of moving is determined in two stages: first, the atomic reposition, 
and then, the specific motion inside the neighborhood. Decreasing the 
total amount of iterations to ensure every parameter receives an iden
tical run time allowed for extra computations in an increasingly 
complicated neighborhood. By combining the Improved Differential 
Evolution (EDE) and Harmonic Synthesis algorithms, [288] creates an 
original HEMS while lowering the total amount of trials to ensure every 
configuration have an identical run duration. The most recent 
best-known results have been enhanced with the simulation-annealing 
approach for virtually all circumstances, according to a credible exam
ination of older data. To maximize energy use, homologous recombi
nation employing HSA and EDE operators is also done. Rough MATLAB 
models are used to determine the effectiveness of the new approaches 
developed (Harmony EDE (HEDE)). A tasking-home complex with a 
variety of intelligent gadgets is where the simulations are conducted. 
The results of the simulation show how effective the proposed technique 
is in lowering costs and PAR. 

To direct the optimization process, create an objective function that 
reflects HEMS aims, such as maximizing efficiency or minimizing energy 
costs. As the working solution for the optimization process, begin with a 
basic setting of the device’s characteristics. Put in place a temperature 
schedule that regulates the likelihood of admitting subpar solutions, 
enabling the system to first investigate a larger solution area. Define a 
process that produces neighboring solutions (gadget setting 

perturbations) and assesses the fitness of those solutions in relation to 
the goal function. Explore the solution space iteratively, approving or 
disapproving new options in accordance with the simulated annealing 
probability, and progressively lower the temperature in order to 
converge on an ideal configuration for the HEMS’s device-level energy 
control. 

Simulated annealing is a flexible and resilient optimization tech
nique for load scheduling that takes parameter configurations and 
computing needs into account. It is ideal for managing complicated 
circumstances. 

3.8. Colony optimization 

A group of optimization techniques known as "optimization of the 
colony" are based on genuine insect colony behavior [289]. Ants may 
actually use the pheromones to find the quickest route through their 
nests to food available in the real world [290]. Substances called pher
omone are released by insects’ bodies and fall to the ground, where they 
leave a path that every ant may follow to find nutrition [291]. Given the 
potency of those pheromones during subsequent trips to the nutrient 
origin, additional ants in the group will employ these advantageous 
routes as shown in Fig. 21. ACO makes use of this phenomena and uti
lizes it to tackle actual optimization issues [292]. A HEMS built on the 
Artificial Bee Colony Optimization Algorithm (ABCOA) is described in 
[293]. A clever bee swarming foraging optimization system makes up 
the bee colony technique. Worker bees, observer bees, and scouted bees 
are the three groups of bees that make up a colony. It is thought that a 
single artificial honeybee is employed for every food source. In this 
instance, a colony’s entirety of sources of food and worker bees is equal. 
Worker bees return to this location to eat and perform. The bee whose 
diet was removed becomes a scout and starts looking for a new source of 
nourishment. Bees dance, and viewers choose food sources based on the 
dancing. The issue of optimization may be resolved by XYZ’s supply of 
food, and nectar suggests a superior resolution. The method plans the 
usage of residential devices in accordance with the cost of power. In 
order to keep power expenses to a least, projected outdoor Celsius, 
power production, and consumer demands are gathered and utilized. 
Experiments verify the technique’s efficiency and can save power ex
penses by 47.76%. The Discrete Multi Objective Bacterial Colony 
Chemotaxis Algorithm (DMOBCC) is a novel HEMS idea that was pre
sented in [294]. BCO relies on a process-based paradigm which roughly 
represents a number of typical behaviors of E. coli microbes across their 
lifespan, includes chemotaxis, cooperation, removal, replicating, and 
motility. A newly developed chemotaxis technology and communica
tions platform are built to streamline microbial optimization during the 
whole optimization period. However, subsequent operations like rejec
tion, replicating, and relocation are not implemented until the specified 

Fig. 20. Simulated annealing algorithm.  

Fig. 21. Colony optimization model.  
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requirements are met. A group of microbes is first initialized using 
DMOBCC. Chemistry charges and standards are then continually eval
uated in a solution the environment, and the best solution is discovered 
via iterations. The aim functionality minimizes energy costs for cus
tomers while ensuring the highest degree of pleasure. The framework 
uses the optimization features of duration intervals technique to create 
an ideal method. Investigations were conducted to demonstrate the 
optimization approach for the period, and the effectiveness of the so
lution that was provided was confirmed by simulation findings. 

Draw a graph depicting device-level setups, with nodes standing for 
states (such as energy consumption schedules) and edges for state 
transitions. Pheromones may be used to indicate the attractiveness of 
various configurations, and they can be updated in response to the 
system’s preferences and the fitness of solutions. Play as ants moving 
over the graph, each ant building a solution by selecting configurations 
dependent on pheromone levels in a probabilistic manner. Analyze the 
viability of the ant-constructed solutions taking into account aspects 
such as savings, energy conservation, and user convenience. By simu
lating the pheromones’ transpiration over time, pheromone dispersion 
enables the system to adjust to changing circumstances and converge 
towards optimal device-level energy management in the HEMS. 

Ant Colony Optimization is a reliable approach to load scheduling, 
especially in complex and dynamic circumstances. However, for best 
results, details of execution and parameter adjustment must be taken 
into account. 

3.9. Evolutionary algorithms 

The concept of "evolutionary computation" (EC) applies to a 
heuristic-based technique that mimics a number of the fundamental 
concepts of biological development on a computer, including procre
ation, mutation, replication, and choosing as shown in Fig. 22. Three key 
phases comprise the design of an EC system. A collection of alternatives 
is picked in the initialization stage, which is the first phase, often at 
arbitrary. The evolution iterations, which have two functional stages 
each, including a fitness assessment and choosing and community 
reproduction and variability, constitute the following step. The stan
dards for choosing to enable the choice of the ones who executed most 
effectively in request to establish an additional population via procre
ation and variance methods. The health assessment involves assessing 
the goal functions acquired for every one of the ones of the initialization 
the population. When the assessment of the optimizer algorithm on a 
user satisfies the completion criterion, this fresh populace is re- 
evaluated, and an additional iteration is achieved. Genetic algorithms 
(GA), evolutionary programming (EP), evolutionary strategies (ES), 
DNA programming (GP), training classifier algorithms (LCS), differen
tial evolution (DE), and estimation of distribution algorithm (EDA) are 
all members of a group of techniques known as evolutionary learning 
algorithms. [295] 

Evolutionary approaches have the advantages of not requiring slope 

generation, being able to be executed in simultaneously and being very 
investigative. This makes it possible to employ computational evolution 
for optimized performance and hunt in fields in which the framework is 
not effectively defined beforehand (for instance, improving an unde
fined function that outlines a consumer’s usefulness for consuming 
electricity or forecasting projected electricity the marketplace cost), in 
contrast with conventional search strategies. However, evolutionary 
strategies have intrinsic weaknesses in terms of integration, compre
hension, can produce unanticipated results, and there is no assurance 
that the most effective methods will be found [296]. Due to its benefits, 
EC procedures have been applied in a number of domains [297,298]. A 
differentiating (EA) for the multiple-purpose administration of 
lithium-ion batteries capacity in a data center for DR [299], a bi-level 
(EA) for assessing the retailer’s ideal energy prices in the context of 
DR tactics, and a population-level evolution technique are other 
evolutionary methods that have been utilized in the DR context. Addi
tionally, other iterations of the GA are being applied in the context of 
multiple goals, principally using the Non-Dominated Classifying Genetic 
Method II (NSGA II) [300]. The NSGA-II is an approach based on evo
lution that effectively manages a wide range of limitations despite uti
lizing an exclusive approach to find Pareto-optimal approaches to 
multiple objectives [301]. It has experienced extensive use in DR for the 
multi-objective allocation of demand [302–306]. 

Create a starting population of diversified solutions that correspond 
to various HEMS device-level setups. Establish a fitness function to 
assess each solution’s performance according to factors including cost- 
effectiveness, user comfort, and energy efficiency. Utilize genetic oper
ators like crossover, mutation, and selection to combine and modify the 
genetic makeup of preexisting solutions to produce new ones. Let the 
population to iteratively evolve over several generations, choosing and 
spreading options that are more fit, until the HEMS finds an ideal or 
nearly ideal solution for device-level energy management. 

In complicated contexts, evolutionary algorithms provide a potent 
optimization method for load scheduling that takes parameter settings 
and computing needs into account. 

3.10. Fuzzy logic control 

Fuzzy Logic models uncertainties and imprecise facts using linguistic 
variables and rules, enabling flexible decision-making Additionally, it 
covers all midway alternatives between YES and NO. Given that fuzzy 
logic is a sort of artificially intelligent program, it may be viewed as an 
element of AI [307]. Fuzzy reasoning is a rule-driven paradigm that 
relies on someone’s personal expertise, forming it feasible to apply it 
explicitly only as a component of AI software while the course of action 
is underway. By reducing usage and cost of energy, FLC is employed in 
HEMS to regulate household electrical devices. The four processes of 
fuzzification, defuzzification, rule basis, and inference algorithm were 
used to create FLC. In addition to being easy to use and handling both 
linear and non-linear systems founded on language principles, FLC 
doesn’t need a mathematical framework. [308–310]. For the day-ahead 
scheduling of cooling systems, the FLC was created in order to obtain the 
best heat scheduling in respect to projections for outside temperatures 
and power costs [311]. In an intelligent house setting, DR is adminis
tered via intelligent HEMS. The outcome of the experiment demon
strated FLC’s capacity for reducing power consumption and timing the 
use of the cooling systems. An earlier effort also used FLC for home 
automation to schedule devices [312] To increase customer satisfaction 
and reduce energy usage in homes, the researchers projected costs and 
modelled consumer comfort using fuzzy approaches. Additionally, a 
fuzzy reasoning inference system-based excellent quality simulation of 
power use for each domestic building is described [313]. In this study, a 
photovoltaic (PV) system is connected with HEMS to lower electrical 
and energy costs related to the power usage patterns of household items. 
The data provided to the fuzzy framework is the kind of device and its 
current usage, and the result is the likelihood that each unit will begin Fig. 22. Evolutionary algorithms.  
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operating within the next minute. By taking into account 
high-power-consumption devices, the designed FLC can only regulate 
certain varieties of domestic devices. In order to schedule equipment 
operations and create a prototype which can satisfy user demands for 
immediate demand management, [314] suggested a SHEM multi- agent 
system (MAS) using a method. It was additionally developed and veri
fied to employ a new fuzzy energy factor in the FLC method for imme
diate demand regulation. The suggested method was given the moniker 
AG0-FLC. "AG0" signifies the regulatory strategy used by a cognitive 
entity. A smart meter system has a feature that allows the remaining load 
curve’s shape to be altered. The results of the AG’s with FLC were 
investigated using a PC-based the LABVIEW program for automation of 
homes with FLC. A fuzzier, better engine, and fuzzified are every 
component of FLC. 

Create a rule foundation that uses fuzzy sets and language variables. 
To show the extent to which variables (such energy use or user prefer
ences) are included in fuzzy sets, develop membership functions. To 
evaluate the criteria and decide on equipment scheduling and power 
optimization, use a fuzzy inference engine. Alter device-level settings 
adaptively by implementing fuzzy control techniques that take user 
convenience, power expenses, and external factors into account. 

Fuzzy Logic allows for flexibility by allowing for inaccurate inputs 
and changing user settings, which makes it appropriate for situations 
involving changing and unpredictable home energy management inside 
the HEMS as shown in Fig. 23. 

Although careful rule development and expert input are crucial, 
fuzzy logic provides a robust solution to load scheduling by combining 
human-like reasoning to address uncertainty. 

3.11. Artificial neural networks 

The process of training an Artificial Neural Network (ANN) a 
network of linked nodes to recognize intricate patterns and correlations 
in past data. The components that make up an ANN’s fundamental 
building block are linked together by unidirectional connections, every 
link’s intensity being specified by a numerical weight. The neural net
works, and in specifically the ANNs, mimic how humans think through a 
set of methods. ANNs are programs that, although not exact replicas of 
organic nerve infrastructure, have been influenced by them. Since the 
beginning of AI, ANNs have been created as connectionist theories, that 

are huge chains of basic processors that are heavily coupled and operate 
simultaneously [315]. While ANNs might be classified as both machine 
learning and AI methods that are influenced by nature, we feature them 
in this study as an independent group because they are frequently used 
in DR contexts. 

The components that make up an ANN’s fundamental building block 
are linked together by unidirectional connections, every link’s intensity 
being specified by a numerical weight. Nodes may be input, output, or 
hidden, which alter data as it is being sent between inputs to outputs. 
Each unit generates the linear combination of its inputs, which are 
subsequently sent to the transfer function which determines its output. 
In order to forecast the energy produced by solar panels and residential 
consumption during a particular time frame. In [316], designed and 
simulates an artificially intelligent HEMS with an automatic learning 
prediction method utilizing the network of neurons. The suggested 
technique was tested using a trio of buildings that each had 3.3 p of PV 
capacity. With this approach, the personal consumption of solar energy 
may be increased by up to 8% while the use of energy can be decreased 
by up to 25%. The online learning method uses a Model of Radial Bases 
(RB) and combines cutting-edge resource utilization methods with 
increasing requirements. The capability of the entire system is enhanced 
using a virtual learning method founded on the Minimum Resource 
Allotting Network (MRAN) concept. A data handling technique called 
ANN, which replicates human cognitive processes and models nonlinear 
networks, is being used as an adaptive regulator to manage household 
items [317]. To quickly solve monitoring and forecasting issues, 
ANN-based methods may be utilized in place of simulators. To provide 
very comfortable heat conditions in residential structures, an 
ANN-based enhanced temperature management system was addition
ally created [318]. The ANN regulation approach can, according to the 
findings, enhance the thermal environment in residential structures. In 
[319], ANN and an evolutionary framework were employed to plan 
weekly devices with optimal energy use in the housing market, thereby 
lowering the peak demand and enhancing the utilization of green en
ergies. By getting precise energy-related decisions, an autonomous 
algorithm-based ANN was implemented in [320] to lower the overall 
electricity price and operating lag for the need for energy. By regulating 
residential power use, the ANN approach may successfully handle the 
power usage. In a study [321], the ideal number of neurons for every 
hidden layer and learning rate were chosen for the PSO-based ANN to 

Fig. 23. Fuzzy logic model.  
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enhance its performance. 
Feed the neural network with previous data on user behavior, 

environmental factors, and energy usage at the equipment level as input 
parameters. Give details about the neural network’s design that are 
specific to the extent of energy consumption at the device level, such as 
the number of layers, nodes, and activation functions. Utilizing opti
mization and reverse propagation techniques, instruct the neural 
network so that it can recognize patterns in past data and increase its 
forecast accuracy. Put trained ANN to use in immediate forecasting so 
that the HEMS may anticipate and modify device-level energy usage 
according to the circumstances at hand. Incorporate methods for adap
tive learning so the artificial neural network (ANN) may continually 
modify its model in response to fresh input, enhancing its efficacy and 
precision in energy management in smart home environments as shown 
in Fig. 24. 

While careful model tuning along with data concerns are essential, 
artificial neural networks are a strong tool for load scheduling, partic
ularly when working with non-linear patterns. 

3.12. Adaptive neural fuzzy inference system 

Fuzzy logic and neural networks are used in the adaptable Neural 
Fuzzy Inference System (ANFIS) to describe complicated, non-linear 
connections in an adaptable manner. Initial ANFIS methodology pro
posed a mixed training paradigm. While result variables are discovered 
using the Least Squares Estimation (LES) approach, underlying factors 
are determined using Gradient Descent (GD) as shown in Fig. 25 [322]. 

The optimization decision mechanism utilized during learning is 
critically important as it allows ANFIS to accomplish superior results. 

The ANFIS, an AI regulator utilized in HEMS, is a smart system which 
plans and manages residential load in order to save energy. Several 
layers are included in the ANFIS framework, and no numeric model is 
necessary [323]. In [324], an ANFIS-based regulator for an intelligent 
home was put into place. The controller itself takes into consideration a 
fuzzy component and a smart search database. The input comes from 
outside sensors, output feedback, and fuzzy subsystems. The suggested 
regulator decides on the best energy schedule based on variable pricing 

while reducing energy use. However, the controller ignores additional 
factors like user desires and DR techniques. Also provided in [325] is a 
smart prediction method based on ANFIS for HEMS. This method is 
employed to strengthen the connections across the devices which send 
the reconfiguration schedules to the ANFIS. The effectiveness of the 
suggested ANFIS is superior to that of the traditional ANFIS, according 
to the results. [326] addressed about how to anticipate the effects of an 
integrated green power generating plan using the AFNIS approach. A 
combustion engine and an effective condensing oven make up the 
hybrid technology. Four ANFIS models were built, trained, assessed, and 
utilized to forecast the operating temperature of the framework using 
data from outdoor testing sets. Owing to the estimate process, all 
recognized ANFIS frameworks possess Root Mean Square Error (RMSE) 
values lower than 0.42 C, Variance value lower than 1.23, and Coeffi
cient of Determination (R2) values above 0.996. This demonstrates that 
the ANFIS/TRNSYS models are capable of predicting a system’s oper
ating temperature correctly in a range of scenarios. The successful 
management of ESS, scheduling devices, and incorporated green energy 
is presented in [327] using a smart multi-agent Adaptive Neuro-fuzzy 
inference method embedded in HEMS. Regularly occurring wind 
speed, temperature, sunlight, and power prices are gathered and eval
uated in the suggested MANFIS framework as inputs to validate the 
conclusions. The management of power generation, preservation, and 

Fig. 24. Artificial neural network model.  

