24 LAGRANGE’S EQUATIONS

The equations governing the motion of a complicated mechanical system, such
as a robot manipulator, can be expressed very efficiently through the use of a
method developed by the eighteenth-century French mathematician Lagrange.
The differential equations that result from use of this method are known as
Lagrange’s equations and are derived from Newton’s laws of motion in most
textbooks on advanced dynamics.[2, 3]

The fundamental principle of Lagrange’s equations is the representation of
the system by a set of generalized coordinates q; (i=1, 2, . . ., r), one for each
independent degree of freedom of the system, which completely incorporate the
constraints unique to that system, i.e., the interconnections between the parts of
the system. After having defined the generalized coordinates, the kinetic energy
T is expressed in terms of these coordinates and their derivatives, and the

potential energy V is expressed in terms of the generalized coordinates. (The
potential energy is a function of only the generalized coordinates and not their
derivatives.) Next, the lagrangian function

L= T(qh"',qnq'h""q'r)— V(ql""sQr)
is formed. And finally the desired equations of motion are derived using

Lagrange’s equations
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where Q; denotes generalized forces (i.e., forces and torques) that are external
to the system or not derivable from a scalar potential function.



6.3 EQUATIONS OF MOTION

In this section, we specialize the Euler-Lagrange cquations derived in
Section 6.1 to the special case when two conditions hold: First, the
kinetic energy is a quadratic function of the vector § of the form
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where the nxn “inertia matrix” D{q) is symmetric and positive
definite for cach qe IR". Sccond, the potential energy V = V{q) is in-
dependent of q. We have alrcady remarked that robotic manipulators
satisfy this condition.

The Euler-Lagrange cquations for such a system can be derived as
follows. Since
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L =K-V = Ezdv(q)q,q; - Viq) (6.3.2)
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we have that
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Thus the Euler-Lagrange cquations can be written
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By interchanging the order of summation and taking advantagc of sym-
metry, we can show that

iZJ{aai(;:}Qin = %‘Z}{ aa‘j: + aacjlkl' }c'],-c'],- (6.3.7)
Hence
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are known as Christoffel symbols (of the first kind). Note that, for a
fixed k, we have cjx = cjik, which reduces the effort involved in com-
puting these symbols by a factor of about onc half. Finally, if we define
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are known as Chnstoffek symbols (of the first kind). Note that, for a
fixed k, we have Cik "= Cjik, which\teduces the cffort involved i in com-
puting these symbols by a factor of abyut one half. Finally, if we define

16.3.10)

then we can write the Euler-Lagrange cquations as

Zdildld; + Tepklaldig; + delg) = v, k=1,....n  (63.11)
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In the above cquation, there are three types of terms. The first in-
volve the second derivative of the generalized coordinates. The second
are quadratic terms in the first derivatives of ¢, where the cocfficients
may depend on ¢. These are further classified into two-types. Terms
involving a product of the type [1,-2 arc called centrifugal, while those in-
volving a product of the type q;¢; where i # j are called Coriolis terms.
The third type of terms are those involving only q but not its deriva-
tives. Clearly the latter arise from differentiating the potential energy.
It is common to write (6.3.11) in matrix form as

Diqlg + Clq,q)q + gly) = (6.3.12)

where the k, j-th clement of the matrix Clq,q) is defined as

Crji = 2 Ciinlq)q; (6.3.13)
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We next derive an impo.rtant relationship between the inertia matrix
D(q) and the matrix C(q, §) appearing in {6.3.12) that will be of funda-

mental importance for the problem of manipulator control considered
in later chapters.

In summary, the development in this scction is very general and ap-
plies to any mechanical system whose kinctic cnergy is of the form
(6.3.1) and whose potential cnergy is independent of ¢. In the next sec-
tion we apply this discussion to study specific robot configurations.



(ii) Theorem 6.3.1

Decfine the matrix N{q,q) = D(q)-2Clq,q). Then N(q,q) is skew
symmetric, that is, the components nj, of N satisty nj = —1;.

Proof: Given th incrtia matrix D{q), the kj-th component of D|(q) is
given by the chain rule as
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Thercfore, the kj-th component of N = D -2C is given by

I B 2 0Cy | (6.3.15)
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Since the inertia matrix D{q) is symmetrig, that is, d;; = dj;, it follows
from (6.3.15) by interchanging the indices k and j that

g = g | (6.3.16)
which completes the proof.



