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Single Line-to-Ground Faulted Line Detection of
Distribution Systems With Resonant Grounding

Based on Feature Fusion Framework
Ying Du , Yadong Liu , Qingzhu Shao, Lingen Luo , Jindun Dai, Gehao Sheng, and Xiuchen Jiang

Abstract—Faulted line detection is a key step of intelligent fault
diagnosis of distribution systems, laying the foundation for the fur-
ther fault location and service restoration. A novel single line-to-
ground (SLG) faulted line detection method based on the feature
fusion framework is proposed. In the proposed framework, one-
dimensional convolutional neural network is employed as a pow-
erful tool to extract more effective features. In addition, there is
an imbalance phenomenon between data of the faulted line and
healthy lines when a data-driven model is used in the faulted line
detection. The proposed framework offers an avenue for overcom-
ing it and improves the accuracy of detection. Considering the lim-
ited data of SLG faults in actual power systems, prior knowledge
of SLG fault detection is integrated into the data-driven model,
which proves useful in reducing dependence on the training data
quantity. The experiments verified the superior performance of the
proposed feature fusion framework-based method.

Index Terms—Feature fusion framework, single line-to-ground
fault, one-dimensional convolutional neural network, distribution
systems with resonant grounding, prior knowledge.

I. INTRODUCTION

D ISTRIBUTION systems are the last link between electric
utilities and customers. Many customers’ perceived faults

usually occur in distribution systems, so the reliability of which
is crucial. The reliability is challenged by various faults, where
single line-to-ground (SLG) faults are the most prevalent, ac-
counting for 80% of all faults [1]. SLG faults result mainly from
wind, falling trees, animals, birds and unfavorable wet weather
conditions [2]. When a fault occurs, faulted line detection is the
basis for further fault location, isolation and service restoration
[3]. In distribution systems with resonant grounding, due to the
reverse ground capacitive currents induced by arc suppression
coils [4], the SLG fault currents are relatively small. Therefore,
it is difficult to detect the SLG faulted line, especially with high
impedance faults.
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Although distribution systems with grounding resonant are
allowed to operate 1∼2 hours after occurrence of SLG fault [5],
it is necessary for us to detect the faulted line immediately to pre-
vent the fault from further deterioration. According to the report
of China Southern Power Grid, in actual distribution systems,
automation of detecting SLG faulted line with high accuracy has
not yet been realized, and manual fault isolation is still neces-
sary. Consequently, SLG faulted line detection of distribution
systems with resonant grounding needs further study.

Transient zero sequence current of the faulted line is several
times larger than the steady-state zero sequence current after
occurrence of SLG fault, containing a lot of fault information.
Many detection methods based on features of transient zero se-
quence currents and pattern classification methods have been
proposed. Current waveform energy and normalized joint time-
frequency moments are used to describe the features of wave-
forms of high impedance fault in [6] and support vector machine
(SVM) is used for detection. On the basis of wavelet analysis, a
more detailed and specific faulted line detection rule is presented
in [7]. In [8], empirical mode decomposition (EMD) is used to
select energy of high frequency band of transient zero sequence
currents as features and ADABOOST is used as classifier. Multi-
resolution morphological gradient is used to extract time-based
features of signals in [9]. All of the above mentioned methods
are based on artificially designed criteria to extract the features
from data of lines and then using classification algorithms to
recognize the faulted line.

However, transient signals based faulted line detection meth-
ods are significantly affected by the network electrostatic asym-
metry, fault impedance and inception angle [10]. In addition,
sometimes, there are some reverse installations of zero se-
quence current transformers in engineering, exacerbating the
difficulty of detection. The SLG faulted line detection is faced
with the dilemma that extracted artificial features are not ef-
fective enough, leading to lower reliability of detection under
unfavorable conditions.

