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Decomposition Via QP
Laya Shamgah and Amin Nobakhti

Abstract—This brief presents an algorithm for decoupling mul-
tivariable systems based on quadratic programming (QP). A single
framework is presented which can be used to design centralized,
decentralized, and sparse structures of arbitrary dynamical order.
A worked example and a case study are presented to demonstrate
the usage and performance. It is shown that only previous methods
based on Evolutionary Algorithms are able to achieve slightly
higher performance than the proposed algorithm. However, these
minor improvements are outweighed by the huge increase in time
and costs associated with evolutionary optimizations.

Index Terms—Decentralized control, pre-compensation,
quadratic programming, simply structured control, sparse
control structure.

NOTATION

Set of rational transfer functions.

A vector of frequency points.

The vector in raised powers—see (16).

Stable LTI transfer function matrix.

Polynomial pre-compensator matrix—see (2).

Frequency response array of —see (18)
and (14).

Vector comprising coefficients of —see
(11) and (12).

Matrix of integers, specifies the order
of —see (2).

Dominance ratio function—see (5).

Permutation matrix.

The real part of .

The Kronecker product.

I. INTRODUCTION

R OSENBROCK’s contribution to the design of control
systems for linear multivariable plants inspired much ac-

tivity in the development of techniques for achieving diagonal
dominance [1]. The primary objective of all such techniques
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is to reduce plant interactions by the introduction of a multi-
variable pre-compensator. The control system design can then
be completed by using classical techniques to synthesize a set
of single-loop controllers for the compensated plant [2], [3].
In addition to their low order and simplicity, dominance-based
controllers guarantee that for open-loop stable systems, the
closed-loop will not become unstable by independent adjust-
ment (including down to zero) of the single-loop controller
gains, nor by any individual or collective sensor failure. For
open-loop unstable systems the method provides loop-wise
upper and lower gain bounds. Indeed, diagonal dominance
has been shown to be a sufficient condition for decentralized
integral controllability (DIC) [4].
The study of diagonal dominance and generalized Nyquist

Stability are almost exclusively performed in a linear frame-
work. Nonlinear effects such as input or output saturation
limits are outside the scope of the framework, and likewise this
brief. Traditional techniques developed for the achievement of
diagonal dominance by the use of static pre-compensators are
the pseudo-diagonalization [5], [6], the function-minimization
method using conjugate-direction optimization [7], and the
ALIGN algorithm developed initially in conjunction with
characteristic-locus methods [8]. More recently improved tech-
niques based on Evolution Strategies [9], -norm [10], and
the -norm [11] have been proposed. Nevertheless there is
an upper bound on the performance of static pre-compensation
which is highly dependant on the plant’s frequency response
characteristics [12].
Dynamic pre-compensation promises greater performance

but with added complications. For example while Chughtai and
Munro [11] extend their static formulation to dynamic designs
[13], the pre-compensator order will be very high. The same
is true for the method proposed in [14] which allows design of
decoupling controllers through Hadamard weighted and

optimization. One of the more versatile recent approaches
has been with the use of Evolutionary Algorithms [9]. An evo-
lutionary optimization offers greater design flexibility. These
include consideration of multiple plant models and setting each
element of the pre-compensator to have a specified order. Alas,
these user benefits are countered by two important obstacles; a
huge computational effort, and the “curse of dimensionality”.
This brief aims to draw upon the main benefits of the previous

techniques to propose a practical and usable method for the de-
sign of “general” dynamic pre-compensators. General refers to
the ability to specify any arbitrary order for any element of the
precompensator, or to force any element to be completely zero
(giving rise to a sparse structure). Since the problem is formu-
lated as a QP it executes many orders of magnitude faster than
an Evolutionary Algorithm. The combined power of the fast
execution time, with the ability to choose the structure of the
pre-compensator wholly arbitrarily, and the possibility to con-
sider several plant models simultaneously, makes this approach
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stand-out among the family of tools developed for the achieve-
ment of dominance.
The remainder of this brief is organized as follows;

Section II-A states the main problem which is then formed as a
QP optimization problem in Section II-B. Section II-C demon-
strates how the algorithm may be easily augmented when the
same pre-compensator is required to achieve dominance for a
set of multiple models. In Section III-A a worked example is
presented followed by a case study on the Spey Rolls-Royce
gas turbine engine in Section III-B. This brief is concluded in
Section IV.