Fig. 25. ANFIS model.  
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planning is determined by three ANFIS regulator outputs. 
Feed the ANFIS model with past information on user conduct, 

ambient circumstances, and energy usage at the device level. Develop a 
hybrid system that can acquire knowledge and infer complicated asso
ciations from trends in energy consumption by combining neural net
works with fuzzy logic. To improve predicted accuracy, train the ANFIS 

model with a hybrid learning approach that combines the advan
tages of neural networks with fuzzy logic. Employ the ANFIS model to 
make predictions in real time, enabling the HEMS to adjust quickly to 
shifting circumstances and user behavior. Utilize ANFIS’s flexibility to 
continually improve energy-management tactics at the device level, 
enhancing agility and effectiveness in the context of smart homes. 

ANFIS is an effective load scheduling method that provides flexibility 
and precision when simulating non-linear connections; nonetheless, it is 
important to carefully assess the quality of the data and model 
parameters. 

The optimal load scheduling method is not an all-encompassing so
lution since a technique’s efficacy varies depending on a number of 
parameters, such as the objectives of optimization, the degree of 
complexity of the scheduling challenge, and the unique features of the 
HEMS. Every method has advantages and disadvantages. When tackling 

linear optimization issues with clearly specified objectives and con
straints, linear programming is an effective method. MILP is helpful in 
situations when some variables must have discrete values. Because of 
their versatility, genetic algorithms are effective for solving compli
cated, non-linear optimization issues. Although ANNs may effectively 
capture complicated connections in data, their training may necessitate 
a large volume of data. PSO is effective in allocating resources optimally 
and exploring solution domains. The ideal method will vary depending 
on the particulars and demands of your load scheduling issue. It is 
usually a good idea to try out a variety of strategies, maybe utilizing 
hybrid approaches or combining numerous tactics, in order to determine 
which way works best for your specific situation. The intricacy of the 
scheduling issue, computing capabilities, and the particular limitations 
of the system should all be taken into account. Overall, ANN are often 
regarded as useful for load scheduling in home energy administration 
systems because of their capacity to simulate complicated connections 
and resources allocation.(Table 2) 

Table 2 
Characteristics of different scheduling approaches used in HEMS.  

Method Process Features Applications Pros Cons 

Linear 
programming 

Developing a linear 
constraint optimization 
problem with a minimize or 
maximize objective 
function 

Mathematical 
optimization that deals 
with linear relations 

Optimize resource allocation Effective for complicated 
problems 

Constraints on keeping non- 
linear relations 

Mixed integer 
linear 
programming 

Considering both discrete 
and continuous decision 
factors 

Appropriate for 
complicated scheduling 
issues involving discrete 
decision-making 

Discrete decision-making, 
like the on/off modes of 
devices or the discrete 
amounts of resources 

Manages continuous and 
discrete factors 

Scaling problems and needs 
precise 
formulation 

Nonlinear 
programming 

Optimized a non-linear 
connection network 

Manages non-linear 
demands and limitations 

Simulate non-linear 
relationships, such as price 
functions or device activity. 

Capacity to identify non- 
linearities 

likely involving intricate 
algorithms. 

Mixed-integer 
non-Linear 
programming 

Manage continuous and 
discrete non-linear decision 
factors 

Permits to handle discrete 
and non-linear factors 

Demand non-linear 
interactions in addition to 
discrete decision-making 

Offers the most effective 
responses in a variety of 
scheduling scenarios 

scalability issues and 
demands accurate modelling. 

Particle swarm 
optimization 

Influenced by the bird’s 
social behavior 

Optimization employing 
population and effective 
solution space exploration 

Search problems and 
optimizing resource 
allocation 

Effective for space 
exploration and flexibility 
in response to changing load 
scheduling conditions. 

Less beneficial for discrete or 
combinatorial problems 

Genetic 
algorithm 

Evolution-inspired 
processes 

Exploring various solution 
spaces 

Efficiently allocate resources 
and satisfy energy needs. 

Flexibility to accommodate 
various schedule situations 

Gradual convergence and 
needs precise parameter 
adjustment 

Simulated 
annealing 

Influenced by metallurgical 
annealing. 

Probabilistic optimization Allocating resources and 
effectively satisfying energy 
demand 

Adaptability to a variety of 
limitations and resilience 
towards becoming trapped 
in local optima 

Sensitive to temperature 
schedules and cautious 
parameter adjustment can be 
necessary 

Colony 
optimization 

Use pheromone trails to 
iteratively identify the best 
solutions by utilizing ants’ 
foraging behavior 

Flexibility to dynamic 
circumstances and 
decentralized 
optimization in load 
scheduling 

Adjustment to constantly 
evolving conditions 

Appropriate for complex 
non-linear optimization 
challenges. 

Slow convergence and 
vulnerability to variations in 
parameters 

Evolutionary 
algorithms 

Include gradually evolving 
a population of natural 
selection-inspired outcomes 

Consider a variety of 
solution spaces 

Efficiently allocate resources 
and satisfy energy needs. 

Effective for a variety of 
scheduling scenarios and 
flexible for complicated, 
non-linear issues 

Intensity of computation and 
possibility of delayed 
convergence 

Artificial neural 
network 

Inspired by the human brain Deep learning 
competencies for 
recognizing complicated 
patterns 

Using load scheduling to 
simulate complicated 
connections and resources 
allocation 

Incredibly good at 
managing unstructured data 

Lacks interpretability 

Fuzzy logic 
control 

Models’ uncertainties and 
vague information using 
linguistic factors and 
principles. 

Modeling complex load 
scheduling scenarios 

Represent the ambiguity and 
unpredictability in patterns 
of energy use. 

Ability to adjust to the 
arbitrary human mind, 
ability to represent 
intricate, non-linear 
interactions 

The requirement for expert 
participation during rule 
creation, rule selection and 
accessibility difficulties 

Adaptive neural 
fuzzy inference 
system 

Hybrid approach combines 
fuzzy logic and neural 
networks for modeling 

flexibility in handling 
different kinds of data and 
dynamic load scheduling 
situations 

Adjust to shifting patterns of 
energy use 

Adaptable learning and able 
to identify intricate load 
scheduling trends 

Requires a large amount of 
data to train and model’s 
interpretation may be 
difficult  
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4. Future technical advancements in load forecasting & load 
scheduling in HEMS 

This section examines several optimization approaches to establish 
the best load prediction and scheduling for HEMS. 

4.1. Block chain 

A blockchain is a distributed, open, decentralized digital ledger that 
records activities across several computers. Purpose is to prevent record 
tampering without affecting all following blocks and network agreement 
[328]. Block chain was developed with the goal of enabling digital 
currency trading outside a middleman. Hence, cryptographic evidence 
rather than faith is used to support monetary transactions among two 
sides. If a large number of centers are trustworthy, changing the 
proof-of-work agreement method that currently records activities on the 
block chain would prove computationally unfeasible [329]. For a block 
to be published on the block chain, miners must successfully complete 
challenging validation processes. A nonce is a number that satisfies this 
requirement. For defining each of the data in a block, an individual hash 
value is generated [330]. A whole new hash can be produced by just one 
modification in the block. The hash value also contains a hash of the 
preceding block, linking all blocks together to form a cryptographic hash 
tree that is recorded in every block. When nodes come to an agreement 
on earlier released blocks, the current condition of the structure is 
revised. Bitcoin, a cryptocurrency assistance, is a particularly 
well-known application of block chain [331]. Information stored on the 
block chain can also be better protected by public and private keys. 
Clients can communicate utilizing decryption and encryption methods 
through the usage of public and private keys. Although confidential keys 
allow an individual to be hardly ever recognized, open keys guarantee 
that users are reachable on the block chain [332]. By maintaining open 
keys nameless, confidentiality can continue to be protected. When an 
end-user accepts information to be stored in block chain technology, the 
individual’s confidential keys are employed as an electronic signature. 
The data is subsequently verified before being posted to the block chain 
using the user’s private key. Additionally, data may be encrypted and 
transferred secretly with the recipient’s open key. The recipient can then 
use a confidential key to decode the information [333]. Block chains that 
are confidential, may enhance confidentiality further by limiting 
membership to just authorized clients [334]. In order to maintain a 
trustworthy circumstance, complicated and computation-costly agree
ment techniques, such as proof-of-work, are needed since open block 
chains permit accessibility without requiring users to prove their reli
ability [335]. Relative to the simple procedures normally utilized in a 
relied on, personal block chain, like proof-of-authority, they’re high in 
energy and sluggish [336]. An intelligent contract is an automatic digital 
key that’s permanently and openly inserted in the block chain. They are 
ensured to run instantly if specific block chain circumstances are met 
[337]. They are open commitments which are accessible to everyone so 
they are visible accords that are assured to be carried out automatically. 
Block chain and intelligent contracts study has evolved into numerous 
additional uses since their initial concentration on unreliable markets 
for finance, most notably in electrical energy [338]. HEMS communicate 
wirelessly that might be breached and picked up, giving burglars extra 
methods to breach residents’ security [339]. Residents have to send load 
projections and maybe cost offers to the distribution system operator for 
the function of electricity management in trans active distribution net
works having a significant number of HEMSs [340,341]. The consumer’s 
behaviors and behavior may be inferred from the energy usage statistics, 
which is highly confidential [342]. A homeowner’s real estate may be 
lost as a result of the breach of privacy and possible theft of user’s data, 
increasing their vulnerability to cyberattacks. A field of attack for ma
levolent attackers to determine if a HEMS customer is at residence or not 
is provided by the supplied load prediction [343]. Additionally, a pro
longed intercept will raise the likelihood of a successful forecasting, 

leaving HEMS clients open to a cunning thief. Hence, to protect the 
privacy of customer data, we suggest implementing intelligent contracts 
within an encrypted block chain. Block chains are tampered 
evident-resistant distributed databases [344]. The block chain stores 
transactional information in blocks, which are collections of records that 
keep on expanding. Each record additionally contains an expiry date and 
a hash associated with the block that came before it. A block chain-based 
smart agreement is a piece of script that is continuously run if certain 
events take place in the block chain [345]. The block chain will be 
utilized to facilitate safe transmission of data across homeowners and 
the Demand side operators. Yet, since one might utilize estimated in
formation to more accurately forecast forthcoming user behavior, it may 
be more essential to preserve projected information than actual data. In 
the framework of the Internet of Things (IoT) in the home, experts in 
[346] look into block chain’s potential application in intelligent houses. 
To the finest of our knowledge, no research has been done on security 
procedures for day-ahead or hour-ahead anticipated load data in a 
HEMS architecture. The writers of [347] performed an important effort 
to recommend the use of block chain in the optimization of power 
frameworks. They addressed a day-ahead optimal scheduling of loads 
strategy for power distribution networks as a way to reduce expenses for 
energy in infrastructure with distributed power resources. Here, a block 
chain is employed to ensure appropriate payment while coordinating 
scheduling in a micro grid. 

Use a blockchain to track relationships, transactions, and usage of 
energy at the equipment level in a decentralized, impenetrable ledger. 
Use smart contracts to optimize energy use, enable peer-to-peer energy 
transfers, and execute and enforce device-level deals. By encrypting 
information from devices on the blockchain, you may improve privacy 
and security of data while guaranteeing safe and open access for 
authorized parties. Utilize blockchain agreement techniques to verify 
and confirm activities at the device level, improving the accuracy of data 
pertaining to energy. Allow for a decentralized and visible strategy for 
energy management. This will maximize energy savings in a trustless 
environment by enabling safe and independent device interaction inside 
the HEMS as shown in Fig. 26. 

Despite current obstacles, blockchain technology promotes effi
ciency and trust by bringing reliability and safety to load forecasting and 
scheduling in residential energy administration. 

Fig. 26. Blockchain model.  
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4.2. Federated learning 

Federated learning (FL) entails securing privacy, generating insights 
without disclosing raw data, and training machine learning models 
across decentralized devices [348]. A growing machine learning initia
tive called FL seeks to address the issue of information islands while 
protecting the confidentiality of information [349]. It describes several 
users working together using a number of centralized databases in 
decentralized machine learning environments as shown in Fig. 27 [350]. 
Google proposed it for the initial time in 2016 in order to anticipate 
client input across a great number of devices while retaining information 
locally. The overall description of FL’s initial procedure is discussed 
[351]. The federated averaged (FedAvg), that serves as the basis of FL in 
numerous additional investigations, is a type of federated learning 
technique. Every gadget initially acquires a general global method, 
which will be used to conduct subsequent localized learning. In addi
tion, numerous localized upgrades using localized data that are specific 
to each will enhance the downloaded generic approach, which will 
subsequently be sent to the internet for storage in an encrypted state 
[352]. Furthermore, a refreshed universal version will then be sent to 
the receiver using the mean version of local forms developed in the cloud 
system. The aforementioned steps are then repeated unless the tool 
performs as expected has passed [353]. With the advent of these ad
vances, the conflict among data exchange and security for distributed 
units will be resolved. FL is suitable for activity when information is 
delicate to security since it has an attribute that the information is not 
disclosed to third centralized database [354]. To include 
cross-organizational activity within the federal structure, FL might be 
expanded. Develop an integrated version that is dynamically con
structed for several individuals, information sources, and characteristic 
levels. This makes it possible for everyone to realize the advantages of 
shared and localized collaboration while upholding the confidentiality 
of information [355]. The globe has transitioned into an era of portable 
technology these days. Since every piece of equipment only produces a 
little amount of information, the overall amount of gadgets may not be 
contrasted. Clearly, FL is better suited for enhancing models in this sit
uation [356]. Due to the diversity of gadget assets, FL is focused on 
imbalanced information as opposed to distributed focus systems, which 
focuses mainly on weighed data sharing. In FL, every user has total 
autonomy, and the server does not control the learning procedure, and 
the center does not distribute data [357]. FL thus represents a system 
that uses decentralized cooperation to integrate machine learning 
models with information fusion. FL is a decentralized solution that al
lows dispersed customers or organizations to independently trained a 
cooperative approach yet preserve localized data. Without disclosing 
any raw data, this strategy can help business organizations exchange 
cooperative models [358–360]. The rapidly expanding Internet of 

Things (IoT) movement has given customers the chance to enhance the 
interaction of clients with HEMS. applications of HEMS frequently need 
plenty of different data for training to build a strong system [361]. 
Customers intend to cooperatively educate their acquired information in 
effort to accomplish higher efficiency in such apps because one user 
wouldn’t have adequate information to teach such a system, raising 
concerns about personal information security [362]. Current methods 
for cooperative learning require aggregating information algorithm 
upgrades on the web in order to carry out load prediction, which can 
lead to the disclosure of confidential data. These methods also need a 
large amount of communication capacity and additional cloud 
computing costs [363]. In [364] to address the aforementioned issues in 
a home, we introduce Pri Resi, a load-predicting solution with privacy 
protection, robust interaction, and no use of cloud services. Initially, we 
present a decentralized federated learning architecture that enables 
homeowners to directly analyze all collected information on the border 
by propagating modifications to the model across the intelligent home 
agents in each dwelling. In order to obtain communication-efficient and 
excellent forecasting outcomes, we additionally provide a gradient 
choice load-predicting method to lower the quantity of pooled gradients 
and the rate of gradients broadcast. Tests using real-world datasets 
indicate our system can predict loads with a precision of 97% with 
protecting residents’ confidentiality. We think that other applications 
for smart homes can make extensive use of the de-centralized federated 
learning architecture that we have suggested. In order to control the 
electrical use of numerous intelligent homes in [365] equipped with 
residential appliances, PV systems, and battery storage, this paper sug
gests a unique federated reinforcement learning (FRL) technique. The 
establishment of a decentralized deep reinforcement learning (DRL) 
framework made up of regional HEMS and a generic server makes the 
suggested FRL method new. DRL operators for HEMS build and transmit 
their regional algorithms to the GS using utilization statistics. Once the 
generic technique for regional HEMS is updated, the GS compiles the 
regional versions into one, updates it, and communicates it to the DRL 
representatives. The DRL units then repeatedly recreate their specific 
versions by replacing the prior localized model with the corresponding 
global version. In [366] the best use of dispersed information and hasten 
the convergent procedure, we offer a recurring neural network-based 
demand-side estimator in this study. It is trained via federated training 
on clustering users. In [367] Many stores in the retail sector monitor and 
hold the intelligent meter data, and they are not prepared for sharing it. 
In order to accomplish this, a decentralized learning-based technique of 
identifying the traits of power consumers is suggested. This approach 
can protect merchants’ confidentiality. To derive characteristics from 
information gathered from smart meters, privacy-perseverance principal 
component analysis is particularly used. Given this, a federated artificial 
neural network is trained using three weighted average algorithms to 
connect data from smart meters with customer socio-demographic 
variables. 

