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Adaptive Manipulator Control: A Case Study 

Abstract-Adaptive control of linear time-invariant single-input single- 
output systems has been extensively studied, and a number of globally 
convergent controllers have been derived. Extensions of the results to 
nonlinear or multivariable systems have rarely been achieved. Yet, in the 
case of robot manipulators, which represent an important and unique 
class of nonlinear, time-varying, multiiput, multioutput dynamic systems, 
similar global convergence properties can indeed be obtained. Our earlier 
work I191 exploits the particular structure of manipulator dynamics to 
develop a simple, globally convergent adaptive controller for manipulator 
trajectory control problems. This paper, after summarizing the basic 
algorithm, demonstrates the approach on a high-speed two degree-of- 
freedom semi-direct-drive robot. It shows that the dynamic parameters of 
the manipulator, assumed to be initially unknown, can be estimated 
within the first half second of a typical run, and that accordingly, the 
manipulator trajectory can be precisely controlled. Furthermore, these 
experimental results demonstrate that the adaptive controller enjoys 
essentially the same level of robustness to unmodeled dynamics as a PD 
controller, yet achieves much better tracking accuracy than either PD or 
computed-torque schemes. Its superior performance for high-speed 
operations, in the presence of parametric and nonparametric uncertain- 
ties, and its relative computational simplicity, make it an attractive option 
both to address complex industrial tasks, and to simplify high-level 
programming of more standard operations. 

I. INTRODUCTION 

HE development of effective adaptive controllers represents T an important step towards versatile applications of high-speed 
and high-precision robots. Even in a well-structured industrial 
setting like the elusive, if proverbial, “factory of the future,” 
robots still have to face uncertainty on the parameters describing 
the dynamic properties of the grasped load, such as moments of 
inertia or exact position of the center of mass in the end-effector. 
Since these parameters are difficult to compute or measure for 
geometrically complex objects, they limit the potential for robots 
to accurately manipulate objects of size and weights similar to 
their own, as the human arm routinely does. It is widely 
recognized that the accuracy of conventional approaches (such as 
the computed-torque method) in high-speed operations is greatly 
affected by the parameter uncertainties. This sensitivity is 
especially severe for direct-drive robots, for which no gear 
reduction is available. Two classes of approaches are being 
actively studied to maintain the performance of the manipulators 
in the presence of parameter uncertainties: robust control (e.g., 
[18], [6], [7], [23]) and adaptive control. An advantage of the 
adaptive approach is that the accuracy of a manipulator carrying 
unknown loads improves with time (because the adaptation 
mechanism keeps extracting parameter information from tracking 
errors), so that adaptive controllers potentially hold the promise of 
consistent performance in the face of very large load variations. 

Adaptive control, however, as a branch of systems theory, is 
not yet quite mature, and the strong nonlinearity of robot 
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dynamics makes them more complex to analyze than the linear 
dynamic systems on which most of the existing adaptive control 
theory has been traditionally focused. While many adaptive robot 
controllers have been proposed in the literature, most of them 
have to rely on assumptions or approximations such as local 
linearization, time-invariant, or decoupled-dynamics (see, e.g., 
[8], for a recent review) to guarantee their tracking convergence. 
Craig et al. [4] formulate a globally convergent adaptive 
controller which does not make these approximations, but their 
method requires numerical differentiation of the joint velocities to 
obtain estimates of joint accelerations (which tends to be quite 
noisy) and inversion of the estimated inertia matrix (which is 
computationally-intensive, and further requires ad-hoc procedures 
to ensure that the matrix remains invertible during the adaptation 
process). In [19] a new joint-space adaptive tracking control 
algorithm is presented, which consists of a PD feedback part and 
an adaptive full dynamics compensation part, with the unknown 
manipulator and payload parameters being estimated on-line. The 
algorithm guarantees global stability of the system and asymptotic 
convergence of the tracking errors, and further avoids both the 
aforementioned approximations and the need for acceleration 
measurements or inversion of the estimated inertia matrix. The 
algorithm is computationally simple, due to an effective exploita- 
tion of the structure of manipulator dynamics, and in particular of 
the natural relationship between the inertia matrix and the Coriolis 
and centripetal terms. Later work [20] extends the adaptive 
controller to Cartesian space motion, hybrid force/position 
control, and external control of unknown passive mechanisms. 
The adaptive controller in this paper is a direct adaptive 
controller, in the sense that parameter adaptation is driven by the 
motion tracking error. Our recent studies have indicated that an 
indirect approach [ 141, whose parameter estimation is driven by 
the prediction error of robot joint torque, and a composite 
approach [22], whose parameter adaptation is driven by both the 
motion tracking error and the torque prediction error, can also be 
used to guarantee globally convergent joint tracking. However, 
the indirect and composite approaches involve more computation 
than the direct approach. 