In addition to the way of feature extraction, there are other
factors affecting the performance of detection. When a SLG fault
occurs in a distribution system with N lines, the zero sequence
currents data of N lines will be collected. In general, there is
only one faulted line, so the fault data quantity is only 1/N of the
total data quantity. N is more than ten in many areas. When a
data-driven model processes these data of N lines, the imbalance
phenomenon between data of the faulted line and healthy lines
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will make algorithms encounter difficulties. The data of healthy
lines will be paid more attention to, while the most important
information is concentrated in the data of the faulted line with
smaller data quantity [11], [12].

Besides, the quantity of training data is of great importance
for the performance of data-driven models. In a typical distribu-
tion network, the number of SLG faults of one line is difficult
to reach one hundred per year. In fact, smaller data quantity is a
big bottleneck for the application of data-driven models in power
systems. In addition to spending considerable effort on simulat-
ing faults in actual systems, and given that we have mastered
some prior knowledge based on the mechanism of power sys-
tems, integrating prior knowledge into data-driven model should
be considered to reduce the dependency on data quantity and
achieve better performance of detection [13].

In response to these three problems above, a novel SLG faulted
line detection method based on feature fusion framework is pro-
posed in this paper. The proposed feature fusion framework
mainly includes three modules: (1) Data preprocessing mod-
ule; (2) Feature extraction module; (3) Feature fusion module.
These three modules address the three aforementioned problems
respectively.

In the data preprocessing module, we collect healthy data and
fault data of each line as training samples, and then balance the
distribution of two-class data to avoid the unfavorable effect of
the imbalance phenomenon on the performance of algorithms,
which will be introduced in Section II in detail.

With the development of deep learning, adaptive feature ex-
traction has become possible. Convolutional Neural Network
(CNN), as one of the representatives of deep learning, is widely
used in many pattern classification problems in various fields.
For processing one dimensional signals, one dimensional Con-
volutional Neural Network (1D CNN) is widely adopted [14],
[15]. In the feature extraction module, 1D CNN is employed as
a tool to extract more effective features of data of each line.

In the feature fusion module, the combination of a data-driven
model with prior knowledge is achieved by using the feature
fusion method. The prior knowledge based features and features
of data of N lines extracted by 1D CNNs are fused as a new
feature vector.

Based on the feature fusion framework, the performance of
SLG faulted line detection has significantly improved. The ca-
pability of feature extraction of CNN has proved to be more
powerful. Overcoming imbalance phenomenon improves the
accuracy of detection, and integrating prior knowledge into the
data-driven model has proved useful in reducing the dependency
on data quantity, which is promising in further application of data
driven model in power systems.

The rest of this paper is organized as follows. In Section II,
two previous options of faulted line detection based on data-
driven model are analyzed, pointing out the direction of improve-
ment. The proposed feature fusion framework is overviewed.
Section III presents the implementation process of the proposed
method in detail. In Section IV, the superiority of our method
is verified and experimental results are discussed carefully.
Section V concludes this paper.

Fig. 1. Option 1 of data-driven model based faulted line detection methods.
If line1 is the faulted line, the label is set as ‘1’. If line2 is the faulted line, the
label is set as ‘2’, and so on.

II. PROPOSED METHOD

A. Related Analysis

Previous faulted line detection methods based on data-driven
models can be concluded into two options, which are named as
“Option 1” and “Option 2” in this paper. The two options are
analyzed in this section, and their limitations are discussed.
� Option 1
If there are N lines from the same bus in a distribution system,

Option 1 selects relevant data of all N lines at fault moment as
one training sample. Relevant data of each line are generally
zero sequence currents collected after fault moment, i.e., there
are zero sequence currents of all N lines in one training sample.
The data-driven model can be chosen as neural network, SVM
and so on. The label of a training sample is set as a digital mark
of the faulted line. Option 1 is depicted in Fig. 1.

