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LOW PASS FILTER AND BAND PASS
FILTER DESIGN

¢ Design low pass filters (LPF) and band pass filters (BPF).
¢ Use LPF or BPF to extract desired spectral components.
¢ Study the frequency characteristics and impulse responses of LPF and BPF.

6.1 [TANALYSIS OF THE SPECTRUM OF SAMPLE AUDIO SIGNALS

1.A Execute ‘help audiovideo’ in the MATLAB command window to see the audio
data files provided in MATLAB. Write down the names of all the audio data files.

1.B Select any one of the audio data files and execute ‘load selected_file_name’
(e.g., load gong) in the command window to load the selected audio file into the
workspace. Then execute whos and capture the execution result. The variables y and
Fs are generated in the workspace. The variable y is the audio sample vector and the
variable Fs is the sampling frequency of the sampled vector y.

1.B-1 Type in Fs in the command window to see the sampling frequency. Write
down the sampling frequency and calculate the sample interval.

1.B-2 Determine the length (in seconds) of the selected audio sample, that is, the
size of the audio sample vector y and its sampling interval.

1.C [MExecute soundsc(y) in the command window to play the audio signal.
Load the six audio sample files provided in MATLAB one by one and play all
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56 LOW PASS FILTER AND BAND PASS FILTER DESIGN

of them. Describe the sound you heard for each of these signals (what it is, e.g., train
whistle).

1.D The MATLAB command pwelch() calculates and plots the power spectral
density (PSD) of the input (sampled vector). Here, PSD is equivalent to the
magnitude square of the Fourier transform (spectrum). The MATLAB function
pwelch(ht,[1,[1,[],Fs), where ht is the sampled version of a time function A(f) and
Fs is the sampling frequency, generates the PSD plot of A(f), that is, |H(w)|? in
dB-scale.

1.D-1 Execute the following in the command window to load and to plot, using
subplot, the PSD of each of the six audio data samples provided in MATLAB in
one figure. Stretch the figure vertically to clearly show all PSDs before capturing the
window.

>> figure

>> subplot(6,1,1);load chirp;pwelch(y,[1,[1,[],Fs)
>> subplot(6,1,2);load gong;pwelch(y,[],[1,[1,Fs)
>> subplot(6,1,3);load handel;pwelch(y,[],[1,[],Fs)

1.D-2 Based on the sound, which one of six audio data samples has the highest
frequency (pitch)? Explain whether or not the PSD plots captured in 1.D-1 are
consistent with what you heard. Do not focus on the absolute level of each PSD;
instead, evaluate where the majority of the frequency components of each signal are
located at in the frequency domain.

1.E The PSD plots in 1.D show the signal spectra in the positive frequency range
only. This is because the magnitude spectrum of a real-valued function A(¢) is an even
function, that is, |H(w)| = |H(—w)|, where H(w) is the Fourier transform of A(?).
Prove that |H(w)| = |H(—w)| if h(?) is a real-valued signal.

1.F WWWIThe m-file below creates an audio sampled vector y_plus_tone and plots

its PSD. The vector y_plus_tone is the sum of the audio data vector y in the audio
sample file handel and the sampled vector of a 3.7 kHz sine wave named tone, where
‘2’ should be set equal to the last digit of your student ID number.

clear

load handel

t_step=1/Fs;

t=0:t_step:(length(y)-1)*t_step;

tone=sin(2*pi*3.7e3™t); %?=the last digit of the student ID number, e.g.,
sin(2*pi*3.5e3*) if the last digit is 5.
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y_plus_tone=y+tone;
figure
pwelch(y_plus_tone,[],[],[],Fs)

1.F-1 This m-file is incomplete and quantities to be completed are marked by “?°.
Complete this m-file. Then execute it and capture the PSD plot.

1.F-2 Determine whether the PSD plot in F-1 is what you expect and why.

1.F-3 Execute soundsc(y_pluse_tone) in the command window to play the sound
and describe how y_pluse_tone sounds. Explain the reason why it sounds so.

6.2 LOW PASS FILTER DESIGN

2.A [MSuppose that the frequency transfer function of a linear system is H(w).

2.A-1 If the Fourier transform of the input signal is X(w), express the output Fourier
transform Y(w) in terms of H(w) and X(w).

2.A-2 The impulse response A(z) of this system can be obtained from its frequency
transfer function H(w). Express A(?) in terms of H(w).

2.A-3  From the answers to 2.A-1 and 2.A-2, we can show that the output y(¢) given
input x(¢) can be obtained as

y(t) = h(t) * x(t), where * denotes convolution. 6.1)

Derive this equation. To this end, start from the answer to 2.A-1 and use the fact
that the multiplication in frequency domain is equivalent to the convolution in time
domain.

2.B [TlConsider a linear system with the following frequency transfer function:

H(w):{l if |o| < 27B [rad/s], 62)

0 if |o| > 2B [rad/s].
2.B-1 Explain why this system is called a low pass filter [1] using the answer
to 2.A-1.
2.B-2  What is the bandwidth of this LPF in Hz?

2.B-3 Determine H(w) in the equation (6.2) as B approaches infinity. Using this
result and the answer to 2.A-1, explain why Y(w) = X(w) if the filter has an infinite
bandwidth.

2.C In this problem, we determine the impulse response /(¢) of a linear time invari-
ant system from its frequency transfer function H(w).
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2.C-1 [MUsing the answer to 2.A-2, show that the impulse response of the LPF
given in equation (6.2) can be derived as

h(t) = 2B sinc(2Br).  where sinc(r) & S 6.3)
X

NOTE: In some of the existing textbooks, sinc(x) is defined as sin(x)/x. In this
book, we adopted the definition in equation (6.3), which is also what the MATLAB
function sinc(x) implements. In some literature, sinc(x) is written as Sa(x).

2.C-2 [WWWIThe m-file below creates and plots the sampled and truncated version
of h(r) expressed in equation (6.3), assuming that B = 200 Hz in the range of ¢t =
[—0.02 0.02]. The sampling interval is set to 1/8192, which is equal to the sampling
interval of y_plus_tone created in 1.F-1.

clear

B=200;
t=-0.02:(1/8192):0.02;
ht=2*B*sinc(2*B*t);
plot(t,ht);

grid

Execute this m-file and capture the resulting figure.

2.C-3 Execute the m-file above for the cases of B equaling 100 Hz and 400 Hz and
capture the figure for each case. From the captured plots, summarize the relationship
between the bandwidth of the LPF and the length of its impulse response. The first
zero crossing point in the impulse response is a good metric to quantify the impulse
response length.

2.C-4 If Bincreases to infinity, what kind of function do you expect A(?) to converge
to?

2.C-5 Determine y(f) in equation (6.1) by substituting the answer in 2.C-4 into h(f)
in equation (6.1).

2.C-6 Is the result in 2.C-5 consistent with the answer to 2.B-3?

2.C-7 Explain why filters with the impulse responses as shown in 2.C-2 and 2.C-3
are impractical to implement?

2.D Consider an LPF with a causal impulse response expressed as

6.4)

h(t) = 2B sinc(2B(t —t;)), 0<1t<2t,,
— 10 elsewhere.
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2.D-1 [WWWIThe m-file below creates and plots the sampled vector of 4(f) expressed
in equation (6.4) for B = 200 Hz and ¢, = 0.02. Execute the m-file and capture the
result.

clear

B=200;

td=0.02
t=0:(1/8192):2*td;
ht=2*B*sinc(2*B*(t-td));
plot(t,ht);

grid

2.D-2 Explain why the linear system with the impulse response shown in 2.D-1
is practical as opposed to the system with the impulse responses shown in 2.C-2 or
2.C-37

2.D-3 [WWWIiGince the function h(f) in equation (6.4) is different from the h(f) in
equation (6.3), the transfer functions corresponding to equations (6.3) and (6.4) are
also different. We can obtain H(w) of h(f) expressed in equation (6.4) by taking its
Fourier transform. However, it is mathematically cuambersome to calculate the Fourier
transform of a truncated sinc function. In this problem, we resort to the numerical
integration method to obtain H(w), more precisely, the sampled version of H(w) in
the frequency domain. Numerical integration method was discussed in Section 2.1 of
Chapter 2.

