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Introduction 
Knowledge elicitation consists of a set of techniques and methods that attempt to elicit the 

knowledge of a domain expert1, typically through some form of direct interaction with the expert. 

Knowledge elicitation is a sub-process of knowledge acquisition (which deals with the acquisition or 

capture of knowledge from any source), and knowledge acquisition is, in turn, a sub-process of 

knowledge engineering (which is a discipline that has evolved to support the whole process of 

specifying, developing and deploying knowledge-based systems). 

Although the elicitation, representation and transmission of knowledge can be considered a 

fundamental human activity – one that has arguably shaped the entire course of human cognitive 

and social evolution (Gaines, 2013) – knowledge elicitation had its formal beginnings in the early to 

mid 1980s in the context of knowledge engineering for expert systems2. These systems aimed to 

emulate the performance of experts within narrowly specified domains of interest3, and it initially 

seemed that the design of such systems would draw its inspiration from the broader programme of 

research into artificial intelligence. In the early days of artificial intelligence, much of the research 

effort was based around the discovery of general principles of intelligent behaviour. Newell and 

Simon’s (1963) General Problem Solver exemplified this approach. They were interested in 

uncovering a general problem solving strategy that could be used for any human task. In the early 

1970s, however, a new slogan came to prominence: ‘in the knowledge lies the power’. A leading 

exponent of this view was Edward Feigenbaum from the Stanford Research Institute. He observed 

that experts are experts by virtue of domain specific problem solving strategies together with a great 

deal of domain specific knowledge. This view received support from research into the psychology of 

problem solving that suggested that expert problem solving performance was attributable to the 

possession of domain specific facts and rules (Chi et al., 1988).  

The realization that knowledge lay at the heart of expertise triggered a flurry of interest in 

knowledge elicitation and representation. Knowledge engineers soon discovered, however, that 

acquiring sufficient high-quality knowledge from individuals to build a robust and useful system was 

a very time-consuming and expensive activity. It seemed to take longer to elicit knowledge from 

                                                             
1 It should be pointed out that although early conceptualizations of knowledge elicitation cast the process as one 
of extracting or mining knowledge from the heads of experts, more recent conceptualizations view the process 

as a modelling exercise. The idea is that the knowledge elicitor and domain expert work together in order to 

create a model of an expert’s knowledge. This model may reflect reality to a greater or lesser extent. 
2 Experts systems are computer programs that embody domain-specific knowledge and that perform at the same 

level as human experts within some domain (although they do not necessarily solve problems in the same way 
as human experts). 
3 Some early examples of such systems are MYCIN (Shortliffe, 1976) for diagnosing bacterial infections and 

PROSPECTOR (Duda et al., 1979) for supporting decisions relating to geological exploration. 

http://www.amazon.co.uk/Evaluation-Human-Work-Fourth-Wilson/dp/1466559616/
http://www.amazon.co.uk/Evaluation-Human-Work-Fourth-Wilson/dp/1466559616/
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experts than to write the expert system software. This problem became widely recognized as the 

knowledge acquisition bottleneck (Hayes-Roth et al., 1983), and it spawned an interest in the 

development, evaluation and practical application of a broad range of knowledge elicitation 

techniques that continued throughout the 1980s and 1990s.  

Today, the scope of knowledge engineering efforts are much broader than simply the development 

of expert systems. With the advent of the Web and Semantic Web4, the focus of many knowledge 

engineering efforts has changed (Gil, 2011; Schreiber, 2013), and the development of formal 

computational ontologies5 is now a major focus of attention for those concerned with the elicitation, 

representation and exploitation of human knowledge. There is also a broader recognition of the role 

that knowledge elicitation can play in corporate knowledge management. There are many different 

characterizations of knowledge management, but the central assumption is that knowledge is a 

valuable asset that must be managed (Nonaka & Takeuchi, 1995; Stewart, 1997). What we are 

looking for in knowledge management is a means to get the right knowledge to the right people at 

the right time and in the right form. These are difficult challenges, and many of them are identical to 

those encountered with the attempt to develop early knowledge-based systems (Hayes-Roth et al., 

1983). There is thus a growing appreciation of the value of incorporating knowledge elicitation 

techniques into knowledge management initiatives, and it has been suggested that the tools, 

techniques, methods and approaches of knowledge engineering are well suited to the knowledge 

management enterprise (Gavrilova & Andreeva, 2012; Milton et al., 1999). One topic of particular 

interest concerns the use of knowledge elicitation techniques to support the transformation of tacit 

knowledge into explicit knowledge as part of the cycle of organizational knowledge creation (Nonaka 

& Takeuchi, 1995). Many of the knowledge elicitation techniques presented below can assist with 

this process, and they may thus play important roles in enabling organizations to realize their 

innovative potential. 

This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in 

general. These systems now come in a bewildering range of forms, from conventional expert 

systems through to intelligent tutoring systems, adaptive interfaces and workflow support tools. In 

many cases, the goal of knowledge elicitation is simply to generate representations of knowledge 

that may or may not be exploited in the context of computerized systems. One of the aims of 

knowledge elicitation, for example, may be to document the work-related knowledge and expertise 

that has developed within an organization over a period of time. In addition, there may be a 

requirement to capture the knowledge of individuals who are about to leave an organization or who 

have recently retired. These kinds of knowledge elicitation efforts often form part of an effort to 

                                                             
4 The Semantic Web is a set of technologies that provide a common framework for the representation and 

exchange of knowledge and data in the context of the World Wide Web (Berners-Lee et al., 2001; Shadbolt et 

al., 2006). 
5 A ‘computational ontology’, in this case, is a formal, machine-readable representation of knowledge in some 

domain of interest. In the context of the Semantic Web, ontologies are typically created using the 
representational formalisms provided by the family of languages that goes under the heading of the Web 

Ontology Language or OWL. Such languages have both a formal semantics and an RDF/XML-based 

serialization. The formal semantics provide the basis for forms of machine-based reasoning in which a system is 

able to infer additional information based on the data that is explicitly represented, while the RDF/XML-based 

serialization enables knowledge to be published and exploited within the distributed infrastructure of the World 

Wide Web. 
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preserve organizational knowledge and expertise by making the knowledge available to new 

recruits.  

Another goal of knowledge elicitation and modelling, especially in more recent times, is to create 

computational ontologies that can be used in the context of the Semantic Web. The Semantic Web is 

a vision of how information can be represented and exchanged in the distributed computing 

environment of the World Wide Web. The essential idea is that information should be represented 

in a common form and with common semantics. This enables data to be shared, reused and 

processed across application, enterprise and community boundaries. Unlike the case with the 

conventional Web, which is designed largely for human consumption, the aim of the Semantic Web 

is to support greater levels of machine intelligence and more advanced forms of human-machine 

interaction. In this respect, it is important to bear in mind that the Semantic Web is not a 

replacement for the conventional Web; rather, it is something that sits alongside the conventional 

Web and extends the range of capabilities and forms of interaction that can be delivered: 

“The Semantic Web is not a separate Web but an extension of the current one, in which 

information is given well-defined meaning, better enabling computers and people to 

work in cooperation” (Berners-Lee et al., 2001) 

Ontologies play an important role in the context of the Semantic Web. They provide machine-

readable representations of human knowledge that specify the knowledge structures of interest in 

some domain. Such forms of knowledge representation may serve a variety of purposes. As is the 

case with any form of Web-accessible content, it is not always easy to anticipate the kind of ways in 

which these epistemic resources will be exploited. They may be used to support the implementation 

of intelligent systems, they may be used to support data interoperability and exchange solutions, or 

they may simply be used to enable semantic search through domain-specific resource repositories.  

Many problems arise before the elicitation of detailed domain knowledge can begin. Firstly, we need 

to fully understand the goal of a knowledge engineering project. Sometimes a key failure is in 

formulating the role of a knowledge-based system; on other occasions it is a failure to appreciate 

what it is realistic to build. Systems can fail because no one has thought of the social and 

organisational problems that must be resolved in deploying a system. Very often the effort and 

resources required to build systems are underestimated – this occurs in both the development and 

maintenance of systems. A particularly difficult situation arises when one is expected to conjure up 

knowledge for areas in which no evidence of systematic practice exists at all. Here, one is expected 

to provide theories for domains where there is no theory.  

In term of the actual process of knowledge elicitation, one may be able to gather information from a 

variety of non-human resources: textbooks, technical manuals, case studies and so on. However, in 

most cases one needs to consult a practising expert. This may be because there isn’t the 

documentation available, or because real expertise derives from practical experience in the domain 

rather than from a reading of standard texts. Few knowledge-intensive systems are ever built 

without recourse to experts at some stage. Those systems not informed by actual expert 

understanding and practice are often the poorer for it. One of the recent slogans to emerge from the 

knowledge and cognitive engineering community is that the ‘gold is not in the documents’: 
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“The gold is not in the documents. Document analysis is useful in bootstrapping 

researchers into the domain of study...but experts possess knowledge and strategies 

that do not appear in documents and task descriptions. Cognitive engineers invariably 

rely on interactions with experts to garner implicit, obscure, and otherwise 

undocumented expert knowledge.” (Hoffman & Lintern, 2006, p. 215) 

Given the need for expert involvement, it is typically the case that a knowledge engineer will be 

responsible for eliciting the expertise of experts. The main challenge here is to find a means by 

which the expert is enabled to communicate their knowledge to the person responsible for 

developing a knowledge solution. How can we establish the conditions that enable the expert to 

communicate the knowledge that underlies their expertise? This is a hard enough problem in itself, 

but there are a variety of circumstances that contrive to make the problem even harder. Much of 

the power of human expertise lies in laid-down experience, gathered over a number of years, and 

represented as heuristics6. Often the expertise has become so routinized that experts no longer 

know how they accomplish particular tasks. In other cases, the knowledge required to build a system 

is distributed across an organisation and resides in the minds of a number of experts.  

Of course, it is not just the capacity to elicit knowledge from an expert that is important. We would 

also like the knowledge elicitation process to be highly efficient and address the aforementioned 

knowledge acquisition bottleneck. Ideally, we would like to be able to use techniques that minimise 

the effort spent in gathering, transcribing and analysing an expert’s knowledge. We would also like 

to minimise the time spent with expensive and scarce experts. And, of course, we would like to 

maximise the yield of usable knowledge. 

These sorts of issues lie behind the development of the many knowledge elicitation techniques that 

have become available over the past 20-30 years. A number of surveys of these techniques are now 

available (Cooke, 1994, 1999; Hoffman, 1987, 1989; Hoffman et al., 1995; Milton, 2012; Shadbolt, 

2005; Shadbolt & Burton, 1995), and the current chapter builds on these existing surveys. We begin 

by describing, in sufficient detail for the reader to apply them, examples of major knowledge 

elicitation techniques. We then consider the features of domain experts and their associated 

expertise that are likely to directly affect the knowledge elicitation process. We also describe some 

of the issues that surround the appropriate selection of knowledge elicitation techniques as part of a 

programme of knowledge elicitation. Our attention then turns to some of the available software 

tools that support the knowledge elicitation process, typically by providing computerized versions of 

one or more knowledge elicitation techniques. Finally, we discuss some of the implications of the 

Web and Semantic Web for knowledge elicitation efforts.  

Knowledge Elicitation Techniques 
There are a range of techniques that can be used to elicit knowledge from domain experts. The 

techniques we will describe are methods that we have found in our previous work to be both useful 

and complementary to one another. We can subdivide them into natural and contrived methods. 

The distinction is a simple one. A method is described as natural if it is one an expert might 

informally adopt when expressing or displaying expertise. Such techniques include interviews or the 

observation of actual problem solving. There are other methods we will describe in which the expert 

                                                             
6An heuristic is defined as a rule of thumb or generally proven method to obtain a result given particular 

information. 
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undertakes a contrived task. Examples here include concept sorting and the repertory grid 

technique. In the case of contrived tasks, the task elicits expertise in ways that are not usually 

familiar to an expert, and experts may feel uncomfortable when asked to perform them. Indeed, 

experts may feel they are performing badly with such methods, and they may question the value of 

such methods in tapping into their expertise. In this respect, it is worth noting that we have found 

that an expert’s own opinion of the worth of a technique is no guide as to its actual value 

(Schweikert et al., 1987). In addition, contrived techniques can sometimes prove more efficient than 

their non-contrived counterparts when it comes to knowledge elicitation (Burton et al., 1990). For 

these reasons, it is often useful to incorporate the use of contrived techniques into a program of 

knowledge elicitation, although time will often be required to explain the use of these techniques to 

domain experts. 

