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1. Introduction

The sudden arrival of COVID-19 in the winter of 2020 highlighted the importance of estimating a standard epidemiolog-
ical model of the epidemic quickly and with limited data. In this paper, we show how to tackle this challenge. We use data
on deaths in New York City, Madrid, Stockholm, and other world cities as well as in various U.S. states, countries, and re-
gions around the world during the first half of 2020 to estimate a SIRD model of COVID-19. Relative to existing frameworks,
our contributions are:

» We do not use data on cases or tests because of differential selection in testing in different cities, states, and countries.
Instead we only use data on deaths.

» We invert a standard SIRD epidemiological model and use the daily death series to recover a time-varying the basic re-
production number (i.e., the expected number of infections generated by one infection when all individuals are suscep-
tible to infection) Ro; = B;/y to capture changes in behavior and policy that occur at different times and with different
intensities in different locations. In essence, we apply a Solow residual approach: we assume the model fits the data
exactly and back out the implied values of B; that make it so.

* Corresponding author at: Department of Economics The Ronald O. Perelman Center for Political Science and Economics 133 South 36th Street Suite 150

Philadelphia, PA 19104
E-mail address: jesusfv@upenn.edu (J. Ferndndez-Villaverde).

1 We are grateful to Abigail Adams-Prassl, Leopold Aschenbrenner, Adrien Auclert, John Cochrane, Sebastian Di Tella, Glenn Ellison, Bob Hall, Pete Klenow,
Chris Tonetti, Giorgio Topa, Eran Yashiv, and to participants at the Stanford macro lunch for helpful comments and to Ryan Zalla for excellent research as-
sistance. A dashboard containing results for around 100 countries, states, and cities can be found at http://web.stanford.edu/people/chadj/Covid/Dashboard.
html.
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» We show how simulating our model after a location has reached a peak in the number of daily deaths results in very
stable results going forward in time. In contrast, simulations of the future before a location reaches its peak are extremely
noisy and sensitive to daily shocks.

For simulations of future outcomes, we allow for feedback from daily deaths, d;, to future behavior according to
Ror = Constant - e~@% as suggested by Cochrane (2020). We estimate « from data for each country. There is tremen-
dous heterogeneity across countries, so this parameter is not well-identified in our data. We estimate an average value
of about o = 0.05 so that Ry changes by 5% when daily deaths change by one and use this value in simulations of future
outcomes.

Our models allow us to back out the percentage of people who were infectious at the end of our sample as well as
those who were ever infected versus those still susceptible; therefore, we can estimate the extent to which herd immu-
nity effects are large. Given the epidemiological situation in mid-May 2020, we find moderate effects in New York City,
noticeable effects in Italy, Sweden, and Spain, and negligible effects in New York state outside of New York City and in
places like California.

We study a standard model of COVID-19 using common tools in econometrics, and then we analyze its main quantitative
implications in ways that resemble how economists study other dynamic models. Our exercise can help us understand
where a simple SIRD model has difficulties fitting observed patterns in the data and points out avenues for improvement
while maintaining the virtues of simplicity and parsimony.

In the interest of space, we will report a very short summary of our results, up to mid-May 2020. By the end of May, the
first wave of the epidemic was over in many cities, regions, and countries. Later waves of the epidemic need, to be analyzed
in more detail, using models with time-varying parameters, such as the one in Arias et al. (2021), and, consequently, much
more powerful econometric techniques. Nonetheless, we have an online dashboard, https://web.stanford.edu/~chadj/Covid/
Dashboard.html, that reports data extended until October 9, 2020 for around 100 cities, states, and countries.

2. Literature review

Much of the mathematical study of the spread of infectious diseases starts from the classic compartmental models of
Kermack and McKendrick (1927) and Kermack and McKendrick (1932). These models divide the population into several dif-
ferent compartments (e.g., susceptible, infective, recovered, deceased,...) and specify how agents move across the separate
compartments over time. The SIRD epidemic model that we analyze in this paper is one of the simplest of these compart-
mental models. Hethcote (2000) presents a useful overview of this class of models and some of their theoretical properties
and Morton and Wickwire (1974) show how to apply optimal control methods to them.

The acute economic impact of the COVID-19 pandemic has generated a gigantic literature that we cannot review here
except for pointing out a few papers that have particularly influenced our thinking (see Stock, 2020, and Avery et al., 2020,
for two general surveys of how economists have addressed this topic).

First, economists have argued that many of the parameters controlling the move among compartments are not structural
in the sense of Hurwicz (1962), but depend, instead, on individual decisions and policies. For example, the rate of contact
that determines the number of new infections is a function of the endogenous labor supply and consumption choices of
individuals. Hence, the rate of contact is amenable to being studied with standard decision theory models. See, for instance,
Eichenbaum et al. (2021) and Farboodi et al. (2021). Also, the recovery and death rates are not just clinical parameters, but
can be functions of policy decisions such as expanded hospital capacity or priorities regarding the allocation of scarce ICU
resources. Similarly, the case fatality ratio, a key figure to assessing the severity of the epidemic, is a complex function of
clinical factors (e.g., the severity of a virus) and demographic and selection-into-disease mechanisms, which are themselves
partly the product of endogenous choices (Korolev, 2020).2 Our paper builds on these ideas by allowing the infection rates
to be influenced by social distancing and by letting many parameters vary across countries, states, and cities, which can
proxy for demographic and policy heterogeneity.

Second, economists have been concerned with the identification problems of compartmental models. Many of these
models are unidentified or weakly identified, with many sets of parameters that fit the observed data so far equally well
but have considerably different long-run consequences. Atkeson (2020) and Korolev (2021) document this argument more
carefully. Our findings corroborate this result and highlight the need to develop alternative econometric approaches.

Third, some researchers have dropped the use of compartmental models completely. Instead, they have relied on time-
series models from the econometric tradition. See, for instance, Li and Linton (2021) and Liu et al. (2021).

Let us close this section by pointing out that economists are pushing the study of compartmental models in a multi-
tude of dimensions. Acemoglu et al. (2021), Alvarez et al. (2021), and Chari et al. (2020) characterize the optimal lockdown
policy for a planner who wants to control the fatalities of a pandemic while minimizing the output costs of the lockdown.
Berger et al. (2020) analyze the role of testing and case-dependent quarantines. Bodenstein et al. (2021) combine a compart-
mental model with a multisector dynamic general equilibrium model to capture key characteristics of the U.S. Input-Output
Tables. Garriga et al. (2021), Hornstein (2020), and Toda (2020) study a variety of containment policies. More papers are
appearing every day.

2 More precisely, the case fatality ratio is not the average treatment effect on the treated (ATET), a more explicitly “causal” concept.
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3. A SIRD model with social distancing

We follow standard notation in the literature. There is a constant population of N people, each of whom may be in one
of five states:
St +1It+Rt +D¢ +C =N.