The MATLAB code fragment below generates a vector Hw_vector, the sampled
version of H(w). Each element of Hw_vector will be calculated through a separate
numerical integration of ht, the sampled version of A(f). The magnitude spectrum
|H(w)| and phase spectrum H(w) are also plotted.

Some useful information for completing this m-file:

® Qutside of the time period 0 < t < 0.04, h(f) = 0; thus the integration boundary
is [0, 0.04] and the Fourier transform of h(r) can be written as /. h(t)e™*'dt =

O n(ye i,
e For each value of w = —20000 : 10 : 20000 rad/s, H(w) is calculated via a

separate numerical integration.

Recall that the vector ht is the sampled version of A(#). The line ‘Hw=sum(?.*exp(-
j*?*)*t_step;’ numerically implements [00'04 h(t)e=®'dt for each specific value
of w from —20000 rad/s to 20000 rad/s in a ‘for’ loop. Complete the two
places marked by ‘?’ and execute the completed m-file. Capture the execution result.

clear
B=2000; %bandwidth, currently set to 2 KHz.
td=0.02; %delay
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t_step=1/8192;
t=0:t_step:0.04;

ht=2*B*sinc(2*B*(t-td)); % Equation (6.4)

Hw_vector=[];

w_vector=[];

for w=-20000:10:20000
w_vector=[w_vector w];
Hw=sum(?.*exp(-j*w*?))*t_step;
Hw_vector=[Hw_vector Hw];

end

figure

subplot(3,1,1)

plot(t,ht);xlabel(’t [sec]’);ylabel(h(t)’);grid

subplot(3,1,2)

plot(w_vector,abs(Hw_vector))

xlabel('w [rad/sec]);ylabel(IH(w)I');grid

subplot(3,1,3)

plot(w_vector,angle(Hw_vector));

xlabel('w [rad/sec]);ylabel("\angle H(w));grid;axis([-50 50 -1 1])

2.D-4 From the magnitude spectrum, measure as accurate as possible the 3dB
bandwidth of the LPF in Hz.

2.D-5 Measure the slope of the phase spectrum.

2.D-6 Repeat the above experiment for td=0.01 and td=0.03. Capture the execution
result for each case.

2.D-7 The three plots, one captured in 2.D-3 and two captured in 2.D-6, show h(t-¢ ;)
(top subplot) and its magnitude spectrum (middle subplot) and phase spectrum (bot-
tom subplot) for three different delay values (¢; = 0.02, 0.01, and 0.03), respectively.
Measure the delays of each of the three top subplots and the slopes of each of the
three phase spectra and record them in Table 6.1.

2.D-8 Based on the results in Table 6.1, determine the effect of the delay, that is,
the center of symmetry of i(t — ;) (which equals ¢, in equation (6.4)), on its phase

TABLE 6.1 Time Delay and the Slope of the Phase Spectrum.

Delay Measured delay (center of h(-t,)) Measured slope of the phase spectrum
t,=0.01
t, =0.02 Replicate the answer to 2.D-5 here

t,=0.03
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spectrum H(w). Determine the functional relationship between ¢; and the slope of
H(w).

2.D-9 Based on the plots captured in 2.D-3 and 2.D-6, summarize the effect of
delay of the signal A(f) on its magnitude spectrum |H(w)|.

2.D-10 [AlExecute the m-file for two more cases: B = 250 and B = 1000. Measure
the bandwidth from the magnitude spectrum and check whether it is equal to B.

2.D-11 [Alln a time invariant linear system like the LPFs we have designed, the
input signal undergoes the same amount of delay as the delay of A(f). This is not
desirable for real-time systems. In order to reduce the output delay of the LPF, reduce
td to 0.001 in the m-file and execute it again. Capture the resulting plot. Based on the
plot, comment on the penalty one has to pay in terms of the magnitude spectrum in
order to reduce the output delay.

2.D-12 [AlExplain why reducing the delay causes the problem observed in 2.D-11.

6.3 LPF OPERATION

Suppose that c(f) denotes the convolution of a(f) and b(¢), that is, c(f) = a(f) = b().
Let the sampled vectors of a(f) and b(7) be at and bt, respectively. Then the sampled
vector of ¢(?), ct, can be simply created by using the command ‘ct=conv(ht ,gt);. We
will use this approach to perform low pass filtering in the following problems.

3.A [WWWIIh the following m-file, we input the audio sample vector saved in

handel.mat to an LPF with a bandwidth of 2 kHz. The LPF outputs the vector yt.

clear
B=2000; %bandwidth, set to 2 kHz currently
td=0.02; % delay (= center of symmetry of the delayed sinc pulse ht)

t_step=1/8192;

t=0:t_step:0.04;

ht=2*B*sinc(2*B*(t-td)); % ht is the sampled vector of /(¢), i.e., impulse response for
LPF.

load handel

xt=y’;

%xt is a variable declared for the sampled vector of x(t), input signal to LPF.

%Iln the command conv(a,b), the argument vectors a and b need to be row vectors. So,
we need to change the column vector y (=audio sample vector in handel) into the row
vector xt by using transpose operator ().

yt=conv(?,xt); % Use a theory about the relationship among input, output, and
impulse response of linear system.
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3.A-1 Determine the uncompleted variable in the m-file (marked by ‘?’).

3.A-2 Execute the completed m-file. Then execute the following in the command
window to listen to the input as well as the output sounds of the LPF. Compare the
input and output sounds and summarize their differences.

>>soundsc(xt)
Execute the following when playing is completed.
>>soundsc(yt)

3.A-3 Change the bandwidth B of the LPF to 500 Hz in the m-file above and execute
the completed m-file. Then listen to the sound of yt again. Repeat this experiment
for B = 4000 Hz. Describe how the sound changes as the bandwidth of the LPF
changes.

3.A-4 Execute the following lines in the command window and capture the execu-
tion result.

>>t_axis=1/8192*(1:length(yt));
>> plot(t_axis, yt)

>> axis([0 0.1 -8000 8000])

>> grid

3.A-5 From the graph in 3.A-4, determine the starting time, the point where the
LPF output signal yt starts to rise to a visually noticeable level. Explain why the
starting time is roughly equal to the delay of the impulse response of the LPF.

3.B The goal of this problem is to recover the audio signal interfered by a large
sinusoidal signal by using a properly designed LPF.

3.B-1 WWWIThe following m-file creates a sampled audio signal xt by adding a

sine wave to the sampled sound vector y in handel.mat. It also plots the PSD of xt.
Execute the m-file and capture the resulting PSD.

clear

load handel

rand(1, XXXX); % XXXX= the last four digits of your student ID number. Be sure to
include this line.

f=3250+500"rand;

tone=sin(2*pi*f*(1:length(y))*1/Fs);

xt=y'+ tone;

pwelch(xt,[],[L.[],Fs)

clear f;
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3.B-2 Based on the PSD plot of xt, estimate the frequency of the added sine wave
as accurately as possible. Properly enlarge the PSD plot for accurate reading.

