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Abstract Directed hypergraphs are known from graph the-
ory [11] and are well understood within their own domain
[7–9, 22, 23]. This paper provides an overview on the ex-
pressiveness of directed and typed hypergraphs as a mod-
eling paradigm not only for the content of digital libraries
and archives but a variety of applications. Furthermore, hy-
pergraphs are sufficiently expressive to provide an imple-
mentation logic for conceptual models like CIDOC/CRM
[18] in the context of museum-related systems and digital
archives.

The directed hypergraphmodel supports typed nodes and
individual flexible sets of attributes on a per node type ba-
sis. This allows for efficient mapping on object-relational
database structures. It also features a flexible, semi-struc-
tured type system for hyperedges. The graph model is ac-
companied by a set of well defined graph operations form-
ing an algebra and a descriptive hypergraph query language
GrafL. This language supports typed, structure and value
based queries as well as fundamental graph algorithms.

The suitability of such a hypergraph-based model is il-
lustrated with a large digital ethnological archive system,
which is developed in the WossiDiA project [43, 52, 53].
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1 Introduction

Richard Wossidlo was a German folklorist in Mecklen-
burg (1859–1939). During his ethnological field research,
he wrote all facts on small paper slips. Fig. 1 shows him
in front of the box shelf with his nearly two million field
research notes.

These small notes contain a lot of well-defined refer-
ences to scholars, narrators, contributors, places, villages,
landscape, points and periods in time, literature, research
papers, etc.

Richard Wossidlo not only collected all information on
every day life in Mecklenburg, he also recorded all vari-
ations of narrative materials, and from whom he learned
things, where and when. This was done not only by him-
self but also for all narrators and contributors he was corre-
sponding with. He also put remarks on related research on
such paper slips. As a result, he ended up with a so-called
convolute of such notes on small paper slips enclosed in
an envelope and then organized by different topics in the
boxes. Fig. 2 shows such a box with some convolutes.

A main outcome of Richard Wossidlo’s research was
the edition of the “Mecklenburger Wörterbuch”, an eth-
nological and linguistic encyclopedia for the Mecklenburg
landscape.

To support the folklorists and ethnologists in their re-
search, all the field research notes and related documents
collected by Richard Wossidlo have been digitized, exposed
on 35mm film for long-term preservation, and a digital
archive system for the community was built.

A main effort of the Wossidlo Digital Archive (Wos-
siDiA) project was the digitization process [53]. The main
steps are shown in Fig. 4. The WossiDiA system contains
not only all these different, digitized documents. It also al-
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Fig. 1 Richard Wossidlo in front of his box shelf with field research
notes. (© Karl Eschenburg)

Fig. 2 Field research notes in envelopes and boxes from Wossidlo’s
archive

lows for managing, linking, navigating, and querying these
different, highly interconnected documents.

For the folklorist or ethnologist it is of immense inter-
est, how the encyclopedia entries, like the one shown in
Fig. 3, are derived from the set of these small notes.1 A
real challenge is to collect, aggregate and summarize all
the information scattered over a network of notes. There-
fore, right from the beginning in the development of the
WossiDiA system, a graph based approach was used [52] in
addition to a semi-structured XML document model [2].

Collecting all the related information from the paper slip
network is done by applying graph based operations like
content, structure and type based graph filtering combined
with hyperedge contraction, aggregation and summarizing.
The resulting graph can then be mapped to a logical doc-

1 The scenario in question here is about the exchange of gifts and
wooing. A daytaler or farmhand is presenting a decorated rake, the
“Austharke” (Lower German language for dowry rake), to his bride-
to-be. The information about this rural custom is spread over several
field notes with the “Austharke” in the centre.

Fig. 3 Excerpt from lexeme “Austharke” in the Mecklenburg Ency-
clopedia

ument similar to published lexeme. This document is a set
of hyperedges with a certain content model (cf. Sect. 3.2).

The WossiDiA system was the main motivation and
source of inspiration which led to the development of
Hydra.PowerGraph. Hydra.PowerGraph consists of a hy-
pergraph database system PowerGraph and a digital archive
framework Hydra.

● PowerGraph is build as an extension of the object-rela-
tional database system PostgreSQL. It uses PostgreSQL’s
spatio-temporal extensions and object-relationl features
like user defined types and inheritance.

● Hydra (a HYpergraph of Documents in a Relational
Archive) contains building blocks for digitization work-
flows, supports spatio-temporal contexts, GIS-based pre-
sentation of query results and has a set of frequently
used object types for persons, places, events and others
requested by digital archive developers.

K



Datenbank Spektrum (2017) 17:113–129 115

Fig. 4 WossiDiA digitization
workflow

The remainder of this article is organized as follows:
First of all, we are motivating why a hypergraph based
model is preferred over a more structured, constrained
database or a simple graph database model in building
a large archive system for data from ethnological field
research. The introduction will briefly indicate WossiDiA
as our main PowerGraph usage scenario, for which the
hypergraph system will be utilized prototypically.

Then, we outline the fundamentals of such a directed
hypergraph model in a semi-formal way in Sect. 3. It is
followed by a basic description of the architecture and
the query processing techniques implemented on top of an
object-relational database system in Sect. 4. Sect. 5 illus-
trates how directed hypergraphs were used as a modelling
paradigm in the WossiDiA system and presents some statis-
tics of the graph data.

Related work is discussed in Sect. 6. The article is
summed up by a presentation of open questions and further
research and forthcoming projects in Sect. 7.

2 Motivation – Hypergraphs for the Study of
Complex Cultural Phenomena

Before we will motivate directed, typed hypergraphs as a
modelling paradigm for digital archives, we give a short
introduction to CIDOC/CRM.