Interviews 

Almost everyone starts in knowledge elicitation by determining to use an interview. The interview is 

the most commonly used knowledge elicitation technique, and it takes many forms. Three kinds of 

interview are generally recognized within the knowledge engineering community. These are the 

unstructured, semi-structured and the structured interview. In all cases, the main aim of the 

interview is to elicit information regarding how a particular task is performed or how a particular 

decision is made.  

The starting point for most new knowledge engineering efforts will be an unstructured interview 

since this is the best means of establishing rapport between the knowledge elicitor and the expert. 

In addition, unstructured interviews provide a useful means of ‘bootstrapping’ the elicitor’s 

understanding of the target domain – they provide an opportunity for the elicitor and the expert to 

discuss the domain in an informal setting with no constraints as to what can be discussed. 

Unfortunately, this is also one of the main drawbacks of the unstructured interview. By virtue of 

being unstructured, the interview can easily allow the elicitor and expert to dwell on irrelevant topic 

areas or cover important areas in insufficient depth. For these reasons, there is often a requirement 

to resort to more structured interviewing methods.  

The structured interview is a formal version of the interview in which the person eliciting the 

knowledge plans and directs the session7. A significant benefit of the structured interview is that it 

provides structured transcripts that are easier to analyse than unstructured conversations. This 

serves to improve the efficiency of the structured interview, and it also enables the elicitor and 

expert to focus their attention on a limited subset of important topics. 

Although it is common to see the structured interview as a single technique, it is probably best to 

think of it as a class of techniques (Hoffman et al., 1995). There are, in fact, many varieties of 

structured interviews. In forward scenario simulation interviews, for example, the expert is walked 

through the problem verbally by the elicitor who presents decision- or task-relevant information to 

the expert and the expert is asked to respond accordingly (Cordingley, 1989; Grover, 1983). Another 

                                                             
7 In practice, we have found that it is often useful to involve the expert in the planning of a structured interview 
session. Expert input at the planning stage can be useful in terms of identifying important areas, and it also 

enables the expert to have an understanding of what topics will be discussed in advance of the knowledge 

elicitation session.   
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kind of structured interview is the fixed probe interview in which specific probe questions are used 

to elicit domain knowledge. A template for such an interview is as follows: 

1. Ask the expert to give a brief (10 minute) outline of the target task, including the following 
information: 

a description of the possible solutions or outcomes of the task; 
a description of the variables that affect the choice of solutions or outcomes; and 
a list of the major rules or procedures that connect the variables elicited to the solutions 
or outcomes. 

2. Take each rule or procedure elicited in Stage 1, ask when it is appropriate and when it is not, 
and if it is a procedure ask how it is performed. The aim is to reveal the scope (generality 
and specificity) of each existing rule and hopefully generate some new rules. 

3. Repeat Stage 2 until it is clear that the expert will not produce any additional information. 

A useful way of obtaining a domain overview (Stage 1 of the structured interview) is to ask probe 

questions that relate to an individual’s specific experience. It is also important in this technique to be 

specific about how to perform Stage 2. We have found that it is helpful to constrain the elicitor’s 

interventions to a specific set of probes, each with a specific function. Here is a list of probes (P) and 

functions (F) that can help in the first two stages of the interview.  

P1.1 Could you tell me about a typical case? 
F1.1 Provides an overview of the domain tasks and concepts. 

P1.2 Can you tell me about the last case you encountered? 
F1.2 Provides an instance-based overview of the domain tasks and concepts. 

P2.1 Why would you do that? 
F2.1 Converts an assertion into a rule. 

P2.2 How would you do that? 
F2.2 Generates lower order rules. 

P2.3 When would you do that? 
  Is <the rule> always the case? 
F2.3 Reveals the generality of the rule and may generate other rules. 

P2.4 What alternatives to <the prescribed action/decision> are there? 
F2.4 Generates more rules. 

P2.5 What if it were not the case that <currently true condition>? 
F2.5 Generates rules for when current condition does not apply. 

P2.6 Can you tell me more about <any subject already mentioned>? 
F2.6 Used to generate further dialogue if the expert dries up. 

P2.7 Can you tell me about an unusual case you encountered/heard about from some 
other expert? 

F2.7 Refines the knowledge to include rare cases and special procedures. 

The idea here is that the elicitor engages in a type of slot/filler dialogue. The provision of template 

questions about concepts, relations, attributes and values makes the elicitor’s job much easier. It 

also provides sharply focused transcripts that facilitate the process of extracting usable knowledge. 

Of course, there will be instances when none of the above probes are appropriate (such as the case 
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when the elicitor wants the expert to clarify something). However, you should try to keep these 

interjections to a minimum. The point of specifying such a fixed set of linguistic probes is to 

constrain the expert to giving you all, and only, the information you want. 

The sample of dialogue below is taken from a real interview of this kind. It is the transcript of an 

interview by a knowledge engineer (KE) with an expert (EX) in the domain of geological analysis8. 

KE: What would you do at this stage? 
EX: I would look at the grain size of the hand specimen and see how fine it was. 
KE: Why would you look at the grain size? 
EX: That will tell me if the rock has been formed near to the surface or deep inside the earth. 

The finer the grain size the faster it cooled. Coarse crystals indicate that the rock was 
cooling slowly + forming deeper down + we say its emplacement is plutonic + if it cooled 
near the surface its emplacement is volcanic. 

KE: Are there any alternatives to coarse and fine grain size? 
EX: There are glasses + you can’t see any structure here because the rock cooled so fast. 
KE: What would you look at next? 
EX: Colour is important + the lighter the rock the more acidic it is.  
KE: Why is a lighter rock more acidic? 
EX: Acidic rocks are higher in quartz and colour is a good indicator of quartz content – 

leucocratic or light things have a lot of quartz – melanocratic that is darker rocks have 
olivines and pyroxines. 

This is quite a rich piece of dialogue. From this section of the interview alone we can extract 

numerous rules such as: 

IF  grain size is large 

THEN rock is plutonic 

IF  rock is leucocratic 

THEN rock has high quartz content 

Of course, these rules may need refining in later elicitation sessions, but the text of the dialogue 

shows how the use of the specific probes has revealed a well-structured response from the expert9. 

Techniques exist to impose a lesser amount of structure on an interview. These kind of techniques 

can be referred to as types of semi-structured interview. One example of a semi-structured 

interview is the knowledge acquisition grid (LaFrance, 1987). This is a matrix of knowledge types and 

forms – examples of knowledge forms are layouts and stories, while some examples of question 

types are grand tour and cross-checking. A grand tour involves such things as distinguishing domain 

boundaries and the overall organization of goals; cross-checking involves the engineer attempting to 

validate the acquired knowledge by, for example, playing devil’s advocate. 

Another form of semi-structured interview technique is the teachback technique of Johnson and 

Johnson (1987). In this technique, the expert explains something to the elicitor who then attempts 

to explain it to the expert – the knowledge is effectively ‘taught back’ to the expert. The expert then 

has an opportunity to check and, if necessary, amend the information. 

                                                             
8 In the transcripts we use the symbol + to represent a pause in the dialogue. 
9 In fact, a possible second-phase elicitation technique would be to present these rules back to the expert and ask 

about their validity, scope and so forth. 
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Unstructured interviews have no agenda (or, at least, no detailed agenda) set either by the 

knowledge elicitor or by the expert. Of course, this does not mean that the elicitor has no goals for 

the interview, but it does mean that she has considerable scope for proceeding. As mentioned 

earlier, the unstructured interview is useful for a variety of reasons. Firstly, the approach can be 

used whenever one of the goals of the interview is to establish a rapport between the expert and 

the knowledge elicitor. There are no formal barriers to the discussion covering whatever material 

either participant sees fit. Secondly, one can get a broad view of the topic easily; the knowledge 

elicitor can ‘fill in the gaps’ in her own perceived knowledge of the domain. Thirdly, the expert can 

describe the domain in a way with which he is familiar, discussing topics that he considers important 

and ignoring those he considers uninteresting. 

The disadvantages are clear enough: the lack of structure can lead to inefficiency; the expert may be 

unnecessarily verbose; the expert may concentrate on topics whose importance he exaggerates; the 

coverage of the domain may be patchy; and the data acquired may be difficult to integrate, either 

because it does not form a coherent body of content, or because there are inconsistencies (this will 

be even more likely if the information provided by several experts is to be collated). 

In all of the interview techniques mentioned so far (and in some of the other techniques as well) 

there exist a number of dangers that have become familiar to practitioners of knowledge elicitation. 

One problem is that in an interview experts will only produce what they can verbalise. If there are 

non-verbalisable aspects to the domain, the interview will not recover them. It may be that the 

knowledge was never explicitly represented or articulated in terms of language (consider, for 

example, pattern recognition expertise). Then there is the situation where the knowledge was 

originally learnt explicitly in a propositional or language-like form. However, in the course of 

experience such knowledge has become routinised or automatised10. This can happen to such an 

extent that experts may regard the complex decisions they make as based only on hunches or 

intuitions. In actual fact, these decisions are based upon large amounts of remembered data and 

experience and the continual application of that knowledge. In this situation they tend to give black 

box replies such as ‘I don’t know how I do that...’ or ‘It is obviously the right thing to do...’.  

Another problem arises from the observation that people (and experts in particular) often seek to 

justify their decisions in any way they can. It is a common experience of the knowledge elicitor to get 

a perfectly valid decision from an expert, and then to be given a spurious justification as to why it 

was made and how it originated. 

For these and other reasons one should always supplement interviews with additional elicitation 

methods. In general, knowledge elicitation should always consist of a programme of techniques and 

methods (see section on ‘Methodologies and Programmes’).  

Protocol Analysis 

Protocol Analysis (PA) is a generic term for a number of different ways of performing some form of 

analysis of the expert(s) actually solving problems in the domain. In all cases, the elicitor takes a 

record of what the expert does using written notes or (preferably) an audio or video recording. 

                                                             
10 We often use a computing analogy to refer to this situation and speak of the expert as having compiled the 

knowledge. 
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Transcripts or protocols are then made from these records and the elicitor tries to extract 

meaningful structure, rules and processes from the protocols. 

We can distinguish two general types of PA: online and offline. In online PA the expert is recorded 

solving a problem and concurrently a commentary is made. The nature of this commentary specifies 

two sub-types of the online PA method. The expert performing the task may be describing what they 

are doing as problem solving proceeds. This is called self-report. A variant on this is to have another 

expert provide a running commentary on what the expert performing the task is doing. This is called 

shadowing. 

Offline PA allows the expert to comment retrospectively on the problem solving session, usually by 

being shown an audio-visual record of it. This may take the form of a retrospective self-report by the 

expert who actually solved the problem. Alternatively, it may take the form of a retrospective report 

by another expert – this has recently been referred to as collegial verbalization (Erlandsson & 

Jansson, 2007) – or there could be group discussion of the protocol by a number of experts including 

its originator. In situations where only a behavioural protocol (such as a video recording) is obtained 

then some form of retrospective verbalisation of the problem-solving episode will obviously be 

required. 

In many cases, the focus of protocol analysis is on verbal data. In this case, the technique is typically 

referred to as verbal protocol analysis (see Bainbridge & Sanderson, 2005). Other types of events, 

such as eye movements, gestures and other non-verbal behaviours may also be the focus of protocol 

analysis, although this is rarely seen in practice. Combining the analysis of (e.g.) eye movements with 

verbal reports may be useful in some cases, particularly in situations where the aim is to better 

understand the allocation of attention to particular environmental cues and sources of task-relevant 

information. In one study, for example, Van Gog et al (2005) used a combination of eye movement 

data and concurrent verbal protocol analysis in order to explore expertise-related differences in 

electrical circuit troubleshooting performance. 

