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Abstract: This study considers an adaptive cruise control problem of connected vehicles in the vehicular ad-hoc network and
proposes a Gaussian learning-based fuzzy predictive cruise control approach to enhance the fuel efficiency and safety of the
connected vehicles in a vehicle-following scenario. First, a Gaussian process regression model is introduced and trained with
real data to estimate the future acceleration of the preceding vehicle over the prediction horizon. Moreover, with assessing traffic
scenarios, the weights characterising the importance of individual performance are adjusted by a fuzzy decision method in real
time. Then a fuzzy predictive cruise controller is obtained by online solving a constrained receding horizon optimal control
problem with a changing cost function and acceleration prediction of the preceding vehicle. Finally, through CarSim/Simulink co-
simulation, it is shown that the proposed approach has an improvement in fuel economy and safety compared with conventional
predictive cruise control algorithms.

1 Introduction
With the increasing road vehicles, the problems of road congestion,
environmental pollution, energy consumption, and traffic safety
become more and more serious. As an extension of traditional
cruise control (CC), adaptive CC (ACC) can automatically adjust
the vehicle speed by controlling throttle and braking units to
improve the driving safety and ride comfort [1, 2]. Hence, ACC is
an important technology of the advanced intelligent transportation
system to reduce road congestion and improve fuel economy and
driving safety.

The primary objectives of early ACC systems are to increase
driving safety and comfort but not fuel economy. For example,
Zhang and Ioannou [3] used a PID control algorithm to achieve a
constant cruise speed of the host vehicle and safe inter-vehicle
distances. With the rich studies on ACC systems, more objectives
are hoped to be achieved except the early ones, such as fuel
efficiency, emission, and comfort [4–6]. Model predictive control
(MPC) has advantages to explicitly cope with constraints and
multi-objective control has been widely used in the design of ACC
systems in recent years. For example, a weight-free multi-objective
predictive cruise control approach was proposed for autonomous
vehicles [7]. In [8, 9], the authors verified MPC-based ACC.
Combined with yaw moment control, MPC was adopted to design
the ACC upper controller for improving ride comfort in [10]. The
authors of [11, 12] used MPC to coordinate comfort, fuel economy,
safety and car-following of ACC. In [13], an enhanced MPC-based
ACC controller was presented to improve tracking accuracy and
fuel economy by using road elevation information, non-linear
powertrain dynamics and spatiotemporal constraint from the
preceding vehicle. By wireless communication, the real-time
information of the preceding vehicle was used to design predictive
cruise control (PCC) algorithms to reduce the sudden changes of
the host vehicle's acceleration when switching the ACC system
mode [14]. This PCC algorithm improved the ride comfort of the
host vehicle.

In PCC, some weighted cost functions are used to compromise
the objectives of ACC, such as tracking, fuel efficiency, safety,
comfort, etc. The weights generally characterise the relative
importance of the individual objective. A real-time varying weights
policy has been shown to improve the cruise performance of ACC
because the weights can be adjusted according to different traffic

scenarios. In [15], the MPC method of adjusting the weights in real
time was used to improve the fuel economy and ride comfort for
the cut in or cut out the condition of the preceding vehicle.
However, when the traditional MPC deals with the preceding
vehicle's acceleration disturbance of ACC models, it is assumed
that the disturbance over the prediction horizon is constant. Since
the acceleration of the preceding vehicle is generally uncertain and
unknown, the performance of PCC may be poor if the acceleration
of the preceding vehicle changes continuously. To solve this
problem, Mesbah [16] adopted a closed-loop control strategy to
compensate for the influence of the acceleration disturbance of the
preceding vehicle.

Alternatively, since the acceleration or speed profile of the
preceding vehicle is a kind of time-series data, it can be estimated
using data learning methods. For instance, Jing et al. [17] used a
cooperative Markov-AR method to predict the speed profile of
vehicles. In [18, 19] Markov models were used to predict the traffic
flow speed. The authors in [20] developed a short-term speed
prediction algorithm by an artificial neural network. In [21] some
widely used parameterised and non-parametric methods were
compared based on the prediction of time series data, which
showed that the Gaussian process could describe the acceleration
or speed profile of the preceding vehicle. The authors in [22]
systematically described the Gaussian process regression method.
In [23] a conditional linear Gaussian model was adopted to predict
the longitudinal velocity of the preceding vehicle. Moreover, a
Gaussian process prediction was improved by integrating vehicle
speed and traffic flow speed time-series data obtained from a cloud
service as additional input for the Gaussian process [24]. In
addition, the car-following and ride comfort performances for
different traffic scenarios will be different during the driving
process. A set of fixed weights is difficult to adapt to meet complex
and changing traffic scenarios. The appropriate weights should be
chosen according to the different scenarios. Since the fuzzy
decision can design the corresponding control law based on a large
number of artificial experiences and rules [25, 26], it can be used to
adjust the weights of PCC according to the different scenarios.

