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BETER Principle of Work and Energy

0

Figure 19.1
A system of particles. The vector r; is the
position vector of the ith particle.

Figure 19.2
Particles 1 and 2 and the forces they exert
on each other.

We will show that the work done on a rigid body by external forces and cq
ples as it moves between two positions is equal to the change in its kinet
energy. To obtain this result, we adopt the same approach used in Chapter |
to obtain the equations of motion for a rigid body. We derive the principle of
work and energy for a system of particles and use it to deduce the princip
for arigid body.

Let i, be the mass of the ith particle of a system of N particles. Let r,
the position of the ith particle relative to a point O that is fixed with respect tog
an inertial reference frame (Fig. 19.1). We denote the sum of the kinetic
energies of the particles by

T = E %nhvi . VI" (19.

i
where v, = dr,/dr is the velocity of the ith particle. Our objective is to rela
the work done on the system of particles to the change in 7. We begin with
Newton's second law for the ith particle.

- d
2 £, - fE = [—[; (m,v,-).

where f;; is the force exerted on the ith particle by the jth particle and fEis
the external force on the ith particle. We take the dot product of this equation
with v; and sum from/ = [ to V:

St + D fF - S %(m; v,). (19.2)
! / i ! ¢

We can express the term on the right side of this equation as the rate of
change of the total kinetic energy:

d d | dT
2 vt —(m,-v,-) = — — v v =
dr dr 2 dt

i

Multiplying Eq. (19.2) by dr yields

SN de + SUE - dr, = JT
et ed ! : i

i 7
We integrate this equation. obtaining

rir): Fir:

< S‘j £, dr, + S‘/ tFede =T, - T, (193
(r:) ‘ {r)

[

med P
t K !

The terms on the left side are the work done on the system by internal and
external forces as the particles move from positions (r,-)l to positions (r) W
see that the work done by internal and external forces as a system of pal'tide5
moves between two positions equals the change in the total Kinetic energy of
the system. C
If the particles represent a rigid body. and we assume that the internal
forces between each pair of particles are directed along the straight line b?‘,
tween them, the work done by internal forces is zero. To show that this 5
true. we consider two particles of a rigid body designated 1 and 2 (Fig. 19.2)




The sum of the forces the two particles exert on each other is zero

flz +f,) = 0), so the rate at which the forces do work (the power) is

fo-vi+ By vy =6 (v, ~ Vi)

nd Ccou-

kinetje e can show that £, is perpendicular to v, — v;. and therefore the rate at
\pter 18 hich work is done by the internal forces between these two particles is zero.
ciple of _Because the particles are points of a rigid bodyv. we can express their relative

rinciple elocity in terms of the rigid body’s angular velocity @ as

Vo=V = w X (r, — r). 194
etr; be S (r; =) (194
spect to This equation shows that the relative velocity V- — v, is perpendicular to
kinetic , — Ty, which is the position vector from particle 1 to particle 2. Since the

rce £ is parallel to r, — 1y, it is perpendicular to v, — v,. We can repeat
is argument for each pair of particles of the rigid body, so the total rate at
(19.1). hich work is done by internal forces is zero. This implies that the work done
internal forces as a rigid body moves between two positions is zero.
Therefore, in the case of a rigid body, the work done by internal forces in
. (19.3) vanishes. Denoting the work done by external forces by U,,, we
tain the principle of work and energy for a rigid body: The work done by
external forces and couples as a rigid body moves benveen nvo positions
équa[s the change in the total kinetic energy of the body:

J relate’
in with

d e is Upo=T, — T, (19.5)
juation
We can also state this principle for a svsrem of rigid bodies: The work done by
ternal and internal forces as a svstem of rigid bodies moves benwveen nvo
sitions equals the change in the total kinetic energy of the svsteni.

(19.2)

rate of

2EPT Kinetic Energy
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The kinetic enerey of a rigid body can be expressed in terms of the velocity
f the center of mass of the body and its angular velocity, We consider first
eneral planar motion and then rotation about a fixed axis.

eneral Planar Motion
ce 2N :

2 £t us model a rigid body as a system of particles. and let R, be the position
€ctor of the ith particle relative to the body's center of mass (Fig. 19.3). The
DPosition of the center of mass is

E N
— i

r . (19.6)

m

1al and
o We
wrticles
orgy of

nterﬂa1 .

ne be- here s is the mass of the rigid body. The position of the ith particle relative

00 is related to its position relative to the center of mass by

r,=r+ R, (19.7)

Figure 19.3
Representing a rigid body as a system of
particles.
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Figure 19.4

(a) A coordinate system with the - axis
aligned with L.