The states -in temporal order- are

St = Susceptible,
R = Resolving,
D¢ = Dead,

G = ReCovered.

A susceptible person contracts the disease by coming into “adequate” contact with an infectious person, assumed to occur
at rate fB¢l;/N, where B; is a time-varying contact rate parameter. The starting value of B, By, reflects how the infection
would progress if individuals behaved as they did before any news of the disease had arrived. We think of 8, as capturing
characteristics of the disease, fixed attributes of the region such as density, and basic customs in the region.

Over time, B; varies depending on how strong are the social distancing and hygienic practices that different locations
adopt, either because of policy or simply because of voluntary changes in individual behavior. We will explain below how
we recover B from the data but, at this moment, we are not imposing any structure on its evolution.?

The total number of new infections at a point in time is B¢I;/N - S;. Infectiousness resolves at Poisson rate y, so the
average number of days a person is infectious is 1/y: e.g., if ¥ = 0.2, a person is infectious on average for 5 days.

After the infectious period is over, a person is in the “Resolving” state, R. A constant fraction, 6, of people exit this state
each period, and the case is resolved in one of two ways:

Death: fraction 8,

Recovery:  fraction 1-4.

In preliminary work, we found it important to have a model that distinguishes between the infectious and the recovering
periods. This distinction was key to matching the data with biologically plausible parameter values when we were putting
restrictions on the time path of §;. It appears that the infectious period lasts on average about 4 to 5 days while cases take
a total of about 2 to 3 weeks or even longer to resolve (Bar-On et al., 2020).* If one assumes people are infectious for this
entire period, the model has trouble fitting the data.

The laws of motion related to the virus are then given by

ASti1 = —BiSide/N (1)
—— —

new infections

[6pt]AL 1 = BeSele/N — 120 (2)
S—— ~—

new infections  resolving infectious

[6pt]ARt+] = )/I[ — GR[ (3)
resolving infectious ~ cases that resolve

[6pt]AD; 1 = 8OR; (4)

die

[6pt]AG 1 = (1 -8)0R;. (5)
~———
reCovered

We assume the initial stocks of deaths are set equal to zero. The initial stocks of infections and resolving cases, 1(0) and
R(0), are parameters that we will estimate.

3 In a previous version of this paper, we assumed that B; decayed at an exponential rate, as in Chowell et al. (2016). We also tried alternative specifi-
cations, including discrete jumps at the time of the introduction of shelter-in-place orders. As we will see below, it turns out that we can dispense with
those assumptions and be much more flexible in recovering f; from observables.

4 We can also consider the transition to the resolving compartment as reflecting, in part, quarantine measures. While some authors prefer to add a
“quarantine” compartment, we did not find we needed it to account for the dynamics of the data.
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3.1. Basic properties of a standard SIRD model
Here we review the basic properties of this model when B; = 8 and the difference equations are replaced by differential

equations (Hethcote, 2000). A convention in epidemiological modeling is to recycle notation and let Ry denote the basic
reproduction number, that is, the expected number of infections generated by the first ill person when sg = So/N ~ 1:

Ro = B X 1/y.

# of infections from one sick person # of lengthy contacts per day # of days contacts are infectious

More generally, if Rgsg > 1, the disease spreads; otherwise, it declines quickly. One can see from this simple equa-
tion why Ry > 1 is so natural: if people are infectious for 5 days and have lengthy contacts with even just two new people
per day, for example, then Ry = 10.

The initial exponential growth rate of infections is 8 — y = y (Rg — 1). Another useful result concerns the long-run num-
ber of people who ever get infected (and therefore the fraction § of these gives the long-run death rate). As t — oo, the total
fraction of people ever infected, e*, solves (assuming sg ~ 1)

1
* = ——log(1 —e*).
e R og(1—e")

In other words, with a constant 8, the long-run number of people ever infected is pinned down by Rg; the parameters y
and O only affect the timing, holding R constant. The long-run death rate is then §e*, which also depends only on Ry (and
3).

This explains why modeling the changing S associated with social distancing and better hygienic practices is so impor-
tant. With a constant f, the initial explosion rate of the disease implies a value for 8 and then all the variables in the
differential system are determined at that point. Instead, a changing 8 permits the initial exponential growth rate of deaths
to be different from the long-run properties of the system, which is the point of adopting behavioral changes in society.

4. Recovering f; and Rq;

It turns out that recovering B, a latent variable, from the data is straightforward without resorting to any complex
filtering device.

We adopt the following timing convention. D, is the stock of people who have died as of the end of date t + 1, so that
AD;,1 =d;, is the number of people who died on date t + 1 (daily deaths, in our estimating exercise).

We begin by using Eq. (4) to solve for various series involving R;,; and its differences in terms of daily deaths:

1 1
R = @ADHI = Edtﬂ (6)

1 1
ARt+l = E(dwz - dt+1) = @Adwl (7)

Next, we use (3) and the expressions we just derived for R;,; to solve for I; and its differences:

1
Iy = ?(ARt_'.] +9Rt)

1/ Ad
:)/( Sé+2+dt+l/8)

1 (Ad
= 3)/( 9t+2 +dt+1>» (8)

and applying the difference operator gives:

1 | Adiy3 — Ad
Al = W |:r+39t+2 + Adt+2i|

1 (AAd
=5 (6,”3 + Ade), (9)

where AAd;, 3 = Ad, 3 — Adgy).
Taking the ratio of (9) to (8) gives:

Al iq _ %AAdtH + Adg
I Ao + diys

(10)
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Now, we can go back to our original SIRD model in Eq. (2) and rewrite it as

Al 5 5
It _ﬂfﬁiy

Solve this equation for B; by using Eq. (10) above to get:

_N JAV /38
ﬂt - §t <y + It‘ )

_ ﬂ %AAdtH + Adiy
St FAde o +diy )

This is one of the key equations in recovering f;. Notice, however, that this equation depends on S;. But since we have an
initial condition for Sy, we can use the SIRD model to get the updating equation for AS;,; and we will be done. From (1) and
using (8) to substitute I;:

I
ASH—I = _.Btst N

1 1
= —ﬂtstm (5 Adiin + dm),

or

1 1
St41 =5t (1 - ﬂtm <§ Adpyr + dt+l>>-
Now, we only need to collect the last two equations together:

/3 N (y + %AAdt+3 + Adprz)
t 1.4 4 )

_N (11)
St %Adwz +diy1

and:

1 1
St =5t (1 - 'Btm (éAdHZ + dt+l>>.

With these two equations, an observed time series for daily deaths, d;, and an initial condition So/N ~ 1, we iterate
forward in time and recover f; and S;,;. Basically, we are using future deaths over the subsequent 3 days to tell us about
B: today. While this means our estimates will be 3 days late (if we have death data for 30 days, we can only solve for 8 for
the first 27 days), we can still generate an informative estimate of S;.