3.B-3 Execute the following line in the command window to play xt. Describe how
xt sounds.

>>soundsc(xt)

3.B-4 [WWWIBy passing xt through an LPF, we can remove the beeping sound
(caused by interference) without significantly distorting the original audio signal y in
handel.mat. In the following m-file, we will generate the output of the LPF yt so that
it sounds almost the same as the original audio signal y.

Do not include the command ‘clear’ in the m-file because the variable xt created
in 3.B-1 will be needed. Read the comments for each line first and then complete the
three places marked by “?°. Capture the completed m-file.

B=?; % Determine the LPF bandwidth (constant) to filter out(eliminate) the sine wave
included in xt.

td=0.02; %delay time

t_step=1/8192;

t=0:t_step:0.04;

ht=2*B*sinc(2*B*(t-td)); % The sampled vector of A(?), i.e., the impulse response of
LPF.

yt=2(?,xt); % Pass xt through LPF to create the output yt. The first ? is the function name.
The second ? is the variable name.

3.B-5 Justify your choice of the value of B set in the m-file above.

3.B-6 Execute the m-file in 3.B-4 and then execute the following line in the com-
mand window to play yt. Describe how yt sounds. Has the beeping sound been
removed without distorting the sound of the original signal? If there is still a beeping
sound or the original sound is noticeably distorted, go back to 3.B-4 and properly
change B until you get the desired sound.

>>soundsc(yt)

6.4 [AIBAND PASS FILTER DESIGN

4.A Execute the following lines in the command window to generate the impulse
response of the LPF with a bandwidth of 300 Hz and plot its PSD. Capture the PSD
plot.
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>>t=0: (1/8192):0.04;
>>B=300;td=0.02;
>>ht=2*B*sinc(2*B*(t-td));
>>pwelch(ht,[1,[],[], 8192);

4B [MDenote the Fourier transform of x(f) by X(w). Then prove that the Fourier
transform of x(f) cos(wy?) is %[X(w + wg) + X(w — wp)].

4.C The following problems provide an intuitive approach on how to design a
BPF [1].

4.C-1 After executing the lines of code in 4.A, continue to execute the following
lines. The first line creates a 3 kHz cosine waveform vector cos3000 of the same
length as that of ht created in 4.A. The second line multiplies cos3000 by ht to
create ht_times_cos, which is the sampled vector of a frequency up-converted signal
h(t) cos(2z x 3000¢). The third line plots the PSD of ht_times_cos. Capture the
resulting PSD plot.

>>c0s3000=cos(2*pi*3000*t);
>>ht_times_cos=ht.*cos3000;
>>pwelch(ht_times_cos,[1,[],[], 8192)

4.C-2 Using the frequency-shift formula derived in 4.B, validate the PSD result
generated in 4.C-1. Note that pwelch( a,[1,[1,[],b) shows only the positive frequency
components.

4.C-3 Consider an arbitrary signal x(f) whose spectrum spreads over O to 4.5 kHz
and denote its sampled vector by xt. Describe the difference of the PSD shape of
conv(xt,ht_times_cos) in comparison with the PSD of xt. In your description, use the
PSD shape of ht_times_cos and the frequency-domain view of convolution in the
time domain (see Section 5.4 of Chapter 5).

4.D Fig. 6.1 shows the frequency transfer function of an ideal band pass filter that
passes only the spectral components of the input signal in the frequency range of
[B; Byl.

By -BL By By f(Hz)

FIGURE 6.1 Frequency response of an ideal band pass filter.
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4.D-1 Now, we denote the sampled impulse response of the BPF shown in Fig. 6.1 by
ht. Based on the discussions in 4.A—4.C, describe the steps to create ht in MATLAB.

4.D-2 [WWWIThe following m-file performs the BPF operation to extract only the
beeping sound from xt created in 3.B-1. Determine the appropriate values for the two
places marked by ‘?’ and justify your answer.

B=7?; %B is used to generate ht below.

td=0.02;

t_step=1/8192;

t=0:t_step:0.04;

ht=2*B*sinc(2*B*(t-td)).*cos(2*pi*?*t); % Sample vector impulse response h(t) for BPF
yt = conv(xt,ht);

4.D-3 Execute the m-file above and then execute soundsc(yt) in the command
window to play the BPF output yt. Describe how yt sounds. In case xt created in
3.B-1 has been cleared, execute the m-file in 3.B-1 first before executing the m-file
above.

REFERENCE
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1991.



SAMPLING AND RECONSTRUCTION

¢ Study how the sampling changes the signal spectrum.
* Reconstruct a signal from its sampled version using low pass filtering.
¢ Implement frequency up-conversion using sampling and a band pass filter.

7.1 CUSTOMIZING THE ANALOG FILTER DESIGN BLOCK TO
DESIGN AN LPF

1.A Start Simulink and open a new mdl/slx file and add the blocks as shown in
Fig. 7.1. These blocks can be easily identified by searching for them in the Simulink
library using block names.

Set the internal variables of the Sine Wave block and Analog Filter Design block
as follows.

1. Sine Wave
® Sample time = 1/3e4
2. Analog Filter Design
* Design method = Chevyshev Il
* Filter type = Low pass
* Filter order = 32
® Stop band edge frequency = 2*pi*1000
® Stop attenuation in dB = 40
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A 4

[ ]

cheby2 Scope
& >
L g
Sine Wave
Analog
Filter Design

FIGURE 7.1 Test system for Analog Filter Design block.

1.A-1 The Analog Filter Design block is customized as an LPF with the above
parameter setting. Determine the bandwidth of this LPF in Hz.

1.A-2 Set Simulation Stop Time to 0.05. Then set the parameter Frequency (rad/s)
of the Sine Wave block as specified in Table 7.1. Run the simulation for each of these
cases and measure the corresponding amplitudes of the LPF output and record them
in the table.

1.A-3 Based on the simulation result, determine whether the LPF is designed cor-
rectly and why?

7.2 STORING AND PLAYING SOUND DATA

2.A Open Sound_Source.mdl (or Sound_Source.sIx) designed in 6.A of Chap-
ter 1. If you do not have this file, go through 6.A of Chapter 1.

Add the To file block from the Simulink library to the design and connect it to the
Sound Source subsystem as shown in Fig. 7.2. Save the design as a new file and do
not overwrite Sound_Source.mdl/slx, since it will be needed for other projects later.

Capture your design window.

TABLE 7.1 Test Inputs to LPF and the Output Amplitude.

Amplitude of
Frequency (rad/s) of the Sine Wave block the LPF output

2%pi*(400 + XX)

XX = Last two digits of your student ID number
2*pi*900

2*pi*950

2*pi*1000

2%pi*1050

2*pi*1500

2*pi*3000
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Outt signal.mat

To File

Sound Source

FIGURE 7.2 Test system for the subsystem Sound Source.

2.B Set the block parameters of the design in 2.A through the following steps.

2B-1 ™WWWIDownload sound_CHZmat from the companion website to your

MATLAB work folder. Your MATLAB work folder path is specified in the menu
bar of the MATLAB main window.

Execute the following in the command window to verify whether downloading is
successful.

>> Is *.mat

2.B-2  Set the parameter File name of the From File block in the subsystem Sound
Source to sound_CH7.mat. Capture your parameter setting window.

2.B-3 Set the parameters of the To File block as follows. Capture your parameter
setting window.

* Save format = Array (not required for old versions)
* File name = signal.mat
® Sample time = 1/8192

2.C Set Simulation stop time to 20 seconds and run the simulation. After the simu-
lation is finished, execute the following in the command window. Describe the sound
you heard.