(b) The magnitude of k X R, is the

perpendicular distance from L to m,.

and the vectors R; satisfy the relation
E m R, = 0. (19.8)

The kinetic energy of the rigid body is the sum of the kinetic energies of jg
particles. given by Eq. (19.1): '

r= 2 %’nivi A (19.9)

i
By taking the derivative of Eq. (19.7) with respect to time, we obtain
dR,
vi=v o+ —L
dt
where v is the velocity of the center of mass. Substituting this expression into
Eq. (19.9) and using Eq. (19.8). we obtain the kinetic energy of the rigid body
in the form ’
I dR;, dR,
T =imv’ + - — 19.10
: E 27 dr dr (
where v is the magnitude of the velocity of the center of mass. :
Now. let L, be the axis through a fixed point O that is perpendicular to
the plane of the motion, and let L be the parallel axis through the center of
mass (Fig. 19.4a). Then. in terms of the coordinate system shown, we can .
express the angular velocity vector as @ = wk. The velocity of the ith parti-
cle relative to the center of mass is dR,/dr = wk X R,. s0 we can write
Eq. (19.10) as

T =1imv + ! [ ZIH,“\' X R,) - (k X R,)sz. (19.11) )

i

The magnitude of the vector k X R; is the perpendicular distance ry from Lo -
the ith particle (Fig. 19.4b). so the term in brackets in Eq. (19.11} is the mo-
ment of inertia of the body about L:

Dk x R)-(k XR)= >k x R = > omri =1
! ; F
Thus. we obtain the kinetic energy of arigid body in general planar motion in
the form

T = %mv: + %Iwz. (19.12)

\ Plane of
e \\ the motion
/ v
/ y

) / v
\ m; | ‘ ’\ m; ’
R,
r.=[R,|sin 8 ; -
=lkx R} Aﬁ -
- k
< - \\'




The kinetic energy consists of two terms: the rranslational kineric energy,
xpressed in terms of the velocity of the center of mass. and the rorational
(19.8; inetic energy (Fig. 19.5).

s ofis - % rixed-Axis Rotation

An object rotating about a fixed axis is in general planar motion. and its
netic energy is given by Eq. (19.12). But in this case there is another
xpression for the kinetic energy that is often convenient. Suppose that a
id body rotates with angular velocity w about a fixed axis O. In terms of
e distance d from O to the center of mass of the body, the velocity of the
enter of mass is v = wd (Fig. 19.6a). From Eq. (19.12), the kinetic energy is

(19.95

sion intg T = im(wd)* + o' =1 + d*mo

ccording to the parallel-axis theorem. the moment of inertia about O is
= [ + d%m. so we obtain the kinetic energy of a rigid body rotating about
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.
mvt + Lo’

Figure 19.5
Kinetic energy in general planar motion.

(19.108 xed axis O in the form (Fig. 19.6b)
T =i o' (19.13)
licular
center of
we cam
ith part-; v=ad
ar WriE
o 7=l
, ~d Figure 19.6
(19.1% (a)y Velocity of the center of mass.
thy Kinetic energy of a rigid body rotating
Tom L @ fal (b about a fixed axis.
; the mo-
o=
notion I (I Jc i Work and Potential Energy
(19.1 The procedures for determining the work done by different types of forces

nd the expressions for the potential energies of forces discussed in Chap-
r 15 provide the essential tools for applying the principle of work and ener-
y to a rigid body. The work done on a rigid body by a force F is given by

{reh
Un=/ F - dr,. (19.1:4)
(r,

\
it

Where r, is the position of the point of application of F (Fig. 19.7). If the
0int of apphcatlon is stationary, or if its direction of motion is perpendicular
oF, no work is done.

A force F is conservative if a potential energy V exists such that

F-dr,=—dV. (19.15)
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Figure 19.7

Tae work done by a force on a rigid body
is determined by the path of the point of
aoplication of the force.