In this paper, we consider the adaptive cruise control problem
of connected vehicles in the vehicular ad-hoc network and propose
a Gaussian learning-based fuzzy predictive cruise control approach
to enhance fuel efficiency and safety in a vehicle-following
scenario of the connected vehicles. The Gaussian process
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regression model is introduced and trained with real data to
estimate the external disturbance of the host vehicular ACC
system, i.e. the future acceleration of the preceding vehicle over the
prediction horizon. Moreover, the weights of the compromised cost
function in PCC are real-time adjusted by the fuzzy decision
method based on the assessment of the traffic scenarios and the
current traffic scenario. Then the proposed predictive cruise
controller is computed by online solving a constrained moving
horizon optimal control problem with a changing weighted cost
function and an acceleration prediction of the preceding vehicle.
Finally, the proposed approach is evaluated and compared with the
standard predictive cruise control algorithms by CarSim/Simulink
co-simulation. The simulation results demonstrate that the
proposed approach owns a significant improvement in fuel
economy and safety compared with the standard PCC.

The remaining part of this paper is organised as follows: The
PCC problem is described in Section 2. In Section 3, the Gaussian
process regression method is introduced to predict the acceleration
of the preceding vehicle. Section 4 designs the Gaussian learning-
based PCC algorithm with fixed weights and Section 5 presents the
Gaussian learning-based fuzzy PCC algorithm with varying
weights. In Section 6, the comparative results are analysed between
the proposed PCC and the traditional PCC. Section 7 concludes the
paper.

2 Problem description
Consider a vehicle tracking scenario on a single lane, as shown in
Fig. 1, where d is the inter-vehicle distance (i.e. spacing) between
the host vehicle and its predecessor, vi and ai are the velocity and
acceleration of the ith vehicle, respectively, i = h denotes the host
vehicle and i = p denotes the preceding vehicle. The host vehicle is
equipped with ACC to follow its predecessor. By V2V and V2I
wireless communication, ap will be real-time transmitted to the
host vehicle to improve the assessment of the current traffic
situation. Here the wireless communication is assumed to be ideal
without time delays and packet loss. Moreover, lane changing and
vehicles that are exiting or joining the string are outside the scope
of this paper.

Due to non-linear dynamics of engine and drive train,
aerodynamic drag, and rolling resistance, here a following
linearised third-order model is employed to describe the
longitudinal dynamics of the host vehicle:

ẋh(t) = vh(t),
v̇h(t) = ah(t),
ȧh(t) = − 1/τdah(t) + 1/τdades(t),

(1)

where xh is the absolute position of the host vehicle, τd is a constant
time representing the internal actuator dynamics, and ades is the
desired acceleration command of the host vehicle. This model is
widely used to design the upper controller of the longitudinal ACC
system by assuming that the commanded acceleration can be
exactly followed by the lower engine controlled in ECU of vehicles
[8]. In this paper, we concentrate on the upper controller of the
longitudinal ACC system. Moreover, the actuation delay between
the real acceleration and the commanded acceleration is not
considered here.

The basic objective of ACC is to follow its preceding vehicle at
a desired spacing ddes. We use the constant time-headway spacing
policy to define ddes, i.e. ddes(t) = thvh(t) + d0, where th is the
headway time and d0 is a safety spacing at a standstill. Then the
spacing error with respect to ddes is computed as Δd(t) = d(t)

−ddes(t) = xp(t)−xh(t)−Lh−ddes(t) with the length of the preceding
vehicle Lh.

Let the state vector x = [ΔdΔvah]T with Δv = vp−vh and the
control input u = ades. From (1), the state-space model of the ACC
system is represented by

ẋ(t) = Ax(t) + Bu(t) + Gw(t),
y(t) = Cx(t), (2)

where the external input w is the acceleration ap of the preceding
vehicle, the system output y = x, and matrices

A =
0 1 −th
0 0 −1
0 0 −1/τd

, B =
0
0

1/τd

G = 0 1 0 T, C = diag{1, 1, 1}

(3)