Theoretical analysis and computer simulations of an adaptive 
controller are important but not sufficient, as reflected by the 
many discussions of the past few years concerning robustness 
issues (e.g., [17], [2]). Since inherent factors such as unmodeled 
high-frequency dynamics and measurement noise are generally 
neglected in the stability analysis, we believe that the ultimate 
justification for the value and applicability of an adaptive 
controller lies in its actual hardware implementation. Based on 
this perspective, this paper examines the joint-space adaptive 
tracking controller of [ 191 experimentally on a high-speed two 
degree-of-freedom semi-direct-drive robot. It shows that all the 
manipulator mass properties, assumed to be initially unknown, 
can be quickly estimated within the first half second of a typical 
run, and that the algorithm allows large loads of unknown mass 
properties to he precisely manipulated in the face of various 
nonparametric error sources. 

Section II provides the theoretical background for the experi- 
ments, with Section 11-B summarizing the formulation of the 
adaptive trajectory control approach of [19], and Section 11-C 
discussing implementation aspects and the incorporation of sliding 
control terms into the basic algorithm for the purposes of 
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computational efficiency and enhanced robustness with respect to 
disturbances [22]. The manipulator and the experimental setup 
used in the tests are described in Section 111. The experimental 
results are detailed in Section IV. Section V offers brief 
concluding remarks. 

11. MANIPULATOR MODEL 

A. Manipulator Model 

of a rigid manipulator can be written as 
In the absence of friction and other disturbances, the dynamics 

where q is the n x 1 vector of joint displacements, T is the n x 1 
vector of applied joint torques (or forces), H ( q )  is the n x n 
symmetric positive definite manipulator inertia matrix, C(q, q)q 
is the n x 1 vector of centripetal and Coriolis torques, and g(q)  is 
the n x 1 vector of gravitational torques. 

Two simplifying properties should be noted about the above 
dynamic structure. First, as remarked by several authors (e.g., [ 11 
and [ 1 l]), the two n x n matrices Hand  C are not independent. 
Specifically, given a proper definition of the matrix C (note that 
the centripetal and Coriolis torque vector C q  is uniquely defined, 
but that the matrix C is not), the matrix ( H  - 2C) is skew- 
symmetric, a property which can be easily derived from the 
Lagrangian formulation of the manipulator dynamics [22] and 
which reflects conservation of energy. This property can also be 
written 

H =  c+ CT 

since k is symmetric. The second important property is that the 
individual terms on the left-hand side of (l) ,  and therefore the 
whole dynamics, are linear in terms of a suitably selected set of 
equivalent manipulator and load parameters [lo], [3], as 
illustrated in Section 111-B for a two-link manipulator. 

B. Controller Design 

The adaptive controller design problem is as follows: given the 
desired joint position qd(t), and with some or all the manipulator 
parameters unknown, derive a control law for the actuator 
torques, and an estimation law for the unknown parameters, such 
that the manipulator joint position q(t)  precisely tracks qd( t) after 
an initial adaptation process. 

Let a be a constant m-dimensional vector containing the 
unknown elements in the suitably selected set of equivalent 
dynamic parameters, let 6 be its (time-varying) estimate, and let 
H, e, and g be the matrices obtained from the matrices H ,  C,  and 
g by substituting the estimated 6 for the actual a. Then the linear 
parametrizability of the dynamics enables us to write 

where d = 6 - a is the parameter estimation error, Y is an n x 
m matrix independent of the dynamic parameters, and qr is 
defined as 

qr= qd - 

with A being a positive definite matrix, and @(t) = q(t)  - qd(t) 
denoting the position tracking error. The vector qr formed by 
modifying the desired velocity qd using the position error @, may 
be called “reference velocity,” and is introduced to guarantee the 
convergence of the tracking error, as we shall see later. 
Intuitively, the reference velocity qr increases if the actual 
trajectory q lags behind the desired q d .  

The following choice of control and adaptation laws were 

suggested in [19]: 

T = a q r + e ( q ,  q ) q r + % ( q ) - K D s  (3) 

ci= - w T S  (4) 

where r is a constant positive definite matrix, &(I) is a 
uniformly positive definite matrix, and the vectors, which can be 
thought of as a measure of tracking accuracy, is defined as 

( 5 )  

The above control and adaptation laws guarantee the global 
convergence of the positional and velocity tracking errors, as long 
as the desired trajectories q d ,  qd, and qd are bounded. To prove 
this, we consider the Lyapunov function candidate 

s = 4 - Qr=  q+ A@. 

1 
2 

v( t )  = - [S ‘HS + aTr - *a] .  

The differentiation of V( t) leads to 

V (  t) = s T ( ~ q  - ~ q , )  + d T r  - ~ h +  ( 1 ~ ) s  ‘Hs 
= s T(7- Hqr - Cq, -g) + d  Tr - ‘ h  

where the skew-symmetry of (k - 2C) has been used to 
eliminate the term ( l/2)sTks which reflects the time-varying 
nature of the inertia matrix. Substituting the control law (3) into 
the above expression, and using the linearity property ( 2 ) ,  we 
obtain 

V( t )  = s T( &!qr + cqr + g - KDS) + n - ’ b  
= S T [  Ya - KDS] + d - ’ i = - S ‘KDS + 6 T [  r- I 6 + Y ‘SI. 