In terms of its potential energy, the work done by a conservative force F is

{r,h V.
U = / F-dr, = / —dV = ~(V, = V).
lr?‘h Jv,

where V; and V, are the values of V at (rp), and (rp)z.

If a rigid body is subjected to a couple M (Fig. 19.8a). what work is done
as the body moves between two positions? We can evaluate the work by
representing the couple by forces (Fig. 19.8b) and determining the work done
by the forces. If the rigid body rotates through an angle d# in the direction of
the couple (Fig. 19.8¢). the work done by each force is (LD dY)F. so the total
work is DF df = M d8. Integrating this expression. we obtain the work done
by a couple M as the rigid body rotates from ¢, to 6, in the direction of M:

6, :
Us = / M do. (19.16)
4

e~ lpag

Figure 12.8
al A rigid body subjected to a couple. M
‘b) An equivalent couple consisting of two

forces: DfF = M. 1pdg
2) Determining the work done by the 2
forces. ) (h) (e

If M is constant. the work is simply the product of the couple and the angular
displacement:

U = M8, — 6,). (constant couple).
A couple M is conservative if a potential energy V exists such that
M db = —dV. (19.17) -
We can express the work done by a conservative couple in terms of its potett-

tial energy:

' Vs,
U, = / Mdf = / —dV = —(Vs = V).
J, JV



For examrie. in Fig. 19.9, a torsional spring exerts a couple on a bar that is
'proportion,zl to the bar’s angle of rotation: M = —k§. From the relation

M db = —~k8do = —dV,
we see that the potential energy must satisfy the equation

dv
d6

spring is
Fis
 If all the forces and couples that do work on a rigid body are conser-
i vative. we can express the total work done as the body moves between two
15 done sitions 1 and 2 in terms of the total potential energy of the forces and
vork by uples:
srk done )
:ction of - U,=V, — V.
the total ) )
srk done Combinirg this relation with the principle of work and energy, Eq. (19.5). we
M- ' conclude that the sum of the Kinetic energy and the total potential energy is
constant—energy is conserved:
v -0 = cons
T + V = constant. (19.19)
I The resuits we have presented in Sections 19.1-19.3 can be used to relate
~3Ddo changes in the translational and angular velocities of an object to a change in

its position. This typically involves three steps:

1. Idenzifv the forces and couples that do work. Use free-body diagrams to
~ determine which external forces and couples do work.

2. Appév the principle of work and energy or conservation of energy. Either
. equzze the total work done during a change in position to the change in
the kinetic energy. or equate the sum of the kinetic and potential energies
at tw'o positions. '

Determine the kinematic relationships. To complete the solution, it will
often be necessary to obtain relations between velocities of points of

rigié bodies and their angular velocities.

Study Questions

Wha: is the principle of work and energy for a rigid body?

What is the kinetic energy of a rigid body in general planar motion?

How do you determine the work done by a couple acting on a rigid body in
planzr motion?

If ali of the forces and couples that do work on a rigid body are conservative.
what can you infer about the sum of the kinetic energy of the rigid body and
the total potential energy?
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(b)

Figure 19.9

(a) A linear torsional spring connected to a
bar.

{(b) The spring exerts a couple of
magnitude k6 in the direction opposite
that of the bar’s rotation.



Figure 19.10
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distance b.
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mg sin B

mg cos

center and the an
velocity when the disk has moved a

Applying Work and Energy to a
Rolling Disk

A disk of mass m and moment of inertia / is released from rest on an inclineg
surface (Fig. 19.10). Assuming that the disk rolls, what is the velocity of it
center when it has moved a distance 57

Strategy

We can determine the velocity by equating the total work done as the disk
rolls a distance b to the change in its kinetic energy.

Solution

Identify the Forces and Couples That Do Work We draw the free—bédy
diagram of the disk in Fig. (a). The disk’s weight does work as it rolls. but the
normal force N and the friction force 7 Jo not. To explain why the friction
force does no work, we can write the work done by a torce F as

eyl o dr i8
/ F-dr, = / F-—dr = / F v, dr.
Jirghy Juy i Ju :

where v, is the velocity of the point of arplication of F. Since the velocity of
the point where f acts is zero as the disk -olls. the work done by f is zero.