There is an imbalance between fault data and healthy data in
Option 1. At most failures, there is only one SLG faulted line,
which means inside a sample, fault data are only 1/N, and the
rest are healthy data. This imbalance phenomenon is special,
arising in the context of faulted line detection problems. It is
different from typical imbalanced classification problems that
the number of training samples is unevenly distributed among
the classes [16]. In other words, the number of samples in some
classes is much smaller than those in other classes. However,
there is always an imbalance phenomenon between fault data
and healthy data in Option 1, which exists in the distribution of
fault data and healthy data inside each sample.

Apparently, this imbalance phenomenon has some unfavor-
able influences on the performance of algorithms. The healthy
data of samples will catch more attention due to the superiority
of data quantity in the learning process of algorithms, leading to
insufficient learning of fault data. Consequently, this imbalance
phenomenon needs to be overcome urgently. Furthermore, com-
bining data of all lines into a sample makes Option 1 difficult to
consider the difference among lines.
� Option 2
In Option 2, the data-driven model trains data of each line

separately. Faulted line detection problem is transformed from
an N-class problem of Option 1 to a two-class problem. The label
of this model is set to be 1 or 0. Label 1 represents a faulted line
and label 0 represents a healthy line. When a fault occurs, by
comprehensive consideration on the output of the model of each
line, the faulted line can be selected. Option 2 is shown as Fig. 2.
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Fig. 2. Option 2 of data driven based faulted line detection methods. If line1
is a faulted line, the label is set as ‘1’. If line2 is a healthy line, the label is set
as ‘0’, and so on.

Option 2 attempts to train a classifier which could tell whether
a waveform is normal or not. This work is very challenging and
almost infeasible since actual conditions of distribution network
are unpredictable, including but not limited to the change of fault
resistance, fault distance and fault phase. These factors have a
great influence on the collected waveforms after fault moment.
Moreover, out of randomness, some factors are difficult to con-
sider, such as changes in the meteorological environment. It is
impossible for us to select data under all conditions as training
data, consequently, the result of Option2 has lower credibility.
We think that the correlation of lines should be considered, and
it is sensible to detect the faulted line by associating and com-
paring the features of data of all lines.

In addition, there is some prior domain knowledge in faulted
line detection of distribution systems, which can be combined
with features extracted by the data-driven model to further im-
prove the performance of faulted line detection method and re-
duce the dependency on the data quantity.

By analyzing the two options above of faulted line detec-
tion methods, we can conclude that the imbalance phenomenon,
the difference and the correlation of lines, and integrating prior
knowledge all should be considered for a more desirable faulted
line detection method.

B. Proposed Feature Fusion Framework

In this paper, a feature fusion framework based SLG faulted
line detection method is proposed. The proposed feature fusion
framework comprises four modules: (1) Data preprocessing; (2)
Feature extraction; (3) Feature fusion; (4) Classification. The
two most important modules are feature extraction and feature
fusion. The simplified diagram of the feature fusion framework
is exhibited in Fig. 3.

As can be seen in Fig. 3, the features of data of each line are
extracted separately. In the data preprocessing module, fault data
and healthy data of each line are collected after fault moment,
which constitute the training data set of each line. On this basis,
the imbalance phenomenon inside each sample in Option 1 can
be transformed to imbalance between two classes (faulted line
or healthy line). Because of the transformation, we can handle
the imbalance by using methods widely used in typical imbal-
anced classification problems. In the proposed framework, the
synthetic minority oversampling technique (SMOTE) algorithm
[17] is chosen to overcome the imbalance between two classes
by generating new fault data.

Fig. 3. The diagram of the proposed feature fusion framework. The label of
the training set is a digital mark of the faulted line as Option 1.

In the feature extraction module, because features of data of
each line are extracted respectively, the difference of lines can
be considered. We use 1D CNNs to extract features of data of
each line. If there are N lines in a distribution system, we need
to train N 1D CNNs. In the training process, transfer learning is
adopted as the method of initializing parameters, which benefits
network convergence and reduces computational work, thereby
simplifying the training process.