We can perform many exercises with the recovered ;. We can, for instance, simulate the model forward using the most
recent value of B; and gauge where a region is headed in terms of the infection. And we can correlate the 8; with other
observables to evaluate the effectiveness of certain government policies such as mandated lockdowns.

Note, also, that ; determines the basic reproduction number, Rqo; = B x 1/y under the prevailing social distancing and
hygienic practices. We should be careful to distinguish this basic reproduction number from the effective reproduction num-
ber (i.e., the average number of new infections caused by a single infected individual at time t), which we will denote by
Re:. The latter considers the fraction of the population that is still susceptible. Since:

Ret = Ror - St/N,

our procedure can also recover the effective reproduction number. This finding is interesting because this effective repro-
duction number is often reported by researchers due to the ease with which it can be estimated with standard statistical
packages such as EpiEstim in R.

5. Estimation: Countries and states

Now, we take our model to the data. The following parameters are assumed to be primarily biological and, therefore,
fixed over time and the same in all countries and regions:

- ¥ = 0.2: In the continuous-time version of this model, the average length of time a person is infectious is 1/y, so 5 days
in our baseline. This choice is consistent with the evidence in Bar-On et al. (2020). We also consider y = 0.15 (7 day
duration). The y = 0.2 fit slightly better in our earlier work with more restrictions on S, but it was not particularly well
identified.”

5 Note that y also incorporates choices of individuals. Therefore, it is not merely pinned down by clinical observations. If an individual experiences
symptoms or suspects that she might be infectious, hence withdrawing herself from effective contacts with susceptible individuals, we can consider her
case has resolved for the purposes of the dynamics of the model, even if she is still under a clinical condition.
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+ 8 = 0.1: In the continuous-time version of this model, the average length of time it takes for a case to resolve, after the
infectious period ends, is 1/6. With 6 = 0.1, this period averages 10 days. Combined with the 5-day infectious period,
this implies that the average case takes a total of 15 days to resolve. The implied exponential distribution includes a long
tail that can be thought of as capturing the fact that some cases take longer to resolve.

o = 0.05: For simulations of future outcomes, we allow for feedback from daily deaths per million people, d;, to future
behavior according to Rg; = Constant - e~*% as suggested by Cochrane (2020). We estimate o; from data for each location
i. There is tremendous heterogeneity across locations in these estimates, so a common value is not well-identified in our
data. We estimate an average value of about o =0.05 so that Ry changes by 5% when daily deaths change by one.
This is the value we use in simulations of future outcomes. More specifically, the mean value of &; in location-specific
regressions is 0.066 and the median value is 0.045. However, the standard deviation of &; across locations is a very high
0.15. We report results with both & = 0 -i.e., assuming no feedback so that the final value of R that we estimate in the
data is assumed to hold in the future- as well as with o = 0.05. The presence of feedback is very clear in our estimation
and strikes us as helpful to incorporate, so our baseline results below assume « = 0.05.

6 =1.0%: This parameter is crucial, and it would be great to have a precise estimate of it. Case fatality rates are not
helpful, as we do not have a good measure of how many people are infected. Random testing for antibodies to detect
how many people have ever been infected is quite informative about this parameter. We explain below how we use such
data.

Seroepidemiological surveys The most comprehensive evidence from the early stages of the COVID-19 epidemic we are
aware of comes from a seroepidemiological national survey undertaken by the Spanish government from April 27 to May 11,
2020, to measure the incidence of SARs-CoV-2 in Spain. The survey was large, with 60,983 valid responses from individuals
stratified in two stages. Combining the results from this survey with the measured sensitivity and specificity of the test,
we conclude that the mortality rate of SARs-CoV-2 in Spain was between 1% and 1.1%. Because many of the early deaths
in the epidemic were linked with mismanagement of care at nursing homes in Madrid and Barcelona that could have been
avoided, we pick 1% as our benchmark value.

Since mortality rates are affected by the demographic composition of the population (with COVID-19 mortality rates in-
creasing sharply with age), we obtained data on age distributions across countries from the U.N. population division. We
decomposed the Spanish mortality rate by age, given the age-specific measured incidence of infection rates, and applied
those age-mortality rates to the population shares of each country. To control for differences in life expectancy (and, hence,
for the possibility that the age-specific mortality rate of an 80-year-old individual in a high life-expectancy country is equiv-
alent to the age-specific mortality rate of a 70-year-old individual in a low life-expectancy country), we applied a correction
based on the ratio of the life expectancy of each country with respect to Spain’s life expectancy.

We found that, for most of the countries in our sample, the estimated mortality rate clusters around 1% (with or without
the correction for life expectancy). For example, for the U.S., we found a death rate of 0.76% without correcting for life
expectancy and 1.05% correcting for it. Therefore, and parsimoniously, we selected 1% as our baseline parameter value.

Other studies suggest similar values of §. For instance, on April 23, 2020, Governor Andrew Cuomo announced prelim-
inary results suggesting that 21% of New York City residents randomly tested from supermarkets and big-box stores had
antibodies for COVID-19. According to the New York Department of Health (2020), it takes 3-4 weeks for these antibodies to
form, so this suggests that around April 1, 21% of NYC residents were “ever infected.” This infection rate is consistent with
back-of-the-envelope calculations of death rates of around 0.8%-1.2%. Thus, we will report robustness results using death
rates of 0.8% and 1.2%.°

Data Our data are taken from the GitHub repository of Johns Hopkins University CSSE (2020), which reports cumulative
death numbers daily for countries, states, counties, and provinces throughout the world. The exception is for the interna-
tional cities/regions of Lombardy, London, Madrid, Stockholm, and Paris. We obtain data for these locations from the various
national vital statistics agencies.

Our sample for the results reported in this paper goes from the start of the epidemic until May 19, 2020. By the end
of May, the first wave of the epidemic was over in many countries. When deaths are close to zero, our procedure often
delivers negative values of Rq,: for example, small random changes from 1 death to 2 deaths a day imply second and third
differences of the daily deaths that the standard SIRD model cannot rationalize. Also, our simple approach would need to
be enriched to account for the repeated waves that arrived after the summer of 2020. This was done in follow-up research
by one of us in Arias et al. (2021). Nonetheless, our online dashboard reports data extended until October 9, 2020.

We manipulate the data in three important ways before feeding them into the model. First, on April 15, 2020, New
York City added more than 3,500 deaths to its counts, increasing the total by more than 43%. We apply this same factor
of proportionality (1.4325) to the deaths before April 15, 2020, to get a consistent time series for New York City. Second,
The Economist (2020) reports that similar adjustments need to be made in other countries. In particular, vital statistics
records in countries including Spain, Italy, England, France, and Sweden suggest that “excess deaths” relative to an average

6 Evidence from the second half of 2020 and 2021 suggests that 0.8%-1.0% is a realistic death rate for a country with the age structure of the US..
However, these death rates incorporate some of the advances in medical protocols for treating patients that appeared after our sample finished.
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New York City (only)
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Fig. 1. New York City: Estimates of Ro = B¢/y.

over past years exceed deaths officially attributed to COVID-19 by a large margin. Hence, we increase deaths in all non-New
York City locations by 33% for all dates.” Finally, there are pronounced “weekend effects” in the raw data: there are days,
often on the weekend or on a holiday, in the middle of the pandemic when a country reports zero deaths, only to make
up for this with a spike in deaths in subsequent days. We initially ran the model with the raw data, and the model works
fine. However, applying a 5-day centered moving average to the data produces more stable results, so we make this final
adjustment.

