Task paradigm

The experiment uses a Rapid Serial Visual Presentation (RSVP) paradigm with 18 images from two categories: faces and dollhouses. Each image is repeated 4 times, totaling 80 stimulus presentations. Each stimulus appears for 100 ms with a 200 ms inter-stimulus interval. Participants are instructed to maintain fixation.

- EEG acquisition: 64-channel EEG (10-10 system), sampled at 100 Hz. Online filters: 0.1 Hz high-pass and 100 Hz low-pass. The Fz electrode is used as reference.
- Stimulus triggers are recorded in the last channel: 496# marks face images and 436# marks dollhouse images. The number following the # corresponds to the image ID.

Note: For ease of analysis, we extracted epochs around stimulus onset from -500 ms to +1500 ms. Sharp edges at the beginning and end are expected and should not be mistaken for noise.

Instructions and Questions

- (2) Preprocessing Preprocess the EEG data so that it can be used for the following analyses.
 - Describe each preprocessing step (e.g., filtering, epoching, baseline correction, ICA).
 - Justify your choices. What did you include or exclude? Why?
 - Use any software toolbox you prefer, but ensure you understand and can explain each step.

- (3) ERP Plot the ERP for face vs. dollhouse stimuli.
 - Use appropriate time-locking and baseline correction.
 - Conduct statistical comparisons (e.g., permutation tests or cluster-based statistics).
 - Highlight and interpret significant differences.

(4) Time-Frequency Analysis Analyze the EEG signal in the frequency domain.

- You may use wavelet or short-time Fourier transforms.
- Compare time-frequency maps across categories.
- Discuss neural oscillations (e.g., alpha, beta, gamma) and their role in perception.

(5) MVPA Apply both temporal and spatial MVPA to the EEG data.

- Temporal MVPA: Train classifiers at each time point to distinguish face vs. dollhouse trials.
- Spatial MVPA: Use patterns across electrodes to decode the stimulus category.
- Optionally, use cross-temporal generalization (train on one time, test on others).

Questions to consider:

- Can face and dollhouse stimuli be reliably distinguished using EEG patterns?
- Are some time periods or scalp regions more informative?
- What does the MVPA reveal about the dynamics of object processing in the brain?

(6) RDM and RSA Plot the Representational Dissimilarity Matrix (RDM) for the categorical data.

- Use EEG activation patterns to compute RDMs across time and/or channels.
- Compute the Representational Similarity Analysis (RSA) between your EEG RDMs and those derived from deep neural networks (e.g., CORnet-S).
- Use CORnet-S model features from early to late visual layers (e.g., V1, V2, V4, IT).

You can use the CORnet-S model from this repo: GitHub Corresponding paper: Kubilius et al., 2019