Feature fusion module plays two roles. First, correlation of
lines is considered. Second, prior knowledge is integrated into
the data-driven model. Recently, feature fusion methods are
widely used in many pattern classification problems. Fusing di-
verse features can provide more effective information for the
data-driven model and then improve the performance of classi-
fication [18], [19]. Because it is essential for us to pay attention to
the correlation of lines, features extracted from data of each line
are fused as 1D CNN based features. Then, in order to combine
the data-driven model with prior knowledge, prior knowledge
based features and 1D CNN based features are fused as a new
feature vector, which is input to the classification module. In
the classification module, the neural network is chosen as the
classifier.

We can conclude that in the proposed feature fusion frame-
work, there are three significant advantages:
� The difference and correlation between lines are consid-

ered at the same time.
� It provides a way for overcoming the imbalance phe-

nomenon inside samples.
� It achieves the integration of prior knowledge into the data-

driven model.
The implementation of it will be further illustrated in the next

section in detail.

III. IMPLEMENTATION

When a SLG fault occurs, the symmetry of three-phase volt-
age is destroyed, so the zero sequence voltage and the zero se-
quence current of lines are increased, which can be used as the
detection signals. However, the changes of current and voltage
caused by normal switching operation may make detection sys-
tem start to detect the faulted line mistakenly. In order to avoid
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Fig. 4. The flow diagram of the proposed detection method.

the influence of transient disturbance, we set three cycles delay
for confirmation of SLG fault occurrence because most transient
disturbance will disappear in three cycles. After three cycles de-
lay, if the zero sequence voltage is still an abnormally increased
value, the proposed feature fusion framework starts to detect
the faulted line. After the detection signal occurs, the transient
waveforms of lines will be recorded first, so fault detection will
not be affected by the delay. The flow diagram of the proposed
method is shown in Fig. 4.

Firstly, fault data and healthy data of zero sequence current of
each line are collected. Then, the SMOTE algorithm is used to
generate enough fault data to balance data distribution of each
line, making a contribution to the subsequent feature extraction
processes. Next, 1D CNN is employed as a powerful tool to
extract features of data of each line. By using feature fusion, the
1D CNN based features and prior knowledge based features are
fused as a new feature vector. Finally, the fused feature vector
is input to the neural network to recognize the faulted line.

A. Data Preprocessing

In the data preprocessing module, the SMOTE algorithm is
used to generate a large number of new samples with certain
strategies to balance the distribution of training samples. In gen-
eral, in addition to the noise factor, some samples tend to appear
in the neighborhood space of samples from the same type, which
is as the criterion for SMOTE algorithm to generate new sam-
ples in the neighborhood space of original minority samples. In
SMOTE algorithm, k-nearest neighbor algorithm is used to en-
sure neighborhood space [20]. Firstly, select a main sample x in
minority samples and then find its k-nearest neighbor samples
in all remaining minority samples, and then randomly select a

Fig. 5. New sample generation process of SMOTE algorithm. (a) Finding the
same K-nearest neighbor samples of the main sample x (K = 5, in this example).
(b) New samples generation.

TABLE I
LIST OF NOTATIONS USED IN THIS SUBSECTION

main neighbor from them, which is named as y. Next, generate
a new sample at a random location of the line connecting the
main sample x and its main neighbor sample y. The new sample
generation process of SMOTE algorithm is as shown in Fig. 5.

B. Feature Extraction

CNN is considered as a breakthrough in computer vision [21]
and has become the research hotspot in pattern classification
problems of many fields. In [22], the transient zero sequence
current waveforms are converted into time-frequency images
by continuous wavelet transform and then CNN is used to ex-
tract features of images. However, the rising dimension process
will bring some redundancy inevitably, complicating the feature
extraction. In this paper, 1D CNN is employed to extract the
features of data of each line by the movement of the convolution
kernels on the time axis.

