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ROBUST CONTROL OF ROBOTIC MANIPULATORS
WITHOUT VELOCITY FEEDBACK

JING YUAN AND YURY STEPANENKO
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada

SUMMARY

This study concerns the problem of robust control of robotic manipulators without joint velocity
feedback. A robust lead + bias controiler is studied. The bias signal is intended to compensate the
nonlinear dynamics of the robot. The focus of this study is robustness when the nonlinear compensation
is not perfect and the external disturbances are not negligible.

A conservative polynomial bound is introduced to describe the worst feedback effect of the
compensation error and the external disturbances. The polynomial bound covers a class of possible bias
signals, synthesized according to the available knowledge about the robot dynamics. Based on the
polynomial bound, the tracking errors of a lead + bias controller are proved to be uniformly bounded.
They can be minimized by a proper design of the bias signal. In the ideal case where the bias signal
compensates the robot dynamics perfectly, the tracking errors will converge to zero.

1. INTRODUCTION

Robust tracking control of robotic manipulators has been studied by many researchers. ! Most
of the reported controllers require complete state feedback to provide stable tracking for the
closed-loop system, which means that both position and velocity must be measured at each
joint. While the joint positions can be measured very accurately by encoders, the joint velocity
measurements are often contaminated by noise, due to the less accurate nature of tachometers.
To overcome this problem, some researchers proposed nonlinear observers for joint velocity
estimation. A sliding observer for general nonlinear systems was studied by Slotine ef al.
(1987);2 the first observer for robotic systems was proposed by Canudas de Wit and Slotine
(1989);* Nicosia ef al.*~ ¢ studied a number of nonlinear observers for nonlinear systems and
elastic robots; observers plus controllers were studied by Nicosia and Tomei (1990)7 and
Canudas de Wit ef al. (1990).% More recently, robust nonlinear smooth observers have been
reported by Canudas de Wit ef al.%'® All these works have a common objective: robust control
of robotic manipulators without direct measurement of joint velocities.

In this paper, a different approach is investigated. Instead of trying to estimate the velocity
by observers, the high-pass filtered position feedback is used as a substitute for the velocity
feedback. In other words, a lead + bias controller is applied to robotic manipulators. The lead
compensator is synthesized by the traditional technique for linear time-invariant systems while
the bias signal is synthesized by feed-forward dynamics. When the robot parameters are not
correct, the bias signal will be inaccurate. In order to cover a large class of admissible bias
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signals, a polynomial bound is introduced to describe the worst possible effect of the
compensation error. Based on the polynomial bound, the tracking errors of a lead + bias
controller are proved to be uniformly bounded if the feedback gain is sufficiently large. The
area of attraction can be enlarged and the tracking error bound can be reduced simultaneously
by adjusting a single design constant.

The paper is organized as follows: a detailed discussion on the system model, the
polynomial bound and its relation to the possible bias signals is given in Section 2. In
Section 3, a lemma is proved which plays an important role in the robust analysis to be
presented in Section 4. The robustness of the lead + bias controller is investigated by the
Lyapunov method. The area of attraction and the tracking error bound is shown to be
adjustable by a feedback gain. Simulation result is presented in Section 5 to demonstrate the
robust tracking of a lead + bias controller applied to a simple two-link robot. A brief
concluding remark is then presented in Section 6.

2. THE SYSTEM MODEL
The mathematic model of a n-link rigid-body robotic manipulator is given by
M(@@)g+C@,q)g+ g(@)=7+1a m

where g € R™ denotes the generalized co-ordinates of the robot; 7€ R" is the generalized control
torque vector; 7q represents the external disturbances generated by the environment; M(q),
C(g,q)€R™" and g(q) € R" are nonlinear functions of g and q. M(g) is the system inertia
matrix, C(q, q)q represents the centripetal and Coriolis force while g(g) denotes the
gravitational force. For convenience, the system dynamic equation (1) is re-written in the form