The reason for the choice (4) of adaptation law is to remove the 
second term from the last expression. Indeed, substituting (4) 
leads to 

V(t)= -sTKDs(O. (7) 

Since V( t )  is lower bounded by zero and decreases for any 
nonzero s, as seen from (7), it seems plausible from the above 
equation that V(t), and therefore [from (7)] the tracking error 
measure s, must converge to zero. The strict mathematical proof 
of this result, based on showing the uniform continuity of V(t), is 
detailed in [22]. It can then be easily shown, from definition (5)? 
tnat the convergence of s to zero in turn guarantees that @ and @ 
also converge to zero. Intuitively, this corresponds to the fact that 
the output of a stable linear filter, whose input converges to zero, 
must also converge to zero. Therefore, both global stability of the 
system, and convergence of the tracking error, are guaranteed by 
the above adaptive controller. 

The structure of the adaptive controller given by (3) and (4) is 
sketched in Fig. 1. The controller consists of two parts. The first 
part is a special form of full dynamics compensation, with three 
terms corresponding to inertial, centripetal and Coriolis, and 
gravitational torques. This part, based on the estimated parame- 
ters, attempts to provide the joint dynamic torques necessary to 
make the desired motions. The second part actually contains two 
terms representing PD feedback, since 

- KDs = - K D ~  - KDAg. 

It intends to regulate the real trajectories about the desired 
trajectories. The required inputs to the controller are the desired 
joint position q d ,  velocity qd, and acceleration qd. The required 
measurements are the joint position q and velocity q. 

Remark I :  The closed-loop dynamics of the manipulator under 
adaptive control can be easily obtained by substituting the control 
law (3) into the system dynamics ( 1 ) .  Since (3) can be expressed 
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I I 4 = - r y T s F  t 
1 

Fig. 1. The structure of the adaptive controller. 

as 
T =  Y r i - K ~ s  

the closed-loop dynamics can be written in the simple form 

H S + ( K D + C ) s =  Yh (8) 

with 6 determined by the adaptation law (4). Furthermore, note 
that the adaptation law can be expressed as 

ar 
ari 

ri= -r -s, 

This form is reminiscent of the intuitive “M.I.T. rule” in model- 
reference adaptive control, with the matrix I’ playing the role of 
adaptation gain. In the present adaptive controller, the magnitude 
of r does not affect the global stability of the system (as long as 
unmodeled dynamics are not excited), but it directly conditions 
the speed of adaptation, and therefore the system’s performance. 

Remark 2: The guaranteed convergence of the tracking errors 
to zero does not imply the convergence of the estimated 
parameters to the exact values. It is shown in [21] that the 
estimated parameters asymptotically converge to the true parame- 
ters if the matrix Y ( q d ,  q d ,  q d ,  q d )  is persistently exciting and 
uniformly continuous. By persistent excitation, we mean that 
there exist positive constants 6 ,  a,, and a2 such that for all t l  2 0 

where Yd = Y(qd, q d ,  q d ,  q d ) ,  and Z is the m x m identity 
matrix. It is interesting to note that this result, for the nonlinear 
robot dynamics, is similar to those for linear dynamics obtained 
by [ 161, although their derivation does not apply to the particular 
form (4), (8). 

Remark 3: Besides constant po_sitive-definite matrices, a 
natural choice for KD is KD( t )  = AH, with h a strictly positive 
constant. Indeed, with the associated choice A = Xr, control law 
(3) then becomes 

a form very close to a “computed-torque controlle_r” with 
critically-damped error dynamics. However, since H is not 
guaranteed to remain uniformly positive-definite in the course of 
adaptation, one must then redefine Y in the adaptation law (4) to 
satisfy 

H ( q ) ( 4 r - X s ) + C ( q ,  4)4,+8(q)= Y ( q ,  4,  4 r 9  4r)h 

instead of (2) .  Global tracking convergence can be shown as 
before, since the same Lyapunov function (6) now yields 

P ( t ) =  -s’Hs<O 

where the true inertial matrix H is uniformly positive definite. 
Remark 4: Unlike the model-reference adaptive controllers in 

the robotics literature (see, e.g., [8] for a review), this adaptive 
controller does not require the mandatory use of a reference 
model. In tasks with only commanded joint position specified, a 
reference model can be used to supply the q d ,  q d ,  and q d  required 

by the tracking controller. But in many robotic tracking tasks, 
smooth Cartesian motions are planned beforehand and inverse 
kinematics are used to find the desired joint position, velocity, and 
acceleration. In these situations, the above adaptive controller is 
more advantageous than model-reference approaches since it 
follows the desired joint trajectories corresponding to the planned 
Cartesian motion, rather than trajectories altered by a reference 
model. Furthermore, our adaptive controller does not require 
assumptions or simplifications such as local linearization, time 
invariance, or decoupled-dynamics; nor does it need measure- 
ments of joint accelerations or inversion of the estimated inertia 
matrix. 

C. Discussion 

In this section, we discuss implementation aspects, computa- 
tional efficiency, and combining adaptation of certain parameters 
with robustness to others and to disturbances. 