Despite transferring raw data, devices use their data to locally train 
machine learning algorithms that identify trends in their unique energy 
use. With the use of federated learning, model updates from various 
devices may be combined to create a global model that incorporates 
knowledge from the whole HEMS. Maintaining raw data on the devices 
and only exchanging encrypted model updates with other devices 
throughout the federated learning process guarantees user confidenti
ality. To assist the HEMS, adjust to a range of user preferences and be
haviors, enable decentralized optimization of device-level energy 
management tactics. Put into practice a dynamic federated learning 
strategy to enable the model to constantly improve over time based on 
device data collected in real-time, hence facilitating efficient and 
customized energy management. 

Federated Learning encourages cooperation while protecting the 
privacy of personal data by offering a privacy-conscious method for 
predicting load and scheduling in residential energy administration. 

Fig. 27. Federated learning model.  
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4.3. Reinforcement-learning 

Nearly all methods of learning revolve around the concept of 
acquiring knowledge through interactions. Reinforcement Learning 
(RL), among the many intriguing computer methods to gain knowledge 
through interactions, constitutes one of these techniques [368]. A 
focused-on-objectives agent has to acquire new skills while navigating 
an unpredictable atmosphere, and RL expressly takes this into account 
[369]. The two distinctive features of RL are delayed rewards and 
trial-and-error style of exploration. With the use of the idea of Markov 
Decision Processes (MDPs), the RL issue is defined. In MDPs, the agent 
gets an illustration of the surroundings state at every single sequential, 
discrete time step t (St 2 S), decides a course of action (At 2 A s) in 
accordance with the condition, and then discovers its way to the situa
tion of the following time step St 1 during which it gets a monetary 
reward (Rt 2 R r) – as a result for its action [370]. Two elements known 
as the agent and surroundings take part in an ordinary RL challenge 
[371]. The environment where an agent engages, serves as both a 
learning and decision-making tool. In response, the atmosphere changes 
its condition and offers awards according on the agent’s behaviors. 
Through conducting a sequence of acts as it responds to changing sur
roundings, RL aims to acquire a method of control to maximize its future 
predicted reward [372]. As a non-linear approximation is employed to 
encode the resultant function, traditional RL algorithms become un
steady [373]. Deep RL is being suggested as a highly effective method 
for overcoming the enchantment of dimensionality, making RL appro
priate for solving complex issues, and making continuous states possible. 
[374] The Deep RL approach addresses the issues with correlations 
among sample and unpredictable goals by using simultaneously an 
experience playback of previous action state pairings and a periodic 
upgrade for the target network to assess rules. By using the expense and 
convenience of the consumers as a reward operation, Q-learning is 
additionally often utilized at the HEMS level to improve the scheduling 
of devices. While [375] resolve this restriction, O′Neill et al. [376] 
incorporate predetermined uselessness functions for the consumers’ 
discontent on employment scheduling. In this case, a state is made up of 
a pricing series of a merchant or, a trajectory that shows how frequently 
an individual uses particular devices over a period of time, and occa
sionally the order of importance of the thing being examined. The 
HEMS’s activity is to switch the relevant equipment at times t, and the 
incentive is calculated depending on the clients’ happiness. In [377,378] 
Fitted Q-iteration (FQI) at the consumer layer (HEMS) enables the HEMS 
to choose the best regulation order for heat devices for any given phase 
of the 11 days considering day-ahead price alerts, according to [379, 
380]. The HEMS’s goal is to reduce the price of power use on a regular 
schedule. Using a collection of past information, the FQI method pre
dicts the state-action value equation offline and matches it utilizing in 
two ways linear regression or ANNs. Making the best day-ahead loading 
description, that is then offered on the marketplace, is another example 
of how FQI is used at the HEMS. The researchers suggest a HEMS 
approach combining RL and Fuzzy Reasoning (FR) to improve the user’s 
experience and choices while sacrificing energy use [381]. The sug
gested approach took into account consumer input by incorporating it to 
its command reasoning via fuzzy concepts such as incentive operations. 
Additionally, Q-learning is employed for making the most effective 
choices possible when scheduling the running of intelligent devices by 
moving controlled devices from peak times to non-peak times. The 
method suggested in [382] employs one participant, fewer state-action 
pairings, and fuzzier reasoning as incentive units in order to speed up 
learning. For scheduling devices, a technique that utilizes the MDP’s 
tree-like structure and the State-Action-Reward-State-Action (SARSA) 
technique is presented in relation to Q-learning methods in [383]. 
SARSA is a kind of value-based RL which concentrates on rule learning 
and evaluates the worth of a rule at a certain point of time by imple
menting that specific strategy. According to the experiments, SARSA and 
Q-learning are able to produce comparable scheduling for a limited 

number of devices throughout a 24-hour period. Even if Q-learning is 
only sub-optimal, the schedule is still reached in substantially quicker 
repetitions employing the version of SARSA. A two-level deep RL-based 
power monitoring system is suggested by the authors in [384,385]. The 
technique uses a first-level schedule for the adjustable appliances in 
households and an actor-critic methodology. The combined washing 
machine (WM) and air conditioner (AC) loads, that are computed at the 
initial layer combined with the set load of the uncontrolled devices, are 
covered by the saving energy scheme and EVs planned at the subsequent 
phase. A DQN-based HEMS that took into account simultaneously the 
scheduling of EV charging and the schedule of gadgets is provided in 
[3885]. Using a deep RL approach that utilizes trusted zone regulation 
optimization, [386] proposed dealing using discrete and continuous 
operations to simultaneously optimize the timings of all types of 
equipment. The method took three different types of appliances defer
rable, relatable, and crucial appliances into account in the simulation 
framework and straightaway learned via raw observational evidence of 
the device statuses, real-time energy pricing, and the outside tempera
ture. Multi-agent reinforcement learning was just proposed enabling the 
ideal scheduling of different domestic devices to maximize the con
sumption of energy [387]. We provide a viable EMS method in [388] 
that can take advantage of short-horizon estimates of system uncertainty 
and relies on secure reinforcement learning. The capacity of the resilient 
EMS method to use short-horizon predictions allows it to beat existing 
modern algorithms in regard to resilience and cost-effectiveness, as 
demonstrated by testing findings using actual datasets. 

Describe the energy management environment in terms of the RL 
framework, whereby utilization trends are states and gadgets are agents. 
Create an incentive program that promotes energy-saving behavior 
while taking into account the effects on the environment, user conve
nience, and price. Establish a discrete or ongoing action space that re
flects potential device-level operations, including power optimization or 
scheduling adjustments. Select between training agents to make judge
ments that maximize cumulative rewards over time using policy 
gradient approaches. Give RL agents the ability to react instantly to 
modifications in user behavior, the surrounding environment, and en
ergy costs in order to maximize the HEMS’s device-level energy 
administration as shown in Fig. 28. 

Although careful assessment of training data and exploratory meth
odologies is necessary, reinforcement learning offers a dynamic 
approach to load forecasting and scheduling in residential energy 
management, giving flexibility and optimization characteristics. 

4.4. Metaverse 

The phrase "metaverse" is made up of the words "meta" and "uni
verse," and it was first used in 1992 [389]. Metaverse is currently a 
cutting-edge form of communications. metaverse refers to the subse
quent version of the worldwide web, where clients may interact using 
software programs and each other via avatar in a virtual environment 

Fig. 28. Reinforcement learning model.  
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[390,391]. Participants in Metaverse receive a thoroughly deep inter
action with interactive and collaborative tasks. Virtual world, scaling, 
quick synchronization, decentralization, monetary rewards, connectiv
ity, and privacy are a few of the essential requirements for a successful 
metaverse. The metaverse framework often has many levels, comprising 
technology (6 G), user experience (wearable gadgets), decentralization 
(block chain), and geographic computing [392,393]. The meta universe 
is a synthetic globe made up of user-controlled virtual characters, 
electronic items, virtual worlds, and various other digitally produced 
components where people can interact, work together, and socialize 
using virtual identities on any intelligent device. It is believed that 
humans are the center of the virtual world [394]. The world of people is 
made up of human users, their internal psychologies, and their social 
relationships. Individuals can communicate with and regulate their 
personal avatars via human computer interface and extended reality 
technologies for entertainment, employment, socialize, and connect 
with other virtual beings in the virtual world [395]. In order to facilitate 
multi-sensory information understanding, delivery, interpreting, and 
storing in addition to controlling objects, the real world provides the 
metaverse in backing systems (such as sensing, control, exchanges, 
processing, and keeping infrastructures). This enables productive re
lationships with each of the electronic as well as people realms. In 
accordance with ISO/IEC23005 and IEEE 2888 standards [396,397], the 
digital realm is made up of a number of interrelated dispersed virtual 
realities, and every sub-metaverse may provide consumers portrayed as 
avatars of reality with a variety of virtual items and amenities and vir
tual spaces, Using interaction, artificial intelligence, digital twin, and 
block chain-based techniques, the meta universe system [398] creates, 
updates, and maintains a virtual environment using enormous amounts 
of information obtained from the real one as inputs. Clients located in 
physical spaces can deeply regulate their avatars in the meta-verse via 
their senses and physiques for various group and social events [399]. 
IoT-enabled detecting facilities plays a significant role in the physical 
world’s digitalization and transformation through ubiquitous devices 
such as sensors and actuators, and the resulting IoT data is conveyed and 
handled through exchange and processing facilities [400]. To facilitate 
massive virtual world creation and numerous virtual world offerings, a 
virtual system in the digital realm processes and manages the created 
electronic data of the real and virtual human’s realms [401]. By 
leveraging linked electronic gadgets enabling digitization the IoT 
framework connects the physical and digital worlds, allowing data 
circulate effortlessly across them. Particularly, metaverse demonstrates 
distinctive characteristics through several angles: Consumers may get 
both mentally and emotionally attached to the computer-generated 
realms because it is realistic enough [402]. The boundaries of the re
ality are imposed by the limitation of space and the immutability of 
time. The term "hyper spatiotemporally" relates to the breaking of the 
boundaries between space and time, since the meta world is a digital 
time and space continuity that exists side by side with the actual one 
[403]. The metaverse sustains a tight financial framework and an 
enduring worth structure having a high degree of autonomy, according 
to the viability. On one side, it ought to be public and on other side 
constructed with a decentralized design. The metaverse’ s interopera
bility implies that individuals may navigate between virtual worlds 
without their immersion being interrupted [404] and the digital com
ponents for reconstructing virtual environments are transferable be
tween different systems [405]. The word "scalability" describes the 
capability of the metaverse to continue operating effectively regardless 
of the number of simultaneous users and avatars, the degree of scenario 
intricacy, and the kind, breadth, and variety of user interactions [406]. 
The dispersion of the virtual world is comprised of diverse physical 
objects, varied physical environments, mixed varieties of data, hetero
geneous forms of communication, and diverse psychology in humans. 
Additionally, it relates to the inadequate compatibility of metaverse 
technologies. The research in [407] suggested a method for imple
menting metaverse-driven virtual control of energy. This makes it easier 

to understand and proactively manage the needs of energy systems. The 
study of markets utilizing the metaverse is now receiving more atten
tion. Electricity may be shown in a power trading framework as a digital 
currency that can be portrayed using token to speed up trades. Tokens 
like these may be divided into two categories: fungible and non-fungible 
tokens. In particular, power is convertible and may be traded for any 
quantity according to the consumer’s preference. Power with a verified 
source and a distinctive identity, yet, is not transferable and is regarded 
as NFT [408,409]. In this project, a 3D virtual environment is used as an 
interface for an automated residence to give an improved interaction. A 
residence host also serves as an operating system for household appli
ances. A monitoring interface is offered as a means of communicating 
data across the physical and virtual universes that operates according to 
a standardization procedure. An individual may operate and track 
household gadgets using an intuitive interface which operates both 
simply and practically everywhere and at any moment via the World 
Wide Web with the aid of a 3D virtual space. A metaverse load fore
casting system in [410] utilizing an evolutionary algorithm-BP neural 
network structure is suggested in this research. A method for creating 
scene-based models for categorization is developed taking into account 
the peculiarities of the information being analyzed. The analyses con
ducted demonstrate that the prediction model developed in this research 
performs much better than the BP neural network approach and can 
successfully estimate energy demand. 

To produce replicas of real-world devices for the HEMS, design 
gadgets in the Metaverse. By providing intuitive and realistic control, 
Augmented Reality (AR) and Virtual Reality (VR) interfaces enable 
consumers to engage with virtual equipment. Make advantage of the 
Metaverse to show both past and present energy statistics, giving users a 
fun and educational experience. By enabling users to exchange and 
improve device-level energy management techniques inside the virtual 
setting, you may facilitate cooperative decision-making. Integrate real- 
world IoT devices with their virtual counterparts in the Metaverse to 
provide a comprehensive and interactive solution for household energy 
administration. Create a comprehensive and active strategy to home 
energy management by seamlessly integrating the actual IoT devices 
with the virtual representations of gadgets in the Metaverse as shown in  
Fig. 29. 

Although real-world integration challenges and security concerns 
require consideration, the metaverse presents a fresh method for load 
forecasting and scheduling and offers a virtual environment for testing 
and optimization. 

4.5. Digital twin technology 

A digital twin is a digital replica of a real-world item, an individual, 
or procedure, placed within a virtualized replica of its surroundings. 

Fig. 29. Metaverse model.  
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Digital twins used to model real-world events and their results, which 
will ultimately assist it make smarter choices [411]. During the course of 
its lifespan, the relationship remains dynamic and bidirectional. DT is a 
computerized modelling method that incorporates several fields of 
study, numerous physical factors, numerous levels, and numerous pos
sibilities [412]. It is suitable with a variety of modern methods, 
including big data analysis, AI-powered cloud services, and the widely 
used intelligent sensors and 5 G connectivity [413]. A virtual repre
sentation in the digital realm is created using a vast amount of infor
mation sources. The correspondence connection among the digital body 
and the actual thing follows, so a "replica" of the unit is created [414]. In 
actuality, DT is the process of making electronic imitations of a struc
ture. This "cloning" is frequently termed "digital twin". It is developed on 
the data framework and is a digital, active modelling of solid entities. In 
an ideal world, DT may be used to gather all data calculated by a real 
item [415]. On the basis of DT, superior simulators for physical objects 
may be created for modelling a variety of physically entity occurrences 
[416]. Its architecture based on; An actually existent entity’s behavior, 
regulations, and real-world statistics, comprising hardware information, 
employee data, and data pertaining to the environment, are together 
referred to as its "physical layer" [417]. The bodily layer realizes the 
connection among the bodily structure and DT, and the model layer is a 
reflection of that level. data layer comprises different information of its 
physical level and the model level, which is the foundation to accom
plish the integration of the physical layer and the model layer [418]. The 
data layer receives the different data from the physical layer and the 
model layer, and stores it in the respective databases, model libraries, 
regulations libraries, and understanding bases. The layer of application 
might validate the twin approach, carry out realistic modelling and 
optimization modelling on tangible item, and realize electronic admin
istration of the whole item life chain via the facts gathered by the data 
layer. We are unable to test certain occurrences through the energy 
system due to the reliability of the electrical supply and the limitations 
imposed by real-world operation circumstances [419]. Electrical soft
ware for system modeling, a stable state evaluation, sophisticated sys
tems, physical platforms utilizing the realistic-time digital trainer, and 
intermittent and stable state evaluation have all been created to model 
actual electrical facilities [420]. The modeling system can effectively 
handle dominant incidents, such as energy flow estimation, short-circuit 
protection assessment, devices regulating approach, and optimized 
functioning scheduling [421]. The main strategy is to employ the 
existing physical approach, followed by low-dimensional conversion 
and additional techniques to insert the information gathered into the 
current framework in order to determine the pertinent signals. Consid
ering the significance of HEMS in the energy system, an ES must take 
into account their function in the network as both energy vendors and 
end users, especially with regard to versatility solutions provided by 
demand-side management activities. Intelligent meters and Internet of 
Things (IoT) gadgets are present in the HEMS for these motives in 
addition to improved observation and comprehension of the power 
network. In [422], the researchers use a DT architecture to track a 
number of metrics, decrease the use of electricity via an extensive 
match, and show that a 40% energy savings is possible. This is an 
illustration of a variety of services that may be provided using DT design. 
The researchers of [423] employ a DT technique to track residential 
performance in addition to the production of green energy with the goal 
to enhance the general efficiency of the smart city through optimum 
scheduling. By using a soft-ware-in-the-loop technique, the investigators 
of [424] proposed an approach for nearly immediate administration DR 
in SES that is capable to optimally utilize the opportunities that is 
offered by IoT. They demonstrated the advantages that DR methods at 
the home level may bring to the grids. [425] concentrated on predicting 
demand, a crucial component of a DT control structure. They specifically 
suggested an intelligent house architecture that utilizes cutting-edge 
computing that makes use of the web for handling information and 
more analysis. Both IoT gadgets and humans gather their input 

information. In [426], writers examine a DT that utilizes machine 
learning in conjunction with Energy PLUS simulation in order to 
examine the possibility of facilities to respond to need and offer flexible 
solutions to the system. Using the CAFCLA framework (Context-Aware 
Framework for Collaborative Learning Activities), the researchers of 
[427] examine the value of cutting-edge computing for intelligent 
structures and provide a method. In [428], the writers use an example in 
Rome, Italy, to demonstrate how to use a DT strategy that utilizes BIM 
and GIS. Owing to the usage of AI, the suggested DT model is helpful for 
efficient oversight and control both during the development stage and 
during the running stage. The researchers come to the conclusion that 
the proposed method may control loads in the most effective manner, 
resulting in an increase in RES for personal use and a decrease in overall 
power use. The use of BIM in DTs deserves special attention since it has 
been increasing and naturally evolving over the past few years, using the 
lessons discovered in factories [429]. In this study [430], a power 
management tool is introduced that may provide energy resources 
throughout an area with optimum supervision, arranging, projections, 
and coordinating offerings, permitting the best selections given 
customized targets. 