M@)é=1+1 2
where e = ¢ — ga, qa is the desired trajectory vector and 7= = 74 — M(q)da — C(4, q)g — £(q).
A lead + bias controller is synthesized by
1
1=.6k¢—;ke+n, 3)
where 7, = Mda + Cgaq + £ is the bias signal intended to compensate the nonlinear dynamics (it
will be discussed later); ¢ is a high-pass filtered version of e, synthesized by
Y+ok [ ydt= —ke )

In general &£ > 0 can be replaced by a positive definite matrix. However, for clarity of
derivations, k is chosen to be a positive scalar here. The other design constants p, 8 and ¢ are
all positive. Their specific choice will be discussed in detail in Section 4.

Substituting (3) into (2), one can express the closed-loop system dynamics as

é= M (QKIBY - 1pe1 + M (@m0 )

where 70 = 7, + 7 4. According to the well-established results of the previous researchers, -1+

7o I can be bounded by a second-order polynomial of Il éll given as

70l =1l 76+ 7a — M(@)da— C@ )i — g@ | S co+cill el ©
Denote as AM =M - M(q), AC=C - C(qa,q) and Ag=g— g(q), then a straightforward
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calculus will result in
Co=sup | 7a+ AMga+ ACqa+ Ag||
Ci=sup sup | C(qa, g)x + C(x,g)qu|
p ol

ca=sup sup || C(x,q)x|
g |lxll=1

I

Unlike ¢; and ¢;, which only depend on the robot dynamics and the desired tracking speed,
the constant bound ¢ is a function of the bias signal .. It can be viewed as a measurement
of the compensation error. In the ideal case where the system is free of external disturbances
and the robot parameters are accurate, then 74 =0, M = M(q), C = C(gq, q) and & = g(g). As
a result, co will be reduced to zero. In general, one cannot expect perfect compensation for
various practical reasons. It is reasonable to set a conservative constant value for co.

Another class of bias signals are synthesized by neural networks. The connection weights of
a neural net are adjusted by some learning rules. If the outputs of the neurons are bounded and
the connection weights are constrained within a finite ball in the weight space, then (6) is valid
and the robustness result based on such a polynomial bound also applies to a class of neural
net controllers with a lead compensator as the feedback control part.

3. A LEMMA ON SOME POSITIVE DEFINITE FUNCTIONS

In this study, a Lyapunov-type stability analysis is conducted to investigate the robustness of
the closed-loop system (5). Since the nonlinecar compensation error 7o could grow with a
magnitude of || &||* as (6) suggests, it is very difficult to establish asymptotic stability for the
closed-loop system. The main objective of this study is to establish uniformly ultimately
boundedness to the tracking errors. The following Lemma plays an important part in the
analysis.

Lemma |

If a positive definite function V(¢) satisfies a differential inequality

V< V) 0]
where (¢, V) is bounded for V(¢) ¢ [0, V), and
vy, V)<O0 whenever V(t) € (Va, Vb) ®)

then V'(¢) is uniformly bounded and lim;-« V(t) < V, as long as V(0) < V5.
Proof. Let it = kot} denote a sequence of sampling strobes with 8¢ — 0. Then the
knowledge, given by (7) and (8) can be combined to a simple expression
V(tks1) < V{te) whenever 0 < Vo < V(i) < Vo )

The initial condition V(0) < V4 includes two possibilities: {V, < V(0) < Vp} U {V(0) < Val.
In the first case, V; < V(0) < V3. A sequence of samples of V(¢) can be obtained:

Va=V(ta) < Vltes1) < V{tx) < ... < V(t2) < V(t1) < V(0) < Vs

The decreasing nature of such a sequence can be verified by the sufficient condition of (9).
Since the above-sampled sequence is obtained with an infinitely small sampling interval ¢, V(t)
must be monotonously decreasing for 0 < ¢ < fa.
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Figure 1. A visual illustration of Lemma 1

In the second case, ¥V(0) € Va, one must consider the worst possible case where V(¢)
increases towards infinity. According to the given knowledge, V(¢) cannot jump from
V(t) < Vato V(t+ 8t) = Vs for an arbitrarily small 67, because V is bounded from above by
v(¢, V). However, V(¢) could reach V, for the first time at some instant ¢ = ¢,. (if V(0) = V,,
then £, =10.)

