—— , =

STATE-SPACE REPRESENTATION OF DYNAMIC SYSTEMS

A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this sec-
tion we shall present methods for obtaining state-space representations of continuous-
time systems.

State-space representation of nth-order systems of linear differential equa-
tions in which the forcing function does not involve derivative terms. Consider
the following nth-order system:

n n-1 I ’
(y) (ly )+ "oty a,—1y + a,y =u (3_34)

Noting that the knowledge of y(0), y(0), . ("-20) together with the input u(¢) for
t=0, determmes completely the future behav10r of the system, we may take y(t)
P (O y{t) as a set of n state variables. (Mathematically, such a choice of state vari-



ables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define

R

X, =y
(n—1)

'tll = y

Then Equation (3-34) can be written as

) =2
X =Xy
Xn-1 = X,

X = QX — - —ax, + u



x = Ax + Bu (3-35)
where
- - [ @ oty 0]
i 0 1 0 0
X,
X = , A= . B =
0 0 0 1 0
xn
SR —a, —4, —4,, " —a Ll
The output can be given by
-xl.
X,
y=[120 0]
xn
-

or
y = Cx (3-36)
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.Where

C=[1 0 - g

[Note that D in Equation (3-27) is zero.] The first-order differential equation, Equation
(3-35), is the state equation, and the algebraic equation, Equation (3-36), is the output
equation. A block diagram realization of the state equation and output equation given
by Equations (3-35) and (3-36), respectively, is shown in Figure 3-13.

Note that the state-space representation for the transfer function system

Y(s) 1
5] SR (e L TR R a, ;s +a,

is given also by Equations (3-35) and (3-36).

State-space representation of nth-order systems of linear differential equa-
tions in which the forcing function involves derivative terms. If the differential
equation of the system involves derivatives of the forcing function, such as

(n) (n—1) . () (n—1) .
ytay +---4+a_y+ a,y =bu +bu '+ .. . + b_jit + bu (3-37)
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X, =y — Bou
x2=y—,30i4—,31u=5c1—,31u

X3 = y— Bout — B — Bou = Xy~ Bou (3—38)

© (n-1) (n—1) (n—2)

X, =y~ Bt ~ Bu -7 Bu-ait = Bp-1tt = X1 — Bnalt
where Bo, B1, B2, - - - » B are determined from
Bo = bo
B,=b~ a,fBo
By = by~ a,p, — a, Bo
Bs = b3 — a,f, — a, B, — a3 Bo (3-39)
i, Sl af,1— " a,-1P1 ~ a,Po

With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

Xy = Xp T Pyt
X, = X3 + Pt
(3-40)

S0 e
............
.....




where

Us) s"+as" ' +---+a,5+a,

Xyl X2 x1=y
SESEY — | -
\ Y Y
a an.} an
" S—
Y(S) = bosn + bls"_l Ao + bn—ls + bn (3_43)
X = Ax + Bu (3-41)
y=Cx+ Du (3-42)
(0 1 o0 0
0 1 0
0 0 0 1
—a, —a,, —a,, - —a,
=[1 0 = B, = b,




Bo = by
By = b, —af
B, =by, — a\f, — a,f,
Bs=bs—apB, - a,B, — a3, (3-39)
ﬂn = bn i alan—l s an—hBl - anﬁo
Y 4 4
Bn-l Bl

A 4

@
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d?y dy du
™ag b(dt dz)_k(y_“)
or
d?y dy du
—=+b-—=+ky=b—
m—3 bdt ky bdt+ku
v+—°+5 —3a+5
e 4 m Y m m s

with the standard form
y +ayy +ayy = boit + byu + byu
and identify a1, az, bo, b1, and b, as follows:

b k
a, = —, a, = —, b0=0, blzé-’ b-,=—k—
it 4 m  m
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Br=0b,—aff; —afy = L3 . (2)

m
Then, referring to Equation (3-38), define
Xy =y = pu=y
: )
X, =%, — Bu=x— o
From Equation (3-40) we have

i1=x2+ﬂlu=x2+n—lu

. k b [k (bﬂ
X, = —ax,—ax, tfu=——x,——x,+|——[—]|u

m m

and the output equation becomes

or

= Ok 1b M 4 Z u (3-45)
bl |- ——||% k (b)z
and

............
_______
........

y=[1 0 H | (3-46)
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external force u(¢) is the input to the system, and the displacement y(t) of the mass is the output.
The displacement y(z) is measured from the equilibrium position in the absence of the external
force. This system is a single-input-single-output system.