2.1 CIDOC/CRM

CIDOC/CRM [18] is a conceptual model primarily de-
signed for the exchange of historical information in the
course of archives, museums, and libraries. The concep-
tual model is meant for the abstract description of objects
(called domain entities) and their relationships (properties)
to other entities (called range) and maybe vice versa. The
model supports some basic types like strings, date, times-
tamp, and coordinates of places, which are mandatory for
the spatio-temporal aspects of historical information.

The small example in Fig. 5 depicts the CIDOC/CRM
representation for the exchange of gifts, an excerpt from the
Wossidlo archive (cf. Fig. 6 for the hypergraph representa-
tion in the WossiDiA system). The rectangles represent the
entity types with their instance’s values below. Properties
are shown as labeled arcs directed from the domain entity
to their range.

CIDOC/CRM concepts also include some kind of in-
heritance for building specialization hierarchies on entity
and property types and is self-describing and extensible
by entities having type properties ([P2] has type). This al-
lows for substituting entities of a sub-type where its super-
type is allowed in a property, e. g. substituting [E22] Man-
Made Object if [E19] Physical Object is requested as the
domain entity or range of a property. CIDOC/CRM comes
along with hundreds of these pre-defined entities and prop-
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Fig. 5 The “Austharke” and exchange of gifts scenario expressed with CIDOC/CRM

erties. Nevertheless, since the main design goal was data
exchange, not querying and retrieval, it only defines struc-
tures and does not contain any query language facilities.

Obviously, the hypergraph model is much more concise
and compact than the conceptual CIDOC/CRM. Neverthe-
less, CIDOC/CRM is just a conceptual model never ment
for storing or querying data. One always has to map it onto a
logical model like the relational one or a graph data model.

Now, we will argue why a hypergraph model is more
concise and compact not only in modelling digital archive
data but also usable as an implementation or logical model.

2.2 The hypergraph model

Hypergraphs are an unusually apt model for complex cul-
tural phenomena such as folklore [44, 55]. In this graph
model, which departs significantly from standard single
mode graphs, multiple classes of nodes are connected across
a series of potential relationships. In “normal” graphs, a
single edge can connect any two nodes. In contrast, hy-
pergraphs generalize this idea by introducing hyperedges
which can connect any arbitrary set of nodes. Consequently,
a hypergraph can be seen as a set of hyperedges with each
hyperedge consisting of a set of nodes [11]. Thus, hyper-
graphs can express everything that a normal graph can but
also allowing the connection of all directly related nodes

with a single hyperedge. In this manner, many-to-many
relationships between several objects/nodes, usually rep-
resented by strongly connected components in a normal
graph, are represented as a single hyperedge in a hyper-
graph. Because of this core characteristics, hypergraphs are
well suited to model complex heterogeneous data sets, with
many types of objects and their multiple relationships. Hy-
pergraphs are not only a commonly accepted formalism in
database theory [9, 19] but are also used as a formal basis
in several semantic data models [41].

2.3 The WossiDiA hypergraph model

In the Wossidlo Digital Archive WossiDiA (cf. Fig. 1) hy-
pergraph model, nodes can represent stories, storytellers,
places, collectors, named entities, keywords, story actants.
The relationships across and between these entities are cap-
tured as hyperedges. A hypergraph representation for the
aforementioned example (exchange of gifts) is given in
Fig. 6.

While these structures have certain characteristics that
make them somewhat harder to work with than in sin-
gle mode graphs, advances in tensor decomposition and
network theory have made hypergraph models a powerful
representation of complex data that does not unnecessarily
reduce or compress the high dimensionality of these data.
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Fig. 6 Excerpt from the Wos-
siDiA system: topology and
activities connected with topic
“Gabentausch” (German for
gift exchange) modelled with
hyperedges

A central observation from network science for the appli-
cation of hypergraphs to heterogeneous cultural data is that
local phenomena are repeated within a huge set of similar
subgraph with slightly different peculiarities.

Another powerful feature of the hypergraph model for
folklore is that standard relations can be modeled efficiently,
while avoiding the limiting factors of standard relational
databases2. For any arbitrary query, one wants to be able
to construct a summary document representing the infor-
mation needs of that query, such as: What is the network
of contributors in the Wossidlo archive and how does that
network depend on context (location, time, topics, social
background, etc) over time? Since no single document ex-

2 Missing adequacy, i. e., most concepts of graph and semi-structured
data models are not supported in querying such data relational systems
using SQL.

ists to answer this question, the construction of such a sum-
mary can grow rapidly in complexity. In graph theory, this
summary operator is related to the concept of graph mi-
nors [13] which can be constructed from a graph by ap-
plying sequences of edge removals, edge contraction and
deleting singular nodes. Importantly, the hypergraph model
supports both content and structure based queries through
typed nodes and hyperedges and provides adequate opera-
tors for querying both.

2.4 Directed and typed hypergraphs

The WossiDiA hypergraph model (cf. Sect. 3) consists of
directed and typed hypergraphs. Direction adds more se-
mantics to the hyperedges, where a directed hyperedge can
be seen as a mapping of a node set to another node set,
which is similar to functional dependencies, like one-to-
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many or many-to-many relationships in more common re-
lational database models.