1) Architecture of CNN: Typical CNN is a hierarchical
model, including an input layer, convolution layers, activation
function, pooling layers, fully connected layers and output layer
mainly. The architecture of the 1D CNN is as shown in Fig. 6.

In the convolution layers, there are a set of convolution ker-
nels with a certain size. The essence of the convolution kernel
is the local weight matrix, which can extract linear features ef-
fectively by convolutional operations and experts in acquiring
local information. Different convolution kernel can extract the
features from diverse aspects.
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Fig. 6. The structure of 1D CNN.

The convolutional operation of 1D CNN can be described as
follows.

ht =

m∑

k=1

wk × xt−k+1 (1)

The output of convolution layer is represented as ht. A dis-
crete sequence xt, where t = 1, 2,…, n, is a one dimensional
time-series signal with n time steps. A convolution kernel is
represented as wk, where k = 1, 2, …,m. In general, m is much
smaller than n.

Because convolutional operations only extract linear features,
the nonlinear activation function is used to add nonlinear map-
ping after convolutional operations. In this paper, the Rectified
Linear Unit (ReLU) [23] is used as activation function, which
can avoid the occurrence of gradient saturation and help the
convergence of the stochastic gradient descent method, and the
speed of it is about 6 times faster than that of others [21]. The
definition of the ReLU is as follows:

ReLU (h) = max {0, h} (2)

The definition of the input of the i-th neuron of the l-th layer
is as follows.

ali = ReLU

(
m∑

j=1

wl
j × al − 1

i−j+m + bl)

= ReLU(wl × al − 1
(i+m−1):i + bi

)
(3)

In equation (3), al(i−m+1):i = [al(i+m−l), . . . , a
l
i]
T . wl is the

convolution kernel with m dimensions. bi is the bias parameter,
where i = 1, 2,…, n.

Next, pooling layers simplify the output of previous layers,
obtaining feature maps with lower resolution. Actually, the op-
eration of pooling layers is the down-sampling process, which
can avoid over-fitting by reducing parameters to some extent.
It pays more attention on whether there are some features not
the location of some features. Therefore, pooling operations can
enhance the robustness of CNNs.

Max-pooling is used in this paper. The output of the previ-
ous convolutional layer can be divided into several regions Rk,

k = 1, 2, . . . ,K. The output of the pooling layer is

poolmax (Rk) = max
i∈Rk

ai. (4)

The output of pooling layers can be regarded as features ex-
tracted by 1D CNN. Then, the features are input to the fully
connected layers, which work as a classifier, mapping extracted
features to the label.

2) The Training of CNN and Transfer Learning: The train of
CNN is more complicated than the artificial neural network and
back propagation algorithm is also used. To reduce the complex-
ity of computation in the training phase, weight sharing [21] is
adopted, which reduces the parameters of network extremely.

Data normalization is an essential step before beginning of
the training process, which can cancel errors caused by different
dimension, self-variation or large difference in values. In order
to prevent the over-fitting phenomenon and enhance the gener-
alization capability of the model, the regularization technology
is usually used.

The value of initial weights of model has a significant influ-
ence on the training process, greatly determining the final per-
formance of the network. Transfer learning is a good choice in
the weight initialization, using the parameters of the pre-training
model, which is simple and effective. Transfer learning moves
the knowledge of one domain to another related domain so that
the learning process of the related domain can perform better.
The upper layer response of deep CNN is more general and can
be used for different classification task [18]. Usually, the transfer
learning approach is to train a base network, and then we can
use its first several layers to initialize the first several layers of
the target network. Next, the remaining layers of the target net-
work are trained toward the target task with randomly initialized
weights.