Apply Work and Energy We can determine the work done by the weight
by multiplying the component of the weizht in the direction of the motion of
the center of the disk by the distance #:

Uy, = {mgsinB)b.

Letting v and @ be the velocity of the canter and the angular velocity of the
disk when it has moved a distance » Fig. b). we equate the work to the
change in the disk’s kinetic energy:

mghsinf = Sme* + o - 0. (19.20)

Determine the Kinematic Relationship The angular velocity w of the

rothing disk is related to the ve locny by w = /R Substituting this relation
into Ea. (10.20Y and solvi ;

£q. (19.20) and solviy
[ 2gbsinp
N1+ 1/mR*

Discussion

Suppose that the surface is smooth. so that the disk slides instead of rolling
[n this case. the disk has no angular velocity. so Eq. (19.20) becomes

mghsinB = fme® ~ 0.

and the velocity of the center of the disk s

v = V2ghbsinf.



e velocity is greater when the disk slides. You can see why by comparing
the two expressions for :he principle of work and energy. The work done by
the disk’s weight is the same in each case. When the disk rolls, part of the
work increases the disk’s translational kinetic energy, and part increases its
rotational kinetic energy. When the disk slides, all of the work increases its
translational kinetic energy

clined
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Example 19.2

Applying Work and Energy to a
Motorcycle

Each wheel of the motorcycle in Fig. 19.11 has mass my = 9 kg, radius
= 330 mm, and moment of inertia / = 0.8 kg-m*. The combined mass of
1he rider and the motorcyele, not including the wheels, is me = 142 kg. The
motorcycle starts from rest. and its engine exerts a constant couple
M = 140 N-m on the rear wheel. Assume that the wheels do not slip. What
horizontal distance b must the motorevele travel to reach a velocity of 25 m/s?

e diskk :

-body
ut the
fiction

of the
to the .
9.20)
of the
Jation
of work and energy to the system consisting of the
luding its wheels. to determine the distance b.
ine
olling. - Determining the distance b requires three steps.

Identify the Forces and Couples That Do Work We draw the free-body
diagram of the system in Fig. (a). The weights do no work because the mo-
tion is horizontal. and the forces exerted on the wheels by the road do no
work because the velocity of their point of application is zero. (See Example
19.1.) Thus. no work is done by external forces and couples! However. work

Figure 19.11

—
g mcg /

\\\\ . ?m)\g,/" \-u_l"_

h

Y ?B v
¥

(a) Free-body diagram of the system.
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is done by the couple M exerted on the rear wheel by the engine (Fig. b). Al
though this is an internal couple for the system we are considering—the rigi’
wheel exerts an opposite couple on the body of the motorcycle—net work i syst
done because the wheel rotates whereas the body does not. '

(b) Isolating the rear wheel.

Apply Work and Energy If the motorcycle moves a horizontal distance b,
the wheels turn through an angle b/R rad. and the work done by the constant -

couple M is
’ b
Ul: _ ,‘/[(('): — ()1) = \/I(E .

Let ¢ be the motoreyele™s velocity and w the angular velocity of the wheels
when the motorcycle has moved a distance b. The work equals the change in
the total kinetic energy:

/ 5 - s g
M(;i) =Lmer? + 2(3my 7 + o) = 0. (192

Determine Kinematic Relationship The angular velociny of the rolling -
wheels is related to the velocity ¢ by w = v/R. Substituting this relation into
Eq. (19.21) and solving for b, we obtain

(1 I\ Rv
b= \\Em(" + my + R:) [y
! 0.8 0.33)(25)°
= {-(m_) +(9) + ( ),} (033)
2 (0.33)" (140)
=129 m.
Discussion

Although we drew separate free-body diagrams of the motorcycle and its redl -

wheel to clarify the work done by the couple exerted by the engine, notice
that we treated the motorcycle. including its wheels, as a single system in ap
plying the principle of work and energy. By doing so. we did not need to €08
sider the work done by the internal forces between the motorcycle’s body




wheels. When applying the principle of work and energy to a system of

rigid bodies. you will usually find it simplest to express the principle for the

system as a whole. This is in contrast to determining the motion of a system

of rigid bodies by using the equations of motion, which usually requires that

you draw free-body diagrams of each rigid body and apply the equations to
them individually.