From the diagram, the system equation is

my + by +ky=u (3-19)

This system is of second order. This means that the system involves two integrators. Let us define
state variables x(¢) and x;(¢) as

x (1) = y(0)
x,(1) = y(0)
Then we obtain
1 1
o T e
23 (—ky — by) s
or
X3 =x (3-20)
m m m
The output equation is
y=x (3-22)
In a vector-matrix form, Equations (3-20) and (3-21) can be written as
. 0 1 0
[rl] = k b l:xl:I +|1[u (3-23)
X, -—— ——|x —
m m m
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o —O  Electrical circuit.

Lé+Ri+%fidt=e,.

dt
%fidt=eo

i R 1
+ =6, +——e =—e
T L% TICco T It
the

Then by defining state variables by

X, =e

and the input and output variables by

we obtain

3 0 1 0
[‘,IJ =| 1 R [‘“J = I
2 e L |10 LC

and

These two equations give a mathematical model of the system in state space.
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Example 3H Spring-coupled masses The equations of motion of a pair of masses M, and M,
coupled by a spring, and sliding in one dimension in the absence of friction (see Fig. 3.7(a)) are

% K ad
X, +E(xl = Xy) =M

- (3H.1)
. u
xz+72(x2_x') =_Miz

where u; and u, are the externally applied forces and K is the spring constant. Defining the

state
x=[x, x, % XY

X2

X1

(b)

Figure 3.7 Dynamics of spring-coupled masses. (a) System configuration; (b) Block diagram.

results in the following matrices

0 0 10 0 0
0 0 01 0 0
= B= 3H.2
-K/M, K/M, 0 0 1/ M, 0 ( )
K/M, -K/M, 0 0 0 1/ M,



It is observed that the motion of the system is uniquely defined by the displacement of the
cart from some reference point, and the angle that the pendulum rod makes with respect to the

vertical.
[ The kinetic energy of the system is the sum of the kinetic energy of each mass. The cart
&> is confined to move in the horizontal direction so its kinetic energy is
T, = iMmy?
)2 J
.
__AF
9
22
Yy
e £ g
M
(.\: (o) —

Figure 2.10 Inverted pendulum on moving cart.

: The bob can move in the horizontal and in the vertical direction so its kinetic energy is
> T,=im(%+ )

But the rigid rod constrains z, and 2

Va=y+lIsin0 y,=y+1I6cosd

z,=1cos @ Z=—l6sing
Thus

T =T, + T, = {My* + m[(y + 16 cos 8)? + 1262 sin? 6]
= IMy* + im[y? + 2561 cos 6 + I26?]
The only potential energy is stored in the bob
V = mgz, = mgl cos 6
Thus the lagrangian is
L=T-V=}M+m)y*+ ml cos 6y + imi26* — mgl cos 6 (2E.1)

The generalized coordinates having been selected as (3, 6), Lagrange’s equations for this
system are .
dfsL\ oL
(o) 51
t\dy ay

i) o,
di\aé) a0

(2E.2)



Now

aL
— = (M + m)y+ ml cos 66
oy
aL
—=0
3y

aL .
i ml cos 0y + mi*6

oL
5 = mgl sin 0

Thus (2E.2) become
(M + m)j + ml cos 86 — ml6*sin 0 = f
. . (2E.3)
ml cos 8y"— ml sin 80 + miI*6 — mgl sin 6 = 0