>> clear; load signal.mat; soundsc(ans(2,:))

7.3 SAMPLING AND SIGNAL RECONSTRUCTION SYSTEMS

Fig. 7.3 is a simple block diagram of a sampling [1, 2] and reconstruction system to
restore the original signal from its sampled version by using an LPF.

3.A InFig. 7.3, x(r) (=output of the Sound Source block) is an audio signal whose
bandwidth B equals 4 kHz. For simplicity, we assume that the Fourier transform of
x(1), X(w), has a triangular shape with a one-sided bandwidth of 4 kHz, as shown in
Fig. 7.4.



x(t):output of sound
source block
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s(1)

-W

LPF(W =?)

w

p(t):output of pulse generator block

FIGURE 7.3 Sampling and signal reconstruction system.

X(w) = Flx(1)]

FIGURE 7.4 Spectrum of the sound signal x(#).

B=4kHz =27 x 4 x 10 rads/s

(1)

3.A-1 [TIWhat is the minimum sampling frequency F, of the periodic sampling
pulse signal p(7) in Fig. 7.3 so that x(¢) can be reconstructed from its sampled version
without distortion? Justify your answer.

3.A-2 [TlSuppose that the sampling pulse signal p(¢) is as shown in Fig. 7.5, with a
sampling frequency F; = 2B = 8 kHz, pulse amplitude 1, and pulse width equaling

1/10 of the period.

The Fourier transform of the sampled signal s(f) (=x(f)p(f)) can be derived con-
sidering the following facts:

1. Since p(f) is a periodic signal, it exhibits a line spectrum, and the magnitude
of nth spectral line is 2z P,, where P, denotes the Fourier series coefficient of
p(t) (refer to Section 4.2 of Chapter 4).

Td=0'1 Ts

-

|
T,=1/F, (F,=1B) '

FIGURE 7.5 Sampling signal p(?).

t(s)



70 SAMPLING AND RECONSTRUCTION

2. The Fourier transform of the product of two functions in the time domain
corresponds to the convolution of the Fourier transforms of the two respective
signals in the frequency domain (refer to Section 5.4 of Chapter 5).

Now for the sampling signal p(¢) in Fig. 7.5, determine the two quantities marked
by ‘?’ in the following equation:

S(w) = F[s(t)] = Z ? X X(w—nx?), (7.1)

n=—oo
where F[s(#)] denotes the Fourier transform of s(#). From this equation, sketch S(w).

3.B In this problem, we design the system shown in Fig. 7.3 in Simulink. We first
sample the signal s(7). This is done by sampling the output of the Sound Source
block. Then we reconstruct x(¢) from its sampled version using an LPF. We use the
Pulse generator block, Product block, and Analog Filter Design block to realize these
signal processing steps.

First, modify the mdl/slx file in Section 7.2 as shown in Fig. 7.6:

To File -
In1 >
S\p/ectrum — Scope
iewer N utter
Outl : Jr | N
g S |
Source Analog -
Filter Design To File2

ﬂﬂl To Filed

Pulse
Generator

A 4

In1 » In1 » In1

Spectrum Viewer1 Spectrum Viewer2 Spectrum Viewer3

FIGURE 7.6 Simulink design of a sampling and signal reconstruction system.

Then, set the parameters of each block as follows. Do not change the parameters
not mentioned here.

1. Product
® Sample time = 1/(16e4)
2. Pulse Generator
® Period = 1/(8e3)
® Pulse Width (% of Period) = 10
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3. To File1
* Save format = Array (not required in old versions)
* File name = sampled.mat
® Sample time = 1/8192

4. To File 2
® Save format = Array (not required in old versions)
¢ File name = recovered.mat
® Sample time = 1/8192

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2, ... : Use the subsys-
tem block created in Section 1.6.B of Chapter 1. In case you do not have it, go
through Section 1.6.B of Chapter 1 to create it. Make sure that the numbers in
the names of these blocks occur in numerical order as shown in Fig. 7.6.

3.B-1 Capture the design window of your completed mdl/slx file.

3.B-2 Set Simulation stop time to 5e-4 seconds and run the simulation. Upon com-
pleting the simulation, properly enlarge the sampling signal p(f) (=output of Pulse
generator) in the Scope display window to measure its frequency and pulse width.
Record the measured values together with the captured waveform. Is the captured
waveform the same as shown in Fig. 7.5? NOTE: Prior to capturing the waveform,
right-click the figure to set Y-min to —0.5 and Y-max to 1.5.

3.B-3 Set Simulation stop time to le-2 seconds and run the simulation. Upon com-
pleting the simulation, right-click to Autoscale x(f) and s(f) in the Scope display
window. Then zoom into the range of [0.006, 0.01] along the x axis. Capture the
Scope display window.

3.B-4 From the captured window in B-3, determine whether the sampled signal s(f)
is correctly created. That is, is it equal to x(¢) p(#)?

3.B-5 Set the Simulation stop time to 4 seconds and run the simulation. Executing
the following line of code in the command window will play which of the four signals
{x(0), p(1), s(t), r()} defined in Fig. 7.3?

>>load sampled.mat; soundsc(ans(2,:))

3.B-6 Execute the command above and describe the sound you hear. Does the signal
sound right and why?

3.B-7. Capture the internal Spectrum Analyzer (Spectrum Scope in some old MAT-
LAB versions) display windows of Spectrum Viewer, Spectrum Viewer1, and Spec-
trum Viewer2 (except Spectrum Viewer3). Before capturing the Spectrum Analyzer
display windows, decrease the height of the window to get a width:height ratio of
about 7:1 for the graph portion as shown in Fig 4.4 in Chapter 4. Do not Autoscale.
Follow this guideline throughout all the problems in this book that require the Spec-
trum Analyzer display window.
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The line spectrum should appear in the Spectrum Viewer1/Spectrum Analyzer
display window.
(a) Explain the reasons that cause the line spectrum.
(b) Determine the frequency interval of the line spectrum.
(c) Based on the signals chosen for the system, determine the minimum frequency
interval between the spectrum lines and compare it with the observed value
in (b).

3.B-8 s the spectrum in the Spectrum Viewer2/Spectrum Analyzer display window
consistent with your sketch in 3.A-2? The spectrum will change as time goes by.
In making this assessment, focus on (1) the overall spectral shape such as spectral
envelope and (2) the frequency interval between the spectrum lines.

3.B-9 Determine how the frequency interval between the spectrum lines changes if
the parameter Period of the Pulse Generator block is changed to 1/(32e3).

3.B-10 Change the parameter Period of the Pulse Generator block to 1/(32¢3)
and run the simulation again. Observe the spectrum of s(¢) in the Spectrum
Viewer2/Spectrum Analyzer display window. Upon completing the simulation, cap-
ture the Spectrum Viewer2/Spectrum Analyzer display window. Is the captured spec-
trum consistent with the answer to 3.B-9?

3.B-11 Restore the parameter Period of the Pulse Generator block back to 1/(8e3).
If we reduce Pulse Width (% of Period) to 1, will the spectrum in the Spectrum
Viewer2/Spectrum Analyzer display window be different from the one captured in
3.B-77 Assess the difference in terms of the spectral envelope that connects the peaks
of the replicas (called “harmonics”). Which one has a wider envelope? Provide a
mathematical justification for your assessment.

3.B-12 Change the Pulse Width (% of Period) of the Pulse Generator block to 1
and run the simulation. Capture the Spectrum Viewer2/Spectrum Analyzer display
window. Is the result consistent with your answer to 3.B-11?

3.C The aim of this problem is to reconstruct the original signal x(¢) from the
sampled signal s(¢). Set Period = 1/(8e3), Pulse Width (% of Period)=10 of Pulse
Generator.