In this paper, transfer learning is used in weight initialization.
In a distribution system with N lines, we need to train N 1D
CNNs to extract features of each line. Given that these N net-
works belong to the same domain (all are zero-sequence tran-
sient current signals), we can choose one of N networks as a base
network, and then copy its first several layers to the first several
layers of other N-1 networks to initialize weights of the N-1
networks. In this way, these N-1 networks do not need to learn
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starting from the beginning but on the basis of the base network,
improving the efficiency of feature extraction and simplifying
the training process.

The Adam optimization algorithm is employed in the CNNs.
It is an extension of the stochastic gradient descent algorithm,
which has recently been widely used in deep learning appli-
cations to iteratively update neural network weights based on
training data. It is suitable for solving optimization problems
with large-scale data and parameters [24].

C. Feature Fusion and Classification

In order to associate 1D CNN based features of each line and
integrate prior knowledge into the data-driven model, the feature
fusion method is used in the proposed framework. Feature fu-
sion has been applied in various pattern classification problems
to improve the accuracy of classification. In [18], anatomical
features and features extracted by transfer learning are fused to
enhance the detection of automatic eye type, which maximizes
the classification accuracy. In [19], the feature fusion method has
been employed to process video, audio and text data to do multi-
modal deception detection, achieving better accuracy. Different
issues can use different ways to fuse the related features. In the
proposed framework, a simple but effective method is chosen.
We concatenated the 1D CNN based features of each line and
prior knowledge based features to fuse them, which is also used
in [18], [19], [25], [26].

Deep neural network architectures such as CNN, are com-
monly trained using a large number of supervised examples.
However, the data of actual SLG faults are limited. The prior
knowledge of SLG faulted line detection should be used ef-
fectively to reduce the dependency on the data quantity in the
data-driven model. In general conditions, the amplitude of zero
sequence transient current of the faulted line is greater than that
of other healthy lines, and the polarity of zero sequence transient
current of the faulted line is opposite to the polarity of other
healthy lines. Therefore, the amplitude and polarity of zero se-
quence transient currents can be used as criterion of faulted line
detection [27], which are used as prior knowledge based fea-
tures in the framework. The 1D CNN based features of each line
and prior knowledge based features are concatenated as a new
feature vector. The diagram of feature fusion and classification
is as shown in Fig. 7.

IV. EXPERIMENTS AND DISCUSSION

A. Simulation

1) Simulation Model of Single Line-to-Ground Fault: A
model has been established in MATLAB/SIMULINK to simu-
late single line-to-ground faults in the typical 10-kV distribution
system with resonant grounding. The structure of the simulation
model is as shown in Fig. 8. This is a hybrid distribution system,
including overhead lines and underground lines.

The simulation model consists of ten feeder lines L1-L10,
where L1-L4 are overhead lines; L5-L10 are underground lines.
The type and length of each line are as shown in Table II. O
denotes the overhead line and U denotes the underground line.

Fig. 7. The diagram of feature fusion and classification.

Fig. 8. The structure of simulation model.

TABLE II
TYPE AND LENGTH OF TEN LINES

F1-F36 in Fig. 8 denote different fault location. The load of
each line is set as (1+j0.4) MVA. The arc suppression coil is
10% overcompensated. The capacitance to ground of the un-
derground line is much larger than that of the overhead line,
which increases the difficulty of faulted line detection in hybrid
distribution networks. The parameters of lines are as shown in
Table III.

2) Simulation of SLG Faults Under Different Conditions:
SLG faults are simulated under different fault conditions, in-
volving different faulted lines, different fault phase, different
fault resistance and different fault locations (F1-F36). The fault
resistance is set from 5 to 23 kΩ, taking the high impedance
faults into account. The fault phase means the phase to ground
voltage angle when fault occurs.
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TABLE III
PARAMETERS OF TEN FEEDER LINES

TABLE IV
PARAMETERS OF DIFFERENT FAULT CONDITIONS

We perform 1000 simulations to generate experimental data
of next subsection. One of ten lines faulted in each simulation.
Each line faulted with 100 times. After the SLG fault occurs, the
first half cycle transient zero sequence current waveform data
of ten lines are sampled under sampling rate of 10000 Hz. The
parameters of different fault conditions are as shown in Table IV.