In order to adopt MPC to design ACC of the host vehicle, the ACC
system (2) is discretised with a sampling time T as

x(k + 1) = Akx(k) + Bku(k) + Gkw(k)
y(k) = Ckx(k) (4)

with the coefficient matrices

Ak =
1 T −thT
0 1 −T
0 0 1 − T /τd

, Bk =
0
0

T /τd

Gk = 0 T 0 T, Ck = diag{1, 1, 1}

(5)

where k is the sampling instant.
Besides the tracking objective of ACC, we consider fuel

efficiency and safety in a vehicle-following scenario. To this end, a
weighted cost function is often used to compromise these
objectives of ACC in the framework of receding horizon MPC. It is
clear that in MPC, the controller is only computed if the external
input, i.e. the acceleration of the predecessor, is known over the
prediction horizon. In practice, however, the acceleration of the
preceding vehicle cannot be obtained over the prediction horizon
except via V2X wireless communication at the current time. Since
the external input is uncertain, the predicted errors over the horizon
can be large in the worst case, which degrades the obtained control
performance. Alternatively, data-driven learning approaches, e.g.
the Gaussian process regression method, can be introduced to
forecast the acceleration of the preceding vehicle over the
prediction horizon. Hence, the controller has a better performance
than conventional ones with omitting or invariant external input.
To further improve the performance of ACC, the weights in the
cost function of the controller have to be varying according to the
assessment of the traffic situation over the prediction horizon. A
practical solution for this problem is the fuzzy approach, which is
well suited for this application.

3 Gaussian learning-based acceleration
prediction of preceding vehicles
The acceleration ap(k − p),…,ap(k − 1) at the p historical instants (k 
− p),…,(k − 1) of the preceding vehicle is measured at time k. Let

K = k1 k2 ⋯ kp
T

= k − p k − p + 1 ⋯ k − 1 T,
Ap = ap1 ap2 ⋯ app

T

= ap(k − p) ap(k − p + 1) ⋯ ap(k − 1) T

(6)

At this time, K and Ap are regarded as the input and output of the
training set. Each value in the Ap can be regarded as a random

Fig. 1  Schematic diagram of the vehicle tracking scenario
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variable, which assumed that each variable in Ap obeys a Gaussian
distribution, and all elements in the Ap obey the joint Gaussian
distribution [24], i.e.

Ap = F(K, K) ∼ N(μ(K, K), σ(K, K)) (7)

where μ(K, K) is the mean matrix of F(K, K) and is set to be a zero
matrix, σ(K, K) is the covariance matrix of F(K, K), which can be
calculated by the covariance function m(ka, kb), ka, kb∈K, the
covariance function m(ka, kb) chooses the square exponential
function type, i.e.

m(ka, kb) = σ f
2exp −(ka − kb)2

2l2 (8)

where σf
2 is the sample variance and l is the variance scale.

Next, we calculate the covariance matrix σ(K, K) of the training
set input sample K, i.e.

σ(K, K) =

m(k1, k1) m(k1, k2) ⋯ m(k1, kp)
m(k2, k1) m(k2, k2) ⋯ m(k2, kp)

⋮ ⋮ ⋱ ⋮
m(kp, k1) m(kp, k2) ⋯ m(kp, kp)

(9)

Let the parameter θ = (σf
2,l) and calculate the log-likelihood

function L(θ), i.e.

L(θ) = − 1
2 Ap

Tσ(K, K)−1Ap

− 1
2log σ(K, K) − p

2 log 2π
(10)

Equation (10) is a non-convex optimisation problem. The Newton
method and the conjugate gradient method can be used to obtain
the optimal value of θ [27, 28].

The acceleration ap
∗(k + 1), …, ap

∗(k + p) in the p future instants
(k + 1),…,(k + p) of the preceding vehicle is measured at time k. Let
K* =  k1

∗, …, kp
∗ T = [k + 1,…,k + p]T and

Ap
∗ = ap1

∗ , …, app
∗ T = ap

∗(k + 1), …, ap
∗(k + p) T (11)

At this time, K* are regarded as the input to test set to predict the
values of Ap

∗ . Each value in the Ap
∗  can be regarded as a random

variable, which assumed that each variable in Ap
∗  obeys a Gaussian

distribution, and all elements in the Ap
∗  obey the joint Gaussian

distribution [24], i.e.

Ap
∗ = F(K∗, K∗) ∼ N(μ(K∗, K∗), σ(K∗, K∗)) (12)

where μ(K*, K*) is the mean matrix of F(K*, K*), where μ(K*,
K*) is set as zero matrix. σ(K*, K*) is the covariance matrix of
F(K*, K*), which can be calculated by the covariance function
m(ka

∗, kb
∗), ka

∗, kb
∗ ∈ K∗. With free of noise, the training set output

F(K, K) and the test set output F(K*, K*) obey the following
combined with Gaussian distribution:

F(K, K)
F(K∗, K∗)

∼ N 0, σ(K, K) σ(K∗, K)T

σ(K∗, K) σ(K∗, K∗)
(13)

Next, we calculate the covariance matrix σ(K*, K*) of the test set
input K*, i.e.