ctoAl
NZ—the
work is

19.3 Work and Potential Energy
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pomn—

Applying Conservation of Energy to a
Linkage

The slender bars AB and BC of the linkage in Fig. 19.12 have mass m and
length £, and the collar C has mass mc. A torsional spring at A exerts a clock-
se couple £ on bar AB. The system is released from rest in the position
p = 0 and allowed to fall. Neglecting friction. determine the angular velocity
w = df/dr of bar AB as a function of 8.

ance b, ¢ Solution

onstant
. ldentify the Forces and Couples That Do Work We draw the free-body

diagram of the system in Fig. (a). The forces and couples that do work—the
~weights of the bars and collar and the couple exerted by the torsional
spring—are conservative. We can use conservation of energy and the kine-
matic relationships between the angular velocities of the bars and the velocity

wheels . e -
wnge in of the collar to determine w as a function of 4.
Apply Conservation of Energy We denote the center of mass of bar BC by
G and the angular velocity of bar BC by wye (Fig. b). The moment of inertia
19.21)
rolling
on into

'ts rear
notice
in ap-

Datum

velocity of the collar.

(b) Angular velocities of the bars and the

Figure 19.12
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of each bar about its center of mass is / = {5 m/”. Since bar AB rotates aboyt
the fixed point A, we can write its kinetic energy as
I

Towap = s L0 = %[[ + (%Z)'m]wz = tmliw’.
The kinetic energy of bar BC is

Tow e = VG + Hwhe = $mvg + 5 mlPwie.
The kinetic energy of the collar C is

-1 2

Tcollur = 3Mmelc.
Using the datum in Fig. (a), we obtain the potential energies of the weights:
Vbar.—tB - VbarBC + Vcollar = HZgG‘ICOS 6) + I?Zg(iil €os 6) + ]”Cg(?‘l COSG).
The potential energy of the torsional spring is given by Eq. (19.18):

Viprine = 3 K67

spring

We now have all the ingredients to apply conservation of energy. We equate
the sum of the kinetic and potential energies at the position 8 = 0 to the sum
of the kinetic and potential energies at an arbitrary value of 6:

T, +V, =T + W

- ‘ 22 AN NS 2

0+ 2megl = 2megl = tmlPw® + Yl + symlPoye + Smevd
+ 2mglcos® + 2m-glcosf + ‘3/\'92.

To determine w from this equation. we must express the velocities v;. v., and
wge 0 terms of w.
Determine Kinematic Relationships We can determine the velocity of
point B in terms ot w and then express the velocity of point C in terms of the
velocity of point B and the angular velocity wy, .

The velocity of B is

s

Vp =Vt @, XTIy,
i j k|
=0+ 0 0 w
~[sinf [lcosf O

—lwcosfi — [wsind].

Il

The velocity of C. expressed in terms of the velocity of B. is

Ve = Vy + wye X Tey
i i K
= —lwcosfi — lwsinbj + 0 0 Wy -
[sinf [cos® O
Equating i and j components, we obtain

Wpe = —w, Ve = —2lwsinb.

(The minus signs indicate that the directions of the velocities are opposite 10
the directions we assumed in Fig. b.) Now that we know the angular velocity
of bar BC in terms of w, we can determine the velocity of its center of mas$
1n terms of w by expressing it in terms of v




S 4bony Vo = Vg + wpc X Igp
i j k

—lwcoshi — lwsinfj + 0 0 —w
Llsin 3lcosé O

—Llwcos i — 3w sindj.