A major addition to theWossiDiA hypergraphmodel [43]
is the typing of nodes and hyperedges, which groups similar
objects (nodes within the hypergraph) with similar proper-
ties, e. g., persons, places, datetime, tags, etc., and stores
them more efficiently in specialized node containers. Query
performance is improved by search paths and optimized
type-specific operators. For example, top-k-queries return
the k best spatial objects stored as nodes of type place
which are near a certain place. The WossiDiA hypergraph
system also uses typed hyperedges resembling the content
models of semi-structured data in XML. Regarding query
evaluation, there are two modes, typed and untyped query-
ing. The first mode restricts graph processing to certain
node and hyperedge types, e. g., if one is only interested in
information about the places a story was recorded at.

2.5 Querying hypergraphs

Since each hypergraph can be represented by a bipartite
graph (cf. Sect. 3.1), operators and algorithms for normal
graphs can be exploited for hypergraph processing. In addi-
tion, there are numerous specialized hypergraph algorithms,
such as the k-shortest hyperpath algorithm [25] which take
advantage of the hyperedge concept for fast search. Addi-
tional algorithms include shortest paths computation, node
connectivity testing, cycle detection using the specialized
Graham reduction, sub-graph matching, node and hyper-
edge contraction, and some forms of graph products. These
operators are used as building blocks for more descriptive
graph query languages like GraphQL [33] or SPARQL [49].

2.6 Requirements leading to PowerGraph concepts

In the end, requirements from the project setting led to
the development of Hydra.PowerGraph. The following list
shows a mapping of those requirements to PowerGraph
concepts:

● The system should support various appropriate metadata
representations, e. g.:
– structural metadata describing the archive topologies,

e. g. slip, envelope, box, shelf (will be mapped to dif-
ferent node and edge types in PowerGraph),

– administrative and technical metadata on digital arte-
facts (node types),

– descriptive metadata for persons, places, events, activ-
ities (node types)

● The ethnological thesaurus or system of concepts clas-
sifying the field research notes (edge types: part-of, is-
related-to, ...)

● Setting everything into the right historical context by spa-
tial data, timespans with granule (node and egde types)

● Representing fuzzy data and uncertainty (special edge
types)

● Relating all contributors and observers from the field re-
search network (linking, edge types)

● Mashupwith other systems like OPACs, document repos-
itories, GOV and GND databases (node types)

Next, we will see to what extent a hypergraph based data
model can cope with these requirements.

3 A Data Model Based on Directed Typed
Hypergraphs

There are several reasons for using directed hypergraphs as
a logical data model for the large amount of highly inter-
connected3 data in the WossiDiA digital archive.

Nodes are used for modeling entities or objects of the
application domain, whereas hyperedges represent relation-
ships among a set of nodes. The hyperedge arcs (or links)
represent different roles an object (node) can play in a cer-
tain relationship. Thus, nodes represent the ground truth or
the static information particles while hyperedges are more
on the dynamic and evolving side of information represen-
tation.

In the PowerGraph system, the directed hypergraph
model is typed: nodes and hyperedges are associated with a
type. Nodes, arcs/roles and hyperedges can have attributes,
which are typed, too.

3.1 Introducing Directed Hypergraphs

3.1.1 Undirected Hypergraphs

Following Claude Berge [11] a hypergraph is a family
.E1; :::; Em/ of non-empty subsets of nodes or vertices
V , i. e. G = .V; E/ with E � P.V / X ¿ (cf. Fig. 8a)4.
The incidence graph is a bipartite graph with hyperedges
mapped to node partitions and incidences mapped to edges
(Fig. 8b). Undirected hypergraphs have applications in
database schema design, social network (peer-groups)
analysis, protein complex networks, chemical reaction and
many other life science problems. Fig. 7 shows a sim-
ple typed but undirected hypergraph from the WossiDiA
system.

3 The archive consists of about two million paper slips containing field
research notes, which in turn contain up to twenty million references
or links to other field notes, in fact represented as a sparsely populated
graph.
4 P.V / is the powerset, the set of all subsets, of V.
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Fig. 7 Activities involving person, place, timespan, and role modelled
as hyperedges

a b

c d

Fig. 8 Different representations of hypergraphs. a subsets of nodes, b
bipartite edge incidence, c back/forward-arcs, d arc incidence

3.1.2 Directed Hypergraphs

Directed hypergraphs (Ausiello et al. [7–9]; Gallo et al. [22,
23]) are a generalization of directed graphs (digraphs) and
they can model binary relations among subsets of a given
set. The basic idea in the generalization of digraphs is the
subdivision into source and destination, which is trivial in
common digraphs since both consist of exactly one element
each.

A directed hypergraph then can be defined as G = .V; A/

with a set of vertices V and the set of hyperarcs (hyper-
edges) A, where a hyperarc is a pair .T; H/, T and H

being subsets of vertices V . T is called the b-arc (back-
ward-arc or tail) and H the f-arc (forward-arc or head) of
the hyperarc. Similar to undirected hypergraphs, a directed
hypergraph can be visualized using hyperarcs (Fig. 8c) or
based on arc incidence (Fig. 8d).

Additionally, Gallo postulates T and H to be disjoint,
i. e., T \ H = ¿ but allows both to be empty sets. In
contrast, Ausiello defines a hyperarc to be a pair .T; h/

Table 1 Comparison of different directed hypergraph definitions

Approach B-arc F-arc Empty Disjoint

Gallo T � V H � V + +

Ausiello T � V h 2 V − +=−

Power T � V �R H � V �R + −

Graph

with h 2 V , T ¤ ¿, and does not exclude h 2 T . The
destination set is restricted to one vertex. Gallo’s definition
[23] is more general since it allows for m:n-relationships
whereas Ausiello [9] restricts to m:1-relationships. In this
sense, Ausiello is a special case of Gallo.