I )  Implementation Aspects: 
i) Since the load is usually fixed with respect to the last link, it 

can be regarded as part of that link. Generally, the parameters of 
the manipulator itself need to be measured or estimated only once 
after its installation, possibly using the off-line estimation methods 
of [lo] and [3], since these parameters do not change from task to 
task. In practice, the only parameters to be estimated on-line by 
the adaptive controller are, therefore, the equivalent dynamic 
parameters of the load grasped by the robot hand. Implementation 
of the adaptive controller on a six-degree-of-freedom manipulator 
carrying a rigid-body load requires the adaptation of 10 equivalent 
dynamic parameters corresponding to the mass of the load, its 
center of mass (three parameters), and its moments of inertia (six 
parameters, i.e., I,, Iyy, I,, Ixy, I,,, and Z y z ) .  If desired, 
continuous models of Coulomb and viscous friction may also be 
included in ( I ) ,  and the corresponding coefficients can be 
estimated similarly. 

ii) We can stop updating an unknown parameter when it reaches 
a priori known bounds, and resume updating as soon as the 
corresponding derivative changes sign. This intuitively motivated 
procedure can easily be shown to preserve tracking convergence. 

iii) The algorithm can be implemented directly in Cartesian 
space simply by letting 

qr= J ~ ’ [ i d  + A ( X d  - X)] 

for a nonredundant manipulator [19], with J being the manipula- 
tor Jacobian matrix, and x and xd denoting the actual and desired 
Cartesian positions. 

iv) In the practical impl-ementation of the above adaptive 
controller, the matrices H ,  C, and 2 may be updated at a slower 
rate than the rate used for the terms qr, qr, and s, so as to reduce 
computations, since typically the tracking error terms vary much 
faster than the dynamic coefficient matrices (see, e.g., [9]). Due 
to the presence of qr in the second term of control law (3), 
however, the controller cannot be implemented directly using fast 
recursive Newton-Euler algorithms [ 121. The same is true of the 
matrix Y in the adaptation law (4). A simple modification of the 
adaptive algorithm, which allows recursive computations, is 
proposed in [19]. 

v) The previous analysis becomes invalid in the presence of 
actuator saturation, which occurs when one of the torques 
specified by the algorithm reaches the physical limit of the 
corresponding actuator. Many practical approaches can be used in 
order to deal with torque saturation. The speed of the desired 
trajectories may be reduced, thereby reducing the required 
magnitude of the actuator torques, since saturation typically 
occurs when the load is too heavy for the given speed and given 
torque capacity. The controller may also be switched temporarily 
into a conservative fixed-parameter mode (such as independent 
joint PD + fixed-parameter feedforward) when one of the 
specified torques exceeds the known physical limit of the 
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corresponding actuator; indeed, the adaptation mechanism (4), in 
extracting parameter information from the tracking errors, cannot 
be expected to distinguish whether those errors are due to 
parameter errors or to saturation effects. The on-line parameter 
estimators of [15] and [13], which are based solely on prediction 
errors and are therefore unaffected by torque saturation, may then 
be switched on to keep estimating the load parameters for later 
use. The full operation of the adaptive controller may then be 
resumed when the torques (3), computed based on the current 
parameter estimates, return within admissible values. 

2) Combining Adaptation with Robust Control: 
In practice, the computational efficiency of the algorithm may 

be enhanced by not estimating all unknown parameters. Some 
parameters, e.g., the frictions coefficients in direct-drive robot 
joints, or the cross moments of inertia I,,, I,,, and Iyz for loads 
with basically regular shape, may have relatively minor impor- 
tance in the dynamics, in which case one may choose to make the 
controller robust to the uncertainty on these parameters, rather 
than estimating them on-line. Similarly, the center of mass of the 
load may have been estimated with reasonable precision through 
visual information or CAD data. Furthermore, the controller must 
be robust to residual time-varying disturbances, such as stiction or 
torque ripple. 

Assume, without loss of generality, that only the first a 
unknown parameters are actually estimated on-line, while the rest 
are known or estimated off-line a priori, or simply taken to be 
zero. We can write, following [22] 

with the row vectors uE and aR defined by 

a E =  {o j } j=I; .  .,a a R =  { @ j } j = u + l ; .  .,rn 

and let, correspondingly, 
Y= [ YE YR]. 

Assume that the uncertainties on ~ Z R  as well as d ( f ) ,  the 
disturbance torques reflected to the manipulator joints, are 
bounded by known positive constants or functions of time 

[ i , l s A j  j = a + l ,  e . . ,  m 

Let us add a sliding control term to torque input (3) 

r=Hqr+eqr+d-KDS-Ksgn (S) 

where the notation 

is used for simplicity, and the ki’s are yet to be chosen. With aE 
and F E  in place of a and r in the Lyapunov function (6), we obtain 

Let us then take 

where the vi’s are positive constants. This yields 

P(f)s  -s~[KDs+ { q ;  sgn ( ~ ; > > ~ ~ ~ , . . . , ~ l  

so that the system trajectories are still guaranteed to reach the 
surface s = 0, and therefore convergence of the tracking errors to 
zero is achieved. 

Furthermore, in order to avoid undesirable control chattering, 
we can use the saturation function sat (si/4;) in place of the 
switching function sgn (si), with the 4;’s representing the 
thicknesses of the corresponding “boundary layers. ” Similar to 
[Slotine and Coetsee, 19861, parameter adaptation must then be 
stopped when the system trajectories are inside the boundary 
layers; indeed, by definition, disturbances and errors on aR can 
drive the trajectories anywhere in the boundary layers without this 
providing any information about estimation error on aE. Then the 
components of s are guaranteed to remain in the boundary layers, 
with corresponding small tracking errors. This procedure also has 
the advantage of avoiding long-term drift of the estimated 
parameters. 