σ(K∗, K∗) =

m(k1
∗, k1

∗) m(k1
∗, k2

∗) ⋯ m(k1
∗, kp

∗)
m(k2

∗, k1
∗) m(k2

∗, k2
∗) ⋯ m(k2

∗, kp
∗)

⋮ ⋮ ⋱ ⋮
m(kp

∗ , k1
∗) m(kp

∗ , k2
∗) ⋯ m(kp

∗ , kp
∗)

(14)

and calculate the covariance matrix σ(K*, K) of the test set input
K* and the training set input K, i.e.

σ(K∗, K) =

m(k1
∗, k1) m(k1

∗, k2) ⋯ m(k1
∗, kp)

m(k2
∗, k1) m(k2

∗, k2) ⋯ m(k2
∗, kp)

⋮ ⋮ ⋱ ⋮
m(kp

∗ , k1) m(kp
∗ , k2) ⋯ m(kp

∗ , kp)

(15)

Referring to (13) combined with Gaussian distribution, according
to the Gaussian distribution property, the conditional distribution
F(K*, K*)|F(K, K) of F(K*, K*) can be obtained as

F(K∗, K∗) F(K, K)

∼ N
σ(K∗, K)σ(K, K)−1Ap,

σ(K∗, K∗) − σ(K∗, K)σ(K, K)−1σ(K∗, K)T
(16)

Then, for the prediction of the acceleration Ap
∗  at the p future

instants, the mean of the F(K*, K*) conditional distribution can be
used as the Ap

∗  estimate, i.e.

Ap
∗ = σ(K∗, K)σ(K, K)−1Ap (17)

At the next moment K + 1, the acceleration value of the p-time of
the new history of the preceding vehicle is re-measured, and the
above steps are repeated. The acceleration value of the preceding
vehicle at the new future p instants can be predicted at the next
instant, and we take the first predicted value as the reference value
of the next time. In this way, the acceleration value of the
preceding vehicle can be predicted online and the deviation of
prediction can be corrected continuously.

4 Gaussian learning-based PCC algorithms with
fixed weights
The vehicle-following kinematics model (4) and (5) is used as the
prediction model to predict the future action of the PCC system by
p-step. The p-step prediction output vector and the p-step input
vector are defined as

Yp
∗(k) = y∗(k + 1) y∗(k + 2) ⋯ y∗(k + p) T

U(k) = u(k) u(k + 1) ⋯ u(k + p) T
(18)

Considering the preceding vehicle acceleration disturbance
predicted by the Gaussian process regression model, the p-step
acceleration disturbance values are defined as

W∗ = w∗(k) w∗(k + 1) ⋯ w∗(k + p) T (19)

Then, the output of the future p-step prediction of the system can
be expressed as

Yp
∗(k) = Sxx(k) + SuU(k) + SdW∗ (20)

Combining (11) and (17) for further development

Yp
∗(k) = Sxx(k) + SuU(k) + SdAp

∗

= Sxx(k) + SuU(k) + Sdσ(K∗, K)σ(K, K)−1Ap
(21)

where the matrices
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Sx = (CkAk)T (CkAk
2)T ⋯ (CkAk

p)T
1 × p
T

Sd =

CkGk 0 ⋯ 0
CkAkGk CkGk ⋯ 0

⋮ ⋮ ⋱ ⋮
CkAk

p − 1Gk CkAk
p − 2Gk ⋯ CkGk p × p

Su =

CkBk 0 ⋯ 0
CkAkBk CkBk ⋯ 0

⋮ ⋮ ⋱ ⋮
CkAk

p − 1Bk CkAk
p − 2Bk ⋯ CkBk p × p

(22)

In the steady-state vehicle following conditions, the expected
vehicle spacing error Δd, the relative speed Δv tends to zero at the
same time, the host vehicle acceleration can keep up with the
preceding vehicle acceleration. Moreover, since the accelerating
actions of vehicles do consume the fuel of vehicles, it is necessary
to introduce some weights to punish the control input (i.e. the
acceleration command) of the vehicular ACC system over the
prediction steps. Therefore, the optimisation goal can be written as
a weighted form of the value function [18]

J(k) = ∑
j = 1

p
y∗(k + j)TQy∗(k + j) + u(k + j)TRu(k + j)

= Yp
∗(k)TQ̄Yp

∗(k) + U(k)TR̄U(k)
(23)

where Q is the positive-definite matrix punishing the system output
and weight R > 0 punishes the control actions to lessen the
acceleration command of the host vehicle. In general, Q is selected
to be a diagonal matrix Q = diag{q1, q2, q3} with qi > 0 for i = 1, 2,
3. Elaborately tuning of Q and R may improve the satisfactory
cruising performance of the ACC controller.