3.1.3 Directed Hypergraphs in PowerGraph

The definition of a hyperedge5 follows Gallo but with an
essential extension: we introduce the concept of roles in a
hyperedge, to allow a vertex or node to participate in a hy-
peredge multiple times as long as the role differs. With the
set of roles R, we define the hypergraph G as a pair .V; A/

with a set of vertices or nodes V and a set of hyperedges
A = .T; H/ with T � V �R and H � V �R, i. e., inci-
dence is defined not only on nodes but (role, node) pairs.
Furthermore, T and H are not disjoint. There can be nodes
which are element of both, T and H , i. e., if .v; r/ 2 T \H

the incidence is bi-directional.
Table 1 compares our definition of a directed hypergraph

with that of Gallo and Ausiello.

3.1.4 Directed and Typed Hypergraphs in PowerGraph

The type system of the directed hypergraphmodel is defined
by sets of node types �V , edge types �A, roles (link types)
R and a set of mappings f˛V ; ˛A; �V ; �A; ıg with: ˛V W
V 7−! �V , ˛A W A 7−! �A, �V W R 7−! �V , �A W R 7−!
�A, and ı W R 7−! f−1; 0; 1g. ı defines the direction for
b-arcs as −1, f-arcs as 1 and as bi-directional if 0.

Following integrity constraints must hold for the types
of a hyperedge:

● 8.v; r/ 2 T [ H W �V .r/ = ˛V .v/

● 8.v; r/ 2 T [ H W �A.r/ = ˛A.A/

● 8.v; r/ 2 T W ı.r/ 2 f−1,0g
● 8.v; r/ 2 H W ı.r/ 2 f0,1g

Aside from this more formal definition, we will now de-
scribe how typed and directed hypergraphs in PowerGraph
can be used for data modeling based on examples from the
WossiDiA system.

5 Gallo calls them hyperarcs.
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3.2 Data Modeling Using Directed Hypergraphs

Existing graph database systems didn’t care much about
node and edge types to allow for flexibility in mod-
eling semi-structured data of various formats. In Hy-
dra.PowerGraph we make use of typed information. By
introducing node and hyperedge types, special data struc-
tures and associated operations can be exploited in the
database system. As a result, the user gains efficiency and
effectiveness during query evaluation and execution. He
benefits from a rich set of type-specific operations in query
formulation.

Since the WossiDiA graph database is built on top of an
object-relational database system, PostgreSQL, operations
on certain node types like point in time, time-span and tem-
poral relationships (e. g., before, after, within, concurrently)
can be used. Operations on spatial data (point, line seg-
ments, polygons derived from GPS-coordinates) and spa-
tial relationship querying (e. g., contains, overlaps, touches,
crosses, intersects) can be seamlessly integrated into the
data model.

These advantages come at the cost of defining and imple-
menting application specific types before using the system
for storing and retrieving. From the user supplied data type
definition, explicit data structures (in fact database tables)
for each node type can be created separately. The content
of the hyperedges created by the user is checked against
the hyperedge type. On the one hand, the system can assist
in creating hyperedge information by suggesting relevant
(allowed) node types participating in a certain hyperedge.
On the other hand, the system can ensure that all aspects
(nodes) are inserted into the database, no data is omitted.

When querying the archive the user doesn’t have to know
about node and hyperedge types, but he can make use of
certain query operators provided by PowerGraph.

3.2.1 Basic Node Types for Storing Domain Specific Data

Nodes in the hypergraph model represent entities, events,
material or immaterial objects in the application domain.
The basic node type has just an identity. All other node
types are derived from this basic node type and must be
specified by the user. Nevertheless, the Hydra.PowerGraph
system comes with a set of built-in node types commonly
used in historic information systems namely the Person,
Place, and Word node types. The definition of the person
node type is exemplified below:

CREATE NODETYPE person (

firstname STRING,
lastname STRING,
birthdate TIMESPAN,
appellation STRING

);

All node types inherit attributes of their super node types
and add an individual set of attributes. Node types are iden-
tified by their unique name. The attributes are also typed and
make use of the data types supplied by relational database
systems like numbers, strings, date, timestamp, etc., but
can benefit from extensions like PostGIS for spatial data,
too. The PowerGraph system takes care of creating sepa-
rate database tables for each node type and handles query
evaluation using the extended node type-specific attribute
set.

3.2.2 The Hyperedge Content Model (HECM)

The idea of not only having user defined node types but
also introducing hyperedge types is to enforce restrictions
on nodes participating in a hyperedge. In fact, by defining
hyperedge types, the user effectively manages the mean-
ingful relationships nodes (or objects, entities) can be part
of.

With hyperedges, two aspects are controlled: (1) which
nodes with certain types can participate, and how they par-
ticipate (direction), (2) how the overall hyperedge type is
constituted by the participating nodes and a postulated con-
tent model.

A hyperedge content model resembles the idea of XML
content models or semi-structured data in general. The main
difference is in dropping the document order property es-
sential to semi-structured data. There is no ordering of
nodes within a hyperedge on the type level. Nevertheless,
an application can use link attributes to implement order if
necessary.

The basic elements of the content model are the partic-
ipating incoming and outgoing nodes and their node type
and role name. The content model is built from the set
of (role, node)-pairs by allowing arbitrary combinations of
them using sets (’,’) or unions (’|’), quantifiers (’?’,
’*’, ’+’, exact cardinalities: min-occurs and max-
occurs) and grouping using ’(’ and ’)’. Formally, the
content model is defined by a context free grammar.

The following depicts an example content model for ac-
tivities as used in WossiDiA. An activity encompasses date,
location, actors, observers, and a description of the activity,
it can be defined in GrafL DDL like:

CREATE HYPEREDGE TYPE activity ...