Create virtual replicas of each gadget in the HEMS by building digital 
twins that closely resemble their real-world counterparts. Enables con
stant tracking of device-level energy metrics by enabling real-time 
synchronization between physical gadgets and their digital twins. Uti
lize statistics in the context of a digital twin to examine past and current 
energy data, spot trends, and enhance device-level functions. Make use 
of the digital twin for energy consumption trends forecasting, predictive 
modelling, and insight-driven device-level strategy adaptation. By using 
the digital twins of these devices to enable remote control and optimi
zation, you can improve the flexibility and effectiveness of residential 
energy monitoring. 

With virtual simulations, digital twin technology provides a dynamic 
and effective approach to optimize energy usage for residential energy 
management. It is a potent instrument for load forecasting and 
scheduling. 

4.6. Artificial intelligence 

Artificial intelligence (AI) is a program that, given a random uni
verse, will function at least as well as a person. (AI)-based smart ap
proaches that address challenging real-world issues in a variety of 
industries are growing increasingly commonplace these days. Because of 
its representational logic, adaptability, and explanatory abilities, sys
tems powered by AI are being created and utilized around the globe in 
an extensive spectrum of sectors [431]. Artificial intelligence (AI) has 
had a simulated expansion in popularity during the last 20 years. AI is an 
investigation of how humans can program systems to perform tasks that 
individuals now perform more effectively [432]. AI-based systems have 
swiftly transformed from a research hypothesis into established and 
extremely commercial goods, emerging apparently from nothing. AI 
offers effective and adaptable ways to find answers to a range of issues 
that are frequently intractable via others, conventional and conservative 
approaches [433]. Today, its use is expanding into numerous areas of 
our daily lives, and its uses have been shown to be crucial for 
decision-making and guidance. The primary goals are to create an idea 
of smart data handling and create machines capable of exhibit specific 
behaviors that are close to those of human smartness [433]. Deep 
learning techniques build based on the brain’s neural network structure, 
which constitutes an advancement above conventional ANN technolo
gies. A solution to the gradient issue related to neural network training is 
now resolved, that significantly enhances the feature collection and 
categorization capabilities of these systems [434]. This was accom
plished through boosting the quantity of concealed layers in networks 
and putting forth effective learning techniques. Various modelling ar
chitectures and free of charge software platforms are being created for 
deep learning methods depending on the issues and requirements. The 
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deep learning algorithm uses a significant quantity of computation, a big 
volume of learning information, and multiple variables [435]. Knowl
edge graphs are commonly utilized in semantic searching and autono
mous query responding, which is another essential area of artificial 
intelligence research [436]. Each node indicates an entity, and every 
edge indicates the link among entities in the knowledge graph, which 
organizes information in the manner of networks in order to describe the 
relationships among objects in reality [437]. The basic objective of 
knowledge graph study is to provide understanding based on unorga
nized data and to conduct out organized interpreting, information logic, 
and automatically building knowledge bases [438]. Data extraction, 
information fusion, and information computing make up the three 
components of the knowledge graph [439]. An expert system is a type of 
computing program that uses knowledge from certain disciplines to 
tackle particular issues [440]. To tackle complicated issues using logic 
and judgement like specialists, it may replicate the cognitive processes 
employed by human specialists [441]. A basic expert system is made up 
mostly of a tool for inference, a repository of information, and a 
collection of information [442]. The electrical infrastructure has a va
riety of issues that call for the expertise of planners, developers, man
agers in associated occupations. Some depend on professional expertise, 
while others combine judgment founded on knowledge of outcomes 
from mathematical analytic techniques [443]. The most developed AI 
technique currently employed in electrical networks is expert systems. 
The primary use cases are now malfunction rehabilitation, energy sys
tem forecasting management direction, and energy network tracking 
and problem diagnostics [444]. An agent is a dynamically operating unit 
that has excellent self-control capabilities. It is a computing program 
that is freely linked and uses a standard technique to connect to outside 
entities. This is how a scattered smart technology operates. It refers to a 
thing which is capable of working independently and is able to 
communicate with protocols and semantic compatibility. It belongs to 
the field of dispersed AI innovation. It is projected to have a promising 
future in the next wave of deploying regulatory system because of the 
benefits of flexibility and accessibility [445]. The goal of this article 
[446] is to demonstrate the bounds of XAI for use in energy sector. The 
usual difficulties that arise when employing XAI in these applications 
are initially discussed, after which we examine and analyses the most 
recent research on the subject as well as current developments in the 
field. We anticipate that this work will spark interesting debates and 
stimulate additional study on a crucial, rising issue. The goal of this 
research in [447] is to investigate and assess artificial intelligence al
gorithms for reliably forecasting individual energy profiles for handling 
power in a smart home. For the purpose of predicting an individual 
house energy use, eight statistical models of regression are assessed. 
According to the experimental findings, the Radial Basis Function (RBF) 
kernel is the artificial intelligence approach which is best suited for 
predicting the forthcoming electrical usage. The day-ahead power con
sumption forecast method shown in this paper [448] is straightforward 
and effective for any EMS. In contrast with other techniques, the sug
gested approach was created as an element of a general EMS and is not 
required to be linked to any specific types of detectors or previous 
datasets. In [449] we create a method for scheduling residential devices 
optimization in light of the advancements in AI technologies. Most home 
equipment is split into three groups based on how often they use power. 
In light of that, we suggest a HEMS framework that tries to accomplish 
both single-objective and multi-objective optimization while reducing 
the maximum demand and power bills of an intelligent house. The 
supply and demand side management approaches form the foundation 
of the suggested HEMS structure in [450]. The initial approach con
centrates on the scheduling and management of energy transport among 
production, utilization, and preservation representatives, whereas the 
latter addresses the scheduling and regulate of versatile gadgets to 
obtain the best load pattern regulation. Flows of power are managed 
depending on the cost of grid power, predictive information. An 
AI-based multipurpose optimization method combines the two planned 

control algorithms to concurrently maximize pleasure while minimizing 
expenses. 

Use AI to analyses and incorporate a variety of data resources, such 
as user behavior, device-specific energy use, and environmental vari
ables, with ease. Use AI algorithms for forecasting to help with proactive 
energy management by predicting future energy demands at the gadget 
level. Use AI-driven dynamic optimization methods to enable devices to 
instantly adjust to shifting consumer tastes and external conditions. To 
learn from past data, optimize energy consumption plans, and adjust to 
changing usage trends, apply machine learning models. Incorporate 
artificial intelligence (AI) technologies to offer customized energy- 
saving suggestions, improving user involvement and ultimate HEMS 
performance as shown in Fig. 30. 

Although it demands extreme care to data integrity and model reli
ability, artificial intelligence plays a critical role in enhancing load 
forecasting and scheduling in residential energy management. AI offers 
adaptability and efficiency. 

4.7. Probabilistic models 

Probabilistic models represented ambiguous or unpredictable pro
cesses using the concepts of probability [451]. A simulation of an actual 
procedure that includes ambiguous or unpredictable parameters is 

Fig. 30. AI model.  
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known as a probabilistic model. Estimating the likelihood of eventual 
results for an entity using statistics or previous information is the pri
mary objective of probabilistic modeling [452]. Since unpredictability 
can be expressed in probabilistic designs, they have particular advan
tages for applications in a reality where facts are frequently imprecise 
[453]. In most flexible and developing systems, these frameworks may 
also frequently be changed as improved information become accessible. 
last decades indicate a sharp increase in interest in probabilistic models 
[454]. This is being become feasible in large part by continual im
provements in processing power, quicker connections, and less expen
sive memory, which have helped solve several of the known Big Task 
challenges [455]. Probabilistic frameworks are founded on the idea that, 
even though the connection may be pretty correctly designed, additional 
factors need to be involved in order to compensate for variations seen in 
the real facts [456]. Probabilistic models that use likelihood distribu
tions to adjust for these elements are hence known as probabilistic 
frameworks. Furthermore, probabilistic frameworks are crucial because 
they serve as the foundation for a lot of research in fields like data 
mining, machine learning, and AI [457]. Their design and resolution are 
based on the cumulative rule and products rule, which are both of the 
fundamental principles of probability science. Yet, their seeming ease 
may be deceiving, since all but the simplest of models may ultimately 
turn conceptually insoluble [458]. Utilizing information in [459] from a 
live Danish house, a numerical simulation is created to simulate an 
online HEMS operation. The quantile-copula group outperforms the 
RLS-based approaches for forecasting marginal distributions and pre
serving the time-dependent correlation, according to modelling find
ings, which demonstrate the suggested frameworks’ reliability. In [460] 
research, an actual everyday utilization pattern for homes is produced 
using a clearly diversified probabilistic model. Home utilization patterns 
are predicted using the discrete-time Markov process concept and Cox 
regression. The suggested framework may incorporate social behavior 
heterogeneity based on specific traits and record the length of occupied 
conditions. In [461] provides a model predictive control technique to 
control DR in a HEMS, considering the variability in the current solar 
energy and the prognosis for the outside climate, the suggested con
trolling design guarantees that both the DR scenario and inside tem
perature regulation are fulfilled with a significant likelihood. rather than 
computationally restricting a sampling-based technique, unpredict
ability is included in the MPC concept utilizing stochastic restrictions. 
This research in [462] developed a stochastic load projection approach 
based on demand scenarios. It is suggested that one conduct an energy 
usage examination to determine the likelihood of every consuming 
event for a certain family would materialize during any given period of 
times. The findings of the analysis are then combined with PLF to create 
a load projection for a specific home. In [463], an innovative model for 
residential energy control proposed, utilizing a stochastic optimization 
technique, in the framework of a household power center founded on 
green power by two-point approximation approach. For the purpose of 
illustrating how well the suggested strategy works, figures are given. 
This article [464] provides an introductory overview of stochastic power 
demand projections, highlighting key approaches, approaches, and 
assessment strategies as well as frequent misconceptions. Additionally, 
we emphasize the requirement for more funding for investigations like 
replicable examples, probabilistic load prediction assessment and 
appraisal, and a mechanism for taking into account technological ad
vances and energy legislation. Research in [465] suggested a probabi
listic prediction approach centered around boosted probabilistic settings 
networks. Initially multivariate input values are used in a correlation 
assessment. Furthermore, a proposal for an adjustable B-SCN network 
design is made in order to build the forecasting design and considerably 
increase the reliability of modelling outcomes. 

Following that, employing the Gaussian technique to create the 
ranges of confidence, likelihood estimation is utilized to achieve the 
framework’s estimate of its level of uncertainties. The primary outcome 
of this work [466] is the use of the Polar Bear Optimization (PBO) 

approach to effectively resolve the issue of scheduling of DR appliances 
in the HEMS to minimize electricity consumption costs in addition to the 
peak-to-average ratio []. By conducting several investigations for a 
home customer using different foundation loads, uninterruptible 
deferrable, and interruptible deferrable devices underneath an 
on-demand tariff program, the usefulness of the suggested probabilistic 
optimization technique is demonstrated. This investigation [467] pre
sents an efficient Fast Hartley Transform (FHT) based technique to 
assess stochastic dependability and computing the generation expenses 
for all the units in the whole system. The FHT was utilized throughout 
the convergence phase. the probabilistic simulation methodology pre
sented in this research [468] enables an examination of the possible 
effects of any important interactions among the unidentified variables 
contributing to the HEMS problem. The associated possibilities of un
identified parameters are produced using a Copula-based paradigm 
creation approach. The likelihood of any uncertain load being present or 
absent on any given day is also taken into account in order to produce 
more precise predictions. To represent the deferrable device load novel 
designs are proposed in [469]. Estimation and division methods are then 
used to manage the architectural issue under consideration in a decen
tralized manner. The regionally created decentralized CoHEM method 
enables clients to calculate their scheduling algorithms employing just 
local consumer data and neighbor-to-neighbor messaging. In order to 
optimize an intelligent micro grid’s day-ahead activities, a novel 
framework in [470] that uses the Monte Carlo simulation approach is 
presented in this work. It takes into account the demand unpredictability 
of EV charging facilities. 

Establish a probabilistic model that takes user behavior and external 
variables into consideration, along with other irregularities in device- 
level characteristics. Give parameters like energy use probability dis
tributions so the HEMS can simulate the possibility of various outcomes. 
Utilize stochastic optimization techniques to optimize device-level 
scheduling while taking changing probabilities into account. Incorpo
rate risk assessment tools to determine how uncertainty could affect 
energy management choices. Give the HEMS the ability to adaptively 
modify device-level tactics in response to uncertain situations by 
allowing them to be based on probabilistic forecasts as shown in Fig. 31. 
This would improve overall resilience and effectiveness. 

By incorporating uncertainties into account and strengthening sys
tem resilience, probabilistic models provide a useful method for load 
forecasting and scheduling in home energy management. This allows for 
more informed decision-making. 

4.8. Peer to peer energy trading 

The rise in dispersed power sources in these days has altered the 
electricity supply chains. Energy production and consumption are both 
evolving drastically at the same time, and typical energy customers are 
evolving into prosumers [471]. Prosumer-generated power is unpre
dictable and sporadic since it is greatly impacted by the amount of ra
diation and the weather, both of that are continually fluctuating [472]. 
Here are various choices available to prosumers that have a power 
excess. The power may be transmitted to the electrical grid, saved in a 
battery for future utilization, or the additional power may be traded to 
different power users [473]. Peer-to-peer (P2P) trade in electricity is a 
sort of cooperative economy that may be implemented inside the exact 
same electrical grid and refers to the exchange of power amongst elec
tricity prosumers. As P2P energy trading enables power prosumers to 
trade their surplus electricity to customers who require energy, it can 
result in monetary gains. The purchasing points and the power lines 
depict the power and monetary transaction that takes place across 
prosumers and consumers. Energy can be sold by a prosumer to a con
sumer. On an administrative level that serves as a power exchange 
manager, the full negotiating phase is conducted. The trade arrows 
pointing in a single direction signify that customer may only get power 
from the administrator for power exchange. The arrows indicating 
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bilateral selling signify that power can be purchased and sold by pro
sumers to the organizer for power share [474]. If users of the network 
cooperate by sharing some its facilities, the design of a dispersed 
network can be referred to as P2P connections as shown in Fig. 32. 
Despite the assistance of intermediate firms, other peers may directly 
utilize such common assets, delivering the functionality and materials 
made available by the community [475]. There are two tiers in a P2P 
network. The virtual layer essentially gives participants a secure channel 
over which they may choose the terms of their electrical commerce 
[476]. In an online environment where data of all types is transferred, 
purchases and sales are made, a suitable marketplace system is used to 
pair the purchase and sale requests, and then payments are completed 
upon efficient request verification, it ensures that everyone uses the 
system equally [477]. A fast and safe database serves as the brain of the 
peer-to-peer power network. To participate in power trade, all market 
players must be enabled to interact with each other through the infor
mation network. Organize the players on an appropriate trading site. 
accessing the marketplace equally for every player [478]. To maintain 

network safety and dependability, supervise trade and impose con
straints on member actions. A P2P network’s data structure aids the 
market’s functioning, which includes market reservation, transaction 
guidelines, and a precisely specified auction style [479]. By pairing 
selling and buying requests at close to actual time detail, the market 
operation’s primary goal is to give players access to an efficient power 
dealing procedure. Tariff structures are created as integral aspects of 
trading and are utilized to successfully regulate the demand and supply 
of power. P2P rates vary fundamentally from those employed in con
ventional energy marketplaces [480]. Through the use of a specific 
auction method during P2P trades, a prosumer’s EMS guarantees the 
availability of power. To that end, a trans-active meter provides an EMS 
accessibility to the prosumer’s actual time buyer and seller data [481]. 
Utilizing this data, the EMS creates the prosumer’s production and use 
profiles and chooses a bid approach to engage in trade on for them 
[482]. At contrary, the physical layer is simply a physical network that 
renders it possible for power to be transferred between vendors to 
purchasers after the monetary agreements among both sides have been 

Fig. 31. Probabilistic model.  