3.C-1 If the goal is to transmit or to store the information contained in the original
signal x(f), it is more convenient to use s(f), instead of x(f), as long as there is no
information loss by using s(#). Summarize the advantages of using s(¢) in terms signal
processing and storage requirements.

3.C-2 In 3.B-6, we have checked that s(#) sounds completely differently from x(z).
Hence we first reconstruct the original signal x(¢) from s(z).

In the Scope display window captured in B-3, s(7) is equal to x(¢) only for 10% of
time and is O during the remaining 90% of time. In other words, s(7) carries only 10%
of the waveform of x(7). If we further reduce the pulse width of the sampling pulse
p(t) for the advantages discussed in 3.C-1, the portion of time that s(r) = x(¢) will be
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reduced accordingly. Recovering the original signal from the sampled signal requires
recovering the lost part of the waveform. Intuitively, from the captured waveform of
s(¢) in 3.B-3, would it be possible to recover the lost part, say, 90% of the waveform
of x(1)?

3.C-3 Based on S(w) obtained in A-2 (or the display window of Spectrum
Viewer2/Spectrum Analyzer captured in 3.B-7), intuitively X(w) could certainly be
recovered from S(w). Therefore x(#) could also be recovered from s(7). Design a
scheme that employs an LPF with a bandwidth B = 4 kHz to recover x(z).

3.C-4 In the mdl/slx design simulated in Section 3.B, determine a proper value for
the parameter Passband edge frequency of the Analog Filter Design block so that it
generates the reconstructed signal. Note that the unit is rad/s.

3.C-5 Set Passband edge frequency of the Analog Filter Design block as obtained
in 3.C-4. Set Simulation stop time to Se-2 seconds and run the simulation. After
the simulation is completed, Autoscale (right click) all the waveforms in the Scope
display window and then capture the display window.

3.C-6 Check whether or not the shape of the restored signal r(#), that is, the output
of the Analog Filter Design block, is same as x(#). Focus on the shapes not the signal
magnitude.

3.C-7 If the design is correct, then r(f) should be nearly identical to x(¢), except
a scaling factor of 1/10. Analytically explain this. You may refer to the answer to
3.A-2.

3.C-8 Set Simulation stop time to 4 seconds and run the simulation. You may set it
larger if the computing power of your PC can handle it. If we run the following line
of code in the command window after the simulation, which one of the four signals
{x(0), p(1), s(t), r()} defined in Fig. 7.3 will be played?

>>load recovered.mat;soundsc(ans(2,:))

3.C-9 Execute the command above. Compare the played sound with the original
sound (signal.mat) you heard in 2.C.

3.D In this problem, we simulate a system that approximates the ideal impulse
sampling (sampling pulse width equals 0).

3.D-1 To approximate the impulse sampling, set Pulse Width (% of Period) of Pulse
Generator to 1 in the mdl/slx file. With this setting, what percentage of the waveform
of x(¢) is directly carried through to s()?

3.D-2 Run the simulation for 4 seconds. Upon completing the simulation, execute
the following in the command window to play r(f) (= Analog Filter Design output
signal). Does it sound the same as the original signal x(¢)?
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>>load recovered.mat;soundsc(ans(2,:))

3.E The goal of this problem is to investigate the relationship between the sampling
frequency and the feasibility to reconstruct the original signal from its sampled
version.

3.E-1 Another method to reduce the nonzero portion of the sampled signal s(¢) is to
increase the Period of Pulse Generator. Suppose that the pulse width is fixed. Should
the parameter Period be increased or decreased in order to reduce the nonzero portion
of the sampled signal s(7)?

3.E-2 [TAtthis point, the sampling signal p(¢); that is, the output of Pulse Generator
is shown in Fig. 7.5, where the sampling frequency F is set to twice of the bandwidth
of the original signal x(¢). If the sampling period is doubled, that is, 1/4e3, which is
equivalent to reducing the sampling frequency F to B, then the answers to the two
quantities marked by ‘?’in equation (7.1) should be modified accordingly. Determine
the second quantity (for this problem, the first quantity is not of our concern). Modify
the sketch of S(w) completed in 3.A-2 according to the new quantity.

3.E-3 If the parameter Period of the Pulse Generator block is doubled to 1/4e3,
Pulse Width (% of Period) should be decreased from 10% to 5% in order to make the
actual pulse width remain unchanged.

Set Period= 1/(4e3) and Pulse Width (% of Period)= 5 and run the simulation
for 4 seconds. Observe the spectrum of s(¢) in the display window of Spectrum
Viewer2/Spectrum Analyzer while the simulation is in progress. After the simulation
is completed, run the simulation again and capture the display window of Spectrum
Viewer2/Spectrum Analyzer.

3.E-4 Is the spectrum captured in 3.E-3 consistent with your sketch in 3.E-2? The
magnitude of the instantaneous spectrum might change. Thus, in comparing the
results in 3.E-3 and 3.E-2, focus only on their overall shapes.

3.E-5 What is the main difference between the spectra captured in 3.E-3 and in
the display window of Spectrum Viewer2/Spectrum Analyzer of 3.B-7. From this
observation, explain why it is impossible to reconstruct x(¢) from s(¢) if F; = B =
4 kHz.

NOTE: A phenomenon whereby the spectrum replicas in the sampled signal
overlap with one another due to an insufficient sampling frequency is called “aliasing.”

3.E-6 Run the simulation for 4 seconds. After the simulation is complete, execute
the following to play the recovered signal r(¢), the output of the Analog Filter Design
block. Judged from the sound of the recovered signal, is the original signal recovered
from its sampled version?

>>load recovered.mat;soundsc(ans(2,:))
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3.E-7 Repeat the simulation for each of the following sampling periods: 1/(2e3),
1/(5e3), 1/(6.4e3), and 1/(10e3). Describe how the spectrum of s(¢), S(w), displayed
by Spectrum Viewer2/Spectrum Analyzer differs with the difference sampling fre-
quencies. After each simulation, play the recovered signal r(f) and describe what it
sounds like.

3.E-8 From the simulation results so far, can you develop a condition on the min-
imum sampling frequency F, with which x(¢) can be recovered from s(f) without
distortion?

3.E-9 Quantitatively justify your conclusion made in 3.E-8.

7.4 FREQUENCY UP-CONVERSION WITHOUT RESORTING
TO MIXING WITH A SINUSOID

Consider the scenario that in Fig. 7.3, the LPF is replaced by a BPF with a bandwidth
2B centered at the sampling frequency Fg. For the following problems, we assume
that the sampling signal p(7) is the one shown in Fig. 7.5 and denote the BPF output

by z(?).

4.A Based on equation (7.1) and sketch of S(w) completed in 3.A-2 or the display
window of Spectrum Viewer2/Spectrum Analyzer captured in 3.B-7, it is straightfor-
ward to express Z(w), the output spectrum of the BPF, by using two Fourier series
coefficients of p(f) and the X(w). Write the expression of Z(w) assuming that the BPF
is ideal and the delay is negligible.

4.B [MThe time-domain output of the BPF z(#) can be written as
z2(t) = x(t) X A cos(wt + ). (7.2)

Derive A, w, and 0.

4.C We verify the answer to 4.B through simulation. Revisit the mdl/slx file
designed in Section 7.3 and make sure that Period of the Pulse Generator block
equals 1/(8e3), Pulse Width (% of Period) of the Pulse Generator block equals 10, so
that the sampling signal p(?) is the same as shown in Fig. 7.5.