MODEL (
start:date IN, end:date IN,
location:place? IN, actor:person* IN,
action:descr OUT, observer:person? OUT
);
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3.2.3 Types in Transit – Type Checking Hyperedges

If we initially create a hyperedge with

CREATE HYPEREDGE activity (

start:date(“2016/10/31”),
action:descr(“Halloween”),

);

it is an incomplete hyperedge since the mandatory
end:date is still missing. After adding this end:date
link it is already a complete hyperedge, i. e., the current
type matches the hyperedge content model. Nevertheless,
it is not a closed hyperedge since we can still add some
actor, place, or an observer link.

To cope with incomplete types, we introduce a so called
remainder type. Whereas the content model of a hyperedge
is the same for all instances of the same hyperedge type,
the remainder type represents the nodes which can still be
added until the hyperedge is closed. The current type of a
hyperedge is one of the following states:

(1) incomplete if not all required links are present, or
usually the hyperedge is an empty set of (link, node)-
pairs,

(2) complete if the current type matches the content-
model but the remainder type is not empty, i. e., if one
can still add some nodes, and

(3) closed if nodes can not be added anymore.

As a consequence, there are some content models which
will be permanently open regardless how many links we
add to the hyperedge. Only content models not containing
any link (or link group) with quantifier ’*’ and ’+’ can
be closed. Closed hyperedge types are easier to be stored,
indexed, type checked and retrieved. Open hyperedge types
are more flexible and better suited for semi-structured data
but need more effort in management and dynamic type
checking.

Hyperedge type checking takes place every time we add
or delete a link from a hyperedge. Before adding the first
link to or after deleting the last link from the current hyper-
edge, the type state will be incomplete. If the current
type tree6 is equivalent to the content model tree of the re-
lated hyperedge type, type checking succeeds and state will
be complete. To hyperedges in state complete links
can still be added until their remainder tree gets empty and
in turn the hyperedge type gets closed. To hyperedges
in state closed no links can be added, only links can be
deleted from this hyperedge.

6 The data structure used for the remainder type is an and-or-tree [14]
with grouping nodes and quantifier annotations as edge labels, and used
also for the current type and the content model.

The basic algorithm for adding links will delete the first
occurrence of the link from the tree if there is no quantifier
or ’?’ annotated. Links with ’*’ or ’+’ will remain in
the tree. After deleting a link from the remainder tree a
check for empty groups will eliminate the whole subtree. If
the remainder tree becomes empty the type state will be set
to closed. Deleting a link will add the last occurrence of
that link from the content model to the remainder tree.

Since the content model is expressed in a regular lan-
guage which is a subset of the original UNIX regular ex-
pressions [58], it can be checked in O.n/ time for n links
in the current hyperedge by compiling both the remain-
der type and the content model into a deterministic finite
automaton [40]. The implementation of the dynamic type
checking mechanism as implemented in WossiDiA is de-
scribed in [60].

3.3 Graph Querying

Currently, PowerGraph supports a descriptive query lan-
guage GrafL based on a set of graph algebra operators.
These operators belong to three basic classes:

● content and structure predicates
● type-checking operations
● graph operations

The query language encompasses both content and struc-
ture querying, which select nodes and hyperedges based
on predicates over their attribute set. Additionally, the
query language allows for hyperedge matching by pred-
icates formed over role and/or node types. Simple graph
operations allow for testing the connectivity of two nodes,
querying the k-neighborhood of certain nodes or implement
hyperedge contraction as a union of all (role, node) pairs
of two hyperedges.

Complex graph operations can be implemented using
these basic operations, e. g., a synopsis operator will be
evaluated as a combination of node and edge contractions
and structure retrieval. A k-shortest path operator uses a
special hypergraph algorithm [24].

The query languageGrafL is similar to XQuery in query-
ing node, hyperedge content and structure. The graph algo-
rithms are encapsulated into functions. Where XQuery op-
erates on sequences of XML fragments, GrafL is evaluated
on node and hyperedge sets and usually returning hyper-
edge sets. To demonstrate the querying features of GrafL,
we present some examples from the WossiDiA application
domain.

Queries which retrieve nodes or edges by their content
or structure use variables. These are bound to the node or
hyperedge sets or some subtypes of them. First, this simple
query returns all hyperedges of type Narrative:
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LET $e := Edge::Narrative

RETURN $e

The following content-based query returns all nodes
Person born in “Rostock”:

LET $p := Node::Person,

$o := Node::Place,
$e := Edge::Vital-stats

WHERE $e.person = $p
AND $e.birthplace = $o
AND $o.name = “Rostock”

RETURN $p

The following structure-based query returns the node
type of those nodes having an appellation and coordinates
attribute:

LET $p := Node

WHERE $p.appellation AND $p.coordinates
RETURN $p.type

Graph algorithms which are currently supported in Pow-
erGraph include node-connectivity, shortest-paths, and
k-neighbourhood. This query returns the shortest path (as
a list of hyperedges) connecting persons “Ahrens” and
“Helms”:

LET $p1 := Node::Person,

$p2 := Node::Person
WHERE $p1.last-name = “Ahrens”

AND $p2.last-name = “Helms”
RETURN shortest-path($p1, $p2)

The k-neighbourhood operator returns k = 10 nearest
neighbours nodes of type Person of person “RichardWos-
sidlo”:

LET $p = Node::Person

WHERE $p.fist-name = “Richard”
AND $p.last-name = “Wossidlo”

RETURN k-nearest
-neighbour($p, Node::Person, 10)

The last query constructs a new set of hyperedges from
existing node sets. For each person nodes $p all places
nodes $o are collected from hyperedges $e representing
the place of living.