Fig. 32. P2P energy trading model.  
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made through the virtual layer system [483]. The grid-dependent and 
island-based micro grid networks enable peer-to-peer trading. It is 
crucial to identify the locations at which the main electrical grid con
nects in order to balance the need for electricity and production in a 
grids-connected systems. In order to engage in peer-to-peer trade, every 
prosumer has must possess the necessary meter technology. Every pro
sumer specifically has to have a trans active meter [484] as well as to a 
conventional power meter. The identification of consumers and the 
sharing of data inside the network are two key components for inter
action in peer-to-peer trade. There are several P2P connectivity designs, 
comprising hybrid form, unorganized, and organized systems, in 
research [485]. The selection of an interactive infrastructure must 
satisfy the IEEE 1547.3–2007’s efficiency recommendations for the 
incorporation of DER, which involve delay, productivity, dependability, 
and privacy. A substantial amount of market players must be present 
inside the network for P2P trading of electricity, and a portion of those 
players must be able to generate power [486]. The goal of P2P energy 
trading ought to be explicitly stated since it influences the creation of 
rates and the market structure. The next phase market regulations and 
energy legislation will undoubtedly play a major role in determining 
how well P2P trading works. Federal laws determine the types of market 
designs that are permitted, the distribution of charges and taxes, and the 
integration of the P2P market in the current power market and distri
bution infrastructures [487]. The goal of P2P energy trade in a distri
bution system featuring incorporated STLF was established in this study 
[488]. Applying the Mid-market price (MMR) strategy for P2P trading 
utilizing probabilistic incorporated STLF, the best approach for the 
intended purpose is suggested. This research [489] concentrates on the 
method to achieve as an enormous save utilizing multi-agent deep 
reinforcement learning to identify the most effective strategy with effi
cient power transactions and DSM methods. In this sense, a partly 
observable Markov decision process (POMDP) is used to define the en
ergy market and DSM issue facing domestic families. To organize de
mand response techniques and balance out possible production 
consumption disruptions in the hour-ahead daily setting, a peer-to-peer 
electricity trading network between residential structures is suggested in 
paper [490]. Initially the daily domestic power management systems are 
developed while taking into account the features of adaptive household 
devices and battery backup. With regard to domestic consumers’ hazard 
choices, the pain and potential monetary harm associated with con
ducting demand responses are measured. A double-auction process is 
used to foster cooperative demand response programs in the event of 
disruptions, and a P2P energy trade marketplace is created. 

To create an open and safe ledger for tracking energy flows between 
devices, apply blockchain technology. To ensure effective and trust
worthy operations, use smart contracts to regulate and uphold energy 
trading deals between devices. Give devices the freedom to indepen
dently determine energy costs in response to customer tastes, supply, 
and demand to create a vibrant and competitive marketplace. In order to 
precisely measure and validate energy transfers and guarantee honest 
and open transactions, integrate smart metering technologies. 
Encourage peer-to-peer energy trading among users to advance ecology 
and energy conservation inside the HEMS. 

Peer-to-peer energy trading creates a decentralized and effective 
energy market, which changes load forecasting and scheduling; never
theless, infrastructural and regulatory issues must be carefully 
considered 

4.9. Energy harvesting 

The process of transforming ambient energy sources into useful 
electric power for home energy systems is known as energy harvesting 
Untapped forms of energy are all around us; they can be utilized to 
power sensors as well as additional technology [491]. These resources 
include electromagnetic waves, both synthetic and natural illumination, 
waste heat, heat slopes, air movement, tremors, noise, as well as our own 

physical motions. It is more essential than before to produce power in
dependent of mains electricity or storage due to the explosive rise of 
wireless sensors and emerging uses like portable electronics as well as 
related to IoT [492]. A lot of research has been conducted done on 
capturing energy systems, many of which are based on well-known 
concepts such the electrodynamic, solar power, and thermoelectric ef
fects. However, more advanced, frequently miniaturized systems having 
the capacity to produce electricity more effectively and using more types 
of resources have emerged in the past few years. 

Many of them make use of innovative concepts, and others take 
advantage of advancements in MEMS and nanotechnology. Others even 
integrate them alongside sensor materials to provide genuinely self- 
sustaining devices [493,494]. Solar power harvesting isn’t a novel 
idea. Photovoltaic (PV) innovation is always used in solar energy 
gathering activities nowadays. Photovoltaic cells are employed in a 
variety of industries, including aircraft and conveyance. Solar panels are 
an economical means to generate energy when location does not pose a 
problem. Actually, this is already happening and an amount of the en
ergy that is delivered via the power system is now being supplied by PV 
panels. But converting PV panels onto free surfaces offers an individual 
set of difficulties and needs a lot more study. N-type and P-type silicon 
are the main components of photovoltaic (PV) cells. positively charged 
particles go towards the P-type semiconductors and negatively charged 
electrons migrate towards the N-type semiconductor as a result of sun
light [495,496]. Many piezo substances are also pyroelectric. The ca
pacity of certain elements to transform thermal energy into electric 
power when either heated or cooled is known as pyro electricity. The 
magnitude of variations in temperature is precisely correlated to the 
pyroelectric current [497]. Pyroelectric energy production differs from 
thermoelectric energy gathering in that it requires no heat gauges and 
may be accomplished by merely subjecting a substance to environ
mental changes. Varying temperatures between thermocouples are 
essential for thermoelectric generation of energy. Heat harvesters that 
use air as a transfer carrier are made up of air-circulating lines that are 
buried beneath the ground. According to the environmental temperature 
variance, the air can collect or releases warmth from the surface [497]. 
Convection may make air flow feasible, without the requirement for a 
rotating motor. These devices could be able to turn on the turbine and 
generate power by using the air movement [498]. A system of liquid 
conduits inserted into the home construction can be used to gather and 
carry heat as an additional energy-harvesting technique [499]. This 
technique is frequently used to melt snow and ice off the pavement 
surface and to lower summertime roadway surface temperatures caused 
by hot pavement. The heated fluid from these mechanisms is used in 
another use to heat buildings. There are numerous attempts to utilize 
piezoelectric devices for capturing energy in a range of sectors [500]. 
floors for foot traffic contained piezoelectric materials. Energy har
vesting from diverse environmental energy sources, including either 
water and wind exerted stresses [502] and the tremors of buildings 
[501], is another new application area for piezoelectric materials. 
Studies have looked into using piezoelectric technology to harness the 
power produced by human motion [503]. Piezoelectric substances are 
also used to power transmitters and sensors that sense signals by 
creating energy from oscillations [504,505]. In RF energy (radio fre
quency) gathering, electromagnetic waves, including Wi-Fi or cell phone 
frequencies, is captured and transformed into electrical power that is 
useful. This study in [506] discusses ways to control energy for energy 
harvesting, which has been determined to be the dependable resource of 
power in WSNs. The power administration strategies are created to use 
gathered power effectively. The assessment categorizes the power 
management strategies into groups that reflect different use needs. In 
[507] for household energy administration equipped with energy har
vesting, namely solar arrays, and preservation capacity, this research 
proposes a battery-aware probabilistic management paradigm. The load 
behavior, the environment, climate prediction, utility, and client tastes 
are all considered as part of a single Markov process of choice in the 
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model and management reasoning. In this study [508], we create a 
beneficial hybrid approach for predicting energy generation and use, 
helping to increase the harvesting of energy by giving the involved green 
energy experts useful predictions statistics. In this section we incorpo
rate an echo state network with a convolutional neural network for 
reliable prediction of clean energy output and utilization. Outlined a 
future for energy-harvesting techniques in [509] for Internet of Things 
(IoT) gadgets which can advance investigations into the 5 G era. We 
suggest that the primary element of IoT devices will involve various 
energy harvesting and control approach at the circuit, equipment, and 
network levels. In-depth current reviews of the research regarding all of 
the aforementioned techniques for capturing energy are provided in this 
publication [510]. It provides details regarding every harvesting tech’s 
financial aspect, model creation, deployment initiatives, and harvesting 
concept. It is concluded that a number of these energy harvesting 
techniques have advanced enough to produce self-sustaining roadway 
electricity. 

Install sensors that can harvest energy from the environment, such as 
thermal, kinetic, or solar energy, in your gadgets. When ambient supply 
is minimal, store gathered energy using energy storage devices like 
batteries or capacitors for future use. Use sophisticated power man
agement systems to effectively control and distribute the energy that has 
been gathered to power the gadget. Give gadgets the capacity to adjust 
how they operate in response to the amount of energy that can be 
captured, therefore maximizing energy use instantly. Reduce the 
HEMS’s need on external power sources by integrating energy harvest
ing with effective device-level energy management to create a self- 
sustaining ecosystem. 

By supplying renewable energy sources, energy harvesting enhances 
sustainability to household energy management. However, initial ex
penses and irregularity should be taken into account. Energy harvesting 
also helps with load forecasting and scheduling. 

4.10. Electric vehicle (V2G & G2V) 

Among many appealing options for assisting clean power resources 
and operating automobiles without consuming oil or gasoline is the 
utilization of battery packs. Regarding their usage in static and dynamic 
uses, yet, the price of fuel cells remains a significant hurdle [511]. Cells 
may often be made cheaper by reducing material prices, improving 
process efficiency, and raising the rate of manufacturing [512]. The term 
"Vehicle-to-grid (V2G) and Grid-to-Vehicle(G2V)" refers to yet another, 
more efficient alternative. While the battery remains within it, the V2G 
technology allows for the usage of the battery pack to support grid 
services, G2V to fill batteries of vehicles [513]. Given the availability of 
plug into facilities, EVs are developing a number of new uses, including 
vehicle-to-grid (V2G) and vehicle-to-home (V2H), which have the abil
ity to help regulate the electrical system voltage, frequency, and in a 
variety of additional purposes. In order to lower consumers’ power 
purchase prices, EVs are used to reduce peak load demand during the 
peak tariff phase [514,515]. In order to use EV, HEMS developed a 
charging management approach, however EV is mostly employed as 
storage device. However, a daylong loss in EV battery life might possibly 
interfere with consumers’ ability to drive whenever they choose [516]. 
The capacity to provide a steady power supply during an unanticipated 
interruption is one of the most exciting potentialities of EV in V2H mode. 
In principle, EVs are able to link to the grid (V2G) or to a house (V2H). In 
both situations, EV improves grid resilience by supplying uninterrupted 
electricity despite blackouts [517]. In contrast to V2H, V2G has a 
complicated network and suffers from higher losses because of their 
remote locations. As a result, EV for V2H applications offers more po
tential over V2G in regards to control approach and installation diffi
culties [518]. Furthermore, it is always risky to install V2G in an actual 
electrical grid due to current utilities company laws and regulations and 
the net-metering price for exporting surplus electricity to the grids 
[519]. As an ordinary domestic user, EV deployments are as G2V, V2H, 

and V2G modes of operation. Using an electronics-based simultaneous 
AC/DC adapter, the EV battery is connected to the grid and the home 
demand terminal. The converter regulates the path of the power flowing 
from the electrical grid to the batteries and from the batteries to the 
house loads [520]. The key operating techniques that have been taken 
into account to lower running expenses for a consumer owning one or 
two EVs are G2V, V2G, and V2H. The comparative economic benefits of 
V2H and V2G at high priced period and charging solely (G2V) are also 
contrasted in J SCI IND RES. EV owners can trade the power they fill 
their vehicles with at the power peak of workplaces, because costs for 
electricity are significantly lower. This allows for demand transfer 
throughout the whole electrical system. Additionally, the signal degra
dation factor for energy is considerably larger in downtown districts that 
are not near an energy facility. In order to meet the electrical needs in 
smart communities at a shorter geographical distance, numerous EVs 
may be found in downtown districts, enabling a quick and reliable 
power supply. As a result, the vital V2G infrastructure necessary for 
intelligent cities has an enormous opportunity to develop into 
vehicle-to-something (V2X) innovation, allowing the utilization of an 
EV’s power anyplace in a smart city by using different gadgets at resi
dence that demand power, i.e., vehicle-to-home (V2H). 

The amount of EV assistance differs based on how many EVs are 
offered to each individual client. We made the assumption that the 
power prices between each of the modes of V2G and V2H are equal in 
order to illustrate our optimization strategy. The decision was deliberate 
in order to show the viability of each operational [521]. The total 
charging burden of (EVs) with (V2G) capability is estimated utilizing 
strategies for data mining within this paper employing a data-driven 
approach. The collective charging load is subtracted from the total 
V2G output of the EVs that are placed beyond the meter to get the 
resultant charging demand. The expense of continually surveillance, 
gathering, and preserving extensive EV data is eliminated by the sug
gested approach. By conducting numerical evaluations with actual data 
on the charging habits of EV users, the applicability and efficacy of the 
suggested technique are confirmed [522]. The main goal of this research 
[523] is to explore how charging and discharging affect load fluctua
tions and spikes. In order to forecast how different scenarios of auto 
usage may affect charging conduct, this research constructs a load 
estimating framework and an EV charging concept. presents a Markov 
Chain Monte Carlo (MCMC) based recharging method that effectively 
addresses the forecasting of EV behavior and addresses the problems 
associated with high electrical consumption throughout peak periods. 
This study [524] proposed an EMS approach for MG with an electric 
vehicle parking lot (EVM), (PV) arrays, and changing loads linked to the 
network while taking into account the Point of Common Coupling 
(PCC). A dynamic computing approach is used by the EVM-EMS to 
optimize the (G2V) or (V2G) rates of EVs. It does this by using forecasts 
of future solar power production and projected demand. This algorithm 
takes into account user preferences while lowering demand’s reliance on 
the power grid and enhancing MG effectiveness. This research [525] 
presents a smart deciding method powered by artificial neural networks 
(ANNs) that uses information collected by a machine-to-machine 
advanced metering infrastructure for EV charging scheduling and load 
control. The ANN was implemented to determine when (G2V) or might 
(V2G) using information regarding household electrical utilization and 
EV demands for energy. 

To optimize electric car charging depending on price of energy, grid 
demand, and customer preferences, create a dynamic charging plan 
within the HEMS. Allow the EV and HEMS to communicate in both di
rections so that the system can react to grid circumstances and support 
demand response initiatives. In order to maximize the usage of clean 
energy sources for charging the car, integrate EV charging with the 
generation of green energy. Use load balancing techniques to effectively 
divide energy use, preventing peaks in demand and lessening the burden 
on the electrical system. To provide individualized supervision of EV 
charging schedules and guarantee a smooth integration with entire 
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home energy management, take customer preferences into account 
while designing the HEMS as shown in Fig. 33. 

Even though they present infrastructural and grid governance issues, 
electric cars play a critical role in load forecasting and scheduling by 
bringing dynamic energy demands, helping to create a more sustainable 
balanced HEMS. 