Suppose somehow V(¢) manages to inch further towards Vi such that V(t£) =V, + ¢ at
t. < t;, where £ is an arbitrarily small positive constant. Then (9) will force V(t; + 6t) < V(t;)
because Vi, < V(t;) < Vu, making it impossible for V(¢) to exceed V, + £ after ¢ = ¢,. By letting
£ — 0, one obtains lim;~ » V(¢) € Va. Q.E.D.

An illustrative picture is provided in Figure 1 to give a visual explanation of the proof. In
Figure 1, V is plotted versus V. One can see that V is bounded from above by (¢, V'), which
is represented by a family of functions because of another argument ¢. Figure 1 provides the
following hints:

(1) V(¢) cannot jump from V(¢) < Vato V(¢ + 6t) = V, for an arbitrarily small 8¢, because
V< y(t, V) < o when 0 < V(t) < Vs

(2) Since ¥ < 0 whenever Ve (Va, V), the interval (V,, V) creates a region of attraction as
demonstrated by arrow A; in the figure. If initially V, < V(0) < Vb, then V(¢) will be
attracted towards V,.

(3) Once V(¢) < Vs, it will not be able to bounce back, though it is possible that V(¢) could
be pushed towards V, as arrow A, indicates.

The robustness of the lead + bias controller is to be established by finding a positive definite
function which satisfies the condition of Lemma 1.

4. ROBUSTNESS OF THE LEAD COMPENSATOR

Although the high-passed error signal y is synthesized by (4) without physically involving the
velocity error e, mathematically, (4) is equivalent to

V= —ké—oky (10)
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if the initial value of y is set to zero. In the theoretical analysis, the closed-loop system will
be described by (5) and (10). Their state-space representation is given by

é= —Ae+ 75 an
where €= [é,{, e]”,
0 -M8k M ' M (@)
A= kI okl 0 and 7= 0
I 0 0 0

In the Lyapunov-type stability analysis of a closed-loop system like (11), it is customary to find
positive definite matrices P and Q such that PA+ ATP= Q. The focal point is usually a
positive function L = T Pe. Its time derivative evaluated along (11) is written as

L=—¢"0e+2¢"Pr,+ " Pe 12)

where || 26T Pz, + €T Pe|| could be proportional to | £||* because || 70| o || &||%. In order to
ensure stability to the closed-loop system, it is important to select P and Q such that )\Qmin,
the smallest eigenvalue of @, can be set sufficiently large without affecting || 2¢™ Pr, + ¢" Pe |.

4.1. The positive definite matrix pair P and Q

According to References 11 and 12, the inertia matrix M(q) is uniformly bounded and
positive definite. Therefore, one can write

Mmin=inf inf | M(g)x| and Amax=sup sup | M(g)x|| (13)
g lxl=1 a lxl=1

Now, the three design parameters 3, ¢ and p can be determined by

0 < p < Mnmin, a3 and §=pQ2 + a) (14)

A possible P—Q matrix pair is given by

M ol é I (pk—%)[ 0 0
P=| pI 2p1 0 and Q= 0 pkQoI—BM™Y) 0

1 k k

-1 0 =1 0 0 — M!

B P eB

where (14) has been substituted to eliminate the off-diagonal sub-matrices of Q.
Denote as y" = [y, y3, ¥1] where yi, y2, »3€ R". Then yT Py can be expressed as

k 2
YIPy=y{My + 20| 52 ||? +;I| 312+ 20y Ty, + Sy Iy

B
>ollit et ol (k=) 107+ o212 1)
Bp p B
where (13) and (14) have been substituted. When

g(k——ﬁlz) > AMax 17
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inequality (16) implies

Pv-

atin=inf inf yTPy> and amax—sup sup y TpygZ (18)
q llyll=1 fiyi= o
The above inequality will be very helpful in the later stability analysis.
With the help of (14), it is not difficult to verify xT(207— M~ 1)x > xTx for any x€ R".
As indicated by (15), Q is positive definite if
1

ok > 3 19)

As long as (17) and (19) are satisfied, both P and Q are uniformly positive definite. The
smallest eigenvalue of Q is given by Agmin = pk.