II. QUADRATIC PROGRAM APPROACH FOR

DYNAMIC DECOMPOSITION

A. Problem Statement

Consider a stable LTI system .
The design problem is to find a dynamic precompensator
such that is dominant over a set of
frequencies [5], where

(1)

The pre-compensator is defined as

(2)

where is a matrix of integers. If ,
then (2) becomes an empty sum and thus . Otherwise

determines the order of the element of the pre-
compensator . We therefore seek such that the off-
diagonal terms of , i.e.,

(3)

are minimized. If is not functional controllable [15] the
problem is not well defined. When is functional con-
trollable, one only has to ensure that the null solution is made
infeasible. This is usually achieved by imposing a constraint
on . In the original pseudo-diagonalization algorithm (for
static pre-compensators [6]) the condition was

(4)

Consider the dominance ratio of the column of defined
as

(5)

It is easy to verify that , where
. In a practical design study, would assume

the role of the diagonal loop shaping controller. This property

ensures that tuning of the loop controllers will not alter (and
possibly destroy) the dominance achieved by . Therefore one
may freely scale the columns of any which satisfies (4) so
that

(6)

Conversely (3) may be minimized subject to (6), still yielding
the same optimum non-trivial value of (5). This latter constraint
was used in [10] to formulate the -norm minimization
pre-compensator design approach. When considering dynamic
pre-compensators, the situation remains the same except that
column scaling cannot be used to drive all polynomial coeffi-
cient to zero at the same time as ensuring the static term is 1.
This requires that the off-diagonal terms be rational instead of
polynomial functions of complex frequency . Nevertheless,
scaling the column of by a scalar factor of
will always bring it to the form in which where

is the coefficient of term of the polyno-
mial (see (2)). In resume, the problem considered in this
brief is

(7)

subject to

(8)

where the pre-compensator is dynamic and defined according to
(2).

B. QP Optimization Problem

In [10] it was shown that solving (7) for a static can be
represented as a -norm minimization. The minimization it-
self was then solved using LMIs. However, using LMIs for
the design of dynamic pre-compensators relieves the designer
from the ability to chose arbitrary order for each element, or
to set them to zero. As a design framework, QP is not as pow-
erful as LMIs. Nevertheless a key advantage of using QP in this
case is that the optimization problem involving a of arbi-
trary order can be represented as a QP with a globally optimal
solution.
Theorem 1: Let be a stable LTI system

. Let be
polynomial pre-compensator matrix

(9)

where is as defined previously. Then

(10)

where is as defined in (1). In (10), is defined as follows:

(11)
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where

(12)

(13)

In (10), is defined as

(14)
where

(15)

(16)

Construction of (15) corresponds to removing the diagonal en-
tries of from the minimization as required by (7).

Proof:

(17)

Lemma 1: Let

(18)

Then

(19)

Proof: From (10)

(20)

It is now straightforward to set up the QP. First, note that

(21)

In addition to the optimization free variables, will also contain
a series of (imposed by the constraint (8)) and a
series of zeros (arising from elements which have order less than
the maximum). Let be a permutation matrix constructed as
follows:

(22)

where denotes the set of standard basis vectors. is de-
fined as , . To define ,
let , , where .
Then

s.t. (23)

Finally is defined as

(24)

Multiplication of with will bring it into this form

(25)

where

(26)
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TABLE I
TABLE OF LAPLACE TRANSFORMS

since for any permutation matrix , then from (21)

(27)

The first term, , is constant and does not effect the minimiza-
tion. Moreover as the norm [left-hand side of (27)] is always
real, then will always be necessarily zero. In sum-
mary, problem (7) is solved by the following QP problem:

(28)

subject to

(29)

Matrices and vectors , , , and may be specified
to enforce additional constraints such as a limit on the gains of

. Theymay also be used to ensure that elements of re-
mains minimum phase. For second-order (or less) polynomials,
a necessary and sufficient condition is for all the coefficients of
the polynomial to have the same sign. If higher order pre-com-
pensation is required, dominance can be archived by successive
application of second-order minimum phase pre-compensators.
A suitable choice to enforce for the sign of an element is the
steady-state sign of its corresponding element in the non-min-
imum phase unconstrained . Nevertheless, note that mul-
tivariable zeros are not a subset of element zeros. Therefore,
even if elements of are minimum phase, it may nonethe-
less have multivariable right-half plane zeros.