4.11. Data science 

The heating and cooling units in structures have been a major 
contributor to the steady growth in power usage in the past decade. The 
amount and worth of power used every day in structures is influenced by 
anticipated power loads, transit, preservation, and usage habits [526]. 
The enormous quantity of data associated with this procedure is now 
able to reliably monitored, gathered, and stored thanks to innovation. 
Additionally, this system has the ability to meaningfully analyses and 
utilize such information [527]. It should come as no surprise that using 
data science approaches to improve power effectiveness is presently 
generating a lot of focus. In order to extract information, identify trends, 
and provide insightful conclusions and forecasting from massive 
amounts of data, data specialists construct methods and techniques 
[528]. It includes every stage of the information evaluation handle, from 
data preparation and harvesting through data examination, outline, and 
summary [529]. Data science, therefore combines technological tech
niques with scientific approaches [530]. Despite the reality that these 
methods are the ones used most often in energy effectiveness and 
administration. The goal of categorizing a group of items is to determine 
the category for each one based on its characteristics [531]. Decision 
trees are frequently used to carry out and display such categorization. 
Numerous approaches may be used to create decision trees [532]. To 
quantitatively assess the connection among parameters is the primary 
goal of regression studies. To do this, you must determine if the factors 
are autonomous. Finding out the nature of their relationship’s reliance 
becomes crucial since they aren’t [533]. To explain whether the pro
portions of reliant parameters fluctuate as the scores of independent 
factors stay constant, regression modelling is frequently employed in 
estimation. Organizing things into subgroups depending on how similar 
they are known as clustering [534]. Because the categories to which 
items can be allocated are unknown, it is unsupervised. There are several 
types of clustering analysis based on the standard employed to quantify 
resemblance. Under the context of implications laws of kind, A implies 
B, associations are helpful tool for illustrating the meaning of fresh de
tails collected from raw data and thoroughly represented for deciding 
[535]. These guidelines show how qualities with a high dependability 
frequently overlap in a record set. Sequential identification approaches 
include methods for locating statistically significant trends in facts, 

where the trends’ frequencies are split in an ordered fashion [536]. 
Finding anomalies involves locating objects, occurrences, or experiences 
that diverge from predicted trends or in contrast to the typical behavior 
of other information objects [537]. For one to analyze information and 
subsequently use a framework to anticipate or keep track of the period 
term’s future trends, time series analysis is done on details that are 
collected over a period [538]. Methods from data science are often 
applied to assist and enhance fundamental areas of energy administra
tion and productivity. Power need, also known as electricity demand, is 
the quantity of power needed at a specific moment period [539]. HEMS 
pays special attention to loads, which are the amounts of hot and cold 
resources that have to be provided or taken away from the structure in 
order to maintain the pleasure of its inhabitants. loads can be catego
rized as either internal or external. The quantity of interconnected ele
ments that must be considered makes it exceedingly difficult to identify 
typical configurations of home loads [540]. Therefore, it is crucial to 
create processes that can predict the highest demand for a particular day 
and estimate the consumption of energy either short or medium term 
[541]. Still, various data science methods are being used in recent years 
to create prediction models using historical information. Due to their 
capacity to recognize historical trends and extend them to novel sce
narios, such frameworks are incredibly useful [542]. User behavior is a 
crucial element that affects the use of energy and significantly affects 
power load. Data science methods have been utilized in a number of 
studies to demonstrate how different buildings have different energy 
demands depending on the behaviors of the residents [543]. Therefore, a 
more economical control of electrical demand depending on customer 
behavior might lead to significant benefits. Data produced by HEMS is 
significant [544]. These statistics include details about the condition of 
the devices, power, humidity, climate, and other variables. They may 
thus be examined and used to obtain regulations that enable structure 
administration [545]. The research of issues pertaining to energy 
effectiveness and environmentally friendly growth have been stimulated 
by new rules. irrespective, if the structure is being built from scratch or is 
undergoing refurbishment, each have become a top concern for home 
architects and homeowners [546]. Analyzing the relationships among 
power loads, actual utilization, and various construction elements, Data 
science approaches are a useful tool for gaining knowledge of significant 
relationships and trends among those components whenever their state 
must be evaluated and possible faults discovered [547]. Data science 
may also be used to check the HEMS systems’ operating state and spot 
any problems. It is feasible to identify system faults and their effects on 
other devices by constantly tracking the structure. From a managerial 
standpoint, it is much more intriguing to foresee such errors by outlining 
the circumstances that typically result in them [548]. In order to find out 
and comprehend the ways in which consumers consume power mostly 

Fig. 33. EV model.  
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companies have turned to data science for fiscal evaluation regarding 
electricity usage. Despite making some businesses stronger competitors 
than some, internal growth and usage of data science methodologies to 
obtain these insights [549]. Identifying power fraud. On rare occasions, 
malfunctions in the measuring equipment result in incorrect billing for 
operations and utilization of power. Such errors may be the result of 
careless handling or unintended error. Numerous methods are being 
effectively used to identify these aberrations [550]. 

In order to implement data science at the HEMS device level, ana
lytics must be used to make well-informed decisions: To create a com
plete dataset, collect device-level data on user behavior, energy 
consumption trends, and ambient factors. To acquire pertinent infor
mation and generate useful variables that support precise energy man
agement models, apply data science approaches. Utilize machine 
learning techniques to develop forecasting prediction models for energy 
usage, allowing for active device-level optimization. Use data science 
techniques to find anomalies, such as anomalous device performance or 
patterns of energy consumption. To adjust to evolving user behavior and 
maintain ongoing improvement in the HEMS’s device-level energy 
management, apply iterative data analysis and model refining as shown 
in Fig. 34. 

Although careful consideration of data quality and processing needs 
is necessary, data science plays a significant role in enhancing load 
forecasting and scheduling in residential energy management, giving 
better precision and effectiveness. 

4.12. Smart appliances 

Smart appliances are a framework with data and interaction that 
enables automated or online regulation, depending on individual pref
erences or outside impulses through a power grid or independent sup
plier [551]. A home area network may be used by an intelligent device to 
communicate with utilities, link with other customer-based equipment, 
or link to third-party systems [552]. Household devices that are con
nected to an intelligent system’s generation or distribution might be 
categorized as intelligent gadgets. Intelligent Thermostats regulate an 
HVAC in the platform’s environment [553]. Self-learn technologies of 
usage habits and easy-to-use interfaces are among the new capabilities. 
Smart lights enable consumers to alter their light requirements via 
scheduling periods and eliminate over-illumination, which lowers en
ergy demand for brightness [554]. Smart lighting systems have the 
ability to be operated online and can enable demand-side management 
programs in reaction to data collected from suppliers of energy [555]. 
Intelligent plugs are gadgets that are placed next to an electrical outlet 
and an item that uses power. Owing to the integrated intelligence, these 

gadgets possess the ability to transform non-smart gadgets to those that 
are smart [556]. Gadgets called smart hubs combine a number of 
intelligent linked gadgets in an intelligent house setting. The funda
mental goal for intelligent hub is to unite all of these gadgets’ func
tionality and connect to each other in a coordinated manner through a 
home system [557]. The capacity to connect intelligent water heaters to 
other HVAC regulators makes the entire system intelligent. They are 
able to interpret facts, perceive, take action, and interacts [558]. They 
have to execute A/D and D/A transitions for the purpose to detect and 
respond. Periodically, these gadgets carry out sense and transmit 
(wirelessly or wirelessly) detected information to the center [559]. 
Additionally, information detected may be transferred straight to the 
server if standards permit it. Upon sending the detected information, 
smart devices ought to, wherever feasible, carry out some rudimentary 
statistical analysis [560]. Actuating may additionally be managed from 
a distance. Residence devices can be categorized into three groups under 
the DSM: non-adaptable, adaptable, and dual-functional equipment. 
Devices like lights, TVs, computers, and hair dryers that are connected to 
base load are considered non-flexible and are not subject to network 
management [561]. The framework may autonomously run the flexible 
gadgets, which are connected to routine demands or proactive duties 
(heating and cooling). Devices of dual-purpose, such as washing ma
chines and dishwashing machine can function in both flexible and rigid 
ways at different periods [562]. For instance, there are occasions, when 
a customer is unaware of when scheduling the dishwashing machine, 
will run for as long as it is inside a set window of schedule. Transient 
loads are often presented by such devices Intelligent plugs that can 
assess electrical usage and regulate functioning in real-time are included 
with smart home devices both adaptable and of bidirectional origin 
[563]. 

Developing smart and energy-efficient gadgets is a necessary step to 
integrating smart appliances at the device level of a HEMS: To facilitate 
interaction and exchange of information with the HEMS, interconnect 
equipment to the IoT. Install sensors in devices to track consumption 
trends and program energy-saving functions according to consumer re
quests and current circumstances. Utilize machine learning techniques 
to gain knowledge from past data, enhancing the HEMS’s smart device 
scheduling and behavior. Give your appliances the ability to react to 
signals from the grid or HEMS so they may take part in demand response 
programs and use less energy during peak hours. Give homeowners an 
intuitive interface via which they can interact with and manage smart 
appliances, giving them the ability to adjust settings and track energy 
use in real time as shown in Fig. 35. 

Smart appliances optimize energy use and adjust to real-time de
mand, which improves load forecasting and scheduling and makes 
HEMS more effective. 

4.13. Security protocols 

A security protocol refers to a protocol for communication that uses 
encryption methods to enable interacting instances to attain a confi
dentiality objective [564]. A communication protocol refers to an 
agreed-upon series of acts carried out by a number of interacting in
stances with the objective attain a certain simultaneously acceptable 
target [565,566]. The IoT and essential devices are both present in the 
complicated design of smart home systems. Cyberattacks are a problem 
for this essential equipment and networks [567]. The HEMS thus needed 
a lot of study to safeguard prevent monetary damage, security gaps, 
electrical privacy, and human casualties caused by these assaults. To 
make sure that information and interactions inside the framework are 
secure, private and the subsequent security procedure needs to be fol
lowed [568]. The user or HEMS device must demonstrate their legiti
macy to the system’s server or customer during authentication. A secure 
key is often required for server authentication. The use of cards, optical 
scans, speech recognition, and biometrics are other methods of 
authentication [569]. A server uses authorization to ascertain if the user Fig. 34. Data science model.  
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or HEMS devices is permitted to utilize an attribute or get accessibility. 
Authentication and authorization are typically combined so that a server 
can identify the user who is making the access request [570]. The pro
cess of converting data to an anonymous code which conceals what it 
actually means is known as encryption [571]. To prevent information 
from being accessed, altered, or deteriorating, encryption is employed in 
HEMS device interaction. It operates by scrambling data into an 
encrypted form which is able to be decrypted with a specific electronic 
secret [572]. A firewall is a network protection tool used to defend 
HEMS against outside threats. It examines both the inbound and 
outbound information flow of HEMS and allows or rejects transmitted 
information according to a set of privacy protocols [573]. A routine 
software upgrade for HEMS devices is a collection of modifications made 
to a program to modify, correct, or enhance it. Typically, adjustments to 
software are made to address bugs, secure vulnerabilities, add fresh 
functions, or enhance functionality and efficiency. The capacity to safely 
preserve and regulate data collected by hems equipment as well as how 
and to which extent protected details regarding hems devices is 
exchanged with permitted entities is typically referred to as data privacy 
[574]. In order to safeguard HEMS gadgets’ crucial records and data, 
physical security is crucial. As the concepts of work and cooperation 
change, emerging danger situations appear. The three basic parts of the 
physical security system are: restriction of access, ongoing active 
observation, and assessment [575]. 

Employing security protocols at the HEMS device level entails 
defending against online threats: To guarantee that only authorized 
devices can connect and interact with the HEMS, establish strong 
authentication procedures. To safeguard the transfer of data among 
gadgets and the HEMS and stop unwanted access to private data, use 
robust encryption techniques. Establish secure Application Program
ming Interfaces (APIs) to facilitate communication while maintaining 
data confidentiality and integrity between devices and the HEMS. Up
grade and safeguard device software often to fix bugs and guard against 
potential attacks. Install surveillance systems to keep an eye out for 
unusual activity and to report any possible vulnerabilities in the HEMS’s 
device-level network as shown on Fig. 36. 

In spite of possible difficulties with installation and maintenance, 
safety precautions are essential for preserving the privacy and authen
ticity of information in load forecasting and scheduling, guaranteeing a 
safe and dependable HEMS. 

4.14. Internet of thing 

The Internet of Things (IoT) is the connectivity of actuators and 
sensors for the purposes of communicating with one another via in
terfaces utilizing an integrated structure, for supplying common func
tions for the specified devices, applying information analysis, and 
expressing knowledge inside a cloud system [576]. IoT utilize the idea of 
a "smart environment" that employs ICT technology to make manage
ment, security, learning, transit, amenities, and various other fields 
more informed, collaborative, and effective [577]. The phrase "Internet 
of Things" (IoT) refers to a future where not just individuals; but also 
items, would be constantly linked to and capable to communicate with 
one another via the Internet. Numerous innovative uses, including those 
for, energy-efficient living, and surveillance of the climate, are antici
pated to be made possible by the IoT. [578] asserts that the IoT has an 
opportunity to upend the financial sector as we currently know it by 
lowering reliance on centralized institutions and encouraging an 
increasingly cooperative sector with lower prices and robotic procedures 
[579]. Much operational tangible equipment’s that includes sensors, 
actuators, regulate units, cloud servers, specific IoT regulations, 
networking levels, developers, consumers, and a business layer are all 
included in an IoT framework, which can be tangible, online, or a 
combination of them [580]. Smart meters and devices that have access 
to the World Wide Web and have some levels of smartness are antici
pated to significantly improve control of energy and effectiveness. A 
totally linked and sensitized atmosphere will serve as the end conse
quence [581]. In fact, when we transition to smartphones and other 
gadgets, a massive amount of data and communication signals will be 
produced. As a result, settings and algorithms will be improved, 
increasing their precision and opening up novel and intriguing oppor
tunities [582]. Additionally, it will result in exceptionally precise 
tracking of power flow, through contextual understanding and actual 
data rather than past information trends. This will help to minimize 
mistakes and prevent overpowers since delivery of power can be readily 
anticipated and rectified in virtual instant. Statistics on residential 
power consumption in real-time gathered using smart meters [583]. 
Utility collects this information and utilize it for predictive models that 
project energy consumption over specified time frames may be devel
oped, enabling utilities to schedule their load accordingly. Demand 
response programs can be combined with IoT to help suppliers control 
peak demands by giving consumers initiatives [584]. IoT monitors 
power usage in real-time to spot abnormalities in usage trends, enabling 
homeowners to make the necessary adjustments to cut down on wasteful 
utilization of power. Consumers may manage their power use remotely 
thanks to IoT. Homeowners may be enabled to plan their electrical 

Fig. 35. Smart appliances in HEMS.  

Fig. 36. security protocol model.  
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consumption to occur at periods of low demand, lowering their expen
ditures on electricity and assisting utilities in managing peak demand. 
IoT-driven approaches can provide enhanced load estimation and 
scheduling of HEMS, reducing wasted electricity, lowering customer 
electric expenditure, and enhancing the general dependability of the 
power system [585]. 

In order to deploy IoT at the individual device level of a HEMS, an 
intelligent and interconnected network must be built: Integration of 
sensors: Integrate sensors into items to get up-to-date information on 
energy usage, external variables, and gadget health. Use common IoT 
protocol stacks, such CoAP or MQTT, to facilitate safe and easy data 
sharing between devices and the HEMS. To facilitate centralized data 
collection, evaluation, and administration for effective control and 
surveillance, and to link equipment to a cloud platform. Give consumers 
the ability to monitor and manage their residential energy systems from 
any location by enabling remotely control of devices via the Internet of 
Things as shown in Fig. 37. Utilize IoT data for sophisticated analysis to 
improve overall energy efficiency in the context of smart homes, opti
mize device activities, and provide insights into trends in energy 
consumption. 

Despite careful evaluation of privacy and compatibility is required, 
IoT technologies play a critical role in improving load forecasting and 
scheduling, delivering real-time data for optimal resource allocation and 
enhanced energy management. 

4.15. Cloud computing 

Cloud computing is a method of allowing everywhere, practical, 
immediately structure connections to a shared group of programmable 
IT assets which may be swiftly provided and issued via little managerial 
or supplier communication. Among the latest recent developments for 
delivering resources as needed through the web is cloud computing 
[586]. It provides an alternate method for using the current assets while 
utilizing the least amount of actual hard discs. It lowers the financial 
costs associated with buying, caring for, and upgrading as assets are 
exchanged over the web [587]. The cloud computing concept [588] was 
inspired through the idea of grid computing, which aims to enhance the 
adaptability and dependability of structures while lowering the expense 
of processing by pooling resources for computation [589]. Cloud 
computing is a method of allowing everywhere, practical, immediately 
structure connections to a shared group of programmable IT assets 
which may be swiftly provided and issued via little managerial or sup
plier communication [590]. As a result, cloud technology may be viewed 
as a distributed framework that offers servers over an online network. In 

this sense, an offering is thought of as a work that is fully computerized 
and may be provided to consumers via a standardized and uniform 
process [591]. Furthermore, cloud facilities are opaque to ultimate 
consumers, that are not required to understand their fundamental design 
or understand its precise location [592]. Regular and accessible up
grades and enhancements made possible by cloud computing are easily 
accessible to consumers. With the help of cloud computing, it is possible 
to continuously store and analyze over million intelligent meter infor
mation points while offering service to great number of customers 
[593]. The computational ability and data preservation capacity of the 
cloud may ideally provide a high level of secure preservation of big 
volume of information as well as a broad range of offerings for many 
customers [594]. Customers are catered to in the context of cloud-based 
offerings through IT services accessible online. These features are 
separated on servers of the suppliers, so the consumer is not made aware 
of how they are operated [595]. Based to quantity of intelligent meters 
and clients linked to the infrastructure, as well as the necessary com
puter resources for the administration implementation, cloud technol
ogy’s computational capacity and information retention limits may be 
scaled [596]. An affordable solution across a lot of people may also be 
guaranteed with these cloud-based solutions. Regarding the installation 
of cloud-based power supervision services, these primary tasks are 
necessary: -gathering, storing, and presenting real-time information 
from intelligent meters [597]; guaranteeing that freshly created smart 
meters can be integrated into the framework; -calculating utilization and 
expenses across various time intervals;-the physical remote adminis
tration of electrical equipment; -near real-time power oversight and 
administration of energy consuming equipment; -easy and quick 
installation of smart meters, consumers, and integrated features; secure 
and dependable realization of the aforementioned services[598]. An 
ECCREM design with three tiers is given in [599] order to reduce la
tencies and increase computing efficiency. A two-phase energy admin
istration technique for successive scheduling is presented keeping the 
design in mind, taking system dependability and use of resources needs 
into view. This research analyses [600], the wirelessly produced elec
tricity surveillance systems that are now in use and also discusses our 
suggested GSM-based cloud computing-based intelligent power tracking 
solution. 