In deciding between the various kinds of PA technique on offer, it is worth bearing in mind a number 

of issues. Firstly, in their classic treatment of protocol analysis, Ericsson and Simon (1996) 

recommend the use of concurrent verbal reports (i.e., online self-reports) over retrospective ones. 

One of the possible problems with retrospective reports is that the conditions associated with 

verbalization in the two cases may differ, and this may affect information processing accordingly. In 

general, it is assumed that the longer the delay between performance and report, the greater this 

problem becomes. As a result, it is predicted that more immediate retrospective reports are the 

most similar to concurrent ones. On the other hand, concurrent verbalization techniques can 

present a number of problems for experts, such as interference with the execution of skilled actions. 

Ericsson and Simon (1996) suggest a number of conditions under which verbal report procedures 

should succeed or fail. For instance, verbal reports are not as effective for eliciting knowledge when 

the problem is novel or the reporter has low verbal ability or is inhibited in some way. When these 

sorts of conditions are encountered in the context of a programme of knowledge elicitation, it may 

be beneficial to incorporate more retrospective PA techniques.  

In addition to decisions about the choice between online and offline PA, decisions also have to be 

made about the extent to which other experts (other than those actually performing the task) are 

involved in the verbal commentary. Typically, the individual performing the task provides the verbal 
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report, either concurrently or retrospectively. However, other techniques, such as that of collegial 

verbalization11 have also been the focus of recent attention (Erlandsson & Jansson, 2007, 2013). One 

issue of interest here concerns the extent to which the reports provided by other experts matches 

those provided by the performing expert. In one study comparing collegial verbalization with 

retrospective self-report, Erlandsson and Jansson (2013) found a number of similarities between the 

protocol data delivered by the two techniques, suggesting that collegial verbalization may be as 

effective as retrospective self-report. Clearly, in a situation where a video record of expert 

performance is available, a number of protocols can be obtained using multiple experts. This may 

serve to improve the reliability and completeness of the resulting knowledge base. 

In trying to decide when it is appropriate to use PA bear in mind that it is alleged that different 

knowledge elicitation techniques differentially support the elicitation of particular kinds of 

information. This is commonly known as the differential access hypothesis (Hoffman et al., 1995). 

With PA, it is claimed that the sorts of knowledge elicited include the “when” and “how” of using 

specific knowledge. It can reveal the problem solving and reasoning strategies, evaluation 

procedures and evaluation criteria used by the expert, and procedural knowledge about how tasks 

and sub-tasks are decomposed. A PA gives you a complete episode of problem solving. It can be 

useful as a verification method to check that what people say is actually what they do. It can also 

take you deeper into a particular problem. It is, however, intrinsically a narrow method since it can 

only be used to analyze a relatively small number of problems within the domain. 

Before PA sessions can be held, a number of pre-conditions should be satisfied. The first of these is 

that the elicitor is sufficiently acquainted with the domain to understand the expert’s tasks. Without 

this, the elicitor may completely fail to record or take note of important parts of the expert’s 

behaviour. 

A second requirement is the careful selection of problems for PA. This sampling of problems is 

crucial. PA sessions may take a relatively long time, and usually only a few problems can be 

addressed in any programme of acquisition (Shadbolt & Burton, 1989). Therefore, the selection of 

problems should be guided by how representative they are. Asking experts to sort problems into 

some form of order (Chi et al., 1981; Chi et al., 1982) may give an insight into the classification of 

types of problems and help in the selection of suitable problems for PA (see also the following 

sections on concept sorting, repertory grids and laddered grids for methods that can be used to help 

classify and structure problems). 

A further condition for effective PA is that the expert(s) should not feel embarrassed about 

describing their expertise in detail. It is preferable for them to have experience in thinking aloud. 

Uninhibited thinking aloud has to be learned in the same way as talking to an audience. One or two 

short training sessions may be useful. In these training sessions a simple task, such as long 

multiplication, can be used as an example. This puts the expert at ease and familiarises them with 

the task of talking about their problem solving. 

                                                             
11 Collegial verbalization is based on the procedure of videotaping practitioners while they perform their normal 

work tasks in their normal work setting. This is followed up by having a close colleague of the practitioner 

watch the video recordings and verbalise. 
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In order to collect protocols, the expert is asked to ‘think aloud’ while performing some task, and the 

resulting commentary is typically recorded and transcribed. In terms of recording techniques, it is 

preferable to use video recordings rather than audio recordings. This is because video recordings 

capture more information about the context in which problem-solving occurs, which can help to 

support the resulting analysis. In particular, the following two advantages of video recording 

techniques have been noted by Bainbridge and Sanderson (2005): 

1. Firstly, video recordings often help to disambiguate what is being referred to in the case of 

situated forms of problem-solving activity. Subjects often make use of pronouns, such as 

‘when it’s at 55’, and the presence of a visual record can help to disambiguate what is being 

referred to. Also, as noted by Bainbridge and Sanderson (2005), video recordings can help 

when people use general anaphoric references supplemented by pointing; for example, ‘that 

is too high so I’ll lower this until it is between these’. 

2. A second advantage of video recording techniques relates to the fact that is often useful to 

have information about the total task environment in which problem solving occurs. This can 

be used at a later time to assess to what extent people’s behaviour is influenced by features 

of the environment that are not explicitly mentioned in the verbal report. 

One of the main drawbacks of video recording techniques is, of course, the amount of data they 

make available for analysis. It can be difficult to avoid the temptation to scale up the analytic effort 

when confronted with such detailed records, and discipline is often required to limit attention to 

information of relevance to the knowledge elicitation effort.  

When actually conducting a PA the following are a useful set of tips to help enhance its 

effectiveness.  

1. Present the problems and data in a realistic way. The way problems and data are presented 

should be as close as possible to a real situation.  

2. Transcribe the protocols as soon as possible. The meaning of many expressions is soon lost, 

particularly if the protocols are not recorded.  

3. Avoid long self-report sessions. Because of the need to perform a double task – combining 

expert performance with verbal commentary – the process of thinking aloud is significantly 

more tiring for the expert than being interviewed. This is one reason why shadowing is 

sometimes preferred.  

4. In general, the presence of the elicitor is required in a PA session. Although the elicitor 

adopts a background role, her very presence suggests a listener to the interviewee, and 

lends meaning to the talking aloud process. Therefore, comments on audibility, or even 

silence by the elicitor, are quite acceptable. 

When a verbal or behavioural transcript has been obtained we next have to undertake its analysis. A 

number of approaches to the analysis of verbal protocols have been described in previous work, 

such as that by Bainbridge and Sanderson (2005). In general, however, it is acknowledge that there 

are no objective independent techniques for doing these analyses, and this means that analysts 

“have to use both their own natural language understanding processes, and their knowledge of the 

task, in order to make sense of what is going on, to infer missing passages, and to interpret the 

results of summary analyses (Bainbridge & Sanderson, 2005, p .166). For the purposes of most 

knowledge elicitation exercises, the analysis will typically involve the ‘encoding’ of the protocol 
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transcript into ‘chunks’ of knowledge (actions, assertions, propositions, keywords, etc.), and it 

should result in a rich domain representation with many elicited domain features together with a 

number of specified links between those features. The example below is from a self-report of an 

expert geologist. It is immediately apparent that protocols can be extremely dense sources of 

information. A very significant amount of work is required to analyse and structure the content in 

this very small fragment of a self report concerning one rock specimen. 

To start off with it’s obviously a fairly coarse-grained rock ... and you’ve got some nice 

big orthoclase crystals in here – this is actually SHAP GRANITE – I know it just because 

everybody’s seen SHAP GRANITE – or it’s a very strong possibility that it’s SHAP 

GRANITE ... it’s a typical teaching specimen – as I say the obvious things are these very 

big orthoclase crystals pink colouration and you can certainly see some cleavage in 

some of them – you can certainly make out there are feldspar cleavages in there – it’s 

a coarse-grained rock anyway, you can see the crystals nice and coarsely – these large 

porphyritic crystals – you can see, in the ground mass, you can see quartz – get some 

light on it (HOLDS SPECIMEN UP TO WINDOW) quartz, which is this fairly clear mineral 

you can actually look into it and see through it as opposed to calcite or feldspars 

where it’s more cloudy – you can’t actually see any good crystal faces on these cut 

sections – small flakes of biotite, black micacious looking – small plates, you can 

certainly see some on this specimen even without a hand lens. 

There are a number of principles that can guide the protocol analysis. For example, analysis of the 

verbalization resulting in the protocol can distinguish between information that is attended to 

during problem-solving, and that which is used implicitly. A distinction can be made between 

information brought out of memory (such as a recollection of a similar problem solved in the past), 

and information that is produced ‘on the spot’ by inference. The knowledge chunks referred to 

above can be analysed by examining the expert’s syntax, or the pauses he takes, or other linguistic 

cues. Syntactical categories (e.g., use of nouns, verbs, etc.) can help distinguish between domain 

features and problem-solving actions, etc. In general, for multiple analysts to perform the encoding 

independently. This provides insight into the reliability of certain forms of encoding, and it also 

serves to highlight areas of contention that may need to be the focus of future knowledge elicitation 

sessions. 

The focus and depth of the analytic efforts is typically is dictated by the goals of the knowledge 

elicitation exercise. If the aim is to understand the sequential ordering of tasks in the context of 

some larger business process, this will require a less detailed form of protocol analysis compared to 

situations where the aim is to develop a computational model of the mental processes associated 

with problem-solving behaviour.  

When appropriately elicited, verbal and non-verbal protocols can help to illuminate the normal 

sequential flow of working and thinking, and they are thus valuable components of the analyst’s 

knowledge elicitation toolkit. In spite of this, protocol analysis does have its have limitations. Firstly, 

protocol analysis techniques share with the unstructured interview the problem that they may 

deliver unstructured transcripts that are hard to analyse. Moreover, they focus on particular 

problem cases and so the scope of the knowledge produced may be very restricted. It is difficult to 

derive general domain principles from a limited number of protocols. These are some of the 
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practical disadvantages of protocol analysis. However, there are more subtle problems. For example, 

two actions, which look exactly the same to the knowledge elicitor, may be very different in their 

extent and intent. For example, our geologist who applies a particular test to a specimen may apply 

that same test to another but with a quite different purpose. The knowledge elicitor simply does not 

know enough to discriminate the actions.  

Another source of concern stems from the possibility of distorted information – the risk that 

protocol analysis may yield information that is not an accurate reflection of what takes place in task 

settings where the technique is not being employed. The causes of these distortions are outlined by 

Bainbridge and Sanderson (2005). They include: 

1. The fact that being asked to give a verbal protocol changes the nature of the task that is 

being performed. A task that typically involves a number of concurrent actions may instead 

be performed in a sequential fashion as a result of the constraints imposed by the need to 

verbalize what one is doing. In cases where the a multiple ways a accomplishing a task, an 

expert may resort to a method that is easier to verbalize. Self-report techniques may also 

interfere with expert performance. There is some empirical evidence that attending to the 

components of a well-learned skill can impair performance (Beilock et al., 2002; Gray, 2004), 

and it thus seems likely that by asking an expert to think aloud we are changing the nature 

of the task being performed. Some cases of skilled performance are probably best 

demonstrated when the expert is left to perform the task automatically without the kind of 

attentional reorganization that is required by protocol analysis. This may also be the case 

with certain types of decision making expertise. By asking the expert to verbalise, one is in 

some sense destroying the point of doing protocol analysis – to access procedural, real-

world knowledge. 

2. The temporal constraints involved in giving a verbal protocol. In situations where people are 

working under time constraints, there may be limits to what people can verbalize. In 

particular, there may be insufficient time to report task-relevant information that is brought 

to mind and then quickly forgotten as a result of the tempo of task performance. 

3. The fact that giving a self-report is a socially-situated activity involving self-presentation 

issues. People may, for example, want to appear to rational and knowledgeable to a 

professional observer, and this may influence the content of the self-report accordingly. 

4. The fact that some aspects of the task may be performed automatically, and the expert may 

not have conscious access to the knowledge that is being used. This particularly the case 

with tasks involving advanced perceptual-motors skill. 