H

_qubstituting these expressions for wge, Ve, and v into our equation of con-
arvation of energy and solving for w, we obtain

{281@1 + me)(1 = cos@) — %kgz}m
R
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Power

‘The work done on a rigid body by a force F during an infinitesimal displace-
ment d 1, of its point of application is
F-dr,
‘We obtain the power P transmitted to the rigid body—the rate at which work
is done on it—by dividing this expression by the interval of time «t during
which the displacement takes place. We obtain
P=F-v,. (19.22)
where v, is the velocity of the point of application of F.
Similarly, the work done on a rigid body in planar motion by a couple M
during an infinitesimal rotation /@ in the direction of M is
M d6.
Dividing this expression by dr. we tind that the power transmitted to the rigid
body is the product of the couple and the angular velocity:
P = Muw. (19.23)
The total work done on a rigid body during an interval of time equals the
change in kinetic energy of the body, so the total power transmitted equals the
rate of change of the body’s kinetic energy:
_dT

de’
The average with respect to time of the power during an interval of time from

t[t0f3 is
1 T 1 T 7. — T,
P, = — Pdt = —— dT = ——.
L= nJ, L = I Jr, L=

This expression shows that we can determine the average power transferred to
or from a rigid body during an interval of time by dividing the change in
kinetic energy of the body. or the total work done. by the interval of time:

T‘W - T Uv
P = —— ! = 12 . (1924)
I =1 L=

O




FIGURE 6.1 The inertia tensor of an object describes the object’s mass
distribution. Here a vector A P locates the differential volume element. dv.

_ The inertia tensor relative
to frame {A} is expressed in the matrix form as the 3 x 3 matrix:

-1 —I

I:x::c Ty Tz

Al= -1, I -I,. |, (6.16)

vy

_Izz —Iyz Izz

where the scalar elements are given by

L= [ [ ] W+,
v
Iyyz///($2+z2)pdv,
v
o [ [ [+
v

1., = / / / zy pdv,
R A RV A V2

I“:/// xz pdv,

v

Iy,_:/// yz pdv,
Jv

where the rigid body is composed of differential volume elements, dv,
containing material of density p. Each volume element is located with a
A T . .
vector, “P = [z y 2]", as shown in Fig. 6.1.
The elements I, [, and I, are called the mass moments of in-
ertia.

(6.17)



R X AMPLE 6.1

Find the inertia tensor for the rectangular body of uniform density
p with respect to the coordinate system shown in Fig. 6.2.

b's

FIGURE 6.2 A body of uniform density.

First, we compute /.. Using volume element dv = dz dy dz, we get

h l w
I, = / / / (y* + 22)pdzdydz
o Jo Jo
hoopl
- / / (v + 2%)wpdydz
o Jo
h 713

-,

_ (hlsw N h%w\ )
\ /

a
3 3

(l—3— + zzl> wpdz (6.18)

= g—L (12 +hz),

where m is the total mass of the bod

. y. Permuting the terms, we can get
I, and I,, by inspection:

m
Ly = 5 (w* +1?) (6.19)



and

I,,=—(®+w?).

zz s

w| 3

We next compute I,

h l w
I, :/ / / zypdrdydz
o Jo Jo
h ! 2
Jo Jo 2

h 272
w*l
= pdz
/0 1

ki1’
= —wl.

4

Permuting the terms, we get

m

I, = Zhw
and .
| Iye = h.
Hence the inertia tensor for this object is
T (12 +h?) - 2wl ~ Zhw
Al=| =Zwl  Z(w*4+h?) N

~Zhw ~hi = (12 +w?)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)



MECH-480, Advanced Control Theory

3-1

.Comments

Theory

Part II1
State-space representation of mechanical dynamic
systems

3.1 Kinetic and potential energy. Momentum.

The kinetic energy of a particle of the mass m is
K= Lmi? = Ly (3.1)
2 2

where r is the position vector.
The work done by a force f acting on a particle is
oW =f or

W:jﬁdr (3.2)

Definition 1.

If the work done by a force on a particle when it is moved
between any two points is independent of the path taken,
then the force field is said to be conservative.

Definition 2.
The potential energy of a particle situated at a point in a
conservative field is the work that would be done by the

force on the particle if it were moved from that point to some
standard ("zero-level") position.

V()= [ f(r)-dr (3.3)
where r, is the vector of the zero-level position.

Then, if a particle move between points r, and r,we have
) o Ty
W=[f-dr=[fdr—{fdr=vV)-Vir,) G4

Since this result applies to any arbitrary points r; and r, we
have for conservative forces

f=—grad v=-(§—‘;i+%j+%kj (3.5)

In any conservative field the force is equal to minus the
gradient.of its associated potential energy.
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3-2

Comments

Theory

Proposition 1.

The sum of the kinetic and potential energy of a particle is
constant through the motion if, and only if, the only forces
which do work are conservative.