(iii) Example 6.4.1 Two-Link Cartesian Manipulator

Consider the manipulator shown in Figure 6-2, consisting of two links
and two prismatic joints. Denote the masses of the two links by m,
and my, respectively, and denote the displacement of the two prismatic
joints by q, and ¢,, respectively. Then it is casy to sce, as mentioned
in Scction 6.1, that these two quantitics serve as generalized coordi-
nates for the manipulator. Since the generalized coordinates have di-
mensions of distance, the corresponding generalized forces have units
of force. In fact, they arc just the forces applied at cach joint. Let us
denote these by f;, i = I,2. '

Since we are using the joint variables as the genceralized coordinates,
we know that the kinctic energy is of the form (6.3.1) and that the po-
tential cnergy is only a function of q) and ¢,. Hence we can use the
formulae in Scction 6.3 to obtain the dynamical cquations.[4] Also,
since both joints arc prismatic, the angular velocity Jacobian is zero and
the kinetic energy of each link consists solely of the translational term.
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FICURE 6-2

Two-link cartesian robot.



i the velocity of the center of mass of link 1
is given by

Ver =N 4 (6.4.1)
where
00 ' q,
b,=100]| q= 5 (6.4.2)
10 r
Similarly,
vao=k g | (6.4.3)
where
00
N.= {0 ] (6.4.4)
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Hence the kinctic energy is given by

K = —?ld—qr iy T+ maly 1 g (6.4.5)

Comparing with (6.3.1), we sce that the inertia matrix D is given

simply by
my;+m,; 0
l) = 0 1112 ) (6.4.6)

Next, the potential energy of link 1 is n1,8q,, while that of link 2 is
m,gq,, where g is the acceleration due to gravity. Hence the overall
potential cnergy is

V =g{m, + m,lq, (6.4.7)

Now we are ready to write down the equations of motion. Since the
inertia matrix is constant, all Christoffel symbols are zero. Further, the
vectors ¢y are given by
JaV 1%
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Substituting into (6.3.11) gives the dynamical equations as
[
[ (6.4.9)

(g + ), + glmy + my)
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[iv) Example 6.4.2 Planar Elbow Manipulator

Now consider the planar manipulator with two revolute joints shown
in Figurc 6-3. Lct us fix notation as follows: For i = 1,2, ¢; denotes
the joint angle, which also scerves as a generalized coordinate; m;
denotes the mass of link 7, /; denotes the length of link i; f; denotes
the distance from the previous joint to the center of mass of link i; and
I; denotes the moment of inertia of link i about an axis coming out of
the page, passing through the center of mass of link i.
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F1IGURE 6-3

Two-link revolute joint arm.



We will make ctfective use of the Jacobian expressions ip .Chapte.r
Five in computing the kinctic energy. Since we are using joint vari-
ables as the generalized coordinates, it follows that we can usc the con-
tents of Section 6.3. First,

Vi =]V.;‘.1 (6.4.10)
—fa1sing,; O
~., = |leicosq, O (6.4.11)
0 0
Similarly,
vea=J, 4 (6.4.12)
where
~hising ) ~fepsinfqy + q,)  ~fsinfq, + gy)
K., = |licosq, + f.ycos(q, + da)  feacos(qy + ) (6.4.13)
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Hence the translational part of the kinetic cnergy is

1 T 1 T 1. . e .
2 MVel Voo + SMavVey Vey = 24 my g J, + mo ST T 1 (6.4.14)

Next we deal with the angular velocity terms. Because of the parti-
cularly simple nature of this manipulator, many of the potential
difficulties do not arisc. First, it is clcar that

W = (']ll(, w, = (‘Il +(.]2)k (6415)

when expressed in the basc incrtial frame. Now we pointed out in Sec-
tion 6.2 that it is necessary to express these angular velocities in the
link-bound coordinate frames. Fortunately, the z-axes of all of these

frames arc in the same direction, so the above expression is also valid
in the link-bound frame. Morcover, since w; is aligned with k, the
triple product o'l o; reduces simply to (133), times the squarc of the
magnitude of the angular velocity. This quantity (/33); is indeed what
we have labeled as 1, ahove. Hence the rotational kinctic energy of the

overall system is
I 1 0 L1y,
Eq Il 00 +1;_ 154 Jq (6.4.16)



Now we are ready to form the inertia matrix D{q). For this purpose,
we merely have to add the two matrices in (6.4.14) and (6.4.16), respec-
tively. Thus

: Iy + I, I
Dlq) = Inl]vl:,jv,, + 1712]‘7“1]‘:‘! + 7 7 (6.4.17)

Carrying out the above multiplications and using the standard tri-
gonometric identitics cos’0 + sin’® = 1, cosucosp + sinasinp =
cos{a—B) leads to

d“ = m,Hc,Z + mz(i,z + 'c22 + 2 |F(:2C()S(]2) + 1) + Iy
dlZ
dy = mz”czl + Iy (6.4.18)

Now we can compute the Christoffel symbols using the definition
(6.3.9). This gives
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Next, the potential energy of the manipulator is just the sum of those
of the two links. For cach link, the potential cnergy is just its mass

multiplied by the gravitational acceleration and the height of its center
of mass. Thus