Utilizing cloud services for improved connection and data analytics 
is a key component of utilizing cloud computing at the gadget level of a 
HEMS: By processing data locally on gadgets, edge computing features 
may minimize delay and improve decisions in real time. Device-level 
data may be sent to the cloud for centralized analysis and preserva
tion, providing thorough insights and the ability to track past trends. To 
handle different data loads and make sure the HEMS can adjust to 
shifting device configurations, make use of flexible cloud services. 
Optimize energy management techniques using real-time and historical 
data by using machine learning models for predictive analytics in the 
cloud. Utilize cloud technology to provide remote device administra
tion, giving consumers safe and effective access to manage and control 
their residence’s electric systems from any connected device as shown in  
Fig. 38. 

Although connection and security issues must be taken into account, 
cloud computing’s flexibility and immediate time features help resi
dential energy management systems estimate and schedule loads more 
effectively.(Table 3) 

5. Mathematical modeling 

5.1. Probabilistic and fault analysis of HEMS load forecasting and 
scheduling model 

The suggested probabilistic modeling of a HEMS tries to determine 
the best forecasting and scheduling strategies by taking into account 
events in numerous linked energy sources and equipment. This allows us 
to swiftly solve the scheduling and prediction issues. In this case, as Fig. 37. IoT in HEMS.  

A. Raza et al.                                                                                                                                                                                                                                    



Alexandria Engineering Journal 92 (2024) 117–170

154

illustrated in Fig. 39, the predict supply, i.e., Pp(t), may be modified 
according to the predicted demand Dp(t) by minimizing the frustrated or 
hindered demands H(t). A closed-loop control system is modeled for this 
purpose, as demonstrated in Fig. 39. 

The closed-loop framework incorporates projected demand Dp(t) and 
responds Pp(t) to analyze these two 

foreseen variables. A regulated load flow through supply and de
mand is necessary to offer an optimal load flow among various sources of 
energy. PP(t) must be synchronized with Dp(t) for such a reason. 

Pp(t) = Dp(t)+ bo (17)  

while bo is the artificial backup and is essentially a supply derived from 
HEMS. In this scenario, the impact of PP(t) and DP(t) is evaluated by 
continually adjusting the returning demand R(t) utilizing HEMS and 
modifying bo. As an outcome, Pp(t) and Dp(t) acquire synchronized 
stability. 

To test the aforementioned scenario and account for possible out
comes, it is considered as a delay time frame, i.e., average delay or la
tency (Al). Al can represent as, 

Al = λi1 (18) 

In (18), the model only matches a single period. A more generalized 
form of Eq. (18) can be written as 

Al =
1
n
∑n1

i1=1
λi1 (19) 

Hence, a closed-loop delay is denoted by i1. n1 represents the 
impact of this interruption on a synced connection. likewise, in order to 
handle response to demands in real-time, it is assumed that the actual 
demand Da(t) in an energy system is synchronized with Dp(t),as well as 
the inclusion of randomness or variability VD(t)

Da(t) = Dp(t) +VD(t) (20) 

By adding the At model from (19) into (20) 

Da(t) = DP(t) ∗ (
1
n
∑n1

i1=1
λi1 )+VD(t) (21) 

To constantly monitor using a probabilistic closed -loop framework, 
which is illustrated in Figs. 39, (21), may be represented in a generalized 
form as 

Da(t) =
∑n

i=1

{

Dp
i (t) ∗ (

1
n

∑n1

i1=1
λi1 )+VDi (t)

}

(22)  

where VD(t) denotes the random variation among Da(t) and Dp(t), and 
it may be determined using an auto-correlation probabilistic method, i. 
e. 

VD(t) = E{Da(t) ∗ Dp(t) } (23)  

when, Da(t)→Dp(t), the random deviation(t)→0, which achieves 
asynchronous stability as 

PP(t) = DP(t) (24)  

likewise, when considering generating response trends in real-time, the 
actual supply Pa(t) is expected to be synchronized with the prior supplies 
P(t − 1) and Pp(t), with the inclusion of some randomness Vp(t). 

Pa(t) = P(t − 1)+ pp(t) +VP(t) (25) 

Hence P(t − 1) is a controlling variable that, in instantaneous time, 
resets a closed-loop feedback network to the prior time frame to ensure 
load flow matching among need and response characteristics. As illus
trated in, P(t − 1) is managed by a HEMS to offer an ideal Pa(t) by 
incorporating latency in (25), it becomes 

Pa(t) = {P(t − 1) ∗

(
1
n
∑n1

i1=1
λi1

)

+PP(t) ∗

(
1
n
∑n1

i1=1
λi1

)

+VP(t)} (26) 

(26) can be represent in a generalized way as a closed loop feedback 
system 

Pa(t) =
∑n

i=1
{P(t − 1) ∗ (

1
n
∑n1

i1=1
λi1 )+Pp(t) ∗ (

1
n
∑n1

i1=1
λi1 )+V(t)} (27)  

where VP(t) indicates the random divergence across Pa(t) and Pp(t), 
and it may be calculated using a self-correlating probabilistic approach, 
i.e. 

VP(t) = E{Pa(t) ∗ Pp(t) } (28) 

As well, whenever Pa(t) = Pp(t), the random variation VP(t) = 0, 
that ensures reliability in HEMS by attaining a balanced power between 
Pa(t) and Pp(t).

Pa(t ) = Pp(t) (29) 

To completely minimize an VP(t), i.e., VP(t) approaches to zero, the 
control factor P(t − 1) must be optimally set to equalize power across 
Pp(t) and Dp(t). 

The power deficit is expressed in the form of hindered demand H(t), 
which may be written as 

H(t) = Ca(t) − Pa(t) (30)  

where Ca(t) represents the convey demand, which must always be met 
at specific times in order to ensure optimal load management. balancing 
need and responsiveness. 

The H(t)occurs, when 

Ca(t) > Pa(t) (31) 

By adding an Al in (30) 

Fig. 38. Cloud computing model.  
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H(t) = {(Ca(t) − Pa(t)) ∗ (
1
n
∑n1

i1=1
λi1 )} (32) 

(32) is generalized by converting it. 

H(t) =
∑n

i=1
{(Ca(t) − Pa(t)) ∗ (

1
n
∑n1

i1=1
λi1 )} (33) 

H(t) will maintain a feedback channel and send it back to the 
infrastructure as backlogged demand/returning demand R(t). It will 
nevertheless be linked via a closed loop interruption, i.e., λc1. As a result, 
as shown in (30), the formula for the backlogged demand R(t) will be 
expressed in the form of H(t), coupled with the multiplier for a certain 
closed-loop equivalent lag. 

R(t) = Ca(t) − Pa(t) (34)  

R(t) =
∑n1

c1=1
(

1
λc1

) ∗ ((Ca(t) − Pa(t)) (35) 

(35) is now written as 

R(t) =
∑n1

c1=1
(

1
λc1

) ∗ {
∑n

i=1
(
(Ca(t) − Pa(t)

n
) ∗ (

1
n
∑n1

i1=1
λi1 )} (36) 

The reserve or backup b(t) may be written as 

b(t) = Pa(t) − Ca(t) (37)  

while into the reserving phase 

Table 3 
Characteristics of different futuristic optimization approaches used in HEMS.  

Method Process Features Applications Pros Cons 

Block chain Decentralized ledger to keep 
track and validate energy- 
related transactions, 
guaranteeing privacy and 
security 

Security, disclosure, and 
decentralization 

Dependable and 
transparent load 
estimating and scheduling 

Improves data security and 
cultivates stakeholder 
confidence 

Energy industry regulatory 
concerns and elevated 
computing requirements 

Federated 
learning 

Allows training of a global 
model without transferring 
raw data 

Maintaining privacy and 
working together across edge 
devices 

Enabling cooperative load 
estimating, planning, and 
optimization 

Effective cooperation and 
flexibility across a range of 
device contexts 

Difficulties managing device 
data heterogeneity 

Reinforcement 
learning 

Incorporates an agent 
learning decision-making 
experience via trial and error 

Delayed rewards, sequential 
decision-making, and trial- 
and-error 

Adaptive energy usage 
and device regulation 

Adjust to evolving 
circumstances and perform 
effectively in dynamic 
settings 

Difficult to design and train 
appropriate reward 
functions 

Metaverse Incorporates virtual and real- 
world experiences 

Improving energy 
management in a digital 
environment and using 
virtual representation 

Virtual worlds 
experiences 

Perpetual investigation, 
cooperation, and creativity 

Restricted integration of 
real-world data, security 
concerns with digital models 

Digital twin 
technology 

Creating a digital duplicate 
of a real object, process, or 
system 

Permits optimization, 
evaluation, and validation 
without affecting the real 
product 

Giving a realistic and 
dynamic depiction of the 
home energy system 

Insights in real time and the 
capacity to experiment with 
various scheduling 
techniques in a virtual 
setting. 

Dependence on precise 
modelling and possible 
difficulties incorporating 
real-world data 

Artificial 
intelligence 

Making judgements and 
learning from data 

flexibility in evolving 
circumstances 
and real time decisions 
abilities 

maximize resource 
utilization, adjust to user 
actions 

flexibility in changing 
circumstances 

Possibility of bias prediction 
and dependence on 
continual model updates 

Probabilistic 
model 

Using statistical techniques 
to take uncertainties into 
account 

Risk evaluation, 
uncertainties estimation, and 
likelihood distributions 

Maximize utilization of 
available resources and 
improve the adaptability 
of HEMS 

Offer information about 
uncertainty and make 
informed decisions 

Reliance on precise 
assumptions about 
probability distributions 

Peer to peer 
energy trading 

Permits direct interaction 
between energy suppliers 
and buyers 

Real-time rates, 
decentralized interactions, 

Assist in creating a 
decentralized energy 
structure 

Ability to trade surplus 
energy directly 

Difficulties with legislation 
and reliance on 
technological infrastructure 

Energy 
harvesting 

Includes accumulating and 
transforming ambient forms 
of energy 

Lessening dependency on 
outside energy sources 

Used in HEMS to supply 
power to gadgets 

Lower environmental effect 
and the possibility of 
achieving energy 
independence 

Irregular energy supply, 
reliance on certain 
environmental factors, and 
initial installation expenses 

Electric vehicle Charging and discharging Intelligent and bidirectional 
charging 

Balance home energy 
consumption 

Decreased carbon emissions 
and grid stability 

Balancing unstable green 
energy resources offers 
difficulties 

Data science Acquiring crucial knowledge 
and insights from data 

Multidisciplinary, focused on 
data, anticipatory, and 
descriptive 

Optimize resource 
allocation and forecast 
trends of energy use 

Making smarter decisions via 
data-driven insights 

Data quality, difficulties 
managing noisy and volatile 
information 

Smart appliances Use connection and sensors 
to regulate their function 

Energy tracking, IoT 
connection, and flexible 
operation 

Schedule and forecast 
loads by modifying 
appliances operation 

Enhanced energy savings and 
better resource distribution 

Interoperability issues, and 
dependence on 
communication network 

Security 
protocols 

Putting access restrictions, 
authorization, and 
encryption into practice 

User authorization, reliable 
communication methods, 
and encryption 

Protect private 
information and provide 
secure interaction inside 
HEMS 

Increases the HEMS overall 
security 

Execution intricacy, and 
requirement for regular 
updates to tackle new 
security vulnerabilities 

IoT Linking gadgets to the 
internet 

Equipment communicates 
with one another and 
centralized networks 

Employed in scheduling 
and forecasting loads to 
allow for real-time 
tracking 

Enhanced automation and 
energy administration 

Standardized 
communication methods, 
security issues 

Cloud computing Remote servers for storing, 
processing, and assessing 
data 

Access to data remotely and 
expandable computer power 

Used in cloud-based data 
mining, storage, and joint 
optimization load 
estimation and planning 

Accessible powerful backup 
and recovery options 

Internet access, privacy 
issues, and possible threats 
to data security  
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Pa(t) < Ca(t) (38) 

By adding delay 

b(t) = {Pa(t) − Ca(t)} ∗ (
1
n

∑n1

i1=1
λi1) (39) 

(39) generalized into 

b(t) =
∑n

i=1
{{Pa(t) − Ca(t)} ∗ (

1
n

∑n1

i1=1
λi1)} (40) 

If there are reserve b(t) needs, the rules for criterion ought to be 
provided 

bo < b(t) (41) 

The Pa(t) needs to be increased using a HEMS. This will reduce 
H(t) and bring bo and b(t) as near to one another as practicable. This 
action can be accomplished via the stepping-up constraints approach; 
alternatively, if 

bo > b(t) (42) 

Following that, we have to reduce Pa(t) so that bo and b(t) are as near 
to one other as feasible. 

This may accomplish via the scaling down limitations method. While 
ramping limitations are present 

bo ≤ P(t) − P(t − 1) ≤ b(t) (43) 

From (15), P(t) − P(t − 1) may be written as 

bo ≤ Pp(t)+Vp(t) ≤ b(t) (44) 

The major challenge in this instance is maintaining the backlogged/ 
returning demand, i.e., R(t), steady in all cases. This may be accom
plished by minimizing Vp(t) using a HEMS. For that, we must manage 
the setting bo in order to properly synchronize it to b(t), obeying the 
gradual up and down requirements from (41) and (42). 

As a result of minimizing VP(t), (44) may be written as 

bo ≤ Pp(t) ≤ b(t) (45) 

The synchronization of Pp(t)and Dp(t) may be done using (17), i.e., 

bo ≤ Dp(t) ≤ b(t) (46) 

It is clear from (46), as the load flow equilibrium across demand and 
response is accomplished. In this case, HEMS will not just offer optimal 
load flow equalization among different equipment and energy sources, 
however it will additionally serve as an energy reserve that adjusts for 
RER instability. 

We will compare our proposed HEMS probabilistic and fault analysis 
model with HEMS case study and realistic model to verify the effec
tiveness of our presented framework in real time. 

In a testbed home of the Smart Campus Green & Smart Building Park, 
Benguerir, Morocco the technology created in this study has been put 
into place as part of a pilot project. This project’s scope comprises 
critical loads, flexible loads, a 3.75 kWp grid-connected solar energy 
system, and 6.4 kWh of stored energy battery packs. Two complemen
tary control approaches form the foundation of the put forward HEMS 
structure: supply-side management, which schedules and controls power 
dispatch between generation, consumption, and storing agents, and 
demand-side management, which schedules and controls flexible ap
pliances for the best possible load profile modulation. The price of grid 
power, forecasting data (including solar power and climate), and con
sumer tastes are the main factors that influence how energy flows are 
managed. An AI-based multi-objective optimization method combines 
the two created control algorithms to concurrently minimize costs and 
maximize comfort factor. Fig. 40 provides a modular operational strat
egy of the system. As can be seen, a "Monitoring Module" collects and 
stores the data collected by the different sensors and meters in a data
base. The database is a component of the "Data Management Module," 
which also has a sub-module dedicated to forecasting. A "Human
–Machine Interface" (HMI) is used to visualize the data, providing 
complete insight into the system’s past, present, and future states. By 
indicating their preferred level of comfort, the user may also commu
nicate with the system through the HMI module. These together with the 

Fig. 39. Load forecasting and scheduling model of HEMS with fault analysis.  
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measured and forecasted data make up the dynamic portion of the 
optimization issue that the "Decision-Making Module" is supposed to 
solve. An "Execution Module" is in charge of giving actuators in
structions in a set of setting points to control them in accordance with 
the outputs of the optimization algorithm after deciding how the system 
should operate. It is noteworthy that the system functions in a closed 
loop based on this description, which involves a control chain and a 
measuring chain. The general physical architecture of the will be pro
vided in the next section integrated HEMS. Next, the decision-making 
module will be the center of attention, with control techniques being 
designed for overseeing the supply and demand sides [601]. If we 
integrate our proposed generic HEMS probabilistic and fault analysis 
model with decision making module as shown in Fig. 40, the demand 
and generation can be balanced satisfying the supply and demand side 
management. Based on forecasts for PV generation, user preferences, 
and power prices, the optimization goals are to save expenses and 
maximize user comfort. 