5. The limited scope of the technique. By focusing on a limited number of tasks, protocol 

analysis may inadequately sample the total knowledge possessed by a expert. As noted by 

Bainbridge and Sanderson (2005) “knowledge about the components, mechanisms, 

functions and causal relations in a machine, memories of specific events, and helpful 

categories will be mentioned explicitly only if the task involves some problem solving  that 

requires the person to review this sort of evidence” (p. 162). 

Having pointed to these drawbacks, it is also worth remembering that context is often important for 

memory – and hence for problem solving. For most non-verbalisable knowledge, and even for some 

verbalisable knowledge, it may be essential to observe the expert performing the task in a 
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naturalistic setting. It may be that this is the only situation in which the expert is actually able to 

demonstrate their expertise.  

Critical Decision Method 

The Critical Decision Method (CDM) is “a retrospective interview strategy that applies a set of 

cognitive probes to actual nonroutine incidents that required expert judgement or decision making” 

(Klein et al., 1989, p. 464). As a knowledge elicitation technique, the CDM contains elements of both 

interviewing and protocol analysis but in a context that stresses the examination of problem solving 

in naturalistic decision making contexts (Zsambok & Klein, 1997). The technique involves the expert 

being guided through the recall and elaboration of previously encountered cases, especially ones 

that were, in some sense, unusual, difficult or otherwise involved critical decisions. Such cases are 

often particularly memorable for the domain expert, and this serves as an aid to the elicitation of 

important information, such as the information the expert needs to make decisions in particular 

contexts. At the same time, incidents that are difficult or nonroutine are typically ones that provide 

the richest source of information about the knowledge and capabilities of domain experts. Detailed 

presentations of this method, along with summaries of studies illustrating its use, can be found in 

Klein et al (1989), Crandall et al (2006), O’Hare et al (1998) and Hoffman et al (1998). 

As originally presented by Klein et al (1989), a CDM session is organised into five steps.  

1. Select incident. In the first step, the expert is guided in the recall and recounting of a specific 

incident and its associated context. As mentioned above the aim is to select an incident that 

is unusual or nonroutine. The expert may be asked to “select an incident that was 

challenging and that, in his or her own decisionmaking, might have differed from someone 

with less experience” (Klein et al., 1989, p. 466). As a second example, experts may be asked 

to focus on incidents that are “in some manner unusual and difficult (i.e., where the best 

choice was not clear cut) in which the [expert] felt that their expertise and experience made 

a critical difference to the outcome” (O'Hare et al., 1998, p. 1700).  

2. Obtain unstructured incident account. In the second step, the expert is asked to describe 

the incident from their own perspective. This step accomplishes a number of goals. Firstly, it 

provides the basis for an analysts initial understanding of the incident in question. Secondly, 

it serves to activate the expert’s memory of an incident as the basis for subsequent 

questioning. 

3. Construct incident timeline. After the incident has been described by the expert, a timeline 

of the account is constructed. This serves to establish the sequence and duration of each 

event reported by the expert.  

4. Decision point identification. Once a timeline has been constructed, decision points in the 

timeline are identified, and specific decisions are marked for further probing. In general, 

decisions are subjected to further probing if the expert feels that additional courses of 

action are possible, or if another expert might have chosen a different course of action.  

5. Decision point probing. Any decision points that were marked for further probing in step 4 

are analyzed in more detail using a set of cognitive probes.  

Table 1 contains a range of probe question types with exemplars that we have found to be 

particularly useful when applying the CDM. Although these are typically used in step 5 of the CDM 

method, there is no reason why these questions cannot be used in the context of other steps. In 
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addition, the probes listed in Table 1 do not exhaust the range of probes that could be used in the 

context of the CDM. O’Hare et al (1998), for example, present an extended set of cognitive probes 

that are designed to “obtain additional information on the perceptual and cognitive structures and 

processes that appear to mediate expertise” (p. 1700). 

Probe Type Probe Examples 

Cues What were you seeing, hearing, smelling? 

Knowledge What information did you use in making this decision? How was it obtained? 

Analogues Were you reminded of any previous incidents? 

Scenarios Does this case fit a standard or typical scenario? Does it fit a scenario you were trained to 

deal with? 

Goals What were your specific goals and objectives at the time? 

Options What other courses of action were considered or available? 

Choice How was this option selected/other options rejected? What rule was being followed? 

Anticipation Did you imagine the possible consequences of this action? Did you imagine the events 

that would unfold? 

Experience What specific training or experience was necessary or helpful in this decision? What 

more would have helped? 

Decision making How much time pressure was involved in making the decision? How long did it take to 

make the decision? 

Aiding  What training, knowledge or information could have helped? 

Situation 

assessment 

If you were asked to describe the situation to a colleague at this point, how would you 

summarise the situation? 

Errors What mistakes are likely at this point? How might a novice have behaved differently? 

Hypotheticals If a key feature of the situation had been different, what differences would it have made 

in your decision? 

Table 1: Sample CDM probe questions. 

The outcome of the CDM is a range of products, which can be used to support training and system 

development activities (Klein et al., 1989). One of the most important products is referred to as the 

Critical Cue Inventory (CCI) that is a collection of all the perceptual cues that are used to guide the 

consideration and selection of particular decisions. In the case of medical decision-making, for 

example, the CCI could include a list of cues for recognizing critical conditions, such as early signs of 

cardiopulmonary distress (see Klein et al., 1989). Another important product of the CDM is the 

Situation Assessment Record (SAR). The SAR records the changes in goals and cue usage associated 

with situation assessment processes. It typically combines information about the cues being sought 

or identified, the expectancies generated by these cues, the goals activated by the current situation, 

and the selected course of action resulting from knowledge about the assessed situation.  

A typical CDM session can last around 2 hours. Depending on the domain, much of this time may be 

spent recollecting a rich complex incident. In other settings, the majority of the effort may be 

devoted to examining counterfactual situations. The CDM does have its limitations. In distributed 

problem solving situations no one individual may handle more than one element of a task. The 

individuals, in this case, would never know whether their judgements or assessments were correct 

within the context of the larger socially-distributed process. In addition, in high workload 

environments, we have sometimes observed that incidents and events can become merged. When 

responding to an opening query one sometimes sees an expert recount an incident but then become 

confused when asked for a timeline or other details. Despite these shortcomings, the style of 

interview and the attention paid to particular incidents often provides a rich output from which the 

elicitor can extract important task-relevant knowledge. An added bonus is that the case studies 

resulting from the application of the CDM can often serve as important training materials. 
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Concept Sorting 

Unlike interview techniques and PA, concept sorting is a form of contrived knowledge elicitation 

technique that is likely to be unfamiliar to the domain expert. The technique is useful when we wish 

to elicit the different relationships that exist between a fixed set of concepts. In the version of 

concept sorting we describe here an expert is presented with a number of cards on each of which is 

printed a concept word. The cards are shuffled and the expert is asked to sort the cards into either a 

fixed number of piles or else to sort them into any number of piles the expert finds appropriate. This 

process is repeated many times. 

Using this task one attempts to get multiple views of the structural organisation of knowledge by 

asking the expert to do the same task over and over again. Each time the expert sorts the cards, he 

should create at least one pile that differs in some way from previous sorts. The expert should also 

provide a name or category label for each pile on each different sort. This is often referred to as the 

dimension along which concepts are sorted (see Table 3), and it typically identifies a particular 

property or attribute associated with a class of objects (e.g., ‘grain size’ may be represented as an 

attribute of the ‘rock’ class). 

Performing a card sort requires the elicitor to have some basic conception of the domain. Cards have 

to be made with the appropriate labels before the session. However, no great familiarity is required 

as the expert provides all the substantial knowledge in the process of the sort. We now provide an 

example from our geology domain to show the detailed mechanics of a sort. 

The concepts printed on a set of cards are the names of igneous rocks drawn from a structured 

interview with the expert. He had previously described 18 rock types, which are presented in Table 

2. 

1 adamellite 10  granite 

2 andesite 11  lherzolite 

3  basalt 12  microgranite 

4  dacite 13  peridotite 

5  diorite 14  picrite basalt 

6  dolerite 15  rhyodacite 

7  dunite  16  rhyolite 

8  gabbro 17  syenite 

9  granodiorite 18  trachyte 

Table 2: The names of 18 types of igneous rock elicited from a geologist as part of a structured interview.  

The expert was shown possible ways of sorting cards in a toy domain as part of the briefing session. 

He was then asked to sort the real elements in the same way. The dimensions/piles which the expert 

used for the individual card sorts are presented in Table 3. 

Sort # Dimension Piles 

1 grain size 1=coarse, 2=medium, 3=fine 

2 colour 1=melanocratic, 2=mesocratic, 3=leucocratic 

3 emplacement 1=intrusive, 2=extrusive 

4 presence of olivine 1=always, 2=possibly, 3=never 

5 presence of quartz 1=always, 2=possibly, 3=never 

6 percentage of silica 1= >68%, 2= <68%, 3= about 68% 

7 density 1=very light, 2=light, 3=medium, 4=dense, 5=very dense 

Table 3: The results of seven card sorts undertaken as part of a concept sorting knowledge elicitation session with a 
geologist. 
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Table 4 shows the piles into which each of the rock types in Table 2 was placed as part of the 

sequence of card sorts. As can be seen from Table 4, many of the elements are distinguishable from 

one another, even with this limited number of card sorts. 

 Rock  

Sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 3 3 3 1 2 1 1 1 1 1 2 1 3 3 1 1 3 

2 3 2 2 2 2 1 1 2 3 3 1 3 1 1 3 3 3 3 

3 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 1 2 

4 1 3 2 3 3 2 1 2 3 3 1 3 1 1 3 3 3 3 

5 1 2 2 2 2 2 3 2 1 1 3 1 3 3 1 1 1 2 

6 2 2 2 3 2 2 2 2 3 1 2 1 2 2 1 1 2 2 

7 1 3 4 2 3 4 5 4 1 1 5 1 5 4 2 1 3 2 
Table 4: The positioning of cards representing different types of igneous rock (see Table 2) in the piles resulting from 

seven card sorts with a geologist (see Table 3). 

Using the results of the card sorts, we can attempt to extract decision rules directly. An example of a 

rule extracted from the card sorting data is: 

IF  the grain size is fine  (sort 1/pile 3) 

AND the color is mesocratic  (sort 2/pile 2) 

AND its emplacement is extrusive (sort 3/pile 2) 

AND it does NOT contain olivine  (sort 4/pile 3) 

AND may possibly contain quartz  (sort 5/pile 2) 

AND it contains less than 68% silica (sort 6/pile 2) 

AND its density is medium   (sort 7/pile 3) 

THEN the rock is andesite   (outcome 2) 

As can be seen from this example, card sorts often produce long and cumbersome rules. In fact 

many of the clauses may be redundant. For example, once you have established that the grain size is 

small, then it is going to be an extrusive rock. The utility of the technique, however, does not reside 

solely in the production of decision rules. We can use it, as we have said, to explore the general 

inter-relationships between concepts in the domain. We can also use the technique to elicit the 

features of concepts12 that might not otherwise surface in the context of other techniques.  

The advantages of concept sorting can be characterised as follows. It is fast to apply and easy to 

analyse. It also serves to make explicit the implicit structure that experts impose on their expertise. 

In fact, the process of performing concept sorting is often instructive to the expert – a sort can lead 

the expert to see structure that he himself has not consciously articulated before. Concept sorting 

can also be a highly efficient technique, especially when computerised support is available for the 

implementation and analysis of the sorting procedure. Unlike the case with interviews and protocol 

analysis, time can often be saved by not having to transcribe and analyse lengthy verbal reports13. 