It is also interesting to note that

eTPe+2eTPry= e™é + 2(py + B 'e)TM 10+ 26T7o (20)
which is independent of k. A substitution of (6) and (13) then results in
lleTPe + 2eTPr|| < do |l €|l + di || e]|> + dz || €| 1)

where do > 0, d; > 0 and d> > 0. Particularly dg o ¢o. These constants are independent of k.

The whole discussion of this subsection can be summarized into one sentence: by adjusting
k, one can increase \omin Without affecting || €' Pe + 2¢" Pz ||, which is essential to the
following analysis.

4.2. A polynomial bound for L
Substituting (21) into (12) results in
< dollell = omin— di) || e]> + da || ]| ?
=dx|ell(lell = r)(l| el = r2) (2)

where r; < r; are given by

(Aomin — d1) £ J(Aomin — d1)* — 4dod>

n<r= 2d
2

(23)

They are positive constants if
(Agmin — d1)? > 4dod> Or Agmin > di + 2dod, 24)
This condition can be easily satisfied by a sufficiently large k.
By substituting
lell L
el =—— L -_——_
el =" E=2;
one can express inequality (22) in terms of L
Q) (L -rna)(L - ra) (25)
where «(f) is defined as
T
o= L(t) €' Pe

ele  £le
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When Agmin = pk is sufficiently large, one can write

_nr 2do o @

| =—=

2 (Aomin— d1) + {(homin— d1) — 4dod> Pk

Similarly, it can be shown that

ok
2 & dz
Taking (18) into account, it is not difficult to show
FiQmax % -0 and r;0min di J;g - o as k— o (26)
P 2

According to (25), L < 0 whenever rictmax < Jf < ryamin. In other words, L satisfies the
conditions of Lemma 1. As long as the initial error £(0) is small enough such that

2
L(0) < riokin ’;—% o3 N

then L(¢) is uniformly bounded. It will eventually converge into a final bound given by

lim L(t) < riada e (28)

[~ P 3k
It must be emphasized that a large k& will reduce riamax and enlarge raamin as (26) indicates.
This means that the area of attraction (27) can be enlarged and the ultimate error bound (28)
can be reduced by increasing k alone. Even when k is not large enough to force a large raomin,
the initial condition constraint (27) can be easily satisfied by specifying a smooth desired
trajectory such that ga = ¢ and gq = q at ¢ = 0 (which implies || £(0) || = 0).

4.3. Determine the design parameters

The design parameters are determined by several estimated parameters do, d; and d> given
by (21), as well as Amin and Amax given by (13). If these parameters are not completely available,
some conservative bounds on them can be substituted.

The first step is to fix 8, o and p according to (14). It must be emphasized that (14) is by
no means a necessary condition. It is mainly intended to make Q, as given by (15), a block
diagonal matrix. For analysis purposes, this make it easy to show the positive definiteness of
Q. In fact, there are many other ways to determine these three parameters, such that P and
Q are both uniformly positive definite.

The next step is to choose k. It is subject to four sufficient conditions (17), (19), (24) and
(26). The four inequalities represent four open sets, all of them extending to positive infinity.
Therefore their intersection must be an open set k € (Kmin, + %) wWhere knin is a finite positive
constant. In practice, one can simply determine & by trial and error. The above four
inequalities ensure a stable closed-loop when k is sufficiently large.

The lead + bias controller ‘can be simplified until the bias signal 74 is zero. Thus, do, d; and
d> may be large. However, one can increase k to stabilize the system and make the tracking
error arbitrarily small. This is suitable for industrial applications where another reason to
avoid velocity feedback is to reduce cost, and where the tracking accuracy is not too strict.