Note that, if none of the unknown parameters is explicitly 
estimated (a = 0), then a fixed-parameter sliding controller is 
obtained, which owes its simplicity to the exploitation of energy 
conservation, and of the linearity of the robot dynamics in terms 
of the unknown parameters. 

111. EXPERIMENTAL BACKGROUND 

Before presenting the experimental results in Section IV we 
briefly discuss here the experimental equipment, the dynamic 
model of the robot, and the design of the adaptive controller. 

A. Equipment 

The equipment used [5]  is a two degree-of-freedom semi- 
direct-drive robot arm developed at the Whitaker College of 
Health Sciences at M.I.T., with “semi” indicating that the second 
link is indirectly driven by a motor located at the base through a 
four-bar mechanism. The arm was designed to be used as an 
experimental apparatus for investigating human arm movements. 
The system consists of a two-link arm (Fig. 2), two dc servo 
motors with amplifiers, two optical encoders, two tachometers, 
and a microcomputer PDP 11/73. The arm lies in the horizontal 
plane, and therefore, the effects of gravity are absent (actually, 
the presence of gravity would further demonstrate the advantages 
of adaptive parameter estimation). The two links are made of 
aluminium, with lengths of 0.37 m and 0.34 m, and masses of 0.9 
kg and 0.6 kg, respectively. Although it uses a four-bar linkage 
mechanism, the arm is not dynamically mass-balanced, and 
therefore presents full coupling effects. 

The motors are driven by PMI SSA 40-10-20 pulse-width- 
modulated switching servo amplifiers. The inductance of the 
motors is low enough so that the amplifiers are considered as 
current sources to the motors. The two JR16M4CH motors, 
mounted on a rigid supporting frame, are rather large and heavy 
(16 kg each), but this does not represent a practical problem since 
they are both located at the manipulator base. A four-bar linkage 
mechanism is used to transmit the torque from the upper motor to 
the outer link. The motion of the relative angle between the inner 
and outer links ranges from 39” to 139”. This range is made 
possible by using an offset in the elbow of the manipulator. Due to 
the fluctuation and nonlinearity limitations of the amplifier 
capacity, the maximum torque each motor can generate is 9 N-m. 
In the controller implementation, the motors together with the 
amplifiers are regarded as having a constant of 1.12 N.m/V as 
their transfer function. 

The joint positions are measured by incremental optical 
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Fig. 2. The experimental two degree-of-freedom manipulator. 

encoders attached to the output shaft of each torque motor, with a 
resolution of 12 bits/l80", i.e., 0.045'. The joint velocities are 
directly measured by tachometers. The tachometers, built in the 
motor housings, were originally designed for high-speed opera- 
tions of motor shafts, and therefore have low output voltages for 
the comparatively low-speed rotations of the direct-drive arm 
shafts. Rather than modify the tachometers themselves, their 
output signals are amplified, which creates a considerable amount 
of noise. Another problem with the tachometers is their sensitivity 
to the vibrations of the supporting frame of the arm, which 
exhibits natural structural modes at about 400 Hz. Analysis in [5] 
suggests the use of a low-pass filter consisting of a cascade of four 
passive first-order filters, each with a nominal cutoff frequency of 
50 Hz. While this filter is effective in eliminating the noises, it 
leads to significant phase lag (about 5 degrees at 1 Hz). This phase 
lag is believed to be one major source of residual tracking error 
for the adaptive control implementations. 

Position and velocity measurements are sent to the PDP 11/73 
for torque computation, with the control programs written in the C 
language. The resulting sampling frequency is 200 Hz. 

B. Dynamic Model and Adaptive Controller Design 

The dynamic model of the manipulator can be derived from 

(9-4 

(9-b) 

Lagrange's equations to be 

al ql + (a3czI + a4s21)q2 - a m  42 + a4c21 42 = 71 

(a3 czl+ a4sz1) 41 + 0 2 4 2  + wZ14: - 0 4 ~ 2 1 4 :  = 7 2  

where c21 = cos (q2 - ql), szI = sin (q2 - q l ) .  It is clearly 
linear in terms of the four parameters a l ,  a2, a3, a4, which are 
related to the physical parameters of the links in Fig. 3 through 

al = J I  + J,+ rn21~+rn,h~ az= J2+ Jb+rn(2)h:+ mar: 

a3=rnzh2I1 cos 6-rn,har, a4=rn2h211 sin 6 (10) 

with the load treated as part of the second link. Defining the 
components of the matrix C as 

C(1,  1)=C(2,  2)=0 

C(1, 2 ) = ( ~ 2 1 - ~ 2 1 ) 4 2  C(2, l )= (a3~21-a4~21)41  

the skew-symmetry of H - 2C can also be confirmed easily. 
For simplicity, the feedback gain matrix KO and the adaptation 

gain m a t h  r in the controller design are chosen to be diagonal 

fb=diag (kdlr kd2) r=diag ( 7 1 ,  7 2 ,  7 3 ,  7 4 ) .  