To improve ride comfort as well as satisfying the physical
characteristics of the host vehicle, the range of the acceleration
command of the vehicular ACC systems is subject to the following
constraint:

umin ≤ u ≤ umax (24)

In order to facilitate the minimisation of J(k), (23) is equal to the
form of quadratic programming and defined

E(k) = − (Sxx(k) + SdAp
∗) (25)

where E(k) is independent of the amount of control, then (23) can
be transformed as follows:

J(k) = ∥ Q̄(SuU(k) − E(k)) ∥2 + ∥ RU(k) ∥2

= U(k)TSu
TQ̄TQ̄SuU(k) + U(k)TR̄TR̄U(k)

−2E(k)Q̄TQ̄SuU(k) + E(k)TQ̄TQ̄E(k)

(26)

Ignore the amount unrelated to the amount of control, and define

G(k) = − 2Su
TQ̄TQ̄E(k), H(k) = Su

TQ̄TQ̄Su + R̄TR̄ (27)

Then formula (26) can be converted into

J(k) = UT(k)HU(k) + G(k)U(k) (28)

In addition, considering the constraint conditions of the vehicle
when formula (24) is given, the control constraints are rewritten as

CrU(k) ≤ Br (29)

The coefficient matrices Cr and Br are

Cr = −I
I

, Br =
−Umin

Umax
, I = diag{1, 1, …, 1} (30)

At this time, the optimisation problem in the adaptive cruise
control system can be written as

min
U(k)

J(k) = U(k)THU(k) + G(k)U(k)

s . t . G(k) = − 2Su
TQ̄TQ̄E(k)

H(k) = Su
TQ̄TQ̄Su + R̄TR̄

E(k) = − (Sxx(k) + SdAp
∗)

Ap
∗ = σ(K∗, K∗)σ(K, K)−1Ap

CrU(k) ≤ Br

(31)

Note the minimisation problem (31) is identical to be a quadratic
programming one. Therefore, the available numerical algorithms of
quadratic programming can be used to solve the minimisation
problem [29, 30], e.g. multiplier methods, SQP, etc.

5 Gaussian learning-based fuzzy PCC algorithms
with varying weights
5.1 Adaptive adjustment of weighted coefficients

In consideration of different driving scenarios, different directions
are emphasised for the vehicle following the performance and
comfort performance of the host vehicle. The controller designed
above adopts a fixed value form for the system output weighted
matrix Q and the weighted matrix R of the control quantity of the
system, which is difficult to adapt to the complex and changeable
traffic environment. In order to make the host vehicle adaptively
adjust the weights of the vehicle following and comfort weights in
different driving environments, the host vehicle must meet the
requirements for following performance and comfort performance
during driving, and improve the adaptability of the ACC system to
the environment. In this paper, a fuzzy decision is used to design
the output weighted matrix Q and control weighted matrix R for
dynamic adjustment of weighted coefficients. Note that the fuzzy
membership functions used here are set as the form of
trigonometric functions and the fuzzy rules and membership
functions are designed according to the actual traffic scene as well
as some trial-and-error experiments.

5.2 Fuzzification

Firstly, the fuzzy control input vehicle spacing error Δd, relative
speed Δv, is blurred into five sets: NB (negative big), NS (negative
small), ZO (zero), PS (positive small), PB (positive big), the
variation range of Δd is set to [ − 60, 80] m, the variation range of
Δv is set to [ − 20, 20] m/s, and the fuzzy control output vehicle
spacing error weight q1, relative velocity weight q2. The relative
acceleration weight q3 is blurred into five sets VS (very small), S
(small), M (medium), B (big). Because the weights (q1, q2, q3) and
comfort performance weight R have the relative sense, where the
fixed weight R is 5 and the vehicle following performance weights
(q1, q2, q3) are taken as [0, 10]; the membership functions of each
variable input and output are shown in Figs. 2–4 and Figs. 5 and 6,
respectively. 