4.C-1 To implement a BPF by Analog Filter Design, set the parameter Filter type =
BPF. The two new parameters Lower pass band edge frequency and Upper pass band
edge frequency, which are defined as shown in Fig. 7.7, must be set as well. Set these
two parameters to implement the BPF that has a center frequency of 8 kHz (which
equals the sampling frequency) and a bandwidth W (which equals 2B = 8 kHz).
Capture your parameter setting window. Note that the unit is rad/s.

4.C-2 Modity the mdl/slx file as shown in Fig. 7.8. Set the parameters of the Sine
Wave block properly so that the output of Product 1 is equal to the right-hand side of
equation (7.2), with the parameters A, w, and 0 derived in 4.B. Capture your parameter
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_fc

Lower passband

edge frequency

f1Hz)

Upper passband
edge frequency

FIGURE 7.7 Definitions of the parameters of the Analog Filter Design block for the BPF

design.

setting window of the Sine Wave block. Attention should be paid to the phase setting
of the Sine Wave block so that it outputs A cos(w? + 0), not A sin(wt + ).

4.C-3 Run the simulation for 0.02 seconds. Upon completing the simulation,
Autoscale all the waveforms in the Scope display window and capture the window.

4.C-4 In order to check whether the answer to 4.B is correct, we can compare
the waveforms in the captured window. (a) Which waveforms should we compare?

signal.mat
To File
In1 "
—
Spectrum Soope
Viewer
outt _ ] butter
| e
Sound Product ;l recovered.mat
Source Analog l -
Filter Design To File2
sampled.mat
1N To File1
Pulse
Generator »In1 »In1 »In1
Spectrum Spectrum Spectrum
Viewer1 Viewer2 Viewer3

Sine Wave

Producﬂ

FIGURE 7.8 Design of frequency up-conversion through sampling and filtering.
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(b) Is the answer to 4.B correct from the comparison? Note that the BPF introduces
a certain amount of delay.

4.C-5 Run the simulation for 0.1 seconds. Capture the display window of the
Spectrum Viewer3/Spectrum Analyzer.

4.C-6 Does the result in 4.C-5 match the answer to the problem in 4.A?

4.C-7 The signal can be up-converted to another center frequency above 8 kHz
without increasing the sampling frequency Fg. Develop the method and determine
the possible center frequencies.

4.D From the problems completed so far, generalize the process to up-convert any
arbitrary signal to a desired center frequency @, without using a mixer with a sinusoid.
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CORRELATION AND SPECTRAL
DENSITY

e (Calculate the correlation function of two time functions using numerical inte-
gration.

* Locate a pulse in severe noise using correlation.

e Estimate the shape and parameters of unknown periodic signals in severe noise
using correlation.

* Investigate the relationship between the correlation function and the spectral
density.

8.1 GENERATION OF PULSE SIGNALS

1.A  WWWIThe following m-file generates a vector psint, the sampled version of a
truncated 50 Hz sine waveform with a length of 0.05 seconds. The reference time
vector t equals —5 to 5 seconds with a step size of 0.001 seconds. The truncation
vector tmp is generated by Boolean operation introduced in Section 5.1 of Chapter 5.

clear

t_step=0.001;

t=-5:t_step:5;

tmp=(0<t) & (t<0.05);

figure(1)

plot(t,tmp); title(‘tmp’);axis([-5 5 -2 2]);
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tone=sin(2*pi*50*);

psint=tone.*tmp;

figure(2)

plot(t,psint); title(‘sine pulse’);axis([-5 5 -2 2]);grid on;

1.A-1 Add a comment to each line to explain what it does.

1.A-2 Execute the m-file above. Use x axis zoom-in button in the menu bar (or use
axis() properly) to enlarge the [—0.1 0.1] portion of the two resulting figures. Capture
the figures and comment on whether or not the waveform in the second figure is a
truncated 50 Hz sine waveform with a length of 0.05 seconds.

1.B Add the following lines at the end of the m-file in 1.A to create the sampled
vector pt of the time-limited square-wave pulse signal p(f) in range of 0 < ¢ < 0.05
with a frequency of 50 Hz.

% Add the following to the m-file in 1.A.
pt=sign(psint);

figure(3)

plot(t,pt); title(‘pt’);axis([-5 5 -2 2]);grid on;

1.B-1 Execute the m-file and capture the waveform of p(7).

1.B-2  From the graph captured in 1.B-1, calculate the energy of p(¢) whose sampled
vector is pt.

8.2 CORRELATION FUNCTION

2.A The process to shift the elements of a vector using circshift() was introduced
in Section 1.F of Chapter 5. Execute the following lines of code in the command
window. Record the results and justify the results for each case.

>> temp=rand(1,12)

>> temp2=circshift(temp’,1)’
>> temp2=circshift(temp’,4)’
>> temp2=circshift(temp’,-5)’

2.B [WWWIThe vector pt created in the m-file in 1.B is a sampling vector of the

50-Hz pulse signal p(¢) with a length of 0.05 seconds and a sampling interval of 0.001
seconds.

Suppose that the pulse signal p(¢) is transmitted and its delayed version p(t — ¢,)
is received in additive white Gaussian noise n(f). The delay ¢, is due to the distance
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between the transmitter and the receiver. Thus the received signal b(¢) is expressed as
b(t) = p(t — t;) + n(r). Let us denote the sampled vector of the received signal b(¢) by
bt. In the following problems, we generate the sampled vector of the received signal
b(1).

2.B-1 WWWIAdQ the following lines to the end of m-file created in 1.B. Add a
comment to each of the lines in bold to explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

% Add the following to the m-file in 1.B.
randn(1,XXX); %XXX=the last three digits of your student ID number. This is irrele-
vant to the contents but be sure to add.
td=24-2*rand;

delayed_pt = circshift( pt’, round(td/t_step) )’;
nt=randn(1,length(delayed_pt));

bt= delayed_pt+nt;

figure(4)

plot(t, bt);axis([-5 5 -5 5]);

save mydelay.mat td

clear td delayed_pt

2.B-2 Note that rand() randomly generates a real valued number that is uniformly
distributed between O and 1. From the line in the m-file in 2.B-1 that generates the
delay time td, calculate the possible range of td. Do not use load mydelay to answer
this question.

2.B-3 Execute the m-file and capture the waveform of b(?) (= p(t — t;) + n(?)).
Estimate the location of the pulse, that is, estimate td from the captured waveform.
You might need to zoom into any portion of the waveform for a close examination.

2.C The autocorrelation of a signal f{f) denoted by ry (7) is given as [1-3]

rf(‘r):/ fFOf@+1)dr. (8.1)

In the following problem, we calculate the autocorrelation function using numer-
ical integration. Numerical integration was discussed in Section 2.1 of Chapter 2.

2.C-1 The following code fragment determines the autocorrelation function r,, (7)
of the noise signal n(f) for a given = = 1.5.

(a) Determine the two quantities marked by “?°.
(b) Explain what the variable on the left-hand side represents and justify how the
right-hand side expression is properly formulated accordingly.
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% Execute the m-file in 2.B-1 first and execute the following code fragment in the com-
mand window.

>>tau=1.5;

>>shift_samples=round(tau/t_step);

>>nt_tau=circshift(nt’, -shift_samples)’;

>>rn_tau=sum(conj(?).*?)*t_step % Refer to the numerical integration dis-
cussed in Section 1 of Chapter 2.

2.C-2 Execute the commands above in the command window and show the execu-
tion result of 7, (1.5).

2.C-3  Repeat the process in 2.C-1 to find r,, (7) for 7 =0, —1.5, and 2.72.