Of course, the most effective way to improve tracking accuracy is to reduce do. According
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to (26), riaZax = d3. By substituting (6) and (13) into (20) to derive (21), it is not difficult to
find do & co = supq || 7a + AMGa + ACqa + Ag||. Thus one can reduce the ultimate error bound
(28) by improving the estimated M, C and £. In the ideal case, 74 = 0, M = M(q), C=C(Ga q)
and £ = g(gq), co will be reduced to zero. This means that the tracking errors of the closed-loop
system will eventually converge into zero.

5. SIMULATION RESULTS

A simulation experiment is conducted to demonstrate the performance of a lead + bias
compensator. A two-link planar robot described by

ma)|2|+cao 2]+ e 7]
q1 q2 72
is used as the control object, where

@l cos(qz) + b)amy + B(my + m2) Bmy + hiy cos(qz)mz]
12"‘12 + hil> cos(gz2)m; I%mZ

Mg)= [

CG. q) = | ~Hlm2 sin(@2)dz — hilzm sin(qz)éz]
’ hlxm; sin(g2)q: 0

and

@ = [g(mzlz cos(qi + g2) + (m1 + m2)l; COS(QI))]
£ malag cos(qr + q2)

The parameters are chosen as /1 =0-7, I, =0-5 (metre), m; = 10 and m; = 5(kg).

The bias signal 7, is synthesized with inaccurate parameters /; =0-7, =025 (metres),
m; =10 and m> =1 (kg). The inaccurate parameters of the second link simulate those cases
where the robot carries an unknown payload. The desired trajectory is given by

qa1 = qa2 = 1 — cos(2#t) (radians)

which is a relatively fast movement. The lead compensator is synthesized by
t
7=300y—3000e+7, and ¥+ 300 S = —300e
[¢]

with tracking errors plotted in Figure 2. The relative tracking error is about 6 per cent
measured peak versus peak. The control torques applied to the two joints are plotted in
Figure 3.

In order to observe the performance of the lead + bias controller when the bias signal is zero,
another simulation experiment is conducted where everything is the same as the previous
experiment, except that 7, is an all-zero vector. The tracking errors and control torques are
plotted in Figures 4 and S respectively. It is interesting to note that the tracking error is not
too bad, when the bias signal is missing even because of the large gains used in synthesizing
the lead controller. However, the effect of the bias signal is still obvious: the tracking error
of joint 1 becomes larger. Joint 2 keeps approximately the same performance because its
parameters m» and /> were not correct in the first experiment.
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6. CONCLUSIONS

The robustness of a class of lead + bias compensators is established for robotic manipulators.
The result also applies to adaptive controllers with lead compensation plus an adaptive
bounded bias signal. In order to decouple the effect caused by adapting the bias signal, a
conservative polynomial bound is introduced to describe the worst possible feedback effects.
The closed-loop system is then proved to be uniformly bounded. The area of attraction can
be enlarged and the tracking error can be reduced simuitaneously by increasing the feedback
gain. The simulation result is presented to demonstrate the performance of the lead + bias
compensator applied to a two-link planar robot.
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one has
K3'®.a. = Palh5iaa = Pactar &)
where Kna = diag [knilm] and afy 2 Kgloa.

We suppose that in the right hand side of (5) only the parameter
vector aas is uncertain.’ The desired I4 is then synthesized by

L4 =8a(g, 4y G4)Gak — 7 T(w + £§) (6)

w=w+714 ¢))

W= -2 — 274 ®)

bt = Proj(Gak. —o BT 2). Gac(0) €T 1))

zé&—_ltu+§¢} (10)
! !

where ¢ 2 g — g4 is the joint tracking error; Aak is the estimate
of agx: [ is an arbitrary positive definite constant diagonal matrix;
~.x. and & are positive constants; w and @ are intermediate vectors;
Proj(-.-) is a projection operator, which is constructed as follows.