                                                             
12 It is important to bear in mind that although the name of the technique suggests that its use is limited to 

concepts, the technique can, in fact, be applied to knowledge elements of any type. The cards used in a card 

sorting task, for example, might name tasks, goals, actions, resources, and so on; the only restriction is that in 

any sorting session the cards should be of the same knowledge type. 
13 Although it is not necessary to make an audio recording of concept sorting sessions, we recommend that such 
records are, in fact, made. An expert makes many asides, comments and qualifications in the course of sorting 

ranking and so on. In fact one may choose to use the contrived methods as a means to carry out auxiliary 

structured interviews. The structure this time is centred on the activity of the technique. 
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Finally, in domains where the concepts are perceptual in nature (i.e. X-rays, layouts and pictures of 

various kinds), then the cards can be used as a means of presenting these images and attempting to 

elicit names for the categories and relationships that might link them. 

The techniques does, of course, have its disadvantages. Experts can often confound dimensions by 

not consistently applying the same semantic distinctions throughout an elicitation session. 

Alternatively, they may over simplify the categorisation of elements, missing out important caveats. 

Repertory Grids 

This technique has its roots in the psychology of personality (Fransella et al., 2003; Jankowicz, 2003; 

Kelly, 1955). It is designed to reveal a conceptual map of a domain in a fashion similar to the concept 

sorting technique discussed above. The work of Mildred Shaw and Brian Gaines was particularly 

important in promoting the use of the technique (Shaw & Gaines, 1987), and the development of 

computerized versions of the technique was an important step in making the repertory grid a 

standard element of the knowledge elicitation technique palette (the technique as developed in the 

1950s was very time-consuming to administer and analyse by hand). One example of repertory grid 

software is WebGrid 5, which can be accessed from the WebGrid website14. WebGrid 5 is the latest 

version of the Web-based implementation of the repertory grid technique that was described by 

Gaines and Shaw (Gaines & Shaw, 1997; Shaw & Gaines, 2001), as part of their attempt to make 

knowledge acquisition technologies accessible via the World Wide Web. The software provides an 

excellent means of experimenting with the approach and indeed undertaking machine-supported 

elicitation sessions 

As part of the repertory grid technique subjects are presented with a range of domain elements and 

asked to choose three, such that two are similar, and different from the third. This is known as the 

method of triadic elicitation (e.g., Caputi & Reddy, 1999)15. In order to demonstrate this technique, 

suppose we were trying to uncover an astronomer’s understanding of the planets within our own 

solar system. We might present her with a set of planets, and she might choose Mercury and Venus 

as the two similar elements and Jupiter as different from the other two. The expert is then asked for 

her reason for differentiating these elements, and this dimension is known as a construct. In our 

example, ‘size’ might be a suitable construct that differentiates between the selected elements. The 

remaining elements are then rated with respect to this construct.  

This process continues with different triads of elements until the expert can think of no further 

discriminating constructs. The result is a matrix of similarity ratings, relating elements and 

constructs. This is can be analyzed using a variety of statistical techniques, of which the most 

popular is probably called cluster analysis. Cluster analysis can reveal clusters of concepts, some of 

which may not have been articulated using other kinds of techniques (e.g., interviews).  

Figure 1 shows the results of a repertory grid applied to the domain of planets (within our own solar 

system). We can see that the expert has so far generated seven constructs along which the planets 

vary. In this case, a nine point rating scale has been used, and, in the case of the ‘size’ (small/large) 

construct, the smallest planet, Mercury, has been given a rating 1 and the largest planet, Jupiter, a 

                                                             
14 See http://gigi.cpsc.ucalgary.ca/. 
15 In fact, Kelly (1955) describes a number of variations on the general triadic elicitation procedure. More 

information about these variations can be found in Fransella and Bannister (Fransella & Bannister, 1977). 
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rating of 9. The other planets have been rated in a comparative manner along the size construct16. 

The analysis has already revealed clusters of both constructs and elements. Thus, Jupiter and Saturn 

are clustered together at around 84% similarity, Neptune and Uranus at around 88% similarity, and 

these two pairs of clusters are themselves clustered together at around 79% similarity17. An 

astronomer might well observe that this group of four planets constitutes the gas giants. A new 

concept – gas giant – has thus been uncovered, which might be distinguished from the other 

planets; i.e., the rocky or terrestrial planets. Note that Pluto bears very little similarity to other 

planets in the grid. In fact, it appears to occupy a category all by itself (although it does bear more 

similarity to the rocky planets than the gas giants). This is clearly interesting given the debate 

concerning the ontological status of Pluto as a proper planet18.  

Constructs can also be the focus of cluster analysis. With respect to Figure 1, we can see that the 

constructs relating to temperature and distance from the Sun are clustered, as are the presence of 

rings and multiple moons. Such associations can reveal causal or other law-like relations in the 

domain; for example, the relationship between rings and moons may indicate some sort of causal 

relationship between the two.  

 

Figure 1: The results of the repertory grid technique applied to the domain of planets (implemented using WebGrid 5). 

Variants on the repertory grid technique allow you to run sociogrids (e.g., Shaw, 1980). These allow 

you to compare one individual’s view of the domain with another’s, and this can be important in 

terms of highlighting areas of consensus and difference among experts.  

                                                             
16 In Figure 1, shading in the matrix is also used to highlight ratings. Heavy shading designates a high value for 

an element on a construct. 
17 The similarity ratings between the individual elements and element clusters, in this case, are based on the 

FOCUS algorithm described by Jankowicz and Thomas (1982). The percentage similarity between adjacent 

elements in the grid is computed as ((-100 * d) / c(n – 1)) + 100, where d is the sum of the absolute differences 
between the ratings of adjacent elements, c is the number of constructs in the grid (i.e., 7), and n is the largest 

rating possible (i.e., 9). 
18 See http://news.bbc.co.uk/1/hi/5282440.stm. 
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Laddered Grids 

Another somewhat contrived technique that you will need to explain carefully to the expert before 

starting is the laddered grid technique. As part of this technique the expert and elicitor construct a 

graphical representation of the domain in terms of the relations between domain or problem solving 

elements. The result is a two-dimensional, hierarchically-structured graph where nodes are 

connected by labelled arcs. No extra elicitation method is used here; expert and elicitor construct 

the graph together by negotiation.  

In using the technique the elicitor enters the conceptual map of the domain (see ‘Concept Mapping 

and Process Mapping’) at some point and then attempts to move around it with the expert. A formal 

specification of how we use the technique is shown below together with an example of its use. 

 Start the expert off with a seed item. 

 Move around the domain map using the following prompts: 

o To move DOWN the expert’s domain knowledge: 

 Can you give examples of <ITEM>? 

o To move ACROSS the expert’s domain knowledge: 

 What alternative examples of <CLASS> are there to <ITEM>? 

o To move UP the expert’s domain knowledge: 

 What have <SAME LEVEL ITEMS> got in common? 

 What are <SAME LEVEL ITEMS> examples of? 

o To elicit essential properties of an item: 

 How can you tell it is <ITEM> ? 

o To discriminate items: 

 What is the key difference between <ITEM 1> and <ITEM 2>? 

The elicitor may move around the knowledge map in any order which seems appropriate or 

convenient. As the session progresses, the elicitor keeps track of the elicited knowledge by drawing 

up a network on a large piece of paper, or, if computer supported, via some other graphical 

characterisation. This representation allows the elicitor to make decisions (or ask questions) about 

what constitutes higher or lower order elements in the domain and what differences exist between 

elements in the network. In order to give the reader a flavour of the technique, there follows an 

extract from a laddered grid elicitation session. Once again, the knowledge domain is geology. 

KE:  So how could you tell something was dacite?  
EX:  Well + examine the fresh surface and the weathered surfaces first + looking at grain size, 

the relationship between the grains 
KE:  Can I just stop you there. What type of grain size is it?  
EX:  Coarse, medium, fine grain, oh, you want me to actually say what dacite is?  
KE: The grain, in dacite what would it be?  
EX:  Er + medium grained.  
KE: Medium grained, right. So can you give me other examples of medium grained rocks?  
EX: Medium grained rocks + dolerite... Granodiorite as well... And we’ll stay with that.  
KE: Right, erm, what alternative is there to a medium grained rock?  
EX: Well, you can have a coarse grained one or a fine grained one, those are sort of the three 

major ones.  
KE: Right, can you give me examples of coarse grained rocks?  
EX: Er, gabbro, granite... hmm, yeah, those two.  
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KE: And any examples of fine-grained rocks?  
EX: Er, basalt... er andesite, trachyte...microgranite as well.  
KE: Right, erm so. What about others 
EX: Some of these are sort of a metamorphic ones where you’re going to get large grains in a 

fine-grained matrix. There are phenocrysts in them, that’s what we call the large grains 
KE: Is, is there a word for that kind of texture or?  
EX: Porphyritic mixture  
KE: Can you give me the examples of the porphyritics...  
EX: Nepheline-syenite, oh and Kentallenite 
KE: How would you go about telling the difference between dolerite and granodiorite? What 

is the key difference?  
EX: Whether it’s got quartz or hasn’t got quartz or the percentage of quartz present will define 

whether it’s an acidic rock or a basic rock, basic not having any quartz in it at all, and then 
er if there’s a low amount, that’s going to be an intermediate rock  

KE: Which, which are the intermediate?  
EX: Dacite + you’ve got high quartz are granite, microgranite, and andesite, and no quartz 

gabbro, basalt, dolerite and trachyte, intermediate dacite.  

 

In the course of this laddered grid interview the elicitor drew up a hierarchical representation of the 

domain as shown in Figure 2. This is only one of a number of representations that could have been 

made. In this case the concepts of fine, medium and coarse grained rocks have been understood to 

be classes of rock type. Similarly the concept of an acidic, intermediate or basic rock has been 

treated as a class of rock type. However, the grain size and acidity (amount of quartz) could have 

been represented as properties of the particular rock types.  

This hierarchy gives rise to the following set of rules that could be included in the knowledge base of 

a knowledge intensive system for geological rock classification. 

IF  the rock is of medium grain size 

AND the rock is intermediate 

THEN the rock may be dacite 

IF  the rock is of coarse grain size 

AND the rock is acidic 

THEN the rock may be granite 

IF  the rock is of coarse grain size 

AND the rock is basic 

THEN the rock may be gabbro 

As is the case with many knowledge elicitation techniques, it helps to keep an audio record of the 

session for future review or transcription. Laddering is an excellent way of carrying out a structured 

interview. In addition, it is a technique that can be applied to a variety of knowledge types besides 

concepts; for example, actions, tasks, goals, resources, and so on can be the subject of a laddered 

grid knowledge elicitation session. 
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Figure 2: Example of a laddered grid in the geology domain (this grid was developed using the Ladder Tool that is 

available as part of the PCPACK knowledge editing toolkit19). 

Limited Information Task 

A technique which can prove an excellent complement to the methods already outlined is a 

technique called the limited information task (Hoffman, 1987) or 20 questions (Grover, 1983). Using 

                                                             
19 See http://www.tacitconnexions.com/. 
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this technique, the expert is provided with little or no information about a particular problem to be 

solved, and the expert must therefore ask the elicitor for specific information that will be required to 

solve the problem. The information that is requested, along with the order in which it is requested, 

provides the elicitor with an insight into the expert’s problem solving strategy. One difficulty with 

this method is that the elicitor needs a good understanding of the domain in order to make sense of 

the expert’s questions and to provide meaningful responses. The elicitor should have forearmed 

themselves with a problem from the domain together with a crib sheet of appropriate responses to 

the questions. 

In one of the versions of the limited information task that we use, we tell the expert that the elicitor 

has a scenario in mind and the expert must determine what it is. The scenario might represent a 

problem, a solution or a problem context. The expert is told that they may ask the elicitor for more 

information, though what the elicitor gives back is terse (e.g., it may consist of simple ‘yes’ or ‘no’ 

responses) and does not go much beyond what was asked for in the question. The expert may be 

asked to explain why each of the questions was asked. 

The limited information task is useful because it provides information about the relative importance 

of particular items of information as part of a problem-solving process. Often traditional knowledge-

based systems gather the right data but the order in which the data is gathered and used can be very 

different from how an expert works. This can decrease the acceptability of any implemented system 

if other experts are to use it, and it also has consequences for the intelligibility of any explanations 

the system offers in terms of a retrace of its steps to a solution. 