2.0 WWWIIp the code fragment below, the delay 7 increases from —4 to 4 with a

step size of 0.001. The autocorrelation r, (7) is calculated for each value of 7. Finally,
r, (7) is plotted as a function of 7.

% Add the following to the m-file in 2.B-1.

tau_vector=[];

rn_vector=[];

for tau=-4:0.001:4
tau_vector=[tau_vector tau];
shift_samples=round(?/t_step);
nt_tau=circshift(nt’, -shift_samples)’;
rn_tau=sum(conj(?).*?)*t_step;
rn_vector=[rn_vector rn_tau];

end

figure(5)

plot(tau_vector, rn_vector)

2.D-1 Complete the three places marked by *?’ in the code fragment and add it to
the end of the m-file in 2.B-1. Capture the completed m-file.

2.D-2 Execute the m-file and capture the noise autocorrelation function r, () dis-
played in Figure 5.

2.D-3 Summarize the characteristics of the white Gaussian noise on the basis of its
autocorrelation function graph in 2.D-2. Discuss whether or not the graphical result
is what you expected.

2.D-4 (a) T'From equation (8.1), prove that the autocorrelation at 7 = 0 is equal to
the signal energy. (b) From (a) and the autocorrelation function captured in 2.D-2,
determine the energy of n(?).

NOTE: With the ideal model (unrealistic), the background noise has infinite power
and thus infinite energy. However, n(¢) in the m-file of 2.D corresponds to the sampled
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noise after a filter of finite bandwidth. Thus, within the time interval where the noise
is truncated, it has a finite energy.

2.E The m-file completed in 2.D can be modified to plot the autocorrelation function
of any pulse signal p(f) whose sampled vector is represented by pt.

2.E-1 [TIWrite the expression for r, (7). You may modify equation (8.1).

2.E-2 WWWIErom the equation obtained in 2.E-1, properly modify the related lines
of the m-file in 2.D to plot T, (7), instead of r, (r), and identify the modified lines.
Let rp_vector denote the vector for the sampled T (7).

2.E-3  Execute the modified m-file in 2.E-2 and capture the graph of r,, (7). Prior to
capturing the graph, zoom into the range of [—0.2 0.2] along the x axis using axis()
or the magnifying button in the menu bar in order to clearly see the shape of r,, (7).

2.E-4 Find the energy of p(f) from its autocorrelation function captured in 2.E-3. Is
it consistent with the answer to 1.B-2?

2.E-5 [MProve that r¢ (7), the autocorrelation function of /(), given in equation (8.1)
satisfies the Hermitian symmetry property, that is,

ry(=7) =17 (7). (8.2)

2.E-6 Check whether the graphs of r, (7) and T () captured in 2.D-2 and 2.E-3,
respectively, match the results given by equation (8.2).

2.F The cross-correlation function of two signals f{¢) and g(¢) denoted by Tt (7)1s
calculated as [1-3]

rye (1) = / (0 g(t+7)dt. (8.3)

2F-1 [WWWIThe code fragment below calculates Ton (1), the cross-correlation of
p(?) and n(f), by using numerical integration. Recall that pt and nt are the sampled
vectors of p(#) and n(#), respectively. The variable rpn_tau represents r,, (7) for a
given value of 7(=tau).

Determine what should be placed at ‘?” in the line ‘rpn_tau=sum(conj
(?)-*?)*t_step;’ to implement the cross-correlation equation expressed in equation
(8.3). After completing this line, add the code fragment to the end of m-file in 2.B-1
and capture the complete m-file.

% Add the following code fragment to the m-file in 2.B-1.
tau_vector=[];
rpn_vector=[];
for tau=-4:0.001:4
tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);
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nt_tau=circshift(nt’, -shift_samples)’;
rpn_tau=sum(conj(?).*?)*t_step;
rpn_vector=[rpn_vector rpn_taul;

end

figure(6)

plot(tau_vector, rpn_vector); axis([-4 4 -0.05 0.05]);

2.F-2  Execute the completed m-file above and capture the waveform of r,, (7)
displayed in MATLAB Figure 6.

2.F-3 From the plots generated in 2.D-2, 2.E-3, and 2.F-2, determine the maximum
values of r,, (7), r,, (), and 1y, (7).

2.F-4  Explain the results in 2.F-3. Why is the peak value of r,,, (7) smaller than the
peak values of r, (7) and r, (7)?

2.G The cross-correlation Tob (7) between the pulse p(¢) and the received signal b(r)
(= p(t — t;) + n(1)) can be written as

rop (D) =71, (T = 1y) + 71, (7). (8.4)

2.G-1 MDerive this equation.

2.G-2 From equation (8.4) and the shapes of r, (7) and Iy (7) captured in 2.E-3
and 2.F-2, we can more or less predict the approximate shape of r,;, (7). Since the
delay ¢, is an unknown variable at this point, give ; an arbitrary value to determine
the shape of Tob (7).

(a) Develop your process to determine the shape of r,,;, (7).

(b) Where along the 7 axis does the peak of r,;, (7) occur?

2.G-3 From the answer in 2.G-2, develop a process to use r,, () to locate the
pulse in the received signal, which consists of the pulse and a noise signal that is
independent of the pulse. In other words, find 7, from r,,;, (7).

2.G-4 [WWWIThe following code fragment generates rpb_vector, the sampled vector
of r,;, (7), using the numerical integration technique and generates its graph. The
variable bt_tau represents the sampled vector of b (¢ + 7) for a given value of 7(=tau).
Using a similar code structure as the m-files in 2.F-1, complete the places marked
by ‘?” and then add this code fragment to the end of the m-file completed in 2.B-1.
Next, execute this m-file and capture the waveform of r,;, (z) displayed in MATLAB
Figure 7.

% Add the following code fragment to the m-file in 2.B-1
tau_vector=[];
rpb_vector=[J;
for tau=-4:0.001:4
tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);
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bt_tau= circshift(bt’, -shift_samples)’;
rpb_tau=sum(conj(?).*?)*t_step;
rpb_vector=[rpb_vector rpb_tau];

end

figure(7)

plot(tau_vector, rpb_vector); axis([-4 4 -0.07 0.07]);grid on;

2.G-5 From the graph of r, (7) captured in 2.G-4, obtain an estimate of the pulse
delay t;. Zoom into the desired portion of the figure will help increase the estimation
accuracy.

2.G-6 Execute the following in the command window to obtain the actual value
of ¢;, that is, td in the m-file. Check whether the estimate in 2.G-5 is correct. There
might be a slight mismatch between these two values because of approximation in
numerical calculation or variation of the instantaneous noise.

>>load mydelay.mat
>>td

2.G-7 Each time the m-file is executed, td and the sampled noise vector are updated.
Run the simulation multiple times to generate multiple td values. In each simulation,
compare the estimated delay with the actual value to verify that the estimation method
is correct. Capture your comparison results.

2.G-8 [AlChange the line ‘pt=sign(psint); in the m-file into ‘pt=psint;’ to replace
the rectangular pulse by a sinusoidal signal for p(f). Execute the m-file and estimate
td. Does the estimate depend on the pulse type?

2.H The pulse signal p(#) is deterministic and is, in general, independent of the
background Gaussian noise n(f). Under this condition, r;, (), the autocorrelation of
the received signal b(f) (= p(t — t;) + n(?)) can be expressed as

rp(0)=r,(0)+r,(1). (8.5)

2.H-1 [MDerive equation (8.5).

2.H-2 Revisit the m-file in 2.B-1 and change the line ‘nt=randn(1,length
(delayed_pt));’ into ‘nt=0.075*randn(1,length( delayed_pt));’. Also execute the fol-
lowing two lines of code in the command window to calculate the energy of the
revised noise sample vector nt.