5.3 Establishment of fuzzy rules

According to the actual traffic scene analysis, e.g. when the vehicle
spacing error is in the NB (negative big) domain, it indicates that
the situation is more critical and it is prone to rear-end collision. At
this time, the vehicle spacing error weight and the relative velocity
weight should be in the big domain (B), the relative acceleration
weight is in a very small domain (VS) to ensure rapid deceleration
of the host vehicle. When the relative velocity increases, the
vehicle spacing error decreases, and the vehicle spacing error
weight and relative speed weight decrease, the relative acceleration
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weight is constantly increasing. When the space error and relative
velocity is in ZO (zero) domain, it is shown that the two vehicles
are in a safety inter-vehicle distance, since the host vehicle in the
relatively stable tracks the preceding vehicle at the same time,
which can reduce the vehicle following performance demand,
increase the demand of comfort performance, this can make the
space error weight and relative velocity weight in small domain
(S), and the relative acceleration weight in middle domain (M), and
at the same time as the relative velocity increased, the relative
velocity and relative distance weight increase. When the error of
inter-vehicle distance is in PB (positive big) domain, it indicates
that the distance between the two vehicles is large, and the distance
between the two vehicles will be larger and larger with the increase
of the relative velocity. Therefore, the weight of relative velocity
and distance should be increased, and the weight of relative
acceleration should be reduced, so as to improve the performance
of the vehicle following. Based on the above analysis, the specific
fuzzy control rules of fuzzy control input quantity inter-vehicle
distance error and relative velocity regarding the weight of fuzzy
control output quantity vehicle spacing error weight, relative

velocity weight and relative acceleration weight are designed as
Tables 1–3, respectively. 

5.4 Anti-fuzzification

Defuzzification of fuzzy by the central method, and the obtained
state quantities Δd and Δv are applied to the above-designed fuzzy
controller at each moment, and the weight coefficients can be
adjusted in real time according to different traffic scenarios, and
then solving the optimisation problem of (25), we can get the
control sequence u(k), and the first solution of u(k) is applied to the
system. By using the characteristics of the rolling optimisation of
the MPC algorithm, the control of the adaptive cruise system can
be realised by repeating the above process at the next moment.

6 Simulation and results discussion
The vehicle model and simulation conditions are built-in CarSim
software and the control system model is built in Simulink. The
host vehicle and the preceding vehicle are selected to be C-class
hatchback sedan with the front-wheel-drive and the engine power
of 125 kW. In this study, the speed of the preceding vehicle is set as
vp(t) = v0 + 9.7sin(0.3t) m/s with the initial speed v0 = 15.3 m/s, the
initial speed of the host vehicle is set as vh = 13.9 m/s and the initial
inter-vehicle distance is 40 m. Moreover, select th = 2 s, τd = 0.2, p 
= 10, d0 = 5 m, Q = 2.5I3, R = 5, T = 0.1 s, umin = −5 m/s2, and umax 
= 5 m/s2. It is noted that the preceding car's speed profile involves
three representative scenarios, i.e. varying accelerating (0–7.5 s),
varying and emerging decelerating (7.5–18.5 s) and almost uniform
speed (18.5–30 s). See the solid lines in Figs. 7 and 8. These
representative scenarios widely exist in the real traffic scenarios
and hence, have been widely used to illustrate the effectiveness of
PCC [1, 6–9].

Let GLFW-PCC and GLVW-PCC denote the Gaussian
learning-based PCC with fixed weights and varying weights,
respectively. The proposed PCC is then compared with traditional
PCC (denoted as T-PCC). Figs. 7–9 show the simulation results
obtained by applying the three PCC approaches, where the solid

Fig. 2  Membership function of the pitch error
 

Fig. 3  Membership function of relative velocity
 

Fig. 4  Membership function of spacing error weights
 

Fig. 5  Membership function of relative velocity weights
 

Fig. 6  Membership function of relative acceleration weights
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lines are associated with the preceding vehicle and the dotted,
dashed, and dot-dashed lines are associated with T-PCC, GLFW-
PCC and GLVW-PCC, respectively. 

From Figs. 7–9, we can firstly see that the three PCC
approaches can successfully avoid rear-end collision when the
preceding car is driven with a varying velocity while satisfying the

acceleration constraints. Furthermore, the responses of the cruise
control systems with both GLFW-PCC and GLVW-PCC are faster
than those with T-PCC regardless of when the preceding car is
accelerating or decelerating. Taking the rapidly decelerating stage
of the preceding car after 7.5 s for an example, T-PCC assumes that
the deceleration value of the preceding vehicle is constant over the
predictive horizon at each time. As a result, the control input
computed by T-PCC does not quickly decelerate the host vehicle
and generates a smaller inter-vehicle distance than those by
applying GLFW-PCC and GLVW-PCC, which decreases the
driving safety and ride comfort. Inversely, the inter-vehicle
distance obtained by applying T-PCC is more than that by
separately applying GLFW-PCC and GLVW-PCC when the
preceding vehicle is accelerating from starting to 7.5 s, which
decreases the capacity of road traffic. The main reason causing the
difference between T-PCC and our learning-based PCC is that the
acceleration/deceleration prediction of the preceding vehicle can be
embedded into the optimisation control problem in GLFW-PCC
and GLVW-PCC.