The drawbacks to this technique are that the elicitor needs to have constructed plausible scenarios, 

and the elicitor has to be able to cope with the questions that are asked. The experts themselves are 

sometimes uncomfortable with this technique; this may well have to do with the fact that, as with 

other contrived techniques, it is not a natural means of manifesting expertise. In addition, whilst a 

few scenarios may reveal some of the general rules in a domain, the elicitation is very case specific. 

In order to get a broad range of knowledge, many different scenarios need to be constructed and 

used. 

An interesting variation on this method is a form of telephone consultancy. Here we take two 

domain experts and place them at opposite ends of a table and ask them to imagine that one is a 

‘client’ who is ringing up the other, a ‘consultant’, to ask for advice concerning a particular problem. 

They then engage in a conversation in which the ‘consultant’ tries to elicit the nature and context of 

the problem, and finally attempts to offer appropriate advice. In this variation of the limited 

information task you can rely on one of the experts to generate interesting cases. In addition, the 

expert playing the role of the ‘client’ can provide appropriate responses to the ‘consultant’s’ 

enquiries. The only drawback is that sometimes experts construct extremely difficult cases for each 

other in order to test each other’s mettle! 

Concept Mapping and Process Mapping 

Concept mapping and process mapping are both examples of diagramming techniques (Milton, 

2012) that focus on the structure of conceptual and procedural knowledge, respectively. Concept 

mapping is probably one of the most widely used knowledge elicitation techniques, in part due to 

the popularity of the CmapTools software that was developed by the Institute for Human and 

Machine Cognition (IHMC) (see below).  
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The artefacts that result from concept mapping (i.e., concept maps) are collections of propositions 

that are commonly displayed as a 2-dimensional network of labelled grids and nodes (see Figure 3). 

Concept mapping has been reported to be a very efficient knowledge elicitation technique with the 

technique yielding an average of two useful propositions per session minute (Hoffman et al., 2001). 

The technique has also demonstrated its utility in a variety of disparate domains, with meteorology 

(Hoffman & Lintern, 2006) and intelligence analysis (Derbentseva & Mandel, 2011) serving as just a 

couple of examples.  

 

Figure 3: A concept map intended to explore the notion of a ‘concept map’ (source: http://cmap.ihmc.us).  

Both concept and process mapping can be performed with popular knowledge acquisition toolkits, 

such as PCPACK and CmapTools (see below). In practice, however, CmapTools, tends to be used 

primarily for concept mapping, while the features of the Diagram Tool within PCPACK make it ideally 

suited for process mapping. One of the features of the PCPACK Diagram Tool is a capability to ‘drill 

down’ into a process, detailing the structure of its constituent subprocesses. It also provides a range 

of process-oriented graphical notations that are consistent with those seen in popular modelling 

paradigms (e.g., UML activity diagrams).     

Classification of Knowledge Elicitation Techniques 

We have now sampled some of the major approaches to knowledge elicitation and, where 

appropriate, given a detailed description of techniques that are likely to be of use. There are many 

variants on the methods we have described. Below we have provided a taxonomy of methods with 

which we are familiar together with a primary reference for each one. 

 Non-contrived/Natural 

o Interviews 

 Structured 

 Fixed Probe (Shadbolt & Burton, 1990a; Wood & Ford, 1993) 
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 Focused Interviews (Hart, 1986; Scott et al., 1991) 

 Forward Scenario Simulation (Grover, 1983) 

 Critical Decision Method (Hoffman et al., 1998) 

 Semi-Structured 

 Knowledge Acquisition Grid (LaFrance, 1987) 

 Teach Back (Johnson & Johnson, 1987) 

 Unstructured (Weiss & Kulikowski, 1984) 

o Protocol Analysis 

 Verbal 

 Online (Johnson et al., 1987) 

 Offline (Elstein et al., 1978) 

 Shadowing (Clarke, 1987) 

 Collegial Verbalization (Erlandsson & Jansson, 2007) 

 Behavioural (Ericsson & Simon, 1996) 

 Contrived  

o Diagramming 

 Laddered Grid (Corbridge et al., 1994; Walker & Crittenden, 2012)  

 Concept Mapping (Novak & Cañas, 2006) 

 Process Mapping (Milton, 2012) 

o Sorting and Rating 

 Concept Sorting (Gammack, 1987) 

 Repertory Grid (Shaw & Gaines, 1987) 

 Pathfinder (Schvaneveldt et al., 1985) 

o Constrained Processing 

 Limited-Information Task (Hoffman, 1987) 

 20 Questions (Grover, 1983) 

This is, of course, only one possible structure for a taxonomy of knowledge elicitation techniques. A 

number of alternative classifications appear in the literature based on a variety of perspectives, such 

as the nature of the interaction between elicitor and expert, the type of knowledge (conceptual vs. 

procedural) elicited from the expert, and the kind of materials required by the task or delivered as 

outputs from the task. Gavrilova and Andreeva (2012) categorize knowledge methods based on the 

level of involvement of an expert and an elicitor and type of interaction/collaboration between 

them. They distinguish between ‘active’ (analyst-leading) and ‘passive’ (expert-leading) techniques, 

where an active technique requires “the active position of an analyst, who ‘pulls’ the knowledge 

from the expert with the help of specially prepared questions” and a passive technique is a 

technique in which “the analyst’s interference into the process in which the expert is engaged is very 

limited” (Gavrilova & Andreeva, 2012, p. 529). As another example of the taxonomic organization of 

knowledge elicitation techniques, Milton (2012) organizes knowledge elicitation techniques into 

three categories, namely questioning techniques (e.g., laddering), task-based techniques (e.g., 

concept sorting) and diagramming techniques (e.g., concept mapping). 

None of the existing taxonomies (including the one presented here) are necessarily complete with 

respect to the range of knowledge elicitation techniques that have been discussed in the literature. 

In part, this stems from the fact that the goals of knowledge elicitation and the kind of task contexts 
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in which knowledge elicitation is deemed important have changed over time. As pointed out by 

Hoffman and Lintern (2006), the methodology of knowledge elicitation could be folded into the 

broader methodology of cognitive task analysis, which is a focal point for human factors and 

cognitive systems engineering. This serves to blur the distinction between knowledge engineering 

and cognitive engineering, and it tends to result in a greatly expanded palette of knowledge 

elicitation methods. A variety of ethnographic methods, for example, could be seen as forms of 

knowledge elicitation  (see Hutchins, 1995). 

Other techniques that are sometimes presented as knowledge elicitation techniques are the various 

methods associated with data mining (Witten & Eibe, 2005) machine learning (Mitchell, 1997) and 

rule induction (Hart, 1986). These techniques are not covered in detail here because they are not 

techniques that are typically used in conjunction with domain experts. There are, however, some 

exceptions. In particular, there have been a number of recent attempts to combine expert input with 

machine learning techniques in order to improve the quality of the knowledge that results from the 

machine learning process. Typically, the kind of outputs delivered by machine learning tend to prove 

difficult for experts to understand and extend, and this presents problems in terms of the 

maintenance of the knowledge base and the trust that experts place in automated decision-making 

processes. Argument-based machine learning (ABML) is a technique which was developed to 

address some of these issues (Mozina et al., 2008). The technique is intended to combine expert 

knowledge with machine learning processes, and it requires the expert to explain the reasons for 

decisions in particular cases. Groznik et al (2013) describe a recent application of the technique, 

wherein ABML is used to elicit knowledge from neurologists in order to develop a decision support 

system concerned with neurological diagnoses.  

Experts and Expertise 
As the source of much of the knowledge that is captured as part of a knowledge engineering 

initiative, domain experts are a critical focus of attention for those involved in knowledge 

engineering. Failing to pay adequate attention to the differences among experts, as well as the level 

of expertise they possess, is likely to have a profound effect on the efficiency of the knowledge 

elicitation process, as well as the quality of the knowledge that gets elicited.  

One of the first challenges that must be addressed in any knowledge engineering project is the 

identification of individuals with the relevant expertise. In some cases, it may be obvious who the 

experts are within a given domain; in other cases, however, it may not at all be clear how experts 

should be identified. Factors such as the possession of professional qualifications, experience and 

occupational position, as well as the results of testing and screening processes, may all be used as 

the basis for expert identification; however, none of these methods is without its problems 

(Farrington-Darby & Wilson, 2006). For example, the position held by an individual is a commonly 

used criterion for expert selection; however, the reasons for individuals being awarded a position 

within a given occupational setting may have very little to do with their actual expertise (see 

Farrington-Darby & Wilson, 2006). In terms of experience, a general rule of thumb is that expertise 

develops after about 10,000 hours of practice. Recent research, however, has suggested that 

expertise in some domains, such as weather forecasting, may take considerably longer (see Hoffman 

& Lintern, 2006). In spite of the difficulties, it is worth spending some time considering who and who 

is not an expert. As Burton et al  (1990) note: 
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“Inadequate expertise is likely to continue to be a problem for those working in applied 

settings. We suggest that considerable time be put into the original selection of an 

expert. External validation of an expert’s suitability will save considerable time and 

wasted effort in future sessions.” (p. 177) 

Once experts have been identified, it is important to consider the differences between experts, as 

well as the nature of the expertise they manifest. Experts can be differentiated in a number of ways; 

however, one scheme that we have found useful in practice is to distinguish between three kinds of 

experts: the academic, the practitioner, and the samurai. Each of these types of expert differs along 

a number of dimensions20. These include the outcome of their expert deliberations, the problem 

solving environment they work in, the state of the knowledge they possess (both its internal 

structure and its external manifestation), their status and responsibilities, their source of 

information, and the nature of their training. 

How are we to tell these different types of expert apart when we encounter them? The academic 

type regards their domain as having a logically organised structure. Generalisations over the laws 

and behaviour of the domain are important to them; theoretical understanding is prized. Part of the 

function of such experts may be to explicate, clarify and teach others. They thus talk a lot about their 

domains. They may feel an obligation to present a consistent story both for pedagogic and 

professional reasons. Their knowledge is likely to be well structured and accessible. These experts 

may suppose that the outcome of their deliberations should be the correct solution of a problem. 

They believe that the problem can be solved by the appropriate application of theory. They may, 

however, be remote from everyday problem solving. 

The practitioner class, on the other hand, are engaged in constant day-to-day problem solving in 

their domain. For them, specific problems and events are the reality. Their practice may often be 

implicit, and what they desire as an outcome is a decision that works within the constraints and 

resource limitations in which they are working. It may be that the generalised theory of the 

academic is poorly represented and articulated by the practitioner. For the practitioner, heuristics 

may dominate and theory is sometimes thin on the ground. 

The samurai is a pure performance expert – their only reality is the performance of action to secure 

an optimal performance. Practice is often the only training, and responses are often automatic. 

One can see this sort of distinction between experts in any complex domain. Consider, for example, 

medical domains where we have professors of the subject, busy doctors working the wards, and 

medical ancillary staff performing many important but repetitive clinical activities. 

The knowledge elicitor must be alert to these differences because the various types of expert will 

perform very differently in knowledge elicitation situations. The academic will be concerned to 

demonstrate mastery of the theory. They will devote much effort to characterising the scope and 

limitations of the domain theory. Practitioners, on the other hand, are driven by the cases they are 

solving from day to day. They have often compiled or routinised any declarative descriptions of the 

theory that supposedly underlies their problem solving. The performance samurai will more often 

                                                             
20 In practice, of course, experts do not tend to fall in one or other categories; rather, they embody elements of 

all three types of expert. 



28 
 

than not turn any knowledge elicitation interaction into a concrete performance of the task, simply 

exhibiting their skill. 

Another important distinction between experts is with respect to their level of expertise. A number 

of models of expertise development have been proposed within the cognitive science and human 

factors communities, and these may serve as the basis for a second dimension along which experts 

can be classified – one that is largely orthogonal to the previously mentioned distinction between 

academics, practitioners and samurais. One model, proposed by Dreyfus and Dreyfus (1986), 

suggests that expertise develops via the progression through five sequential stages: novice, 

advanced beginner, competent, proficient and expert. The transition between these stages is 

assumed to depend on the accumulation of situated practical experience within the relevant 

domain. Another classification scheme derives from the Craft Guilds of the Middle Ages (Hoffman, 

1998; Hoffman et al., 1995). In this case, the developmental scale ranges from a ‘Naivette’ (i.e., one 

who is totally ignorant of a domain) through to a ‘Master’ who is regarded as one of an elite group of 

experts – the expert of experts.  