C. Multi-Model Optimization

Where the plant characteristics change over a range of oper-
ating conditions, it will be necessary to embrace sets of multi-
variable plants in order to ensure robustness. Consider a non-
linear system which has been linearized at several points. At
each operating point , one will obtain a linear .

When the overall optimization cost is taken as the sum of inter-
actions of individual operating points, the design problem can
be easily converted into a standard problem similar to one de-
scribed in Section II-B. To see this consider

(30)

(31)

where

(32)

and is the frequency weight for model . Hence the
multiple model problem is equivalent to solving the standard
problem with a modified plant according to (32).

III. EXAMPLES

A. Worked Example

This section considers the model of a heavily interacting 4
4 system . The matrices of the model are pre-
sented in Appendix I. The open-loop Nyquist Array of
is shown in Fig. 1. All figures are plotted over the range of fre-
quencies from to rads/s. The same range is used for
the subsequent QP optimization. Fig. 1 verifies the presence of
large open-loop interactions.
We shall begin by designing a first order pre-compensator.

This is achieved by setting . The superscript in
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Fig. 1. Direct Nyquist Array of with column Gershgorin disks (only
showing the diagonal entries).

Fig. 2. Direct Nyquist Array of with column Gershgorin disks
(only showing the diagonal entries).

Fig. 3. Direct Nyquist Array of with column Gershgorin disks
(only showing the diagonal entries).

denotes the order matrix at design iteration . The resulting
pre-compensator is displayed in Table I. The Nyquist
Array of is shown in Fig. 2. The pre-compensator

has completely decoupled the first and second columns
of . Any further increase of dynamical order in the first
two columns is futile. Moreover elements {(4,1), (2,2), (3,2)}
are static despite the first order specification. Thus the order
of these elements may be reduced to zero without effecting the
decoupling performance. Accordingly the entries for elements
{(4,1), (2,2), (3,2)} are reverted back to 1, and the elements of
the last two columns are increased by one, as denotes in .
The resulting pre-compensator completely decouples the
system which is verified by Fig. 3. Once again we make the ob-
servation that not all elements of the last two columns are second
order.
One may wish to explore the possibility of decoupling

using a sparse structure. The optimal solution can
point to a suitable choice of sparsity. Examination of el-
ements of reveals that the coefficients of elements

are at
least an order of magnitude smaller that the coefficients of the
remaining elements. These elements are set to be zero (see

) and the optimal sparse pre-compensator is recomputed.
The Nyquist Array of is shown in Fig. 4. As
expected the interactions have increased compared to ,
but the increase pales into insignificance by considering that

is highly sparse and contains less than 60% of the
number of connections of .

B. Rolls-Royce Spey Engine

In this section the proposed based design will be applied
to the model of the twin spool Rolls-Royce RB.168 Spey Mk.

Fig. 4. Direct Nyquist Array of with column Gershgorin disks
(only showing the diagonal entries).

Fig. 5. Perron-Frobenius eigenvalue for static pre-compensator designs.

Fig. 6. Perron-Frobenius eigenvalue for dynamic pre-compensator designs.

202 Gas-Turbine engine. The Spey engine model has three in-
puts (Fuel Flow, Inlet Guide Vanes, Nozzle Area) and three out-
puts (Low-Pressure Spool Speed, High-Pressure spool speed,
Surge Margin). The input and outputs are stated in the order by
which they have been paired. The engine is highly non-linear
and has been linearized at several operating points to result in a
set of 21-state (engine plus actuators) LTI models. The model
used for this example corresponds to the 85% High-pressure
spool speed (NH). For more information in this model and pre-
vious case studies see [16]–[18].
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There have been a number of previously reported results on
the decoupling of this engine. They cover both static and dy-
namic designs. Since the QP method may be equally used to
design static pre-compensators, two QP pre-compensators are
designed; a static one and a dynamic one. The Perron Frobenius
eigenvalue is used to measure the open-loop interac-
tions of the system. For the significance of in system
analysis see [19].
The static pre-compensator used for comparison purposes