Guide to Graphs In the interest of space, we only report a small subset of our results. We invite the reader to check our
detailed results on our online dashboard. In general, we will report cumulative deaths through the latest date, daily deaths
(data and simulating forward), and cumulative deaths simulating forward. Data are shown as circles or bars, and simulations
are solid lines. Each graph may have several lines, typically for one of two reasons. In some graphs, we show the simulations
adding data from the last 7 days of our sample. This provides an intuitive assessment of how sensitive the simulations are
to one or two recent observations. In other graphs, we show alternatives for baseline, “high,” and “low” values of certain
parameters.

5.1. Baseline estimation results

Figure 1 shows the estimates of Ro; = f;/y for New York City. For the baseline parameter values, the estimates suggest
that New York City began with Rg = 2.7, so that each infected person passed the disease to nearly three others at the start.
This estimate agrees with other findings and it is particularly plausible for such a high-density metropolitan area as New
York City.® Social distancing is estimated to have reduced this value to below 0.5 by mid-April. After that, Ry, seems to
fluctuate around 1.0.

It is worth briefly reviewing the data that allow us to recover Rq. As discussed in Section 4, we invert the SIRD model
and use the death data to recover a time series for Rq; such that the model fits the death data exactly. This inversion reveals
that Rq; can be recovered from the daily number of deaths (d;, ), the change in daily deaths (Ad;,,), and the change in
the change in daily deaths (AAd;,3).

Figure 2 shows the data (bars) for daily deaths together with an HP filter of those data (with smoothing parameter 200),
in a solid line. Figure 3 then shows the change in the HP-smoothed daily deaths, while Fig. 4 shows the double difference.
It is these HP-filtered data that are used in the construction of Rq, in Fig. 1. Because the HP filter has problems at the end
of the sample (e.g., there are fewer observations so noise becomes more important, and double differencing noise reduces
precision), the latest estimate of Ro; we have for each location corresponds to May 9, 2020, even though our death data run
through May 19, 2020: we lose 2 observations for the moving average, 3 observations for the double differencing, and then
truncate by an additional 5 days to improve precision.

7 Katz and Sanger-Katz (2020) suggest that the excess deaths in New York City could be even larger than the already-adjusted numbers revealed so far:
they report 20,900 excess deaths by April 26, 2020, compared to 16,673 in the official counts.
8 For instance, Sanche et al. (2020) estimate an even higher median R, value of 5.7 during the start of the epidemic in Wuhan.
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New York City (only): Daily deaths, d
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Fig. 2. New York City: Daily Deaths and HP-Filtered Deaths.
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Fig. 3. New York City: Change in Smoothed Daily Deaths.

Our estimation also allows us to recover the fraction of the population that is estimated to be infectious at each date.
These results are shown for New York City in Fig. 5. For our baseline parameter values, this fraction peaks around April 1,
2020, at 5.7% of the population. By May 9, 2020, it is estimated to have declined to only 0.43% of the population.

Figure 6 shows the time path of Ry for several locations. There is substantial heterogeneity in the starting values, but
they all fall and cluster around 1.0 once the pandemic is underway. By the end of our sample, the values of Ry for Atlanta
and Stockholm are noticeably greater than 1.0.

Figure 7 shows the time path of the percentage of the population that is currently infectious, I;/N, for several locations.
The waves crest at different times for different locations, and the peak of infectiousness varies as well.

Table 1 summarizes these and other results for a broader set of our locations. The full table, together with around 39
pages of graphs for each location, is reported on our dashboard. Now is a good time to make a couple of general remarks
about our estimation. First, as the number of daily deaths declines at the end of a wave -say for Paris, Madrid, and Hubei
in the table- the estimation of R(; can become difficult and dominated by noise. In the extreme, for example, once total
deaths are constant, our procedure gives B; = 0/0. One sign of such problems is that “today’s” value of Ry can fall to equal
0.20 -this is a lower bound that we impose on the estimation. When a location hits this lower bound, our routine ignores
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Fig. 5. New York City: Percent of the Population Infectious.

subsequent days of results because the model yields inconsistent result (e.g., negative new infectious). The notation “today”
in the table refers to the last day for which we have results. Typically it is May 9, 2020, but in some cases it is earlier.
Next, we turn to some general comments about the results. First, notice that the initial values for Ry range from around
1.5 or lower in places like Minnesota, California, Norway, and Mexico to high values of 2.5 or more in major cities throughout
the world. Second, the fraction of the population that is infectious at the peak is greater than 2% in the hardest-hit areas,
but only reaches a maximum of 5.7% in New York City. Third, the fraction that is infectious at the end of the sample is
typically lower. It has fallen below 0.4% in New York City (plus), Lombardy, Madrid, Paris, and Detroit but is greater than
0.7% in places including New Jersey, Stockholm, Philadelphia, and Chicago. It is even lower -below 0.1%- in the SF Bay Area,
Washington state, and Germany. Finally, there is enormous heterogeneity in cumulative deaths per million people (“Total
(pm) Deaths” in the table), both at the end of the sample and in the forward simulation for 30 days in the future (t+30).

5.2. Baseline simulations

Figures 8, 9, and 10 show how the model fits the New York City data for three values of §: 0.01, 0.008, and 0.012. The
main lesson is that the model fits the data very well with each of these parameter values: our procedure just adjusts the
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number of infected people to account for the same observed deaths. For example, with § = 1.0%, our model implies that
this number for April 1, 2020, was 17%. This compares very well with the observation that -as of April 20, 2020- about
21% of New York City residents tested positive for antibodies of COVID-19 (New York Department of Health, 2020). Because
antibodies only appear 3 to 4 weeks after infection, these antibody tests really tell us what the ever-infected rate was 3 to
4 weeks earlier.

The supertitle lines for these three figures also report the “%Infected” at different dates. These are the percentage of
people who are estimated to have ever been infected with the virus. For New York City, the numbers as of early May
2020 are 26% percent, and then in 30 days they are estimated to equal 27%, with a slightly higher value at the end of our
simulation (the third number). We return in Section 7 to the implications of these high infection rates for herd immunity
and re-opening. Our dashboard reports similar exercises for many other locations.