FOR $p IN Node::person

LET $e := Edge::livingplace,
$o := node-set($e.place)

WHERE $e.person = $p

RETURN EDGETYPE allplaces
MODEL (who:person, where:place+)
VALUES(who:$p, where:$o)

For more details of the graph data definition, manipula-
tion and querying features of GrafL can be found in [46].

4 Architecture and Implementation of the
Hypergraph Database System

4.1 Object-Relational Storage Structures for
Hypergraphs

Using a model, in our case a hypergraph model, always
raises several questions around implementation issues, be-
ginning from “how can hypergraph data be represented in
the digital archive system”, through “how to store data per-
sistently” to “how to query and evaluate those data ef-
ficiently”. Those problems are quite complex; answering
these questions in detail is way beyond the limitations and
goals of this article. Nevertheless at least one of these as-
pects will be presented here briefly: storage of hypergraph
data. As mentioned before, we use the object-relational
database system PostgreSQL as the backend for the graph
database. The relational storage structure is shown in Fig. 9.

The backend database is divided into two parts, a catalog
schema and a data schema. This helps to distinguish and
organize type and model information on the one hand from
the actual data on the other hand.

Besides the nodes in the hypergraph, which do not differ
fundamentally from nodes in graphs, and therefore are easy
to understand, the most important and structurally most rel-
evant constituents of hypergraphs are their hyperedges and
the connectors between hyperedges and participating nodes,
which we call arcs (without loss of generality). These data
are represented on the right side of the figure.

To accommodate further information about edges and
arcs, the model allows for attributes to be attached to both
of them (EdgeAttr, LinkAttr), on the far right in the figure.
Since we have to deal with a single graph only, there is no
need to store graph properties, such as ID and type at all.
Relationships between attributes and edges/arcs, as well as
the relationship between arcs and edge are guaranteed by
referential integrity.

All hypergraph constituents, not only edges and arcs,
even their attributes are typed, as shown in the catalog (left)
part in the figure. Attribute types are always flat, however
edge and node types are part of an inheritance hierarchy
(therefore they have parent attributes). This makes the defi-
nition of hyperedge content models much easier. Hyperedge
content models, described in more detail in Sect. 3.2, are
important properties of hyperedge types. They define the

K



Datenbank Spektrum (2017) 17:113–129 123

Fig. 9 Relational storage structure of the directed hypergraph model

way nodes participate in hyperedges they are associated
with, hence defining the semantics of the hyperedge.

Inheritance of node types also implies inheritance on
node storage, which means they all inherit from a base node
which resides in the node table. As can be seen in the figure,
node attributes are separated from node identities, which
makes the system very flexible and independent from DDL
operations and database system restrictions on inheritance,
when it comes to modeling inherited nodes. However, this
does not necessarily represent the implementation in the
database. An alternative would hold tables on a per-node-
type basis and hence make use of the inheritance capa-
bility of PostgreSQL tables and individual specific attribute
type support7. A tradeoff between those two storage options
would be the split-attributes-by-type approach, which sep-
arates attributes of individual types from node identities in
their respective own specific data type tables, retaining the
database system’s type-specific capabilities, while provid-
ing a very flexible storage for attributes of inherited nodes.
The decision on how to handle inherited nodes’ storage has
not yet been made and is still subject to research.

7 Another reason for using PostgreSQL are the PostGIS extension for
spatial data and the range type supporting temporal operators [3].

When running a PowerGraph instance, the whole cat-
alog will be loaded into memory, which is inevitable for
all hypergraph operations processed in PowerGraph. Cata-
log/model changes in the system are made persistent in the
backend database immediately, to ensure ACID properties,
using the respective backend database system capabilities.

For the sake of high efficiency, parts of the data schema
are also cached into main memory. This does not include
node, edge, or arc attributes, as they may include large
amounts of data, especially nodes. In any case, it is advis-
able to cache node identities, edge identities, and incidence
information, including arc directions, to provide for effi-
cient graph operations. Initial strategies and ideas on how
to do that, are described in the following section.

4.2 Linking Cache – Main Memory Graph
Representation

The linking cache is a main memory structure taking care
of loading graph data and writing back updated parts to the
backend database. It exploits two main data structures: (1)
a so called plex for graph, node, and hyperedge access and
(2) an union-find index for fast node connectivity testing.
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4.2.1 The plex implementation of a hypergraph

The plex8 is a simple but efficient interface to a variety of
graph or tree structured datasets. It consists of four basic
sets:

● containers, set of plexes where the current plex occurs
● contents, set of plexes contained in the current one
● sources, set of plexes the current plex originates from
● destinations, set of plexes the current one is pointing to

Table 2 shows how graphs, hyperedges, and nodes can
be represented in the same plex structure:

Operations on the plex structure have to be valid under
two general, global integrity constraints

plexi 2 plexj :containers , plexj 2 plexi :contents

plexi 2 plexj :sources , plexj 2 plexi :destinations

and some validity rules specific for graphs, hyperedges, or
nodes. These specific constraints are shown together with a
sketch of the Java classes using generics for implementing
the plex structure.

class plex<T1,T2,T3> f
set<T1> containers;
set<T2> contents;
set<T3> sources;
set<T3> destinations;

g;
class graph extends plex
<null,edge,null> f

//set<edge> contents;

this 2 edge:containers

g;
class edge extends plex
<graph,node,node> f

//set<graph> containers;

this 2 graph:contents

//set<node> sources;

this 2 node:destinations

//set<node> destinations;

this 2 node:sources

8 We could not track where the idea of the plex structure originally
came from, but at least David Matuszek is an online source for it:
https://www.cis.upenn.edu/~matuszek/.