are designed using -norm LMI optimization [10] denoted
by , -norm LMI optimization with and without the
-procedure [11] denoted respectively by and ,
Evolutionary Algorithms [9] denoted by , and the QP
method proposed in this brief, denoted by . For the dy-
namic designs the methods used are the -norm approximate
right inverse LMI optimization [20] denoted by , the
dynamic Pseudo-diagonalization [21] denoted by ,
Evolutionary Algorithms [9] denoted by and the QP
algorithm presented in this brief denoted by .
The QP and EA methods allow the user to specify

a frequency range of interest which has been set to
. This range covers the main spectrum

of interest and extends to above the natural bandwidth of the

engine. The data for all the pre-compensators are presented in
Appendix II (all dynamic pre-compensators have been column
scaled to bring them into the normalized rational form). While
the dynamic pre-compensators have similar dynamical order,
due to the nature of each algorithm was not possible to ensure
that they have precisely the same number of poles and zeros in
each elements. Only the QP and EA designs share this char-
acteristic (made possible by the fact that in the proposed QP
approach any arbitrary choice of dynamics can be imposed).
Nevertheless, the dimensions of the state-space matrices for the
four designs are almost identical, with seven states for

and eight states for .
Fig. 5 shows the comparison plot of the Perron-Frobenius

eigenvalue of the engine compensated with the various static
designs. The larger the Perron-Frobenius eigenvalue, the more
interactions are present in the system. The twoworst performing
static designs are and . This is not a surprise.
The -norm is a worst-case norm and in its standard form
will attempt to distribute the interactions across all frequencies
(since it will minimize the peak value). This is the reason the
Perron-Frobenius eigenvalue of is roughly the same
at both high and low frequencies. This is slightly improved by
adoption of the -procedure, which has the effect of reducing

(33)

(34)
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(35)

(36)

(37)

(38)

(39)

(40)

(41)

the interactions at the low frequency regions at the expense of
the higher frequency regions. The next best design is . Al-
though this pre-compensator outperforms the designs, it
essentially still suffers from the problem associated with the

-norm. Both of these norms will take into account all fre-
quencies from 0 to which extends substantially beyond the
range of interest represented by . Only the QP and the EA
methods allow the user to specify a frequency range of interest.
Not surprisingly, these two designs are significantly better than
the norm minimization based designs. Fig. 5, and an examina-
tion of the pre-compensator data presented in Appendix II reveal
that the QP and EA designs are almost identical, suggesting that
for the static case, the QP solution is extremely close to the glob-
ally optimum design.
The results of the dynamic designs are presented in Fig. 6.

Quite clearly, the QP and EA designs are the superior choices.
The EA design performs exceptionally well at low frequencies.
The QP design is only slightly behind in most frequencies. At
the same time, the minor advantage of the EA design needs to
be counterweighted against is massive computational cost. For
this example, the CPU clock times for the EA computation were
three orders of magnitude more than the QP design. This differ-
ence will only increase with system dimensions since it is well
known that Evolutionary Algorithm optimization problems do
not scale well whereas a large-scale QP is solved much more
easily.

IV. CONCLUSION

This brief demonstrated that the problem of designing dy-
namic pre-compensators may be posed as a QP optimization
problem. The more prominent features of the proposed method-
ology are the ability to:
• choose dynamical order of elements arbitrarily;
• specify a frequency range for the decomposition effort;
• set any cross-coupling channel of the pre-compensator to
zero;

• incorporate data from multiple plant models in the design
optimization.

Application of the algorithm on a real-life case study demon-
strated that the QP-based pre-compensators perform exception-
ally well, exceeded only by the EA based design. A benefit of the
QP formulation in terms of future development is the possibility
to incorporate the problem into a Vapnik Support Vector Ma-
chine [22] (to robustify the design against parameter changes).

APPENDIX I

The state-space data for are as shown in (33) and (34)
at the bottom of the previous page.

APPENDIX II

See (35)–(41) at the top of the page.
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