5.3. Seven days of simulations

When we simulate the model for many countries and regions, we find two results. First, once countries or regions reach
the peak and deaths start to decline, the forecasts converge well. Second, however, before that happens, the forecasts are

10
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Table 1
Summary of Results across Locations.
Total (pm) — Ro — Ro -S/N % Infectious Total (pm)
Deaths, t initial today today peak today Deaths, t+30

NYC (only) 2482 2.71 0.77 0.57 5.67% 0.43% 2650
NYC (plus) 2116 2.60 0.36 0.28 4.85% 0.35% 2238
Lombardy, Italy 2050 2.51 0.92 0.72 3.50% 0.32% 2236
New York 1451 2.62 0.68 0.57 3.23% 0.36% 1606
Madrid, Spain 1782 2.58 0.20 0.15 3.97% 0.19% 1841
Detroit 1691 2.43 0.50 0.41 2.88% 0.32% 1841
New Jersey 1551 2.61 1.11 0.91 2.44% 0.87% 2137
Stockholm, SWE 1499 2.61 1.17 0.97 2.44% 0.73% 2027
Boston 1198 2.12 0.72 0.62 2.63% 0.65% 1568
Paris, France 1003 2.39 0.20 0.01 1.99% 0.17% 1052
Philadelphia 885 2.46 0.88 0.78 1.68% 0.72% 1291
Michigan 809 2.35 0.69 0.62 1.37% 0.25% 932
Spain 786 2.41 0.53 0.49 1.59% 0.12% 844
Chicago 738 2.17 0.93 0.84 1.10% 1.01% 1144
D.C. 723 1.99 0.94 0.85 1.28% 0.78% 1105
Italy 702 2.22 1.01 0.93 1.07% 0.15% 808
United Kingdom 679 2.37 0.96 0.88 1.16% 0.29% 845
France 567 2.17 1.15 1.07 1.26% 0.17% 682
Sweden 486 2.07 0.90 0.84 0.75% 0.39% 661
Pennsylvania 476 2.06 0.84 0.78 0.89% 0.38% 673
United States 362 2.02 0.91 0.87 0.52% 0.24% 478
NY excl. NYC 264 1.98 1.10 1.06 0.39% 0.39% 456
Miami 275 1.83 0.68 0.66 0.49% 0.23% 354
U.S. excl. NYC 266 1.77 0.95 0.91 0.37% 0.23% 378
Mississippi 239 1.61 0.93 0.89 0.48% 0.26% 369
Los Angeles 192 1.62 1.01 0.98 0.31% 0.20% 294
Minnesota 193 1.54 0.83 0.80 0.36% 0.25% 291
Atlanta 183 1.81 1.46 1.42 0.24% 0.18% 378
lowa 178 1.44 0.89 0.86 0.35% 0.34% 307
Washington 177 1.56 0.32 0.31 0.26% 0.08% 199
Virginia 170 1.91 0.80 0.77 0.40% 0.16% 230
Germany 127 1.66 0.20 0.18 0.21% 0.04% 135
California 110 1.45 1.04 1.02 0.16% 0.13% 174
Brazil 102 1.26 1.13 1.10 0.28% 0.28% 240
Hubei, China 101 1.40 0.20 0.01 0.23% 0.08% 102
SF Bay Area 77 1.26 0.98 0.97 0.12% 0.04% 97
Mexico 54 1.31 1.12 1.10 0.15% 0.15% 128
Norway 57 1.57 0.20 0.11 0.12% 0.04% 55

New York City (only)
R =2.7/1.0/1.4 0=0.010 a=0.05 0=0.1 %Infect=26/27/31
3000 -
DATA THROUGH 19-MAY-2020

2500 -

2000 -

1500 -

1000 -

Cumulative deaths per million people

500

(1 1 1 1 1 1
Mar 16 Mar 30 Apr 13 Apr 27 May 11 May 25
2020

Fig. 8. New York City: Cumulative Deaths per Million People (§ = 1.0%/0.8%/1.2%).
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Table 2
Why Random Testing Would Be So Valuable.

— Percent Ever Infected (today) —

6 =0.5% 6=1.0% §=12%
New York City (only) 51 26 22
New York City (plus) 44 22 19
Lombardy, Italy 43 22 19
New York 31 16 13
Madrid, Spain 36 18 15
Detroit 36 18 15
New Jersey 37 19 16
Stockholm, Sweden 36 18 15
Connecticut 33 17 14
Boston+Middlesex 29 15 12
Massachusetts 29 15 12
Paris, France 21 11 9
Philadelphia 23 12 10
Michigan 18 9 8
Spain 17 8 7
Chicago 21 11 9
District of Columbia 20 10 8
Italy 15 8 7
United Kingdom 16 8 7
France 13 6 5
Illinois 13 7 6
Sweden 12 6 5
Pennsylvania 12 6 5
United States 9 5 4
New York excluding NYC 8 4 3
Miami 7 3 3
U.S. excluding NYC 7 4 3
Ecuador 6 3 3
Los Angeles 5 3 2
Minnesota 5 3 2
Atlanta 5 3 2
Iowa 6 3 2
Florida 3 2 1
Germany 3 1 1
California 3 2 1
Brazil 4 2 2
Mexico 2 1 1
Norway 1 1 0
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Fig. 9. New York City: Daily Deaths per Million People (8 = 1.0%/0.8%/1.2%).
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Fig. 11. New York City (7 days): Daily Deaths per Million People.

very noisy. This makes sense: we are trying to forecast 30 to 60 days into the future based on 3 to 4 weeks of data using a
very nonlinear model.

We illustrate these points with the next two figures, Figs. 11 and 12, which show results at the end of our sample for New
York City, now broadly defined to include the surrounding counties of Nassau, Rockland, Suffolk, and Westchester (which we
call “New York City (plus)” in the graphs). In each figure, we see seven lines of forecasted daily and cumulative deaths. Each
line corresponds to the forecast using one more day of observations. In both figures, the more recent observations push the
forecast down (i.e., the top lines use fewer observations) and lowers its variance from day to day. This convergence of the
forecast reflects how the first wave of COVID-19 was winding down in New York by late May 2020.

Recall the role of the o feedback parameter. In the baseline simulation results, we assume R = Constant - e=*% where
o = 0.05. This implies that if daily deaths rise, people adjust their behavior to reduce contacts, which reduces Ry Con-
versely, if daily deaths fall, people are more likely to go out and interact, which raises R;.
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Fig. 12. New York City (7 days): Cumulative Deaths per Million (Future).
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Fig. 13. New York City (plus): Daily Deaths per Million People.

6. Problems with geographic aggregation

A point that is important to appreciate is that aggregating up from the city or county to the state and to the national
level can be misleading. SIRD is a nonlinear model, so the results at the state level are not the same as the average of the
results at the county level.