These are the exact equations of motion of the inverted pendulum on a cart shown in Fig. 2.10.
They are nonlinear owing to the presence of-the trigonometric terms sin # and cos # and the
quadratic terms 62 and yé. If the pendulum is stabilized, however, then 6 will be kept small.
This justifies the approximations

cos 6 =1 sinf =0

We may also assume that 8 and y will be kept small, so the quadratic terms are neghgzble
Using these approximations we obtain the linearized dynamic model

(M+m)j+mlo=f

" (2E.4)
my+mlé — mgd =0

A state-variable representation corresponding to (2E.4) is obtained by defining the state vector

x=[y,8,y,06Y
Then

(2E.5)

constitute the first two dynamic equations and on solving (2E. 4) for y and 0 we obtain two
more equations

d ._f mg
dt(y)—y—ﬁ—ﬁo
L pmia oLy (Mtm) i
at M\ M )¢
The four equations can be put into the standard matrix form
%= Ax+ Bu
with
0 0 10 0
A 0 0 01 B= 0
0 -mg/M 0 0 /M
0 (M+m)g/Ml 0 0 ~1/Mi
and

u = f = external force



A block-diagram representation of the dynamics (2E.5) and (2E.6) is shown in Fig. 2.11.
X3 ¥
o 1 -y ~ I Y
M .
u mg
M
)(1' XZ.
1 i I 8 8
Ml

(M + m)g

Ml
Figure 2,11 Block diagram of dynamics of inverted pendulum on moving cart.
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A DC-motor basically works on the principle that a current carrying
conductor in a magnetic field experiences a force F = ¢ x i, where ¢ is
the magnetic flux and i is the current in the conductor. The motor
itself consists of a fixed stator and a movable rotor that rotates inside
the stator, as shown in Figure 7-2. If the stator produces a radial mag-
netic flux ¢ and the current in the rotor (also called the armature) is i
then there will be a torque on the rotor causing it to rotate. The mag-
nitude of this torque is

Tm = K1¢ja (722)

where 1, is the motor torque (N-m), ¢ is the magnetic flux (webers), i,
is the armature current (amperes), and K 1 is a physical constant. In ad-
dition, whenever a conductor moves in a magnetic field, a voltage V), is
generated across its terminals that is proportional to the velocity of the
conductor in the field. This voltage, called the back emf, will tend to
oppose the current flow in the conductor.
Thus, in addition to the torque 1,, in (7.2.2), we have the back emf
relation
Vy =Ky 0, (7.2.3)

Conductors

(bonded to rotating
armature-iron)

Rotating flux
path

FIGURE 7-2

Cross-sectional view of a surface-wound permanent
magnet DC motor.



where V,, denotes the back emf in Volts, @y, is the angular velocity of
the rotor {rad/sec), and K, is a proportionality constant.

DC-motors can be classified according to the way in which the mag-
netic field is produced and the armature is designed. Here we discuss
only the so-called permanent magnet motors whose stator consists of a
permanent magnet. In this case we can take the flux ¢ to be a constant.
The torque on the rotor is then controlled by controlling the armature
current i,.

Consider the schematic diagram of Figure 7-3 where

V(t) = armature voltage
L = armature inductance
R = armature resistance
Vi, = back emf
1, = armature current
O = rotor position (radians)
Tm = generated torque
¢ = magnetic flux due to stator.
The differential equation for the armature current is then
di, :
'L o +Rip, =V -V, (7.2.4)

Since the flux ¢ is constant the torque developed by the motor is
Tm = K101, =K1, (7.2.5)

where K, is the torque constant in N-m/amp. From (7.2.3) we have

d6,,

Vb = K00 = Kp00,, = K, o

(7.2.6)

where K}, is the back emf constant.

V()

FIGURE 7-3

Circuit diagram for armature controlled DC motor.
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A commonly used model for a nonlinear system is
L x()=Afl1, x(r), u(r)], Ve 20,

where 1 denotes time: X(r) denotes the value of the function x(-) at time ¢ and is an »-

dimensional vector; u(r) is similarly defined and is an m-dimensional vector; and the func-

tion f associates, with each value of 1, x(r), and u(r ), a corresponding n-dimensional vector.