Choose a set IT = {nak}8imin < Auks < JrmaxVi € {1.n x m}}
with 8 min and 8; max some known real numbers. In this case. the
projection operator defined by

{Proj(Gax- -ob!2)},
0 if Ak = By max and a(B72), <0
"0'(‘1’.1;3): if [0. min < Qaks < 4, mnx]
= or [dukc = 8, max and a'(lI’,’,'z), 2 0]
or [aks = 8 min and a(Bfz) < 0]
0 if Auke = By min and (B 2), >0
an

satisfies

1) dax(t) € T if duk(0) € TI:

2) ||Projip- ]| < llull:

3 —(p-—- p')r.\Pruj(p.y) > —={p- p')’..\y. where .\ is a
positive definite symmetric matrix.

Remarks:

1) The choice of 8, min and #imam is only related to the bound
range of the projection operator and such a range in this paper is
not restricted as long as the estimated parameters are bounded
(required for the stability proof); hence one can always choose
suitable 8, min and #,mam. although such a choice may be
conservative. '

2) It can easily be shown that 4.« does not involve link velocity
measurements, though diax includes the signal ¢. Therefore. I
only needs link position measurements. This fact will be used
later to prove that the controller for the overall system will
depend only on the measurements of I and q.

3) The role of the projection operator is crucial. The boundedness
of the estimated parameters A.; can be guaranteed: as will be
clear from the theorem proof. it is this boundedness that makes
it possible to prove the semi-global stability of the overall
system.

C. Hybrid Adaptive Control for the Actuator Subsystem

We now tumn to the development of a voltage input u. which
_ forces I to zero. However, as shown in [16], using the backstepping
technique [19], we are required to calculate

T4 = (d/dt)(®a(q, dg- a)Gar) — 2Tl + £Q)

where (d/dt)(Padak) = ®oGak + Pabiar. Hence, the calculation
of &, is involved. Also, the calculations of derivative I; require

measurements of the velocity 4. The challenge addressed here is to
design, the control input u without involving the computation of ®a
and the measurements of ¢. In order to do so, we divide the embedded
signals I as

L2 1,+1. (12)
I, 2 ¥'T(v'q ~ w) (13)
I & ®.(q.d0 3008k — 7V T(F +5) (149)
and simply substitute
I, = ¥T(¥*4 - ) = 27'Tw (15)

for I. The effect of the signal I will be compensated in the actuator
subsystem. We note that in (15) the relation #w = —2qw + ~,2<:1 has
been used. So, no velocity. g is involved in (15).

Following [16], it is assumed that the electrical parameters
Kx.L.R. and K. are all of uncertain values. However. there
exist Lg. Ro. and K,,. all known, such that

iIL = Lo|l € 811 R - Roll € 81 |IK. — Koll 03 (16)

_ With the above in mind. the adaptive robust control law. forcing
I = 0. is then synthesized by

u= Lojp + ol + K.oq,

— Galloll + Sl Lall + Sallg ) )sen(D) an
8y = mLH I (L&)
b2 = nel LT (19
&1 = mallall @0

where Iy, I, and I, are defined in (6). (13), and (15), A is given
by 9), 1 i = 1.2.3) are constants which determine the rates of
adaptations.

Remarks:

1) Thanks to the definition of I,. the time derivative of I, does not
involve the velocity measurements, which in tum implies no
velocity measurements in the controller (17). Thus, the cascade
control system only requires the measurements of I and q.

2) 1t is clear from (17), the time-derivative of the manipulator
regressor matrix or upper bounds on the derivatives of the
embedded controls are not involved. Therefore. the difficulty
encountered in [13], [16] is removed.

3) Using the adaptive method, a scheme without using the veloc-
ity measurements was also proposed in [18]. The difference
between adaptive and hybrid adaptive/robust schemes was
discussed in the remark 3) of [16] and the reader may refer
to 1t.

1) Similar to [16], the control law (17) involves the discontinuous
function and may result in chattering behavior. For a discussion
on how to remedy this 1he reader may refer to the remarks 4)
and 3) of [16].