999 

/ /  / / /  / /  / / /// / / / /// / /// 

Fig. 3.  The schematic structure of the manipulator 

The explicit form of the control law 7 = Hqr + eqr - K D s  in 
terms of the parameter vector a is 

r l =  Y l l a l +  Y13a3+ Y14a4-kdls1 (1 1-a) 

7 2  = Y22a2 + Y23 a3 + Y Z ~ Q  - kd2s2 (11-b) 

where 

y - " 

y - " 

I I - q r  I Y13 = c21Br2 - s21 42 4 r 2  

Y23 = C Z I  Br I + ~ 2 1 4 ,  I 41  

Y14 = S Z I  B r 2  + c21424r2 

Y24 = s21 Br I - CZI Qr I 41 * 22 - qr2 

The adaptation law can be explicitly written as 

Cil= -y1 Y I l S l  (12-a) 

52 = - Y2 y22s2 (12-b) 

63= -Y3(Y13sl+ y23s2) (12-c) 

64= -Y4(  y14sI + y24%)* (12-d) 

Note that the Coulomb and viscous frictions at the motor shafts 
and at the joints between links are neglected in the adaptive 
controller design and regarded as disturbances. The stiction effect 
at the joints is handled by an additional sliding control term, as 
explained later. 

Since the adaptation law consists of a set of integrators, the 
high-frequency components of the measurement noises from the 
joint encoders and tachometers are mostly filtered out. Further- 
more, small dead zones can be used in the computation of s, in 
order to account for the inaccuracies of the sensors. The adaptive 
controller is therefore expected to be reasonably robust to sensor 
noise. 

C. Physical Interpretation of the Adaptation Mechanism 

The above equations (12-a)-( 12-d) have a strong intuitive 
appeal. The rate of adaptation is linearly proportional to the 
tracking error measure, s, with the yj's as adaptation gains. The 
estimate is driven only by the tracking error of the first joint 
since a, appears only in the first joint motion equation (9-a); 
similarly for Ci2 .  On the other hand, Ci3 is driven by a combination 
of the first joint error and the second joint error, because a3 
appears in both (9-a) and (9-b); and similarly for i4. 

Let us take a closer look at (12-a) and see how the adaptation 
mechanism extracts information about parameter uncertainty from 
the tracking error measure s. Consider, for instance, the case 
when Y l l  is positive. For negative sI, meaning a lag behind the 
desired motion in the first joint, adaptation law (12-a) increases 
the estimate C i l .  The reason for this increase is that the adaptation 
mechanism interprets the lag as indicating an insufficient joint 
torque 71, and since = Y l l  > 0, this is in turn 
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interpreted as an insufficiency in 6,. On the other hand, this 
increase in 6, leads to an increase in the torque T , ,  as seen from 
(11-a), and, accordingly, to a reduction in the lag behind the 
desired motion. The adaptation mechanism of (i2 can be explained 
using the same argument. The variations of Ci3 and (i4 can be 
explained similarly, with the difference that these parameter 
estimates are driven by weighted averages of sI and s2. The 
weighting factors for G3, for instance, are YI3  and Y23; their 
magnitudes reflect the extent of the contribution of a3 to r ,  and r2,  
and the corresponding lags in the joints. 

Thus, the adaptation law generates the parameter estimates in 
an intuitively reasonable or "intelligent" manner. 
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Iv .  EXPERIMENTAL RESULTS AND DISCUSSION 

The purpose of the experiments is twofold, namely, to 
demonstrate the stability and the performance characteristics 
inferred from the theoretical development, and furthermore to 
compare the performance of the adaptive controller to those of the 
PD (local proportional-plus-derivative control) and computed 
torque controllers, two popular nonadaptive control methods. PD 
control, namely 

T =  - ~ ~ i - ~ , q  

is considered here instead of PID, since the lack of gravity, and 
therefore of corresponding steady-state errors, make an integral 
term superfluous. Three sets of experimental results are presented 
below, namely, comparison of PD and adaptive controllers, 
comparison of computed torque and adaptive controllers, and 
comparison of all controllers in the face of a large load. In the 
experiments, the design parameters of each controller are turned 
to their best values, in terms of the conflicting requirements of 
tracking accuracy in the joint motions and controller stability in 
the face of measurement noise, disturbances, and unmodeled 
high-frequency dynamics, so that the best performances of the 
three controllers can be compared. 

The desired trajectories are the same for the three sets of 
experiments (Fig. 4). They last for 1 s with the first half-second 
for tracking motion between initial position qs and end position qe, 
and the second half-second for regulation of the residual tracking 
errors to zero. The desired joint trajectories to be tracked are two 
fifth-order polynomials interpolated between qs = [20. 100. "1 
and qe = [70." 100."IT, with zero desired velocities and 
accelerations at t = 0 and t = 0.5 s (note that, in terms of 
Remark 2 of Section 11-B, this desired trajectory is rather 
"unexciting, " and therefore represents a good challenge to an 
adaptive controller). 

A .  Comparison of PD and Adaptive Controllers 

In this first case, no load is attached to the second link of the 
manipulator. For the adaptive controller, the initial values of the 
parameter estimation are taken to be zero, that is, the parameters 
of the arm are assumed to be totally unknown. The adaptive 
controller therefore starts as a PD controller and the feedforward 
part plays an increasingly effective role as the parameter 
adaptation is driven by the tracking errors. The adaptation gains yi 
are chosen to be all equal to 0.2. 