Recognizing the developmental stage of an expert can be important for the purposes of knowledge 

elicitation. Clearly, individuals with well-developed levels of expertise are important targets for 

knowledge elicitation, since they are the ones who are likely to possess the greatest amount of 

domain-relevant knowledge. Having said that, expertise development tends to be associated with a 

shift from explicit to tacit knowledge, and thus individuals at different points on the developmental 

trajectory from novice to master may be differentially responsive to particular kinds of knowledge 

elicitation technique. In certain kinds of domains, for example, a ‘Journeyman’ or ‘Expert’ may have 

greater conscious access to domain-relevant knowledge as compared to a ‘Master’. For this reason, 

techniques such as interviews may yield more information from those at intermediate levels of 

expertise development as compared to those further along the developmental scale.  

Clearly, the expertise embodied by experts is not of a homogenous type (Feltovich et al., 1997). In 

constructing any knowledge-intensive system, it is likely that very different types of knowledge will 

be uncovered, and these are likely to have very different roles in the system under development. In 

general, we can distinguish between four kinds of knowledge (three of these – the domain, 

inference and task knowledge categories – are explicitly represented within knowledge engineering 

methodologies, such as the CommonKADS methodology (see Schreiber et al., 2000)): 

 Domain Knowledge. Firstly, we can distinguish what is called domain knowledge. This term 

is being used in the narrow sense of knowledge that describes the concepts and elements in 

the domain and relations between them. This sort of knowledge is sometimes referred to as 

declarative knowledge – it describes what is known about things in the domain. 

 Inference Knowledge. There is also knowledge and expertise that has to do with what we 

might call the inference level. This is knowledge about how the components of expertise are 

to be organised and used in the overall system. It tells us the type of inferences that will be 

made and what role knowledge will play in those inferences. This is quite a high level 

description of expert behaviour and may often be implicit in expert practice. 

 Task Knowledge. Another type of expert knowledge is the task level. This is sometimes 

called procedural knowledge. This is knowledge concerned with goals, sub-goals, tasks and 
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sub-tasks. Thus, in a classification task there may exist a number of tasks to perform in a 

particular order so as to utilise the domain level knowledge appropriately. 

 Strategic Knowledge. Finally, there is a level of expert knowledge referred to as strategic 

knowledge. This is information that monitors and controls the overall problem solving 

process.  

Within any of these categories of knowledge, the information may be either implicit or explicit. Thus, 

in some domains, the expert may have no real notion of the strategic knowledge they are following, 

whilst in others this knowledge is very much at the forefront of their deliberations. 

Methodologies and Programmes 
We turn next to the question of how knowledge elicitation techniques should be assembled to form 

a programme of knowledge acquisition. There are a number of articles and books on how to 

undertake knowledge elicitation as part of knowledge engineering project. Milton (2007), for 

example, describes the processes involved in knowledge elicitation and modelling in the form of a 

step-by-step guide. The choice as to which knowledge elicitation technique to use in any particular 

situation is guided by a variety of criteria, including the characteristics of the domain, of nature of 

the domain expert, and the requirements associated with the proposed knowledge system solution. 

Furthermore, it is clear that some techniques are going to be more costly in terms of time with the 

expert, or else the effort required for the analysis of elicited material. In order to select an 

appropriate knowledge elicitation technique, one needs to understand which method best fits the 

particular problem and situation. This calls for empirical evaluations of each of the techniques with 

respect to factors such as the nature of experts and their associated expertise. Although there are a 

variety of difficulties associated with the evaluation of knowledge elicitation techniques (Shadbolt et 

al., 1999), the available research has provided some general conclusions as to their relative efficacy 

(Burton et al., 1987; Burton et al., 1990; Hoffman et al., 1995; Shadbolt & Burton, 1990b). It has also 

provided some guidelines as to when to use particular kinds of knowledge elicitation technique. 

Gammack and Young (1985), for example, offer a mapping of knowledge techniques onto domain 

types. Their analysis requires that domain knowledge be separated into different categories, and 

they provide suggestions about which techniques are most likely to be effective within each 

category. 

One of the main criteria for choosing between different techniques within a programme of 

knowledge elicitation is likely to be the type of knowledge that needs to be elicited. In this respect, 

the distinction between explicit and tacit knowledge has proven to be of significant interest. 

Different knowledge elicitation techniques are thus deemed to be differentially effective at eliciting 

explicit or tacit knowledge (see Figure 4). Another knowledge dimension that is often seen as 

important is the distinction between conceptual and procedural knowledge. Here, techniques such 

as process mapping are considered to be more effective for the elicitation of conceptual knowledge 

and techniques such as concept mapping and concept sorting are deemed to be more effective for 

the elicitation of conceptual knowledge. Figure 4 summarizes the differential suitability of a number 

of knowledge elicitation techniques with respect to these two knowledge dimensions (i.e., 

explicit/implicit and conceptual/procedural). 
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Figure 4: Differential utility of knowledge elicitation techniques with respect to the elicitation of different kinds of 
knowledge (source: Milton, 2003). 

The notion that different knowledge elicitation methods are differentially effective at eliciting 

particular kinds of knowledge forms part of what has become known as the differential access 

hypothesis (Hoffman et al., 1995). Although some empirical support for the hypothesis has been 

found, a strong version of the differential access hypothesis (namely the idea that certain kinds of 

knowledge can only be elicited via the use of particular techniques) remains a point of contention 

within the knowledge engineering community (Hoffman & Lintern, 2006). When it comes to the 

notion of tacit knowledge, for example, Hoffman and Lintern (2006) suggest that the different 

knowledge elicitation techniques establish different conditions under which the verbalization of tacit 

knowledge is more or less likely. They suggest knowledge elicitation techniques should be seen as 

‘scaffolds’ that support the expression or communication of knowledge. With this in mind, the key 

aim in knowledge elicitation becomes one of establishing the right kind of conditions under which 

experts can articulate, or otherwise communicate, their expertise. These kind of conditions are 

clearly influenced by the kind of technique that is used, since each technique is associated with 

different forms of social interaction, access to mnemonic cues, the use of different diagrammatic 

representations, and so on. With this in mind, it might be argued that something like tacit 

knowledge should not be seen as a form of knowledge that can never, in principle, be verbalized by 

experts; rather, it should be seen as a form of knowledge that is more easily articulated in certain 

situations as opposed to others. This, suggest Hoffman and Lintern (2006), has shifted the debate 

from a consideration of differential access to one of differential utility when it comes to the selection 

of knowledge elicitation techniques:  

 “The hypothetical problem of differential access has given way to a practical 

consideration of differential utility. Any given method might be more useful for certain 

purposes, might be more applicable to certain domains, or might be more useful with 

certain experts having certain cognitive styles. In other words, each knowledge 

elicitation method has its strengths and weaknesses. Some of these are purely 
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methodological or procedural (e.g., transcription and protocol analysis takes a long 

time), but some relate to the content of what is elicited.” (Hoffman & Lintern, 2006, pp. 

216-217) 

In spite of this change in perspective, however, it should be clear that there remains a compelling 

reason to exploit a variety of techniques within any programme of knowledge elicitation. Even when 

it appears that only one particular body of knowledge is being dealt with – one which shows no 

internal differentiation with respect to (e.g.) explicit/tacit or procedural/conceptual distinctions – it 

is still advisable to use a variety of techniques. One reason for this stems from the possibility that the 

knowledge elicited by different techniques may predict actual performance to a greater or lesser 

extent. Studies have thus found that the content of verbal reports and the details of actual 

performance are not always the same. Cooke and Breedin (1994), for example, discovered a 

dissociation between the written explanations that were offered for physics trajectory problems and 

the actual predictions that were made concerning those trajectories. These results suggest that the 

results of multiple techniques should be compared with each other in order to evaluate the 

connection between knowledge and performance. 

One of the factors that may inform the design of knowledge elicitation programmes is the 

methodological framework in which knowledge elicitation and modelling is undertaken. Although a 

number of methodologies exist for the development of ontologies within the context of the 

Semantic Web (e.g., Sure et al., 2003), such methodologies typically ignore the early steps of the 

knowledge engineering process and place little emphasis on knowledge elicitation. CommonKADS 

(Schreiber et al., 2000) is one of the few methodologies that explicitly incorporates the use of 

knowledge elicitation techniques. One way in which CommonKADS helps to structure the knowledge 

elicitation activity is by the distinction it makes between domain, task and inference knowledge (see 

above). These different kinds of knowledge are represented as distinct ‘layers’ within a 

CommonKADS knowledge model specification, and mappings are established between the layers 

(e.g., between elements of inference and domain knowledge) in order to flexibly link different kinds 

of knowledge together in the context of a particular knowledge solution (see Figure 6). 

CommonKADS also offers a range of reusable components that can be used as points of departure 

for the selection and implementation of knowledge elicitation activities. The reusable components 

include a set of domain schemas, a catalogue of inference types and a library of task templates. 

These are useful not only in terms of improving the efficiency of the modelling process, they also 

serve to focus attention on the kinds of knowledge that needs to be acquired in the context of a 

particular kind of knowledge-based activity. Each of the CommonKADS task templates (see Figure 5) 

thus highlights the typical pattern of inferences that are associated with each kind of task, and it also 

links these inferences with particular bodies of domain knowledge (e.g., concepts) (see Figure 6). 

This kind of information can be extremely valuable in terms of highlighting the kind of knowledge to 

elicit and the kind of behavioural patterns to look for in expert performance.   
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Figure 5: Knowledge-intensive tasks recognized by the CommonKADS methodology. Each of these tasks are associated 
with default inferences, control structures and template domain schemas. 

 

Figure 6: Linkages between the various layers of the CommonKADS knowledge model for a particular kind of knowledge-
intensive task – in this case, diagnosis. Each task is associated with specific types of inferences that are themselves 

linked with particular elements at the level of domain knowledge. 

Knowledge Elicitation Tools 
As indicated in the previous section, the attempt to improve our understanding of the conditions 

under which knowledge elicitation techniques are most effective, as well as how to adapt those 

techniques within specific knowledge elicitation programs, is the focus of recent and ongoing 
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research attention. Another focus of attention concerns the development of software tools to 

support the knowledge elicitation process.  

The software tools that are presented in this section – PCPACK, Protege and CmapTools – have a 

long history of development and use within the knowledge acquisition community. The recent 

development of these tools has been strongly influenced by the Web21 and, in particular, the 

Semantic Web. All the tools have thus been extended in particular ways to accommodate the 

representational frameworks associated with the Semantic Web. Recent versions of PCPACK thus 

provide support for RDF export, while knowledge elicitation plug-ins for Protégé interoperate with 

the Protégé-OWL plug-in in order to provide support for knowledge elicitation in the context of 

ontology development (Wang et al., 2006). There has also been a recent effort to extend CmapTools 

in order to provide support for the visualization and editing of OWL ontologies (Eskridge & Hoffman, 

2012; Hayes et al., 2005). 

PCPACK 

PCPACK is an integrated suite of knowledge elicitation tools that has a long history of use within the 

knowledge engineering community (Schreiber et al., 2000, chapter 8). Early versions of PCPACK 

provided computerized support for many of the knowledge elicitation techniques described earlier 

in this chapter (O'Hara et al., 1998; Shadbolt & Milton, 1999); however, more recent versions of the 

software have settled on those tools that provide the greatest level of support to those engaged in 

corporate knowledge engineering and management initiatives. The current version of PCPACK is 

maintained and distributed by Tacit Connexions, and a fully operational demonstration version of 

the software can be downloaded from the Tacit Connexions website22. PCPACK includes a variety of 

tools to support knowledge elicitation and modelling, and all of these tools are integrated with a 

single knowledge repository such that any changes to the knowledge base made using one tool are 

immediately reflected in other components of the tool suite. Among the tools included with PCPACK 

is the Ladder Tool, which is used for creating laddered grids of various kinds (e.g., taxonomic and 

meronymic concept hierarchies); a Diagram Tool, which can be used for process and concept 

mapping; a Protocol Tool, which can be used for protocol analysis; an Annotation Tool, which is used 

to provide an HTML editing interface for knowledge objects; and a Publisher Tool, which enables 

knowledge models to be published as Web-accessible ‘Knowledge Webs’. Other tools provide 

support for RDF import/export, annotation template management and the matrix-based editing of 

knowledge object properties and relationships. Figure 7 shows a screenshot of one of the PCPACK 

tools, namely the Ladder Tool.  