On the other hand, it is further observed from Figs. 7–9 that
GLVW-PCC outperforms GLFW-PCC in terms of the responses of
the closed-loop cruise control system of the host vehicle. Fig. 10
gives the changes in the weights in the optimisation problem (31)
of GLVW-PCC. Compared with GLFW-PCC, GLVW-PCC uses
larger weights of the relative velocity and acceleration at the initial
time. Hence, the velocity by GLVW-PCC increases more quickly
than that by GLFW-PCC, which better reduces the inter-vehicle
distance and increases traffic capacity. When catching up with the
preceding car, the host vehicle with GLVW-PCC is driven at a
gentler speed than that with GLFW-PCC. This improves ride
comfort and reduces fuel consumption. Using the GLVW-PCC
method, the weighted coefficients of the performance function can
be automatically adjusted to meet different driving scenarios.

Fig. 11 shows the accumulated fuel consumption over the total
simulation time, where the dotted, dashed, and dot-dashed lines are
associated with T-PCC, GLFW-PCC and GLVW-PCC,
respectively. From Fig. 11, it can be seen that the host vehicle with
GLVW-PCC consumes more accumulated fuel than that separately
with GLFW-PCC and T-PCC when accelerating from starting to
7.5 s. This is caused by the fact that GLVW-PCC drives the host
vehicle to follow the preceding car more quickly than the else (see
Figs. 7–9). After 7.5 s, the host vehicle with GLVW-PCC
consumes the smallest accumulated fuel than that with GLFW-PCC

Table 1 Fuzzy control rules for vehicle spacing error and relative velocity with respect to vehicle spacing error weight
Δd/Δv NB NS ZO PS PB
NB B B B B M
NS M M M M S
ZO M S S S VS
PS M M M M M
PB B B M B B
 

Table 2 Fuzzy control rules for vehicle spacing error and relative velocity with respect to relative velocity weight
Δd/Δv NB NS ZO PS PB
NB B M M M B
NS B M S M B
ZO B M S M M
PS B M S M B
PB M S VS S B
 

Table 3 Fuzzy control rules for vehicle spacing error and relative velocity with respect to relative acceleration weight
Δd/Δv NB NS ZO PS PB
NB VS S S S VS
NS VS S M S VS
ZO VS S M S S
PS VS S M S VS
PB S M B M VS
 

Fig. 7  Acceleration in complex scenario
 

Fig. 8  Velocity in complex scenario
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and T-PCC. Table 4 gives the fuel consumption in L/100 km of the
host vehicle with the three PCC approaches and the improvement
of the consumption with respect to T-PCC. One can see that
compared with T-PCC, GLFW-PCC can reduce fuel consumption
by 1.75% and GLVW-PCC can reduce fuel consumption by 6.23%.
Note that the fuel economy improvements achieved here are also
dependent on the elaborately tuning of weights Q and R in the cost
function (23). In GLVW-PCC, the weights are adaptively updated
by a fuzzy decision to accommodate the traffic scenarios forecasted
by Gaussian process regression.

In what follows, we examine the effects of the prediction
horizon p on the Gaussian process regression prediction and the
computational time spent in one-time learning and online
optimisation. Fig. 12 shows the comparison profiles of the real
acceleration and predicted acceleration at different prediction steps,
where solid lines are real-time acceleration profiles of the
preceding vehicle and dash-dotted lines are the GLP-based
predicted acceleration profiles. From Fig. 12, it is observed that the
effect of the prediction step on the prediction accuracy is not
monotonic. In order to further analyse the effects of the step on the
prediction results, Table 5 lists the prediction accuracy and the
average computational time of one-time learning and optimisation
for different p. Here the average errors of the acceleration/
deceleration prediction and the error variances are used to
characterise the prediction accuracy of the Gaussian process
regression prediction method. From the average prediction errors
and the error variances in Table 5, one can see that the Gaussian
process regression prediction method can effectively predict the
acceleration changes of the preceding vehicle. It is further observed
from Table 5 that the effect of p on the average prediction errors is
not monotonic, but the effects on the error variances and average
computational time are positive monotonically. Clearly, due to the
uncertain driving scenarios, a longer horizon p may decrease the
prediction accuracy [23]. Hence, the prediction step p is selected
by making a trade-off between the prediction accuracy and average
computational time of one-time learning and optimisation. Note
that the computational time in Table 5 is to show the computational
speed of the proposed method with the different prediction steps,
but it does not mean the real-time computation speed when used in
a real car, where MatLab is not used and the speed can be
improved when low level language.