This point is easy to illustrate using data from New York. We report results for several different geographic regions. “New
York City (plus)” includes New York City plus the four surrounding counties of Nassau, Rockland, Suffolk, and Westchester,
with a total population of about 12 million. New York state is self-explanatory and has a population of about 20 million.
And “New York excluding NYC” is the difference between these other two: New York state excluding the NYC (plus) area,
with a population of about 8 million.

Now compare the results for these three regions, shown in Figs. 13-15. The results in New York state as a whole are
driven entirely by New York City. For example, imagine (counterfactually) that there were no deaths outside of New York
City. In this hypothetical case, deaths per million for New York state would look exactly like deaths per million for New York
City, except scaled down by a factor of 12/20. Because of the lower deaths per million, the model would behave slightly
differently. And yet New York outside of New York City could look very different. In fact, as the deaths in New York City

14
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Table 3
Using Percent Susceptible to Estimate Herd Immunity, § = 1.0%.
Percent Ro(t+30) Percent
Susceptible with no way back
Ro Rot t+30 outbreak to normal

New York City (only) 2.7 0.8 73.5 1.4 30.3
New York City (plus) 2.6 0.4 77.5 1.3 41.5
Lombardy, Italy 2.5 0.9 77.5 1.3 234
New York 2.6 0.7 83.8 1.2 26.4
Madrid, Spain 2.6 0.2 81.5 1.2 43.2
Detroit 2.4 0.5 81.6 1.2 37.6
New Jersey 2.6 11 78.3 1.3 114
Stockholm, Sweden 2.6 1.2 78.3 13 7.2

Boston+Middlesex 21 0.7 849 1.2 329
Massachusetts 21 1.0 833 1.2 213
Paris, France 2.4 0.2 89.4 1.1 42.0
Philadelphia 2.5 0.9 87.2 1.1 17.0
Michigan 2.4 0.7 90.6 1.1 25.0
Spain 2.4 0.5 91.5 1.1 29.8
Chicago 2.2 0.9 87.0 1.1 18.0
District of Columbia 2.0 0.9 87.9 1.1 19.0
Italy 2.2 1.0 91.5 1.1 6.8

United Kingdom 24 1.0 91.0 1.1 10.0
France 2.2 1.1 91.9 1.1 -6.0

Illinois 2.0 0.9 91.2 1.1 15.3
Sweden 2.1 0.9 92.7 1.1 15.2
Pennsylvania 2.1 0.8 93.0 1.1 19.5
United States 2.0 0.9 94.7 1.1 13.1

New York excluding NYC 2.0 1.1 92.8 1.1 -2.3

Miami 1.8 0.7 96.3 1.0 31.0
U.S. excluding NYC 1.8 0.9 95.6 1.0 11.8
Ecuador 1.5 0.8 95.7 1.0 30.8
Los Angeles 1.6 1.0 96.2 1.0 54

Minnesota 1.5 0.8 96.7 1.0 28.7
Atlanta 1.8 1.5 86.2 1.2 -84.9
lowa 1.4 0.9 96.1 1.0 27.2
Washington 1.6 0.3 98.0 1.0 56.3
Florida 1.6 0.9 98.0 1.0 15.3
Germany 1.7 0.2 98.6 1.0 55.8
California 1.5 1.0 97.5 1.0 -3.4

Brazil 1.3 1.1 95.0 1.1 -54.7
SF Bay Area 13 1.0 98.8 1.0 10.3
Mexico 13 1.1 97.3 1.0 -45.8
Norway 1.6 0.2 99.4 1.0 58.9
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Fig. 14. New York State: Daily Deaths per Million People.
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Table 4
Herd Immunity with a Much Lower Death Rate, § = 0.5%.
Percent Ro(t+30) Percent
Susceptible with no way back
Ro Roe t+30 outbreak to normal
New York City (only) 2.7 1.6 46.6 2.1 51.1
New York City (plus) 2.6 0.7 56.1 1.8 56.6
Lombardy, Italy 2.5 1.5 54.4 1.8 30.6
New York 2.6 1.0 67.5 1.5 28.1
Madrid, Spain 2.6 0.3 64.1 1.6 55.9
Detroit 24 1.0 63.5 1.6 413
New Jersey 2.6 1.9 49.1 2.0 20.1
Stockholm, Sweden 2.6 1.8 52.1 19 11.6
Boston+Middlesex 21 14 61.8 1.6 33.7
Massachusetts 21 1.5 58.9 1.7 37.2
Paris, France 24 0.3 79.3 1.3 46.5
Philadelphia 2.5 1.3 66.9 1.5 13.2
Michigan 24 0.9 80.8 1.2 22.1
Spain 24 0.6 83.3 1.2 315
Chicago 2.2 1.1 71.3 1.4 30.1
District of Columbia 2.0 1.2 72.0 14 26.7
Italy 2.2 1.2 82.7 1.2 4.6
United Kingdom 24 1.2 80.8 1.2 7.2
France 2.2 1.2 84.3 1.2 -5.7
Mllinois 2.0 1.0 81.4 1.2 21.7
Sweden 2.1 1.0 84.6 1.2 16.1
Pennsylvania 2.1 1.1 83.4 1.2 12.5
United States 2.0 1.0 89.0 1.1 11.8
New York excluding NYC 2.0 1.1 87.7 1.1 6.7
Miami 1.8 0.8 92.4 1.1 29.8
U.S. excluding NYC 1.8 1.0 90.8 1.1 11.2
Ecuador 1.5 0.9 91.2 1.1 36.1
Los Angeles 1.6 1.0 92.4 1.1 6.7
Minnesota 1.5 0.9 93.1 1.1 28.5
Atlanta 1.8 14 87.5 1.1 -77.7
lowa 1.4 0.9 92.2 1.1 339
Washington 1.6 0.3 96.0 1.0 57.4
Florida 1.6 1.0 96.0 1.0 141
Germany 1.7 0.2 97.3 1.0 56.5
California 1.5 1.0 95.3 1.0 0.7
Brazil 13 1.1 92,5 1.1 4.4
SF Bay Area 13 1.0 97.7 1.0 11.0
Mexico 13 1.1 95.7 1.0 -17.4
Norway 1.6 0.2 98.9 1.0 58.9
New York excluding NYC
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Fig. 15. New York excluding NYC: Daily Deaths per Million People.
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decline, a potential rise in deaths outside of New York City could cause the state death numbers to exhibit a flattening or
even a second peak.

Another version of this same kind of geographic aggregation bias seems likely to occur for the United States itself. To see
this, imagine 50 states that sequentially pass through the peak of daily deaths. The U.S. national number can be driven by
New York (City!) for the first several weeks, then by New Jersey and Michigan, and then by Massachusetts and Pennsylvania.
The U.S. graph may show a rise and then a very flat profile of deaths that persists for a long time before declining, as new
regions within the country suffer through their peaks sequentially.

7. Herd immunity and re-opening the economy

An important question at any stage of a pandemic is when to re-open the economy. The estimation we have conducted
has something helpful to contribute to this point.