D. Stabilitv Analysis

The stability of the closed-loop system described by (1), (2), (6),
and (17) is established in the following theorem.

Theurem: 1If the robust control voltages u given by (6) and (17)
are applied to the manipulator (1-2), then all closed-loop signals are
bounded and lim/—~ § = O. provided - initially satisfies:

) v 2 max{l.x}:

2) the matrices P and (} in (24) being positive-definite:
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Abstract

This paper considers the position regulation problem for uncertain robot manipulators
in the presence of constraints on the available actuator torques, and proposes two new
controllers as solutions to this problem. The first controller is derived under the assumption
that the manipulator state is measurable, while the second strategy is developed for those
applications in which only position measurements are available. Each scheme consists of
a nonadaptive component for gross position control and an adaptive component to ensure
convergence to the desired position. The controllers are computationally simple, require
very little information regarding the manipulator model or the payload, and ensure that
the position error is globally convergent. The capabilities of the proposed control strategies
are illustrated though both computer simulations and laboratory experiments with an IMI

Zebra Zero manipulator.

1. Introduction

The control objective in position regulation of robot manipulators is to cause the ma-
nipulator to move from its initial state to any goal position specified by the user. This
is also referred to as the position stabilization or point-to-point motion control problem,
emphasizing the fact that only the final position is specified and the intermediate trajec-
tory is not stipulated. It is well-known that simple proportional-derivative (PD) feedback
controllers are capable of globally asymptotically stable regulation of rigid-link robots,
provided that the effects of gravity on the manipulator are compensated. Ordinarily the
requisite gravity compensation is achieved by including a gravity model in the control
scheme, so that the resulting controller possesses a. PD-plus-gravity structure [1].

“Nhile the PD-plus-gravity position control law is simple, elegant, and intuitively ap-
pealing, there are potential difficulties associated with this approach. First, providing
gravity compensation by including a model of the manipulator gravity torques in the con-
trol law can be undesirable because this requires precise a prior: knowledge of both the

structure and the parameter values for this model, including the effects of any payload.
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[13] for very recent progress on this problem).

This paper introduces two new position regulation schemes for uncertain manipulators
with actuator constraints, one which utilizes state feedback and one which is implementable
using only position measurements. Each controller is composed of a simple nonadaptive
compouent which guarantees global convergence of the position to a (small) neighborhood
of the desired set-point, together with a simple adaptive law which then ensures conver-
gence to the goal position. We believe that these controllers represent the first solutions
to the position regulation problem which provide global convergence without information
regarding the manipulator model or the payload and in the presence of constraints on the
available actuation. In fact, to the best of our knowledge there has not yet been proposed a
globally convergent output feedback regulator for uncertain manipulators even in the case
of unconstrained inputs (for example, the controllers [11.12] give semiglobal convergence).
The efficacy of the proposed approach is illustrated though both computer simulations and

laboratory experiments with an IMI Zebra Zero manipulator.

2. Preliminaries
Consider an n degree-of-freedom rigid-link manipulator with joint coordinates 6 € R"

and associated control torques T € R". The dynamic model for this system takes the form
T = H(0)§ + V.c(8,8)8 + G(6) (1)

where H € R"*X" is the manipulator inertia matrix, V.. € R**" quantifies Coriolis and
centripetal acceleration effects, and G € R" is the vector of gravity forces. It is well-
known that the dynamics (1) possesses considerable structure. For example, for any set
of generalized coordinates 6, the matrix H is bounded, symmetric and positive-definite,
the matrix V.. is bounded in 8 and depends linearly on é, and the matrices H and V..
are related according to H = V.. + VL. Additionally, the vector of gravity forces G
is the gradient of a potential energy function and is bounded with bounded first partial
derivatives [2].