Definitions 4.
Linear momentum is p = mr = my (3.6)
Angular momentumis h=rXmf =rXp (3.7)

3.2 System of particles

Definition 5.
The centroid (or "mass center") of a system of particles is the
point denoted by the vector 7 relative to the origin, where

N N
szZmiri ; m:Zmi (3.8)
i=1 i=1

Proposition 2.

The kinetic energy of a system of particles relative to a given
frame of reference is equal to the sum of two parts, (a) the
kinetic energy of the system calculated relative to a frame
with origin at the centroid and axes parallel to the given
frame, and (b) one-half the product of the total mass of the
system and square of the velocity of the centroid

K—lﬁm 52 4 L2 (3.9)
5 2P T :

i=1

N
Potential energy is V= 2 V;
i=1

Proposition 3.

The total angular momentum of a system relative to a given
frame of references the sum of two parts, (a) the total
angular momentum of the system about its centroid using
axes parallel to those of the given frame, and (b) the angular
momentum of a hypothetical particles with mass equal to that
of the system moving with the centroid relative to the origin

N
h=> p,xmp; +Fxmi (3.10)
i=1
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3.3 Generalized (Lagrangian) coordinates.

Definition 4
The generalized coordinates (g;) are any set of n parameters
which completely determine the configuration of the system
at any time

r.,=r(q,,9,--9,); n<3N (3.11)

Differentiating (3. 11)
<9r .

j=1 é’qJ
we can write for the kinetic energy

. o © ..
K= Zm (Z“—%J _52 D audid  (3.13)

i=l k=l

(3.12)

where

D Guk=12, ..,
Z ’a a (J n)

Dk —“k;-

Definition 5.
Virtual displacement is any set of infinitesimal displacement

or,, Or,, ..., or, that is consistent with the constraints.
or;
dr, _2 LSq, (3.14)
l j=t aq/ !
Definition 6.

Virtual work is the work done by the forces acting on the
particles of a system when they are subjected to a virtual
displacement.

N
zzfi-sri (3.15)
i=1
Introducing generalized forces

W =3.0,64
=1

~
(O8]
[y
)
N’
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and using (3.14) we obtain

n N N n ar
2Qj6q]’ =Zfi ’ 6ri = Zfz -za—’qu
j=1 i=1 =1 j=194;

N
Then 0, =2f,-07i (3.17)

Note.
The common and convenient way to determine Q; is to make

a small changes in only one generalized coordinate g; and
calculate corresponding or; and 6W.

3.4 The Lagrange (Euler - Lagrange) equation.

The dynamic behavior of a holonomic system with n
generalized coordinates (n degree-of-freedom) can be
determined by equations

d K OJK
siag o 2 ¢ " G149
If all the forces are conservative, then
=V =12, (3.19)
3%‘
ond doK oK _ Vv (3.20)

dt g, dg, g
Introducing the Lagrangian by

L(q.9) = K(q,9)— V(q) (3.21)
we have

JK JL JL JK oV

—=— and —=—-—-—

g g I, dq; dg;

Substituting into (3.20) we obtain the Lagrange equation for
conservative systems

da_a_
dt 9g; dg

(3.22)

In general case of conservative and non-conservative forces
the Lagrange equation is

———-—=0 (=12,..,n) (3.23)




(i) Example 6.1.1 Single-Link Manipulator

Consider the single-link arm shown in Figure 6-1, consisting of a rigid
link coupled through a gear train to a DC-motor. Let 8, and 8,, denote
the angle of the link and the angle of the motor shaft, respectively.

Then 6, = —1—17—6,,, where n:1 is the gear ratio. The kinetic energy of the

system is given by )

]/1],716,271 + l/lj,é~ (6130)

t

ol Ju + ] /el

where J,,, ] are the rotational inertias of the motor and link, respec-
tively. The potential energy is given as

V = Mgi{l —cos(8,)) = Mgi(l-cos(8,,/n)) (6.1.31)

K

H

where M is the total mass of the link and ¢ is the distance from the
joint axis to the link center of mass.

I

i W FIGURE 6-1

Bm Single-link robot.