Following common convention, this is denoted as: @eR,. x(ne R", u(r)e R™. upd

f: R, xR"XR" — R" ' Note that (1) is a first-order vector differential equation., The quantity

X(1) is generally referred to as the state of the System at time 1, while u(r) is called the input
or the control function.

. There is no loss of generality in assuming
that the system at hand is described by a first-order (differential or difference) equation. To
see this, suppose the system is described by the n-th order scalar differential equation

3 d;,!’n(’_) =hs, Y, y(s), - . %&' u(1)], Ve 20.

This equation can be recast in the form (1) by defining the n-dimensional state vector x(¢) in
the familiar way, namely

n-1
4 x=y0.x0=50, ~--.x,.(r)=%.

Then (3)is equivalent to

‘el(’)=x2(’)v

X3(0)=x5(1),

i‘n-l(’)=xn(t)

‘in(’)=h [’v xl (’)I x2(’)v ) 'Xn(’)- u(’)]
Now (5) is of the form (1) with
6 x=[x,1)- 5,0y,

7, x, Uy=lx; x; ++-x, h(l.x..“'.x,,.u)]'.

In sludying the System (1), one can make g distinction betweep two aspects, ! generally

referred to as analysis and synthesis, respeclively. Suppose the input function u()in (1) is
ST T e s a

specified (i.e., fixed), and one would like to study the behaviour of the corresponding func-
tion x(-); this is usually referred to as analysis. Now Suppose the problem is turned around:
the system description (1) is given, as well as the desired behaviour of the function x(-), and
the problem is to find a suitable input function u(*) that would cause X(*) to behave in this
desired fashion; this is usually referred to as synthesis, © P
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Comments

Theory

Part I1

State-space representation of dynamic systems

2.1 Notations

General state-space model of a dynamic system

. dx
* = Tt' = fi(x, X35 .00 X, Uy Uys ooy U5 1)

. dx
X, =th= Sa(x;, Xyseees Xys Uys Upy ooy U, 1)

. _dx '
xu i 'd_tn= fn(xl’ x2’ 000D xn’ ul’ u2’ voCH u" t)
Designations:

State vector x=[x,,x2,.--,x,.]T

Control (input) vector  u=[u,u,,...,u I’
Mathematical model in vector form

x=f(x,u,t)
where xeR"; feR'; ueR; teR

2.1)

2.2)

(2.3)

Note. If t does not appear explicitly in (2.3) the system is called time-

invariant

State-space representation of a linear system is

% =ay,(0)x, +a,(x, +... +a,(Dx, + b (Du, + b, ()uy + ...+ b, ()u,
X, = ay (0)x, + a, ()x, + ... + a,, (£)x, + by, (1w, + by (), + ... + b, (t)u,

X, = a, (0% +a,(x,+...+a,(t)x, + b, () +b,,(Du, + ... + b, ()u,

or in vector notations
x=A(t)x+ B(t)u
where
Gy Gy ... 4y, b, b,
b, b
A() = a4 ayp a4, . B(t)= 21 On
a, a, a,, b, b,
or
A e Rnxn B e Rnxr

(2.4)
blr
B (2.5)
b

If the system is time-invariant, then matrices A and B are constants.
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Comments

Theory

Output (or observation) vector

Y =D Yas e Yul' (2.6)
relates to the state and the control variable as (for linear
systems)

y=C(t)x+ D(t)u 2.7
where CeR™"; DeR™ .
Equation (2.7) is called output or observation equation.
In the majority of applications D=0.

The state equations may depend on external disturbances (or
exogenous input). Then for a linear system we will write

x=A(t)x+B(t)u+ E(t)d (2.8)

2.2 Block-diagram representation

Three kinds of elements:
X
3 — XN
X3
Integrator Summer
x k(1) [ k(t)x

Gain element (amplifier)

Example. Block-diagram of general 2nd-order linear system.