Table 2 How graphs, hyperedges, and nodes can be represented in
the same plex structure

Set Graph Edge Node

containers ¿ set<graph> set<edge>

contents set<edge> ¿ ¿
sources ¿ set<node> set<edge>

destinations ¿ set<node> set<edge>

g;
class node extends plex
<edge,null,edge> f
//set<edge> containers;

this 2 edge:contents

//set<edge> sources;

this 2 edge:destinations

//set<edge> destinations;

this 2 edge:sources

g;

4.2.2 The Union-Find Data Structure for Node
Connectivity

This data structure [10] is used in addition to the plex
structure for graph operations which depend on fast node
connectivity testing. Using path compression, it performs
well not only on connectivity testing (O.lgN /), but also
on the union operation connecting two nodes (O.lgN /)
or deleting a connection (O.1/). For secondary storage,
there are also efficient data structures for testing connectiv-
ity (cf. [59]).

5 The PowerGraphApplication Context

The relationships between the PowerGraph system, the
Hydra.PowerGraph extension, and the WossiDiA digital
archive are shown in Fig. 10 and explained in the following
subsections.

5.1 Hydra.PowerGraph

In this paper, we mainly discuss the graph database sys-
tem PowerGraph which is part of the Hydra framework
for digital archive systems. Hydra adds a rich set of pre-
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Table 3 WossiDiA topology
hypergraph quantity structure

Archive topology nodes and hyperedge counts:

Corpus Lev.0 Lev.1 Lev.2 Lev.3 #nodes #edges

Lev.4

zaw 1,112 29,728 920,749 981,064 1,932,654 951,590

mww 108 3,157 20,471 26,062 433,461 49,799

383,662

mwt 127 753 1,208 394,813 396,902 2,089

bkw 1,653 8,979 12,963 49,434 73,030 23,596

ztw 50 819 26,788 28,307 55,965 27,658

fna 16 956 1,687 5,088 7,748 2,660

pwa 1 6 140 2,366 2,514 148

lit 1 2 299 1,086 1,389 303

ibw 1 1 306 309 3

och 2 2 20 223 248 25

Topology (incl. corpus and

archive nodes/hyperedges): 2,904,221 1,057,872

Metadata 257,468 339,832

TOTAL 3,161,689 1,397,704

defined node and hyperedge types, like the one discussed
above. It is accompanied by a flexible workflow engine and
digitization and publishing modules [54].

5.2 WossiDiA on Top of Hydra.PowerGraph

WossiDiA is a project about digitization of ethnological doc-
uments, written and collected in the late 19th and the early
20th century by Richard Wossidlo, see Fig. 1. Fig. 2 shows
a sample of Wossidlo’s hand-written documents.

More detailed information about the collection and the
project can be found in [43] and [52]. In order to illustrate
the type of documents, the complexity of the digitization
workflow, and the need of a sophisticated way to describe
digital archive topology data with metadata information,
connected in a hypergraph type of way, we have included
Fig. 4. It gives a general overview about the workflow and
depicts how archival contents are acquired and amended in
a way that generates the high degree of interconnectivity in

Fig. 10 WossiDiA as Hydra.PowerGraph application

the digital archive. The digitization process is outlined in
[53].

Table 3 gives an overview of the current hypergraph data
quantity structure of the Digital Wossidlo Archive’s Power-
Graph instance. The upper part of the table shows the num-
ber of nodes and hyperedges in the archive topology, which
is a hierarchical structure, consisting of the corpora of the
Wossidlo Archive (e. g.: main box shelf with field research
notes (ZAW), correspondences with contributors (BKW),
alphabetical dictionary source documents (MWW), etc.).
The numbers of nodes on the individual levels of the differ-
ent corpora are listed explicitly to explain the quantity of
hyperedges, which are used to hold together the corpora’s
topologies. Level 0 represents the highest directory unit,
directly below the respective corpus’s root node. Level 3 or
4 represents the actual digital image document nodes. The
lower part of the table displays the overall node and hyper-
edge counts across all corpora. They are juxtaposed with
the total numbers of all descriptive metadata nodes and all

Table 4 WossiDiA hyperedge types (selection of)

Hyperedge type # edges Avg. nodes/edge

[1019] Content 118,912 2.132

[70] Narrated 25,943 2.592

[100] Thesaurus 17,517 2.012

[5] Gen. reference 1,969 2.953

[31] Wossi region 122 22.574

[10] Folder 118 76.195

[1007] Fuzzy per-
son

49 10.735

[1016] Seminar 28 4.607
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descriptive hyperedges. The latter are used to link metadata
nodes with topology nodes.

A few examples for specific hyperedges types, which are
either prominent in WossiDiA or make heavy use of hyper-
edges, are shown in Table 4. The left column indicates the
edge types, which themselves represent the meaning of facts
behind the association of participating nodes. The middle
column gives a hint on how many of these hyperedges have
been created and the right column shows the average fan-
out of the edge-node relationship.

For example, the hyperedge type Wossi region, which
puts places into a regional context with a more prominent
place nearby, has only a small number of edges but a huge
fan-out of connected nodes. The same is true for fuzzy per-
son and seminar networks. On the other hand, we have lots
of edges describing document content (content) and infor-
mation origin (narrated). Unlike the networks, they natu-
rally don’t have a huge fan-out; it is still greater than two,
proving the need of hypergraphs over graphs with edges
only allowing for a pair of two nodes. Hyperedge type the-
saurus represents the so-called “ethnological canon” which
relates terms mostly hierarchically, but features a few very
important cross references, being the average +0.012 nodes
on top of the regular pair.