 

                                                             
21 For example, all the tools reviewed in this section support the publication of HTML versions of knowledge 
models. This enables the models to be accessed in the context of the conventional, document-centered Web, as 

well as the more recent data-centric Web or Web of Linked Open Data (see Heath & Bizer, 2011). 
22 See http://www.tacitconnexions.com/PCPACK%20download%20promo%20page.htm. 
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Figure 7: The PCPACK Ladder Tool. 

Protégé 

As with PCPACK, the Protégé knowledge editor23 has a long history of use within the knowledge 

engineering community. As a flexible and customizable knowledge editing environment, Protégé is 

able to provide support for a variety of knowledge engineering methodologies and modelling 

frameworks. However, ever since the advent of the Semantic Web and the development of the 

Protégé-OWL plug-in (Knublauch et al., 2004; Knublauch et al., 2005) it is probably fair to say that 

the primary use of the tool is to develop (OWL-based) ontologies.  

Unlike PCPACK, Protégé does not provide an integrated suite of knowledge elicitation tools as 

standard. The primary purpose of the tool is to support the editing of elicited knowledge rather than 

to support the process of knowledge elicitation itself. There have, however, been a number of 

attempts to provide computerized versions of the knowledge elicitation techniques as plug-ins to 

the Protégé environment. Wang et al (2006) thus describe the attempt to implement card sorting 

and laddering plug-ins in order to support the use of knowledge elicitation techniques as part of the 

ontology development process.  

Protégé is available as a free, open-source download from the Protégé website. It has typically been 

implemented as a Java-based desktop application; however, recent development efforts have seen 

the release of WebProtégé (Tudorache et al., 2013), which is a lightweight, Web-based version of the 

original Protégé environment. 

                                                             
23 See http://protege.stanford.edu/. 
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CmapTools 

Another widely used knowledge elicitation and knowledge modelling tool is CmapTools, which is 

developed and maintained by the Institute for Human and Machine Cognition (IHMC)24. CmapTools 

provides support for the development of concept maps, which can be developed in conjunction with 

a domain expert and then published on the Web. The tool enables the user to establish links 

between concept maps, which are collectively referred to as a ‘knowledge model’. In addition, links 

to other resources, such as images, videos, text documents, and so on, can be associated with any 

node in the concept map diagram.    

As with other knowledge engineering technologies, the development of CmapTools is currently 

being influenced by the Semantic Web. Researchers at the IHMC are currently exploring the 

potential to combine concept mapping capabilities with the representational formalisms 

encountered in the context of the Semantic Web (Eskridge & Hoffman, 2012; Hayes et al., 2005). 

Ultimately, this effort will enable the CmapTools concept mapping system to be used for the 

construction, sharing and visualization of OWL ontologies. 

Knowledge Elicitation, Knowledge Engineering and the World Wide Web 
The Web and the Semantic Web have had a profound impact on the discipline of knowledge 

engineering (Gil, 2011; Schreiber, 2013). In many cases, the Web now serves as both the starting  

point (e.g., by providing access to a rich source of domain-relevant knowledge and information) as 

well as the end point (e.g., by serving as a platform for knowledge publication and distribution) for 

knowledge engineering efforts. The specifications and recommendations that have emerged in the 

context of the Semantic Web initiative (Berners-Lee et al., 2001; Shadbolt et al., 2006) (for example, 

RDF, RDF-S and OWL) have served as a Procrustean bed that has affected nearly all knowledge 

representation frameworks and knowledge engineering technologies. The Web is also an 

environment that can be used for the purposes of knowledge elicitation, especially when the 

elicitation effort requires collaboration from multiple stakeholders. Finally, of course, the Web 

serves as an environment for the implementation of a whole variety of intelligent systems and 

knowledge-based solutions.  

Perhaps the most notable feature of the Web, when it comes to knowledge elicitation, is the role 

that the Web plays as a knowledge source. The Web provides access to a rich range of resources that 

are relevant to the construction of any prospective knowledge-intensive system. If one takes the 

domain used throughout much of this chapter – the classification of rocks and minerals – one is able 

to find a wealth of online resources. These range from dictionaries and definitions of terms, succinct 

summaries of the processes of rock formation, and extensive online databases. Such resources can 

serve as an important focus for the initial stages of knowledge elicitation, particularly for purposes of 

domain familiarization. They can also provide access to a range of materials that can be incorporated 

into knowledge elicitation exercises (e.g., images of different kinds of rocks can be used as the basis 

for card sorting exercises).    

Web-based resources may also serve as the direct target of knowledge acquisition efforts. Although, 

such resources by themselves are unlikely to provide all the required information – recall the 

aphorism ‘the gold is not in the documents’ – they can yield knowledge structures (for example, 

                                                             
24 See http://cmap.ihmc.us/. 
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concept lists) that are subsequently refined and extended in the course of face-to-face knowledge 

elicitation sessions.  

Complementing the use of manual knowledge acquisition methods is the use of a range of advanced 

knowledge discovery techniques that can be used to extract knowledge from online sources. These 

kind of automated techniques are vitally important given the scale of the Web and the range of 

resources that are now available. Information extraction and natural language processing (NLP) 

technologies are one focus of ongoing research attention in this area (Sarawagi, 2008), as are 

opinion mining and sentiment analysis techniques (Feldman, 2013; Pang & Lee, 2008). There is also 

interest in the use of ontology learning techniques to create initial ontological structures from large-

scale bodies of domain-relevant information (Maedche & Staab, 2003). These kind of analytic and 

learning techniques are likely to become all the more important as we move into an era where 

Linked Open Data assets (see Heath & Bizer, 2011) become increasingly prevalent on the Web. 

Web resources may also be used as part of an integrated knowledge acquisition effort that combines 

Web access with the use of conventional knowledge elicitation techniques and other forms of 

advanced machine-based processing, such as NLP. Mendonça et al (2012) thus used NLP to isolate 

initial concepts and then refined these in conjunction with domain experts using a variety of 

knowledge elicitation techniques (namely interviews, sorting and matrix-based techniques). This was 

followed by a knowledge validation phase in which the Web was used to support the collaborative 

validation of elicited knowledge. This study highlights how the Web can be exploited at several 

stages of the knowledge elicitation process: it can be used as an initial resource to support domain 

familiarization and extract initial concepts (perhaps using machine-assisted techniques, such as NLP), 

and it can also be used to validate the elicited knowledge – the knowledge is published on the Web 

and made available to a global community of experts who can validate and refine the elicited 

knowledge as a precursor to (e.g.) ontology development. Further research in this area should 

consider the kind of opportunities the Web makes available for knowledge elicitation and adapt 

knowledge engineering methodologies to exploit these opportunities. 

The main problem, of course, when it comes to use of Web-based resources concerns their varying 

quality and coverage. The information provided by the sources is often of unknown origin and there 

is often no prior history with many of the sources that may be used to assess their reputation. One 

focus of ongoing research within the Web Science community is how to determine whether to trust 

a particular piece of information provided by a source. 

In addition to the use of the Web as a knowledge source, the Web also provides a platform for active 

knowledge elicitation from individual experts or expert communities. Unfortunately, there are very 

few examples, at the present time, of Web-based tools that could be used for collaborative 

knowledge elicitation. Perhaps one reason for this relates to a shift in our appreciation of how the 

Web can be used as a mechanism for knowledge acquisition. When one looks at examples of large 

knowledge repositories on the Web – for example, Wikipedia – what one tends to encounter is a 

system in which knowledge content has emerged as a result of the collaborative efforts of multiple 

individuals. This has led to our traditional notions of expert-centred knowledge engineering being 

supplemented with an approach that draws on the contributions of large numbers of users, very few 

of whom are perhaps regarded as experts within the target domain. The point is that sometimes the 

actions of a large number of users can yield useful knowledge outputs (although whether these 
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outputs can ever serve as a substitute for the kind of outputs obtained in face-to-face knowledge 

elicitation sessions with domain experts is currently a moot point). Folksonomies (Wu et al., 2006) 

represent one example here, as do the structured resources that emerge from the cumulative 

editing actions of Wikipedia users; e.g., DBpedia (Bizer et al., 2009). In general, there is an increasing 

recognition of the way in which certain classes of Web-based systems – sometimes referred to as 

social machines – can be used to leverage the contributions of human user communities, often at 

large scale. Knowledge acquisition is often a key focus of such systems (Shadbolt, 2013); however, 

the systems can also (on occasion) yield collective problem-solving performances that parallel those 

of individual human experts. In such cases, it may be possible to see a social machine as a form of 

biotechnologically hybrid intelligent system that dynamically exploits the complementary 

contributions of both human individuals and conventional computing systems. 

One final point that is worth reiterating here relates to the way in which the Semantic Web has 

impacted knowledge engineering efforts. As mentioned previously, many of the tools used for 

knowledge elicitation have been influenced by the advent of ontology languages that have been 

developed for the Semantic Web, and the output of many knowledge engineering efforts now 

consists in the generation of resources (e.g., OWL ontologies) that are compliant with the standards 

and recommendations of the Semantic Web community. It is tempting to think of the Semantic Web, 

in this case, as a large-scale knowledge repository that is the distributed counterpart of the more 

centralized knowledge bases encountered in the era of expert systems development. There are, 

however, a number of differences between the Semantic Web and conventional knowledge bases, 

of which the most obvious relate to the heterogeneity, scale, and diverse quality of Semantic Web 

knowledge content (d'Aquin et al., 2008). It is also fair to say that the content of the Semantic Web 

tends to be used in a manner that is unlike that seen in the case of conventional expert systems. As 

Brueker (2013) notes “Ontologies are rarely used as knowledge bases, but rather as (shallow) 

vocabularies for managing large information repositories” (p. 179). Indeed, as is evidenced by 

systems such as IBM’s Watson (Ferrucci et al., 2010), intelligence on the Semantic Web is likely to 

emerge as a result of the ability to exploit large amounts of available data rather than an ability to 

carry out sophisticated reasoning (d'Aquin et al., 2008). Although Watson does use ontologies for 

some inferences, its answers are, for the most part, based on sophisticated information retrieval 

capabilities and the ability to integrate probabilistic evidence from many diverse sources.  

The ability to treat the Web as an epistemic resource and press maximal benefit from an ever-

expanding quantity of linked data assets is likely to be a key focus area for research into the next 

generation of intelligent systems. To what extent computational ontologies will play a role in the 

realization of these capabilities is unclear; however, what is largely beyond dispute is that, in the 

near future, the Web is likely to serve as means by which human knowledge is made available for a 

variety of purposes, and, in view of this, the interest in knowledge elicitation and the need for robust 

knowledge elicitation techniques is likely to continue.  

Conclusion 
Despite a range of scientific and technical advances (including the continued development of the 

Web and Semantic Web), the problem of knowledge elicitation remains an important area of 

research attention and practical application. This chapter has described some of the methods and 

techniques that are used in this enterprise. We have also sought to provide an indication of the 

difficulties inherent in doing this kind of work. Knowledge elicitation is itself a form of complex 
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expertise. Experienced knowledge engineers come to recognise the characteristics of expert 

thinking, and they develop skills that allow them to capture an expert's knowledge despite the many 

obstacles they face. Continued research into the differential effectiveness of knowledge elicitation 

techniques in different situations is likely to inform our understanding of how to structure and 

manage the knowledge acquisition process; however, there really is no substitute for real-world 

practical experience when it comes to knowledge elicitation. Just as expertise in other areas only 

comes at the expense of many hours of practical experience within the relevant domain, so a 

mastery of knowledge elicitation often requires many hours of active engagement in the knowledge 

elicitation process.    
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