Our presented model is operational in all kind of real time scenarios 
and case studies as; it balanced all kind of demand and generation 
program uncooperating reserve to balance the generation and demand. 
In order to fully use the renewable energy sources and take into account 
the sustainability of the batteries, a practical HEMS model featuring 
plug-in electric cars, battery packs, and sustainable energy is first con
structed in this study [602]. Next, an enhanced genetic algorithm (GA) 
with the dual objectives of minimizing electricity purchase and maxi
mizing renewable energy utilization is suggested. This is achieved by 
combining the genetic algorithm (GA) with the multi-constrained 
integer programming approach. The system uses a declining-horizon 
formulation to optimize, at sample instant, the HEMS operation by 
combining the potent formulation abilities of a model predictive control 
mathematical programming challenge with those of a MILP-based 
mathematical programming problem. The structure is intended for a 
house in Portugal’s Algarve. The system’s results are contrasted with 
other experimental findings from a commercial PV battery control sys
tem. It has been confirmed across all simulations that the MILP-based 
model predictive control yields improved outcomes with statistical 

significance. In [603,604], the actual consumption and generation pat
terns of a normal Portuguese home with a small-scale solar system 
installed at home are working. The real-time digital system simulates 
these profiles. simulator that makes use of actual hardware. Within the 
case studies, for a whole day, three distinct situations are simulated. 
taking into account the demand response initiatives and a 2 kW solar 
power plant. Various situations for pricing are taken into account, as 
well as how well home energy management works system is assessed in 
every situation. An estimation is made of the HEMS socially acceptable 
flexibility potential. 

The techno-economic potential of homes in a three-community 
cluster sample region calculated using approaches such as cluster 
analysis, energy-economic optimization, and a digital household poll 
that is socially accepted. About one-third of the participants, according 
to the results, accept the established system [605]. In [606] employed 
readily scaled, user-friendly impact indicators that may be readily 
available to homes and operate as natural incentives for energy con
servation on the social, economic, and environmental fronts. The mea
sures show observable benefits to homeowners that are achievable 
under Germany’s market-based energy pricing structure and Algeria’s 
government-subsidized pricing structure. The suggested technique uses 
voltage control (VC) technology to lower domestic appliances’ power 
usage and minimize appliance moving. The survey’s findings are utilized 
to create typical load profiles for the workday and the weekend [607]. 
The decision-making tool (IRRHEM) for smart home electrical energy 
management is proposed in this study [608]. The use of natural re
sources, the disclosure of the IRRHEM solution, and the residents in 
cases of resource mismanagement or wasteful behavior, as well as the 
collection of related actions at the same moment. Furthermore, ac
cording to the suggested guidelines for intelligent thinking, residents’ 
actions. All operations are developed and carried out using OWL 
(Ontology Web Language). Semantic Web Rule Language, or SWRL. 

Fig. 40. A modular functional architecture of the case study HEMS.  
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6. Comparison of our and present and futuristic optimization 
techniques and literature of smart HEMS 

Table 4 

7. HEMS challenges 

Despite the fact that energy administration in HEMS is successfully 
established and broadly accepted, resolving current issues is essential for 
the evolution of the worldwide market [617]. Identifying current issues 
paves the door for potential future energy management options. A huge 
degree of development is gone undertaken to enable the SG properly 
interact with houses and continuously advantageous for society, yet its 
aggregation causes various obstacles and impediments [618]. The 
growing reciprocal trade among electric grids and intelligent homes 
presents several technological issues for contemporary grids, notably 

power-quality regulation [619]. Research regarding the reliability of 
power often attests to the permissible conduct of power sources, which 
includes voltage limitations and oscillations evaluation [620]. In recent 
years, intelligent electrical grids have incorporated multiple generating 
supplies from various technologies that mostly rely on power electronics 
devices, which makes it more challenging to regulate the standard of 
electricity [621]. All energy administration system must take into ac
count quality of power limitations to ensure equilibrium among 
contemporary supply and demands. Inverter devices featuring high rates 
of switching that could exceed as much as 2–9 KHz are the primary 
single-phase supplies used in interconnected micro power schemes in 
intelligent houses [622]. The suitable restrictions for power production 
in intelligent residences must thus be reevaluated in light of the neces
sity for more study. In contrast to older models, advanced household 
equipment’s have higher harmonic frequencies and lower intrinsic 
currents [623]. With the proliferation of such modern electronic 

Table 4 
Summary of comparison of existing review of load forecasting, load scheduling and futuristic optimization techniques in HEMS and our work. Note: PY: published year; 
MR: multiple regression; ES: exponential smoothing; IRLS: Iterative Reweighted Least-Squares; AR: auto regression; MA: moving average; ARMA: autoregressive 
moving average; ARIMA: autoregressive integrated moving average; GA: genetic algorithm; SVM: support vector machine; AD: adaptive demand; EP: expert system; 
FL: fuzzy logic; ANN: artificial neural networks;.  

PY Duration MR ES IRLS AR MA ARMA ARIMA GA SVM AD ES FL ANN 

2015 2012–2015 √ × × × × × √ × × × × × ×

2016 2013–2016 × × × × √ × × × × × × × ×

2017 2014–2017 × × × × √ × √ × × × × × ×

2018 2015–2018 × × × × × × √ √ × × × × ×

2019 2014–2018 √ × × × √ × × √ × × × × ×

2020 2015–2020 √ × × × × × √ × × × × × √ 
2021 2015–2021 √ × √ √ × × √ √ × × √ √ ×

2022 2013–2022 √ × √ × × × √ √ × √ × √ ×

Our work Up to 2023 √ √ √ √ √ √ √ √ √ √ √ √ √  

LP MILP NLP MILP PSO GA CO EA AFNIS B FL RL M DDT AI PM P2P 

× × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × √ ×

× √ √ × × √ √ × × × × × × × × √ ×

× × × × × × × × × × × × × × × × ×

× × × × × √ √ × × √ √ × × × × × ×

× × × × × × × √ × × × × × × × √ ×

× × × × × × × × × × × × × × × √ ×

× × × √ √ × × √ √ × × √ √ × × × ×

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √  

EH EV DS SA SP IoT CC Review REF 

× √ × × × × × This work offered a comparative review of the HEMS literature, emphasizing modelling methodologies and how they 
affect HEMS results and activities. 

[609] 

× √ √ × × × × A concise synopsis of the smart HEMS’s functional components and structure is provided, along with load scheduling 
strategies. 

[610] 

× × √ √ × × √ The characteristics of energy use in the residential sector are examined in this article. Research was conducted on energy 
conservation, household use of energy, and the effects of energy administration systems on the home load profile 

[611] 

× × √ × × × × This study offered a thorough analysis of both past and present HEMS research, taking into account different DR 
programs, intelligent technologies, and load scheduling devices. 

[612] 

× × × × × × × This review article provides an in-depth analysis of several optimization strategies and how they are applied to save 
electricity costs, balance load, minimize power consumption, and maximize user comfort. 

[613] 

× × × × × × × This work provides a thorough analysis of the HEMS literature, citing key ideas, setups, and supporting technologies. [614] 
× × × √ √ × × This review article essentially discussed HEMS for various scenarios and circumstances based on various climate 

conditions, various appliances, various controllers with algorithms, various homeowners, and various lifestyles. 
[615] 

√ √ × × √ × × The purpose of this study is to provide an extensive, methodical assessment of the literature on technical and 
computational scheduling optimization strategies in HEMS. 

[616] 

√ √ √ √ √ √ √ Briefly discussed methodology, process, features, pros, and cons of load forecasting, scheduling and futuristic 
optimization techniques in HEMS and implement each topology at device level of smart home which result in smooth 
operation, saving energy and cost. Moreover, HEMS load prediction and scheduling framework is offered with a 
probabilistic and fault evaluation that upholds load flow balance between need and supply for continuous operations. 
Presented probabilistic model compared with Smart Campus Green & Smart Building Park, Benguerir, Morocco case 
study, verifying the validity of our framework in real time scenario. The Future work and HEMS challenges are also 
highlighted. 

Our 
work 

LP: linear programming; MILP: mixed integrated linear programming; NLP: non-linear programming; MINLP: mixed integrated non-linear programming; PSO: particle 
swarm optimization; GA: genetic algorithm SA: simulated annealing; CO: colony optimization; EA: Evolutionary algorithm; ANFIS: Adaptive neural fuzzy inference 
system; B: blockchain; FL: federated learning; RL: reinforcement learning; M: metaverse; DTT: digital twin technology; AI: artificial intelligence; PM: probabilistic 
models; P2P ET: Peer 2 Peer Energy trading 
EH: energy Harvesting; EV: EV (V2G & G2V); DS: data science; SA: smart appliances; SP: security protocols; IoT: internet of things; CC: cloud computing; REF: reference 

A. Raza et al.                                                                                                                                                                                                                                    



Alexandria Engineering Journal 92 (2024) 117–170

159

gadgets, many harmonics will rise sharply to dangerous levels, partic
ularly fifth-harmonic voltage. With large levels of household produc
tion, particularly if intelligent homes can operate islanded, considerable 
uncommon functioning conditions for future grids may be feasible 
[624]. Low-voltage systems may experience issues with damping sta
bilization as a result of the ongoing decline in resistive demands and rise 
in capacitive stress from electronic gadgets and low-frequency reso
nances issues due to the load’s constant shift in nature [625]. Provided 
an earlier study on the topic of intelligent houses that examined several 
difficulties a like: A house that has an accumulation of electronic com
ponents implanted in a system without utilizing a methodical and in
tegrated approach is referred to be inadvertent [626]. Lacking mutual 
consent, interoperability is difficult in terms of both rules of syntax and 
interpretation. However, a smart residence must still have a variety of 
devices and programs that can easily connect with one another. A key 
difficulty is developing systems that meet expected dependability re
quirements, especially when they are connected to informal collection in 
automated residences [627]. Dependability, connectivity, interconnec
tion, expansion, cost-effectiveness, protection, significant data visuali
zation, cloud-based storage, and low-power and adaptable nodes for 
sensing are a few examples of issues for the smart home that mentioned 
[628]. Monitoring performance: The widespread usage of web-based 
devices has made it challenging for cellphone carriers to effectively 
control their flaws, productivity, and security [629]. Investigation of 
vast amounts of data: These data originate from interconnected ma
chines with different processing power levels where the information is 
preserved, analyzed, and gathered. For huge data, intelligent and effi
cient database systems are crucial [630]. Cloud assistance: For smart 
devices, cloud storage may be the most convenient way to store and 
analyze enormous volumes of information. The shared hosting capacity 
is made available on demand thanks to cloud computing. Intelligent 
gadget design encompasses a wide range of concepts, including porta
bility, dimensions, wireless connection, minimal power consumption, 
small battery life [631], and affordability. Smart gadgets ought to be 
equipped to fulfil all of those needs as they grow more widespread. This 
research demonstrates that substantial changes must be made to the 
current electricity grid in order to attain stability. To capitalize on the 
economic advantages of RES, energy administration must establish a 
marketplace for renewable power and ultimately develop technological 
expertise [632]. 

8. Conclusion 

In intelligent configurations, energy administration has become a 
service that tries to use energy responsibly and effectively. Benefits of 
energy administration are flexible and may be used in any intelligent 
setting. By forecasting and strategically arranging the usage of home 
appliances, HEMSs reduce the total electrical generation and usage of 
homes. Hence, study into and marketing of HEMSs might help energy 
companies, the community, and homeowners. This article presented an 
overview of HEMS, necessity of load forecasting and scheduling in smart 
environment for smooth operation of overall power structure. The 
methodology, process, features, pros, cons, and conclusion of each 
prescribed load forecasting, scheduling and futuristic optimization 
techniques are briefly analyzed to predict and manage resources and 
loads and to choose best approach according to situation. Moreover, 
each optimization technique is applied at device level at HEMS. This 
article discusses upcoming developments in load forecasting and 
scheduling technology and the way it may impact HEMS operations in 
the coming years. The HEMS load prediction and scheduling framework 
is offered with a probabilistic and fault evaluation that upholds load 
flow balance between need and supply. Our presented probabilistic 
model compared with Smart Campus Green & Smart Building Park, 
Benguerir, Morocco case study, verifying the validity of our framework 
and validates that illustrated probabilistic model is readily to implement 
in all kind of real time scenarios to meet the balance between the 

demand and supply. The study given here gives a comprehensive 
assessment of the load prediction and scheduling literature with a focus 
on optimization techniques. Future work and HEMS challenges are also 
highlighted. While energy administration is a current hot topic, it con
tinues to confronts several obstacles that prevent future development 
and advancement. As a result, this paper suggested a number of pro
spective avenues and perspectives that might lead future investigations 
to broaden our understanding of HEMS. 

Future work 

Future paths and prospects for improving HEMS in futuristic smart 
settings are highlighted. Future research and reviews will focus on 
concerns such as the necessity to integrate the IoT with present HEMS 
technology and the ecological impacts of increasing green energy use. 
To maximize the advantages of incorporating ESSs into electrical net
works, creating universal mechanisms that are adaptable with changing 
load needs may be an appropriate future approach. To reduce excessive 
set up and upkeep expenditures as well as unexpected devastating out
ages, automated ESS sizing procedures may be suggested in the future. 
one EV cannot provide the power requirements of an intelligent sur
roundings. synchronized regulation is crucial when several EVs are 
linked to the electrical grid. Therefore, creating robust strategies that 
coordinate the management of EVs will be a possible future focus. In 
addition, a further option for EV control to use is the development of 
specialized, safe, and confidentiality regulating technologies. As a result, 
it will increase consumer knowledge and persuade consumers that EVs 
are not exposed to dangers to their confidentiality or safety. Another 
intriguing option is to create consumer-friendly DR tactics, as consumer 
appeal is crucial to the success of DR campaigns. Additionally, it is 
essential to raise knowledge of and promote the advantages of DR in 
order to draw greater attendees, particularly homeowners. User happi
ness is essential to DR programs effectiveness. However, a few research 
has examined this issue. Therefore, it is advised that the focus for future 
research be developing scalable and adaptable DR optimization methods 
that also ensure user satisfaction. Researchers discovered expected 
HEMS restrictions that can be researched and fixed, like: The scheduling 
techniques and client choices are not in synchronization. The absence of 
virtually generated, actual systems that went through testing using 
actual models or prototypes. At times, executions lack the required 
smart indicators. Failing to properly take account of customers’ wants, 
which makes them feel compelled to use less energy to provide comfort. 
The SG, RES, and HESS are not coordinated 
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[108] A.C. Duman, H.S. Erden, Ö. Gönül, Ö. Güler, A home energy management system 
with an integrated smart thermostat for demand response in smart grids, Sustain. 
Cities Soc. 65 (2021) 102639. 
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[422] Ó. García, R.S. Alonso, J. Prieto, J.M. Corchado, Energy efficiency in public 
buildings through context-aware social computing, Sens. (Switz. ) 17 (4) (2017). 

[423] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, M. Jo, Efficient energy management 
for the internet of things in smart cities, IEEE Commun. Mag. 55 (1) (January 
2017) 84–91. 

[424] L. Barbierato, et al., A distributed IoT infrastructure to test and deploy real-time 
demand response in smart grids, IEEE Internet Things J. 6 (1) (February 2019) 
1136–1146. 

[425] S. Zhou, L. Zhang, Smart home electricity demand forecasting system based on 
edge computing, 2018 IEEE 9th Int. Conf. Softw. Eng. -Ing. Serv. Sci. (ICSESS) 
(2018) 164–167. 

[426] S. Agostinelli, F. Cumo, G. Guidi, C. Tomazzoli, Cyber-physical systems improv- 
ing building energy management: Digital twin and artificial intelligence, Energies 
14 (2021) 2338. 

[427] I. Sittón-Candanedo, R.S. Alonso, Ó. García, L. Muñoz, S. Rodríguez-González, 
Edge computing, iot and social computing in smart energy scenarios, Sens. 
(Switzer-Land) 19 (15) (2019). 

[428] S. Agostinelli, F. Cumo, G. Guidi, C. Tomazzoli, The potential of digital twin 
model integrated with artificial intelligence systems, Pap. Presente Proceed-ings - 

A. Raza et al.                                                                                                                                                                                                                                    



Alexandria Engineering Journal 92 (2024) 117–170

167

2020 IEEE Int. Conf. Environ. Electr. Eng. 2020 IEEE Ind. Commer. Power Syst. 
Eur., EEEIC / I CPS Eur. 2020 (2020). 

[429] Ali, M., Adnan, M., Tariq, M., & Poor, H.V. Convergence of Recurrent Neuro- 
Fuzzy Load Forecasting through Estimated Parametrized based Fuzzy Inference 
System in Smart Grids. 

[430] E. O’Dwyer, I. Pan, R. Charlesworth, S. Butler, N. Shah, Integration of an energy 
management tool and digital twin for coordination and control of multi-vector 
smart energy systems, Sustain. Cities Soc. 62 (2020) 102412. 

[431] M. Nutakki, S. Mandava, Review on optimization techniques and role of Artificial 
Intelligence in home energy management systems, Eng. Appl. Artif. Intell. 119 
(2023) 105721. 
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