>> nt=0.075%randn(1,length( delayed_pt));
>> sum(nt."2)*t_step




CORRELATION FUNCTION 85

2.H-3 [WWWIIf you have finished 2.G-8, change the line ‘pt=psint;’ in the revised
m-file in 2.H-2 back to ‘pt=sign(psint);’. Then add the following code fragment to
the end of the revised m-file. Execute the m-file and capture the graph of r;, (7).

tau_vector=[];

rb_vector=[];

for tau=-4:0.001:4
tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);
bt_tau=circshift(bt’, -shift_samples)’;
rb_tau=sum(conj(bt).*bt_tau)*t_step;
rb_vector=[rb_vector rb_tau];

end

figure(5)

plot(tau_vector,rb_vector);

grid on;

axis([-0.2 0.2 1.5*min(rb_vector) 1.5*max(rb_vector)]);

2.H-4 Assess whether the plot captured in 2.H-3 is consistent with equation (8.5).
Identify first which problems and their answers are relevant for this assessment.

21 [MThe correlation function of any power signal f{¢) is defined as [1-3]

T

2
Ry (0) = Jim % / FOf G+ 7)dr. (8.6)
&

A periodic signal is a power signal. For periodic power signals with period P,
Rf () can be expressed as

P

2
Rp (1) = % /f* ®Of (t+71)dr. 8.7)
_P
2
2I-1 [TIShow that equation (8.6) is equivalent to equation (8.7) if f{f) is periodic.

21-2 [TIFig. 1.1 in the Chapter 1 illustrates a special case of a rectangular peri-
odic function. Using equation (8.7), derive the correlation function of a periodic
rectangular function f{t) with period P, pulse width W (W < P/2), and height A.

2.1-3  [TISketch by hand Ry (7) of the function given in 2.1-2 versus 7.

2.J Suppose that an unknown periodic signal f{(f) is received together with an
additive noise signal n(z), that is, r(f) = f(t) + n(¢). In this problem, we identify the
periodic signal f(f) and determine its parameters from the received signal r(z).
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2.J-1 [WWWIDownload rt_sampled.mat from the companion website and execute
the following lines of code. Record the name and the length of a vector contained in
rt_sampled.mat.

>> clear
>> |oad rt_sampled.mat
>> whos

2.J-2  The vector rt contained in the data file rt_sampled.mat is the sampled vector
of the received signal r(r) with a sampling interval of 0.001 seconds and its length is
20 seconds. Execute the following to draw the waveform of 7(¢) and capture it.

>> plot(0:0.001:20, rt)

2.J-3  Closely observe the waveform of 7(t) by zooming into the various portions
of the figure. Based on your observation, describe the shape of the period signal f{(r)
distorted by noise and estimate its parameters such as period or amplitude.

2.J-4 [TIThe autocorrelation function of r(t) is the sum of the autocorrelation func-
tions of £ (¢) and n(t) expressed as

R.(z)=R; (1) + R, (7). (8.8)

Prove equation (8.8).

2J-5 WWWIiThe following m-file calculates R, (7), the autocorrelation function of
the received signal r(f), via numerical integration and plots it. Since the signal period
is unknown and the received signal is given as a vector that represents only 20
seconds of the continuous time signal in the m-file, we use equation (8.6) and set T
at 20 seconds, rather than infinity, in the numerical integration.

Add a comment to each of the lines in bold to explain what the variable on the
left-hand side represents and justify how the right-hand side expression is properly
formulated accordingly.

clear
load rt_sampled.mat

t_step=0.001;

Rr_vector=[];

tau_vector=[];

for tau=-4:0.01:4
tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);
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rt_tau=circshift(rt’, -shift_samples)’;
Rr_tau=1/20*sum(conij(rt).*rt_tau)*t_step;
Rr_vector=[Rr_vector Rr_tau];

end

figure

plot(tau_vector, Rr_vector);grid on;

2.J-6  Execute the m-file above and capture the graph of R, (7).

2.J-7 Using the figure of R, (7) captured in 2.J-6 and equation (8.8), sketch Ry ()
and justify your sketch.

2.J-8 Note that the sketch of R, (7) in 2.J-7 should be similar to the sketch in 2.1-3.
Compare these two and estimate the parameters P, W, and A. With the estimated
parameters, sketch the estimated periodic signal f(t).

2.J-9 Develop a method to systematically determine the shape and estimate the
parameters of an unknown periodic signal distorted by an additive noise.

8.3 ENERGY SPECTRAL DENSITY

3.A In this subsection we calculate the energy spectral density (ESD) [4] using
numerical integration.

3.A-1 [TIThe ESD of an energy signal f(¢) is defined as |F (a))lz, where F (w) is the
Fourier transform of /(7). (a) Establish relationship between r, (7), the autocorrelation
function of f{(¢), and its ESD |F(co)|2; that is, calculate |F(co)|2 from ry (7) or vice
versa. (b) Prove this relationship.

3.A-2  [WWWiRevisit the m-file in 2.E-2. If you have completed 2.G-8, change the
line ‘pt=psint;’ back to ‘pt=sign(psint);’. Recall that pt is the sampled vector of a pulse
signal p(f), whose graph has been captured in 1.B-1, and rp_vector is the numerically
calculated vector of the autocorrelation function r, (7).

The code fragment below calculates and plots |P (w)|?, the ESD of the pulse signal
p(t) using the relationship established in A-1. The variable ESD_vector denotes the
numerically calculated vector of the ESD of p(t). The frequency f increases from
0 Hz to 500 Hz with a 3-Hz step size, and the ESD at each frequency is via numerical
integration and concatenated to the vector ESD_vector. Add a comment to the line in
bold to explain what the variable on the left-hand side represents and justify how the
right-hand side expression is properly formulated accordingly.

% Add the following code fragment to the m-file in 2.E-2.
tau=-4:0.001:4;

f_vector=[]; ESD_vector=[J;

for f=0:3:500
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f_vector=[f_vector f];
ESD_f=sum(rp_vector.*exp(-j*2*pi*f*tau))*0.001;
ESD_vector=[ESD_vector ESD_{];

end

figure(8)

plot(f_vector,ESD_vector) grid on

xlabel(‘frequency [Hz])

3.A-3 Add the code fragment above to the end of the m-file in 2.E-2 and execute
the completed m-file. Capture the ESD graph of p(?).

3.B From the captured ESD graph, (a) find the frequency where the ESD reaches
the maximum. (b) Is the answer to (a) consistent with the waveform of p(f) captured
in 1.B-1? Justify your answer.

3.C [WWWiThe following code fragment calculates P (w), the Fourier transform of
p(®), via numerical integration and then calculates the ESD |P (w)|? directly from
P (), rather than using the autocorrelation.

% Add the following code fragment to the m-file in 2.E-2.

f_vector=[]; P_vector=[];

for f=0:3:500
f_vector=[f_vector f;
P_f=sum(pt.*exp(-j*2*pi*f*t))*0.001;
P_vector=[P_vector P_{];

end

figure(9)

plot(f_vector,abs(P_vector)."2)

grid on

xlabel(‘frequency [Hz]’)

3.C-1 Addacomment to the line in bold to explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

3.C-2 Add the code fragment above to the end of the m-file in 2.E-2 and execute
the m-file. Capture the resulting Figure 9 window.

3.C-3 (1) Are the graphs in 3.C-2 and 3.A-3 the same? (2) This result validates the
answer to which problem in this chapter?

3.C-4 Develop two different methods to calculate the ESD of an energy signal, one
uses the autocorrelation function and one does not.
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