Vi = nne sing



V, = myg(?)sing, + {easin(q, + q7))

V=V+v,= (M7 + my 1)gsing | + myfagsin(q) + q,) (6.4.20)
Hence, the functions ¢r defined in (6.3.10) become

o) = ()()TV ={myp.) + my ecosq, + Myia8Cos(q) + ¢,) (6.4.21)
|

O, = ()()(TVZ =My c08(g + (,) (6.4.22)

Finally we can write down the dynamical cquations of the system as in
(6.3.11). Substituting for the various Quantitics in this cquation and
omitting zcro terms leads to '

dng, +dg, + Ci2141q2 + Cay1Gaq, + Caqds + ¢ = 1
darq i+ dyijy + ¢yt + 0y =1, (6.4.23)

In this case the matrix Clq,q) is given as

hqgy, hqg, + hq,
S (6.4.24)



(v) Example 6.4.3 Planar Elbow Manipulator with Remotely
Driven Link

Now we illustrate the usc of Lagrangian cquatiohs in a situation where
the generalized coordinates arc not the joint variables defined in carlier
chapters. Consider again the planar clbow manipulator, but suppose
now that both joints are driven by motors mounted at the base. The
first joint is turned dircctly by onc of the motors, while the other is
turned via a gearing mechanism or a timing belt (sce Figure 6-4). In this
case one should choose the generalized coordinates as shown in Figure
6-5, because the angle p; is determined by driving motor number 2, and
is not affected by the angle p;. We will derive the dynamical cquations
for this configuration, and show that some simplifications will result.

Al hJ A\l
FI1GURE 6-4
Two-link revolute joint arm
with remotely driven link.

FIGURE 6-5
Generalized coordinates for robot
*  of Figure 6-4.




Since p; and p, are not the joint angles used earlier, we cannot use
the velocity Jacobians derived in Chapter Five in order to find the
kinetic energy of each link. Instead, we have to carry out the analysis

directly. It is easy to see that
—181np | —7.281npy

—chsinpl
Vei = |le1€COSp) | P1, Vea = |11€C0SP|  1,0C08D, (6.4.25)
0 0 0
W = 1.7|k, W, = pp_k (()426)
Aence the kinctic cncrgy of the manipulator cquals
K=p"D{plp (6.4.27)
~vhere
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Computing the Christoffcl symbols as in [6.3.9) gives
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Next, the potential energy of the manipulator, in terms of py and p,,

cquals
V =mgiosinp + nsg{sinp |+ .,8inp ) (6.4.30)
Hence
0y = {mypey + myy)gcos p,
Py = My 28 COS Py
Finally, the dynamical equations are
‘e e . :)_
diup)+dppy + copr +d =1
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Dynamic Equation of Mechanical
Systems

The Lagrange equations describing motion of a mechanical system

are
D(q)gq+C(q,q)q + G(q) = B(q)u (1)
where
qc R Generalized coordinates
uec R™ Generalized external forces
D(q) Positive definite symmetric inertia matrix
C(q,9)q Nonlinear vector functions

B(q) € R™" input transformation matrix
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Properties

Property 1: A suitable definition of C(q,q) makes the matrix
(D —-20) skew-symmetric.

Property 2:

D(q)v + C(q,9)v + G(q) = 9(q, 4, v, V)a (2)

where & € R"xp

is a regressor matrix; and « is the p-vector of inertia
parameters.
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Defining parameters 0,,.., 8, as
0, = mllfl 0, =m,l]
0y =m,ll,. 0, = I,
67=mllclg Oy, =m,l g

we can write as .

Qg oSG ) O =175
where

6 =[o,,
and Y is given by :
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0, = mzlc2
0, = 1,
0, = mzlczg
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Y(qg, q, g, =

4, 4, 4, +4, 2cos 4,4, + €cos q,4, — 2 sin 4.9,9, — sin 42Q22
0 0 4 +4q, Cos g,4, + sin g,

4, g+ g, COs g, cos q, cos( g, + 92)]
q, q, 0 0 cos( g, + q,)

\
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0,=ml} +m,l?+ 1, 0, =m\l} +myllst I
63 e mZIllcz 64 = mllc;:
0, = mzl? O =m,l_

With this parametrization the dynamic equation can be written as:
Y(g, ¢, §)0=7 ; OeRS
Where the components y; of Y are given as:
Yu = g Y2 =G +4, Yie = g cos( q,)
Yis = €08( 4,)(2¢, + §,) ~ sin( g,)(42 + 2¢,4,)
Yis = 8¢08(q,) y,5=gcos(q, +q,)
Yu =0 Yo =4, + 4, Yo = €08( q,)g, + sin( 9,)4,
Yau =0 Yos =0 Y = 8¢08( g, +q,)
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