First, Table 2 reports the estimated fraction of the population that had ever been infected as of May 9, 2020, for different
countries and regions. Numbers for three different values of § are also reported, with the baseline case of § = 1.0% in the
center column. Two key things stand out in the table. First, consider the baseline. As we discussed above, we estimate that
26% of New York City had ever been infected by late May 2020.

In contrast, only 4% of people in New York state outside of New York City and only 2% of Californians have ever been
infected. There is enormous heterogeneity in ever-infected rates. Where do these numbers come from? In our model, the
fraction & of those infected eventually die, with the timing determined by y and 6, but essentially suggesting that deaths
at time t reflect infections from 15 days earlier. With an assumed death rate of § = 1.0%, for each death, there are approx-
imately 100 other people who have been infected. The large differences in the number of deaths per million in New York
versus California then translate into these differences in infection rates. Interestingly, rates in Norway and South Korea are
similarly very low, while ever-infected rates in Italy, Spain, and France are estimated to be around 6 to 8%.

The second point is that these numbers are -in an obvious way- very sensitive to the assumed value of §. If you double
the death rate, you (roughly) halve the ever-infected rate. If you halve the death rate, you (roughly) double the infected rate.
And as we discuss in more detail next, in thinking about herd immunity and re-opening the economy, knowing the fraction
ever-infected is crucial, at least under the important assumption that antibodies give rise to immunity for an extended
period of time.

There is an important complementarity here. We would like the death rate to be low, not just because it means that
fewer people die, but also because it means that lots of people will already have been infected. For example, if the true
death rate is 5 in 1000 rather than 10 in 1000, it means that 51% of New Yorkers had already been infected and the herd
immunity effects would be very strong. In this sense, the finding that only 21% of New York City was ever infected as of
April 1, 2020, was doubly bad news: it pushes up the death rate and means we are far from herd immunity, even in the
place with the largest number of infections.

As Atkeson (2020), Stock (2020), and others have emphasized, random testing would have been extremely helpful in
identifying which of these cases was relevant. Moreover, the table suggests that it was much more important to test in New
York City than in California. So few people were likely infected in California that it would have been very hard to distinguish
statistically between the different death rates, whereas even a few thousand random tests would have been very informative
in New York City. This is a crucial point to remember for future epidemics.

7.1. How far can we relax social distancing?

This brings us to the next reason why knowing the percentage ever infected would be so useful. The complement of
this number is the percentage of the population that is still susceptible to the virus at any given moment in time. Call this
fraction s(t) = S(t)/N (or better might be S(t)/(N — D(t)) but D(t) is so low that it makes no difference).?

Recall from the basic SIR model that the virus will die out as long as Rq(t)s(t) < 1, that is, if Rg; = B;/y is smaller than
1/s(t). The term s(t) is herd immunity. The fewer people who are susceptible and the more people who are recovered and
hence immune, the less our random interactions result in infections. In particular, we can relax social distancing -increase
Br and Ro.— to the critical value such that Rqs(t) is just below one. That would mean that infected people infect fewer
than one person on average, so herd immunity keeps the virus from re-surging.

Table 3 shows these calculations for one month from the end of our sample (t + 30) given the baseline estimates from
the model. For example, from the middle column, it is estimated that at t + 30, 78% of New York City (plus surrounding
counties) would have still been susceptible. This means we could relax social distancing to the point where Ry would rise
to 1/0.78 = 1.3. This compares to the estimate for New York City at the end of the sample of 0.4 and the initial estimate of
2.6. In other words, New York City could move 41% ([1.3-0.4]/[2.6-0.4]) of the way back to normal and see no resurgence of
the virus (Table 4).

The rest of the state of New York, in contrast, is estimated to still have had 93% of the population susceptible a month
from the end of our sample. So outside of the city, New York needed to maintain its R at 1.1 -also its level at the end of

9 Notice, however, that our very stylized SIRD model is silent about how you map concrete policy decisions (i.e., should we o should we not open
non-essential businesses) into changes in Ro.
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our sample- to keep the virus from spreading. New York City and the rest of New York state needed different policies if the
fraction of the population that remains susceptible was as different as these estimates imply.'°

Places with values of Ry < 1 could have relaxed somewhat and still have kept the virus in check. But the basic news
from this table is that with a death rate of 1%, there was very little accumulated herd immunity and that our scope for
relaxing social distancing was limited (as shown by the later waves of the epidemic).

Finally, note that the SIRD model has “momentum.” Even if an area has reached the threshold Rq(t)s(t) < 1, we will
continue to accumulate infections and deaths before the epidemic dies out fully. The number of these “overshoot” infections
and deaths will depend on the number of infectious individuals when we reach Rq(t)s(t) < 1. This observation is not a
minor point. In a conventional SIRD model where R((t) gives you herd immunity at 60% of the population, if we reach
s(t) = 0.4 too fast, we can end up with over 90% of the population ever infected, that is, with an extra 30% of infections
over those required to achieve herd immunity.

This means that we want to reach the threshold R (t)s(t) < 1 or stay around it with very few infectious individuals to
minimize “overshoot” infections. While setting up and solving an optimal control problem of the COVID-19 epidemic in the
tradition of Morton and Wickwire (1974) to get to such an objective is beyond the scope of our paper, our empirical results
can help to calibrate re-opening scenarios such as those quantitatively explored in Baqaee et al. (2020).

8. Conclusions

Our paper has presented a fast procedure to estimate a SIRD model with limited data. This exercise is particularly useful
at the start of an epidemic, when a fast policy response is required and we cannot wait for months to implement more
sophisticated econometric methods such as those in Arias et al. (2021).

Relative to the standard SIRD model in the literature, we include a time-varying g, and therefore a time-varying Ry. We
invert the SIRD model to back out the daily values of Rq, that fit the death data. We see this as important for capturing
behavioral changes by individuals in response to the pandemic as well as policy changes related to social distancing. We
also include an additional “recovering” state that is consistent with the medical evidence that cases seem to be infectious
for four to five days while taking a total of several weeks or more to resolve. These changes better connect the model
to the epidemiology of the virus and are important in improving the model’s ability to fit the data. Finally, we follow
Cochrane (2020) and include feedback between R(; and daily deaths in modeling the future of the epidemic. We hope that
our empirical estimates will prove useful to others in thinking about the possible path that COVID-19 may take at different
locations and in analyzimg future epidemics.

References

Acemogluy, D., Chernozhukov, V., Werning, 1., Whinston, M.D., 2021. A multi-risk sir model with optimally targeted lockdown. Am. Econ. Rev. Insights.

Alvarez, F.,, Argente, D., Lippi, F,, 2021. A simple planning problem for COVID-19 lock-down, testing, and tracing. Am. Econ. Rev. Insights 3 (3), 367-382.

Arias, J.E., Ferndndez-Villaverde, ]., Rubio Ramirez, J., Shin, M., 2021. Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy
Trade-Offs. Working Paper 28617. National Bureau of Economic Research.