For both controllers, proper choices of the feedback gains KO 
and K p  (for the adaptive controller, K p  = KDA) are important, 
since larger values lead to better tracking accuracy, but less 
robustness to measurement noise and unmodeled high-frequency 
dynamics. For simplicity, these matrices are all chosen to be 
diagonal in the experiments. By increasing KD and Kp, both 
controllers were found to become unstable at essentially the same 
values of these matrices. This suggests that the adaptive controller 
enjoys basically the same level of robustness to noises and high- 
frequency unmodeled dynamics as the PD controller. The 

3 .  
0:s sec. i 

Fig. 4. The desired trajectories qld and qU. 

diagonal values 

kd1=2.0 (N * m shad) k d 2 = 2 . 0  (N m . shad) 

kpl  = 40. (N * m/rad) kp2 = 30. (N . m/rad) 

or, equivalently for the adaptive controller, XI = 20 and X2 = 15 
were found to yield the best accuracy while avoiding noticeable 
excitation of the vibrational modes of the links. 

A small dead zone is used in the computation of s, in order to 
handle the inaccuracies of the measurement signals and alleviate 
parameter drifts. The size of the dead zone is determined based on 
the resolutions of the encoders and the A/D converters for the 
tachometers. 

The results of the PD controller are plotted in Fig. 5, while 
those of the adaptive controller are given in Fig. 6.  The maximum 
joint errors for the PD controller are 6.57" and 4", but those for 
the adaptive controller are only - 2.12" and - 2". As expected, 
the errors and control torques of the two controllers are very close 
in the initial period, but the parameter estimates of the adaptive 
controller are quickly driven by the tracking errors. At roughly 
t = 0.15 s, the feedforward term in the adaptive control law, 
based on these estimates, is able to prevent the further groyth of 
the tracking errors (which in the PD case, reach - 5 .  and 
- 3.7", respectively). The parameter estimates in Fig. 5(c) are 
seen to be very smooth, as expected from the integrator structure 
of the adaptation law. This smoothness is desirable because it 
avoids that the adaptation excite the vibrational modes of the links. 
At the end of the tracking operation in the first-half-second, 
usually an important instant in applications like pick-and-place 
tasks, the joint errors of the adaptive controller are only - 0.7" in 
both angles, while the PD controller is suffering almost maximum 
joint errors. In the last-half-second, the joint errors are regulated 
by the controllers and the arm settles down to the end position qe. 

Small steady-state joint errors of - 0.09" (two encoder counts) 
and - 0.135 (three encoder counts) are observed for the adaptive 
controller. These errors arise from the stiction effects of the static 
frictions at the motor shafts of this manipulator. The magnitudes 
of stiction were determined to be roughly 0.17 N.m at each joint. 
A small stiction-compensation term [ - 0.15 sgn (sI), - 0.10 sgn 
(s2)IT was included in the control law of Fig. 6, otherwise the 
steady-state errors would have been about -0.3'. The sizes of 
these compensation terms are limited to small values by the 
condition that the corresponding accelerations should not make 
the system cross the dead zones in s in less than two sampling 
periods. The PD controller has the same level of steady-state 
errors, although they cannot be clearly seen in Fig. 4 due to the 
larger scale used. 

B. Comparison of Computed Torque and Adaptive 
Controllers 

In practice, the user always has some apriori knowledge of the 
robot parameters, possibly by computation based on design data. 
This information can be used to initialize the estimated parameters 
in the adaptive scheme, and to temporarily stop adaptation on a 
parameter if a known bound is reached. A popular alternative way 
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Fig. 5 .  PD control without load. 

-s -I 
I 

Fig. 6. Adaptive control starting from zero estimates. 

of using the a priori parameter estimates is to use fixed-parameter 
model-based controllers, such as the computed torque method. In 
this set of experiments, the performance of the computed torque 
and adaptive controllers are compared using a priori parameter 
estimates from [5] as the nominal parameters in the computed- 
torque and as the initial parameters in the adaptive controller. 

The computed torque method is a fairly standard approach, 
whose formulation can be found in a number of papers (e.g., 
[12]). In the absence of the gravity, its input torque can be written 
as 

Let us take K1 and K2 as diagonal matrices 

Kl=diag (2wl,  2 4  KZ=diag (U ; ,  a:) 

where w1 and w2 are two positive constants. With this choice of K ,  
and K2, a critically damped error dynamics would be obtained if 
the exact parameters were used. Selecting K ,  and K2 experimen- 
tally as before, the best values of wI and 02 are determined to be w1 
= 20 rad-s-l and w2 = 30 rad-s-'. 

The design parameters of the adaptive controller are the same 
as before except that r is increased by a factor of two, since 
reasonable initial parameters are already available. The parameter 
values used for the computed torque method and as initial values 
of the adaptive control are 

al=O.ll kg*m2 a2=0.0285 kg.m2 a3=0.033 kg.m2 a4=0. 

I 
Fig. 7.  Computed torque control 

Fig. 8.  Adaptive control starting with nonzero estimates. 