The focus of this paper is the position regulation problem for uncertain manipulators
with bounded controls. More specifically, we wish to develop a strategy for specifying
the control input T. using only measurements of the system configuration § and with no
knowledge of the system dynamic model (1), so that (1) evolves from its initial state to the
desired final state 8 = 6,4, 8 = 0 and the control input satisfies the constraint || T(t) ||<
T'naz for some a prior: specified bound Traez. Note that, for completeness, we will address
the state feedback counterpart to this problem as well. It should also be mentioned that,

while we restrict our attention to input constraints of the form || T(t) ||< Tmaz, other

3
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input constraints (such as constraints on the individual components of the input vector)
can be addressed using methods precisely analogous to those emploved in this paper [e.g.,

14).

3. Global Regulation Schemes

We now turn to the development of two strategies for position regulation of uncertain
manipulators with bounded controls. We first consider the case in which it is assumed that
the entire manipulator state is available for feedback, and then show how the proposed
approach can be extended for implementation in those applications in which only position

measuremeits are available.

3.1 State Feedback Case

Consider the following simple (nonadaptive) position regulation scheme:
T = kyysat(€) + kyy’sat(e) (2)

where e = 64 — 6 is the position regulation error (recall that 64 is constant), &y, ke, v are
positive scalar constants, and sat(-) is defined as follows: sat(x) = x if | x ||< € and
sat(X) = ex/ || x || otherwise, where ¢ is a positive scalar. Let Gmaz satisfy || G(6) ||<
Gmaz V0, and assume that Traz > 3Ginaz (smaller lower bounds on Ty, are possible, but
this choice significantly simplifies some of the calculations needed later in the paper). Then
choosing ki, ko, v, € so that k17e < Gmaz ond Gonezr < kav?e € 2Gmaz ensures that the
control input generated by (2) satisfies the input constraint || T(t) ||< Tinaz. Moreover. in
this case the scheme (2) possesses two desirable properties: the closed-loop system obtained
by controlling (1) with (2) has a unique equilibrium 6*. and this equilibrium is globally
asymptotically stable. These properties are established in the following two lemmas.

Lemma 1: The closed-loop system obtained by applying the control law (2) to the ma-
nipulator dynamics (1) has a unique equilibrium 6*, and this equilibrium can be made

arbitrarily close to 4.

Proof: Any equilibrium point of the closed-loop system must satisfy the equation
G(6%) = kavy?sat(8y — 67) (3)

The condition k2y*¢ > Gunur ensures that any equilibrium point must lie in the ball
| 84 — 6 |< €. Inside this ball the condition (3) becomes

G(0s —e) (4)

e =
kay?

4
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Let M be a positive constant satisfying M || 8 — 62 [|12|| G(61) — G(0-2) || Vb,,02 (the
boundedness of the partial derivatives of G ensures that such an Af ¢xists). Then choosing
~ large enongh so that M/k,v?* < 1 ensures that G(#q — e)/kay* defines a contraction
mapping of the e-ball around e = 0 into itself. From this it can be concluded that (4) has
a unique fixed point [15], which implies that the closed-loop system (1),(2) has a unique
equilibrium. Inspection of (3) reveals that || 84 — 8" || can be decreased arbitrarily by

increasing v (and decreasing e correspondingly). |

Lemma 2: The equilibrium point 8* of the closed-loop system (1),(2) is globally asymp-
totically stable.
Proof: Defining E = 6* — § permits the closed-loop system (1),(2) to be written

HE + V..E + kl'ysat(E) +koyisat(E+6,—-0*)—G =0 (3)

Observe that E = 0 is the unique equilibrium point for this system. Let U,(6) denote the

gravitational potential energy of the manipulator and define Ug(E) as follows:

. 3 | E+6a—6" | lell<e
i . 2 [{ —_—
Ve = {e | E+6a—06" || —3¢® otherwise (6)

Consider the Lyapunov function candidate
- 1 = - 9 -
Vi = SETHE+ kyy*Ug(E) + Uy(8) - Uy(67) — 6 " (7)

where §; is a scalar constant chosen so that V; is nonnegative. It can be verified through
straightforward (but tedious) calculation that V; is a positive-definite and proper function
of the closed-loop system state if 7 is chosen sufficiently large 