Finally, to illustrate the application of the proposed method, the
three methods are further compared under the Worldwide
Harmonized Light Vehicles Test Procedure (WLTP) condition [31].
The comparison results of the three methods are shown in
Figs. 13–16, where the solid lines are associated with the preceding
vehicle and the dotted, dashed, and dot-dashed lines are associated
with T-PCC, GLFW-PCC and GLVW-PCC, respectively. 

From Figs. 13–16, we can see that the three PCC approaches
can successfully avoid rear-end collisions and satisfy the
acceleration constraints when the preceding car is driven with a
complex WLTP scenario. However, the driving behaviours of the
host vehicle are different among the PCC methods. Take the 600–
630 s for an example. In the case of fixed weights, although the
acceleration of the preceding car is increasing, the T-PCC method
still assumes that it does not change in the predictive horizon
window. Hence, the predicted output of the PCC system is smaller
and the computed acceleration command of the host vehicle is
smaller than the others’. This suggests that the response of the
cruise control systems with GLFW-PCC is faster than those with T-
PCC and the spacing of the adjacent cars is also smaller than T-
PCC's. On the other hand, compared with the fixed weight method,
the variable weight PCC method uses larger weights on the relative
velocity and relative acceleration at the initial time. Therefore, the
velocity by GLVW-PCC increases faster than that by both GLFW-
PCC and GLVW-PCC. Hence, it is beneficial to reduce the inter-
vehicle distance and then to increase the traffic capacity of roads.

In addition, consider the period when catching up with the
preceding vehicle. Due to the ride comfort performance, the host
vehicle by GLVW-PCC approaches the preceding vehicle at a
gentler speed than the vehicle by both GLFW-PCC and GLVW-
PCC. This improves the ride comfort and reduces the fuel
consumption of the host vehicle. Table 6 shows the fuel
consumption of the host vehicle equipped with the three PCC
controllers, respectively. From Table 6, it can be derived that the
GLFW-PCC method can reduce fuel consumption by 0.42%, and
the GLVW-PCC method can reduce fuel consumption by 0.62%
compared with the T-PCC method. Note that these improvements
are achieved by elaborately tuning the weights Q and R in (23),
which in GLVW-PCC are adaptively adjusted by employing fuzzy
decision and Gaussian process regression. These illustrate the
application of the proposed PCC method.

Fig. 9  Inter-vehicle distance in complex scenario
 

Fig. 10  GLCW-PCC weight changes
 

Fig. 11  Accumulated fuel consumption in complex scenario
 

Table 4 Fuel consumption by different PCC controllers
T-PCC GLFW-PCC GLVW-PCC

fuel consumption, L/100 km 13.65 13.40 12.80
improvement, % — 1.75 6.23
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7 Conclusion
In this paper, a vehicle learning variable weight cruise controller
based on Gaussian process regression is designed. The controller
can effectively predict the acceleration of the preceding vehicle,
and can adaptively adjust the performance index of the objective
function according to different driving scenarios, thus improving
the adaptability of vehicles to complex traffic environment. In
addition, compared with the traditional model predictive cruise
controller, the vehicle-following performance, vehicle safety, and
fuel economy have been effectively improved. Finally, the fast
computation and implementation of the proposed method are the

subjects of ongoing work and in pursuing future work, engine
efficiency and fuel consumption models will be used as the cost
function of non-linear PCC.
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Fig. 12  Acceleration comparisons at different prediction steps
(a) p = 5, (b) p = 10, (c) p = 15, (d) p = 20, (e) p = 25

 
Table 5 Prediction accuracy and average computational time of one-time learning and optimisation for different p
p Average errors Error variances Average time, ms
5 2.72 × 10−2 0.2554 219

10 −8.9 × 10−3 0.3326 235

15 4.5 × 10−3 0.4393 261

20 6.9 × 10−3 0.5367 276

25 −2.8 × 10−3 0.6107 302
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Fig. 13  Acceleration in WLTP scenario
 

Fig. 14  Velocity in WLTP scenario
 

Fig. 15  Inter-vehicle distance in WLTP scenario
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Fig. 16  Accumulated fuel consumption in WLTP scenario
 

Table 6 Fuel consumption by different PCC controllers for
WLTP

T-PCC GLFW-PCC GLVW-PCC
fuel consumption, L/100 km 9.62 9.58 9.56
improvement, % — 0.42 0.62
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