B. Experiments

In order to explore the effect of data quantity on SLG faulted
line detection methods, experiments are carried out under data
quantity of 1000 and 500 respectively. The data under 500 faults
come from a random sampling of data under 1000 faults. The
number of faults in each line is also the same.

In each experiment, the original data set is randomly shuffled
and then the training data set and testing data are split by the
ratio 7:3. In order to simulate environmental disturbance and
enhance the robustness of models, Gaussian white noise with
power spectral density of 0.1, 0.0001 and 0.000001 is added to
training data respectively. The Gaussian white noise with power
spectral density of 0.000001 is added to the testing data.

In actual power systems, sometimes, there are some zero se-
quence current transformers (CTs) installed reversely due to hu-
man error. Due to the change of the polarity of the original zero
sequence current, reverse CT installation will increase the dif-
ficulty of faulted line detection. In order to simulate the actual

power system and enhance the robustness of detection models,
we consider this unfavorable condition in our simulation. There
are 30% reverse zero sequence CTs installation in the faulted
line. For example, among 100 failures of L1, zero sequence CT
of L1 is reversely installed with 30 times. The distribution of
training data and testing data is as shown in Table V.

For the purpose of verifying the performance of the proposed
feature fusion framework based faulted line detection method,
we compare it with the other four methods. Method 1 is one of the
traditional methods, which is depicted as Fig. 9(a). In Method
1, the prior knowledge based features are extracted manually,
which are input to the neural network. In our experiments, the
extracted prior knowledge based features are the amplitude and
polarity vectors of ten lines in the selected frequency bands [27].
The selected frequency is from 150 Hz to the minimum series
resonant frequency in ten lines themselves. We calculate the peak
value of the half-cycle zero sequence current data of each line.
The peak value of each line is set as the amplitude feature of each
line. We take five time points ti, i = 1, 2, 3, 4, 5, around the
peak value of the half-cycle data of each line. A(ti) represents
the amplitude of zero sequence current at time ti. The polarity
vector of one line is set as x, a five dimensional vector, where
x = (x1, x2, x3, x4, x5). If A(ti) > 0, xi = 1, otherwise, xi = 0.

Method 2 is as depicted in Fig. 9(b). CNN is used as the feature
extractor and classifier. Method 3, shown in Fig. 9(c), integrates
the prior knowledge based features and CNN based features.
In Method 4, as shown in Fig. 9(d), the features of lines are
extracted respectively by 1D CNN after the data preprocessing
for overcoming data imbalance. And then, the features of lines
are fused to input to neural network to detect the faulted line.

The definition of the accuracy of faulted line detection is the
ratio of the samples detecting the faulted line correctly to total
samples of testing data set. The accuracy of the proposed method
and four comparison methods under data quantity of 1000 and
500 are exhibited in Table VI.

C. Discussion

As shown in Table VI, with the increase of data quantity, the
accuracy of detection of all methods has increased. The reason
is that the data-driven model is mining rules from data. More
data bring more utilizable information.

Regardless of the data quantity, Method 2, Method 3, Method
4 and the proposed method all outperformed Method1. This
result fully demonstrates the superiority of features extracted
by CNN. CNN is able to extract features from data adaptively,
which proved to be more effective and reliable than the features
extracted manually. As mentioned above, 30% reverse zero se-
quence CTs are considered in the simulation, which will bring
a great challenge to Method 1, causing the polarity criterion to
fail. In addition, sometimes, the amplitude criterion could be
affected by high fault resistance and environmental noise.