Atkeson, A., 2020. How Deadly Is COVID-19? Understanding the Difficulties with Estimation of Its Fatality Rate. Working Paper 26965. National Bureau of
Economic Research.

Avery, C., Bossert, W., Clark, A., Ellison, G., Ellison, S.F., 2020. Policy Implications of Models of the Spread of Coronavirus: Perspectives and Opportunities for
Economists. Working Paper 27007. National Bureau of Economic Research.

Baqaee, D., Farhi, E., Mina, M.J., Stock, J.H., 2020. Policies for a second wave. Brookings Pap. Econ. Act. 385-431.

Bar-On, Y.M., Flamholz, A., Phillips, R., Milo, R., 2020. SARS-CoV-2 (COVID-19) by the Numbers. Technical Report. https://elifesciences.org/articles/57309

Berger, D., Herkenhoff, K., Huang, C., Mongey, S., 2020. Testing and reopening in an SEIR model. Rev. Econ. Dyn..

Bodenstein, M., Corsetti, G., Guerrieri, L., 2021. Social distancing and supply disruptions in a pandemic. Quant. Econ..

Chari, V., Kirpalani, R., Phelan, C., 2020. The hammer and the scalpel: on the economics of indiscriminate versus targeted isolation policies during pan-
demics. Rev. Econ. Dyn. 42. doi:10.1016/j.red.2020.11.004.

Chowell, G., Viboud, C., Simonsen, L., Moghadas, S.M., 2016. Characterizing the reproduction number of epidemics with early subexponential growth dy-
namics. J. R. Soc. Interface 13 (123), 20160659.

Cochrane, J., 2020. An Sir Model with Behavior. The Grumpy Economist blog. https://johnhcochrane.blogspot.com/

Eichenbaum, M.S., Rebelo, S., Trabandt, M., 2021. The Macroeconomics of Epidemics. Rev. Financ. Stud. 34 (11), 5149-5187.

Farboodi, M., Jarosch, G., Shimer, R., 2021. Internal and external effects of social distancing in a pandemic. J. Econ. Theory 196.

Garriga, C., Manuelli, R., Sanghi, S., 2021. Optimal Management of an Epidemic: An Application to COVID-19. A Progress Report. Technical Report. Federal
Reserve Bank of St. Louis.

Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42 (4), 599-653.

Hornstein, A., 2020. Social Distancing, Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR-Model. Technical Report. Federal Reserve
Bank of Richmond.

Hurwicz, L., 1962. On the structural form of interdependent systems. In: Nagel, E., Suppes, P., Tarski, A. (Eds.), Logic, Methodology and Philosophy of Science.
In: Studies in Logic and the Foundations of Mathematics, vol. 44. Elsevier, pp. 232-239.

Johns Hopkins University CSSE, 2020. 2019 novel coronavirus COVID-19 (2019-nCoV) data repository. Center for Systems Science and Engineering, https:
//github.com/CSSEGISandData/COVID-19.

Katz, J., Sanger-Katz, M., 2020. N.Y.C. Deaths Reach 6 Times the Normal Level, Far More Than Coronavirus Count Suggests. The New York Times. https:
//lwww.nytimes.com/interactive/2020/04/27 [upshot/coronavirus-deaths-new-york-city.html

Kermack, W.0., McKendrick, A.G., 1927. A contribution to the mathematical theory of epidemics, Part I. Proc. R. Soc. London Ser.A 115 (772), 700-721.

Kermack, W.0., McKendrick, A.G., 1932. Contributions to the mathematical theory of epidemics. Il - the problem of endemicity. Proc. R. Soc. London Ser.A
138 (834), 55-83.

10 Notice, also, that these computations assume that individuals stay within their territories, and do not move among them, mixing infection rates across
areas.


http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0001
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0002
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0003
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0004
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0005
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0006
https://elifesciences.org/articles/57309
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0008
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0009
https://doi.org/10.1016/j.red.2020.11.004
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0011
https://johnhcochrane.blogspot.com/
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0013
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0014
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0015
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0016
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0017
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0018
https://github.com/CSSEGISandData/COVID-19
https://www.nytimes.com/interactive/2020/04/27/upshot/coronavirus-deaths-new-york-city.html
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0021
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0022

J. Ferndndez-Villaverde and C.I. Jones Journal of Economic Dynamics & Control 140 (2022) 104318

Korolev, I., 2020. What Does the Case Fatality Ratio Really Measure? Technical Report. Binghamton University.

Korolev, 1., 2021. Identification and Estimation of the SEIRD Epidemic Model for COVID-19. ]. Econom. 220 (1), 63-85.

Li, S., Linton, O., 2021. When will the COVID-19 pandemic peak? ]. Econom. 220 (1), 130-157.

Liu, L., Moon, H.R., Schorfheide, F.,, 2021. Panel forecasts of country-level COVID-19 infections. ]. Econom. 220 (1), 2-22.

Morton, R., Wickwire, K.H., 1974. On the optimal control of a deterministic epidemic. Adv. Appl. Probab. 6 (4), 622-635.

New York Department of Health, 2020. The NYSDOH Wadsworth Center’s Assay for SARS-CoV-2 IgG. Technical Report. https://coronavirus.health.ny.gov/
system/files/documents/2020/04/updated- 13102-nysdoh-wadsworth-centers-assay- for-sars-cov-2-igg_1.pdf

Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner, N., Ke, R., 2020. High contagiousness and rapid spread of severe acute respiratory syndrome
coronavirus 2. Emerg. Infect. Dis. 26.

Stock, J.H., 2020. Data Gaps and the Policy Response to the Novel Coronavirus. Working Paper 26902. National Bureau of Economic Research.

The Economist, 2020. Tracking COVID-19 excess deaths across countrieshttps://www.economist.com/graphic-detail/2020/04/16/
tracking-covid- 19-excess-deaths-across-countries.

Toda, A.A., 2020. Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact. UCSD manuscript.

19


http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0023
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0024
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0025
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0026
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0027
https://coronavirus.health.ny.gov/system/files/documents/2020/04/updated-13102-nysdoh-wadsworth-centers-assay-for-sars-cov-2-igg_1.pdf
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0029
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0030
https://www.economist.com/graphic-detail/2020/04/16/tracking-covid-19-excess-deaths-across-countries
http://refhub.elsevier.com/S0165-1889(22)00023-9/sbref0032

	Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities
	1 Introduction
	2 Literature review
	3 A SIRD model with social distancing
	3.1 Basic properties of a standard SIRD model

	4 Recovering  and 
	5 Estimation: Countries and states
	5.1 Baseline estimation results
	5.2 Baseline simulations
	5.3 Seven days of simulations

	6 Problems with geographic aggregation
	7 Herd immunity and re-opening the economy
	7.1 How far can we relax social distancing?

	8 Conclusions
	References