Therefore the Lagrangian L is given by

L = ")l)y + J/n¥02 - Mgr(l ~ ¢08(0,,/n)) (6.1.32)

Substltutl'ng this expression into the Euler-Lagrange cquations yields
the equation of motion

(Jm + J/n)B,, + Mgéisz’n(e,,,/n) =1 (6.1.33)

\ 11
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Kinetic energy of the car:

T—1M'2

Kinetic energy of the bob:
1 ] L]
T, = 5m(y; + 23)
v, =y+1sinf y,=y+16cosl.

z, =lcos@ Z,= —IBsinéd.
A 2

=T, +T, =EM}F‘+Em [[:}F—I-.ilﬁ' cos ) —I—i‘E‘.sin‘E]
1

== M2 + -m[7>+2j8lcosd + 126 ]

-
=

V=mgz, = mglcosb

nnnnnnnnnn
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Lagrangian function:
L= T—V=%[M—|—m]jr: + ml cos 8 78 +%mi:ﬂ': —mgl cos @

Lagrange’s equations:

i(a_ﬂ)_ﬂ_ﬂ_ oL | |
dt \ay v a—j}=[M+m]y+mEmsEE
d faL\ 8L oL _
sy m_o -
dt \a8 ag ﬂjﬂ

— =mlcos@y +ml<é

de g

dl. L g

55 = Myl sin

(M+m)y+mlcos68 —mlo*sind = f

mlcos 8y —mlsingy 8 + ml*8 —mglsing =0

uuuuuuuuuu

uuuuuuuuuu



Pendubot

The Pendubot is an underactuated mechanical system
with two degrees of freedom, which has been invented
and designed by M.\W. Spong and D.J. Block.

_ nEncoder 1
L Motor
] [ |

<13 S | Table §

O
)
—1

Encoder 2




Modeling the Pendubot System by
Using Lagrange’'s Equation




1 1.7 1

I, = Emlg;ﬂf +EI1[?1‘ Vi=myl,g sin(q,)
Lo o oy, ] . .
1, :Emz(xi +y2)+512(q, +q,) Vo= ng[glmﬂ(’:ﬁ)"‘gﬂ 5111(‘?1""?:}]

v, =1, cos(q,)+1,, cos(q, +q,)
v, =l sin(q,) +1,, sin(q, +q,)

,=-1sin(g,)q, -1 ,sin(g,+q,) (G, +q,)
v, =1 cos(q,) g, + 1, cos(q,+ 4, ) (4, + ;)

1 L
T?-_:E [31’?1 ‘HT (’?1 ""?ﬂ + 24,4, J"‘E‘Tl{:: CUS[?:H% ""?1‘?:)]

| .
'['E‘I:':‘-'fl"":f:]"

nnnnnnnnnn

uuuuuuuuuu



L=1+1,-V =V,

1 1 2L
m’lfdﬁ "‘ZI@H + 5, A6 +1; ['f:?r +4, "'2‘?1‘?) z‘rl‘icz':ﬂs(‘?:)(g:_"'*;"1‘?:_)]

1 : . : -
-+-§lz(qI +q,)" —ml, g sin(g,) _ng[zl Sm(qi) +l Sm(gl +G’;)]




gran

d::

e’'s equations:

d cL B cL

dt dq, 0og,

z{mlffl +m, [Ef +12+ 211, EDS(QE)]-FII +Il}'g'r1

Jr{a'w2 [ff; +1,_, cos(q, )]+Il }'5};; —myll, sin(q,)q,’

2myll, sin(¢q, ) ¢,q, +(ml,, +myl ) gcos(g, ) +myl g sin(g, +¢,)

[

O_d 8L &L
- dtdg, &g,

=[m;fi +myll, cos(q, )+1, ]gl +(F’?’Il.|',?i +I;) g,

+myl[, sin (fj’;) ‘3’11 +m,[_, g cos ( 4, + ‘3"1)




@,
g}] dy, =ml; +m,[I7 +12, + 211 _, cos(g,)]+1, +1,
=dyy = my[I7; + 211, cos(g,)]+1,

d,
d, mlfi +1,

2

h=-mll,sin(qg, )«

@, =(ml, +my) ) gcos(qg,)+m,l,gcos(q, +q,)

_ ¢, =ml, g c08(g; +4,)
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