Two cases are exhibited to verify above inference about the
reason why Method 1 has the lowest accuracy of detection. In
order to be seen clearly, only zero sequence current waveforms
of L1, L2 and L7 are exhibited in the two cases. In both cases,
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TABLE V
THE DISTRIBUTION OF TRAINING AND TESTING DATASET

Fig. 9. The proposed method and contrast methods. The texts next to the arrows are used to describe the advantages of the methods pointed by the arrows.

TABLE VI
THE ACCURACY OF DETECTION OF DIFFERENT METHODS UNDER DIFFERENT DATA QUANTITY
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TABLE VII
THE ACCURACY REDUCTION FROM DATA QUANTITY OF 1000 TO 500

Fig. 10. Two cases for discussing when Method 1 fails. Method 1 works in the
Fig. 10(a) and fails in Fig. 10(b). The fault condition is as shown in the bottom
of pictures. The CT of L1 is reversed in Fig. 10(b).

the faulted lines are L1. In Fig. 10(a), Method 1 works. The am-
plitude and polarity characteristics of L1 are obvious, i.e., the
amplitude of current of L1 is much larger than those of other
lines and the polarity of L1 is opposite to those of other lines.
In Fig. 10(b), Method 1 fails. Note that the zero sequence CT
of L1 is installed reversely. In addition, the amplitudes of zero
sequence currents of all lines are all quite low due to the high
resistance. We can conclude that the artificial features based
methods are prone to fail in high resistance fault detection or
when the zero sequence CT is installed reversely. In contrast,
these unfavorable conditions have less influence on deep learn-
ing models.

Method 4 has better performance than Method 2 under the data
quantity of 1000 and 500, indicating the framework of Method
4 is more effective. Method 4 overcame the imbalanced data
distribution of fault data and healthy data, which brings an in-
crease in accuracy. At the same time, the result shows that the
imbalance phenomenon of Method 2 has an unfavorable effect
on the performance of the algorithm.

The performance of Method 3 is better than that of Method 2
under two data quantity, which indicates integrating prior knowl-
edge into the data-driven model can further improve the accuracy
of detection. The improved accuracy is closely related to the data
quantity. Under data quantity of 500, the accuracy has improved
strongly with growth rate up to 3.4%. While under data quantity
of 1000, the growth rate is only 1.3%. We can conclude that when
the data quantity is small, what a data-driven model has learned
is limited, thus prior knowledge can be an effective supplement.

When the data quantity is reduced from 1000 to 500, the ac-
curacy of all methods reduces. The accuracy reduction of all
methods is as shown in Table VII. Due to the integration of prior

knowledge, the accuracy reduction of Method 3 and the pro-
posed method is the lowest. It means that these two methods
are minimally affected by the reduction of data quantity. It can
be concluded that integrating prior knowledge into data-driven
models can reduce their dependency on the data quantity. This
result is consistent with our previous analysis.

The proposed feature fusion framework based method has
the best performance, due to more effective feature extraction,
overcoming the imbalance phenomenon and integrating prior
knowledge. The proposed method not only improves the per-
formance of faulted line detection remarkably but also reduces
the dependency of CNN based model on data quantity, which
presents a wide range of possibilities for the further application
of deep learning in the analysis of the power systems.

V. CONCLUSION

In this paper, a novel feature fusion framework based SLG
faulted line detection method has been proposed. Considering
the difference of lines, 1D CNN is used to extract features of zero
sequence current data of each line. The extracted features proved
to be more effective and robust. The imbalance phenomenon be-
tween fault data and healthy data is overcome by the proposed
framework, improving the accuracy of detection. The feature fu-
sion method is used, associating 1D CNN based features of each
line, and integrating prior knowledge into the data-driven model.
Integrating prior knowledge not only improved the accuracy of
detection but also reduced the dependency on data quantity.

By extracting more effective features, avoiding the unfavor-
able effect of imbalance phenomenon, and integrating prior
knowledge, the proposed method has better performance of SLG
faulted line detection, providing a way for more effective use of
deep learning technology in power systems.
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