Fig. 9. PD control under load 

They are computed from the engineering drawings of the arm 
links. In addition to the discrepancies between the real quantities 
and those on the drawings, the mass of the force sensor attached to 
the endpoint also causes some inaccuracy in the above values. 

The results are shown in Fig. 7 for the computed torque method 
and Fig. 8 for the adaptive controller. The maximum joint 
tracking errors for the computed torque are 1 "  and -2.5", 
respectively, while those for the adaptive controller are 0.95" and 
- 0.96'. The tracking error of the first joint is smaller because the 
parameter uncertainty is larger in the four-bar mechanism 
associated with the second link. 

C. Comparisons in the Presence of a Large Load 

Since the underlying purpose of the adaptive controller is to 
maintain tracking accuracy in the face of significant uncertainty 
in the load parameters, a large load is attached to the end of the 
second link of the arm to demonstrate the performance of the 
adaptive controller. The load is a clutch which has roughly half 
the size and weight of the second link. The same trajectory is 
successively controlled by the PD, the computed torque, and the 
adaptive controllers. The PD controller is identical to the one in 
Section IV-A and the computed torque and adaptive controllers 
are the same as the ones in Section IV-B, both in design 
parameters and initial parameters. The results are plotted in Figs. 

For the PD controller, the maximum tracking errors increase to 
10.2" and 7.4". Even at the end of the last-half-second regulation, 
the tracking errors are still far from settled down (1.3'  and 0.9", 
respectively). The maximum tracking errors of the computed 
torque controller are 1.9" and - 4.7", representing increases of 

9-11. 
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.1V 
Fig. 10. Computed torque control under large load. 

Fig. 11. Adaptive control under load. 

0.9” and 2.2” .  The much larger increase in the second joint is due 
to the fact that the attached clutch causes a larger increase in the 
uncertainty of the second joint dynamics than in that of the first 
joint. The maximum tracking errors for the adaptive controller are 
now 0.9” and -2.0”, with the second joint error increased by 
1 .MO, but no increase in the first joint error. 

When the parameter estimates obtained at the end of this run are 
used for a second adaptive run, the maximum errors of both joints 
are found to stay within 1”.  The PD and computed-torque 
controllers would, of course, essentially repeat their errors. In 
further adaptive experiments along varied and longer trajectories, 
long-term parameter drift was found to be very slight, due to the 
stopping of adaptation in the dead zone. Parameter drift does not 
seem to be a severe problem in high-speed robotic manipulation 
tasks because the tasks last for at most a few seconds. 

D. Error Sources 

The theory in Section I1 predicts that the tracking errors of the 
adaptive controller globally converge to zero, while actually the 
tracking errors in the second and later runs along the same 
trajectory merely stay within the one degree range, without exact 
convergence. The discrepancy is due to various noises, distur- 
bances, and unmodeled dynamics, which are inherent in the 
experiments but ignored in the theoretical analysis. The tracking 
errors observed arise from many hardware or software sources. 
These include, in particular the following. 

1) Arm Modeling Errors: The substantial Coulomb frictions 
at the motor shafts are not modeled. The Coulomb and viscous 
frictions at the linkage joints are not compensated at all in the 
experiments. The neglected frictions are believed to contribute a 
significant portion of the tracking errors. Furthermore, the 
vibrational dynamics of the links may also have contributed a 
certain amount of error. 

2) Actuation Errors: For simplicity, the amplifiers and the 
motors have been modeled as constant gains, while they actually 
have dynamics of their own, which may not be negligible for this 
half-second fast operation. Furthermore, preliminary testing 
indicates an error of about 3 percent in the amplifier gain specified 
by the manufacturer and used in this experiment, in addition to a 
small torque ripple. In the absence of joint torque sensors, no 
attempt has been made to compensate for the torque inaccuracies. 

3) Measurement Errors: Joint velocity measurements contain 
a considerable amount of error. The tachometer signals are small 

and are therefore sensitive to noise. The signals after amplifica- 
tion and filtering contain quite severe phase lag. In addition, the 
A/D converters for the velocity signals create a certain amount of 
error. For this high accuracy controller, the relatively low 
resolution of the optical encoders (0.045”, i.e., 12 bits/l80”) does 
not allow numerical differentiation to advantageously replace the 
tachometer signals. 

4) Real- Time Computing Limitations: Rcundoff errors and, 
especially, sampling limitations, are further sources of error at 
these high speeds. 

V. CONCLUDING REMARKS 

These experimental results demonstrate that, despite all the 
nonparametric error sources, the adaptive controller enjoys 
essentially the same level of robustness to measurement noise and 
unmodeled dynamics as the PD controller, yet achieves much 
better tracking accuracy than either PD or computed-torque 
schemes. Its superior performance for high-speed operations, in 
the presence of parametric and nonparametric uncertainties, and 
its relative computational simplicity, make it an attractive option 
both to address complex industrial tasks, and to simplify high- 
level programming of more standard operations. 

The presented comparisons, however, should not be interpreted 
as suggesting the replacement of PD or computed-torque control- 
lers by adaptive control in all robotic applications. An advanced 
robotic control system should switch between different control 
modes depending on the speed, precision, and parameter adapta- 
tion requirements of the tasks. 
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