6 Related Work

The CIDOC/CRM [18] is a conceptual model primarily
designed for the exchange of historical information in the
course of archives, museums, and libraries. It has to be
mapped to a logical data model to be used for storage
and retrieval. This has be done by Thalheim et al. for
the relational model in [37]. More details on mapping the
CIDOC/CRM to Hydra.PowerGraph’s directed and typed
hypergraph model can be found in [38]. This approach was
also used as a conceptual model in the Lagomar project
which dealt with the inventarisation of the maritime cultural
heritage of lagoon regions and employed CIDOC/CRM
for data storage [42, 45]. In Lagomar, CIDOC/CRM was
mapped to an RDF-triple-store (Jena Framework9).

Claude Berge [11] established the hypergraph theory.
Directed hypergraphs were first introduced by Ausiello et
al. [7–9] and Gallo et al. [22, 23]) as a generalization of
directed graphs.

Angles and Guttierez summarize and compare graph
based data models [4]. But the majority of recently devel-
oped graph database techniques and approaches does not
focus on hypergraphs and does not put too much effort
into complex type concepts for graph edges or hyperedges.
However, there are some approaches dealing with hyper-

9 https://jena.apache.org/

graphs, such as [16] and [20]. Some use labeled edges such
as [16, 17, 29, 34, 35, 51, 61], etc. Although labeled edges
can be counted as a name based type system, PowerGraph
uses a structure based type system.

A very small number of approaches deals with both hy-
pergraphs and typed edges, e. g. [16]. But even in this
case, edge typing means no more than simply using labeled
edges. When it comes to widely spread graph database and
graph processing systems, such as neo4j and Apache Gi-
raph, the native support of hypergraphs is limited. Building
hypergraphs in neo4j means using special node types act-
ing as hyperedges (bipartite graphs), and sophisticated edge
types need to be implemented explicitly. As a consequence,
query evaluation and optimization do not benefit from node
clustering and typed edges.

In contrast to the above-mentioned approaches and sys-
tems, PowerGraph provides a complex hypergraph type
system, which is based on hyperedge content models. It
features the notion of applying restrictions on nodes partic-
ipating in hyperedge relationships, as described in Sect. 3.2.
Using this, the user can define complex constraints in a way
similar to content models known from semi-structured data
and documents.

With respect to the hypergraph model and edge types,
PowerGraph uses a query language resembling XQuery.
This approach is different to current graph languages like
SPARQL since it mixes graph processing techniques with
querying semi-structured data and documents. Angles et
al. [5] survey the foundations of graph languages like
SPARQL, Cypher and Gremlin. Since RDF-triples can be
represented by bipartite graphs as well as hypergraphs can,
there should be a way to adopt a SPARQL-like language for
broader use in the PowerGraph system. Some researchers
[31] argue that hypergraphs may better represent RDF
graphs. RDF graphs allow for several representations, for
example bipartite graphs [31], labeled directed graphs [28,
32], and hypergraphs [30].

As for managing XML data with relational technologies
[26], there are situations where managing graph data with
(object-)relational databases can perform as good as a native
graph database. Gubichev [27] at least gives some evidences
for simple graph matching scenarios.

The main memory structure of PowerGraph, the linking
cache, relies on efficient main memory graph representa-
tions. Succinct data structures are a basic building block,
[21, 36, 47] show more complex discrete data structures
such as trees and graphs that can be built using them. Some
of the tasks for which they have used include Web graphs
[15], XPath indexing [6], partial sums [50], and short read
alignment [39].
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7 Conclusion

Primarily developed for the WossiDiA digital archive, the
directed hypergraph model is versatile enough to build a
foundation for not only this special archive structure but
more general applications. For the realm of digital libraries,
archives, and museums, we have shown that our model is
well suited as implementation logic for CIDOC/CRM, a
conceptual model well accepted in those domains.

The directed hypergraph model is not only a set of con-
cepts for defining structures but is accompanied with a set
of operators forming a graph query language and graph al-
gebra. Such a graph algebra is also a formal basis for imple-
menting efficient algorithms of algebra operators and devel-
oping an optimization framework. Nevertheless, a more de-
scriptive query language like GraphQL, SPARQL or Cypher
should be adapted to hypergraphs and implemented on top
of such an algebra.GrafL is a first try on a hypergraph query
language and borrows much from XQuery. The semantics
and the optimization is still an open topic in the project and
needs further research. Other open questions include more
complex graph operators for graph abstraction and summa-
rizing as well as customized index structures for frequent
graph pattern matching.

Graph matching will be also a focus of a forthcoming
project. It will provide intelligent search and analysis across
three of the world’s largest machine actionable folklore col-
lections (Dutch Folktale Database from Meertens Instituut,
Amsterdam, the Danish Folktale Database from UCLA, and
the Mecklenburger Folklore Database WossiDiA from Uni-
versity of Rostock) presenting the opportunity for large
scale data-driven research into traditional folk expressive
culture. By facilitating search, discovery and analysis across
all three collections, the Hydra.PowerGraph infrastructure
will provide researchers an unprecedented opportunity to
discover patterns both within and across the target cor-
pora. The proposed research, focusing on storytellers, leg-
ends and the dispersion of (historical) beliefs in magic,
witchcraft, hauntings and supernatural beings seeks to re-
veal what ordinary people believed, and how storytelling
traditions and story repertoires differed in and across these
three areas [1, 56, 57].
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