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ROBUST CONTROL OF ROBOTIC MANIPULATORS 
WITHOUT VELOCITY FEEDBACK 

JING YUAN AND YURY STEPANENKO 
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8 W 2 Y2, Canada 

SUMMARY 
This study concerns the problem of robust control of robotic manipulators without joint velocity 
feedback. A robust lead + bias controller is studied. The bias signal is intended to compensate the 
nonlinear dynamics of the robot. The focus of this study is robustness when the nonlinear compensation 
is not perfect and the external disturbances are not negligible. 

A conservative polynomial bound is introduced to describe the worst feedback effect of the 
compensation error and the external disturbances. The polynomial bound covers a class of possible bias 
signals, synthesized according to the available knowledge about the robot dynamics. Based on the 
polynomial bound, the tracking errors of a lead + bias controller are proved to be uniformly bounded. 
They can be minimized by a proper design of the bias signal. In the ideal case where the bias signal 
compensates the robot dynamics perfectly, the tracking errors will converge to zero. 

1. INTRODUCTION 

Robust tracking control of robotic manipulators has been studied by many researchers. ' Most 
of the reported controllers require complete state feedback to provide stable tracking for the 
closed-loop system, which means that both position and velocity must be measured at each 
joint. While the joint positions can be measured very accurately by encoders, the joint velocity 
measurements are often contaminated by noise, due to the less accurate nature of tachometers. 
To overcome this problem, some researchers proposed nonlinear observers for joint velocity 
estimation. A sliding observer for general nonlinear systems was studied by Slotine et al. 
(1987);2 the first observer for robotic systems was proposed by Canudas de Wit and Slotine 
(1989); Nicosia et al. 4-  studied a number of nonlinear observers for nonlinear systems and 
elastic robots; observers plus controllers were studied by Nicosia and Tomei (1990)' and 
Canudas de Wit et al. (1990). * More recently, robust nonlinear smooth observers have been 
reported by Canudas de Wit et al. 9,10 All these works have a common objective: robust control 
of robotic manipulators without direct measurement of joint velocities. 

In this paper, a different approach is investigated. Instead of trying to estimate the velocity 
by observers, the high-pass filtered position feedback is used as a substitute for the velocity 
feedback. In other words, a lead + bias controller is applied to robotic manipulators. The lead 
compensator is synthesized by the traditional technique for linear time-invariant systems while 
the bias signal is synthesized by feed-forward dynamics. When the robot parameters are not 
correct, the bias signal will be inaccurate. In order to cover a large class of admissible bias 
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signals, a polynomial bound is introduced to describe the worst possible effect of the 
compensation error. Based on the polynomial bound, the tracking errors of a lead + bias 
controller are proved to be uniformly bounded if the feedback gain is sufficiently large. The 
area of attraction can be enlarged and the tracking error bound can be reduced simultaneously 
by adjusting a single design constant. 

The paper is organized as follows: a detailed discussion on the system model, the 
polynomial bound and its relation to the possible bias signals is given in Section 2. In 
Section 3, a lemma is proved which plays an important role in the robust analysis to be 
presented in Section 4. The robustness of the lead + bias controller is investigated by the 
Lyapunov method. The area of attraction and the tracking error bound is shown to be 
adjustable by a feedback gain. Simulation result is presented in Section 5 to demonstrate the 
robust tracking of a lead+ bias controller applied to a simple two-link robot. A brief 
conchding remark is then presented in Section 6. 

2. THE SYSTEM MODEL 

The mathematic model of a n-link rigid-body robotic manipulator is given by 

M ( q ) t  c(q, q)q + g ( q )  = 7 + 7d (1) 

where q E R" denotes the generalized co-ordinates of the robot; 7 E R" is the generalized control 
torque vector; 7d represents the external disturbances generated by the environment; M ( q ) ,  
C(q, q )  E R"'" and g ( q )  E R" are nonlinear functions of q and q. M ( q )  is the system inertia 
matrix, C(q, q)q represents the centripetal and Coriolis force while g(q)  denotes the 
gravitational force. For convenience, the system dynamic equation (1) is re-written in the form 

M(q)Z = 7 + r (2) 
where e = q - q d ,  q d  is the desired trajectory vector and 7* = 7d - M(q)& - C(q, q)q - g(q) .  

A lead + bias controller is synthesized by 

(3) 
1 
P 

~ = @ k $ - - k e + r t ,  

where ?I, = Qqd + C q d  + 2 is the bias signal intended to compensate the nonlinear dynamics (it 
will be discussed later); $ is a high-pass filtered version of e, synthesized by 

$ + u k  $ $ d t =  -ke (4) 

In general k > 0 can be replaced by a positive definite matrix. However, for clarity of 
derivations, k is chosen to be a positive scalar here. The other design constants p,  @ and U are 
all positive. Their specific choice will be discussed in detail in Section 4. 

Substituting (3) into (2), one can express the closed-loop system dynamics as 

where T~ = ~b + 7 # .  According to the well-established results of the previous researchers, ' * " ** '  
II TO II can be bounded by a second-order polynomial of II i. II given as 



ROBOTIC MANIPULATORS 205 

calculus will result in 

Unlike c1 and CZ, which only depend on the robot dynamics and the desired tracking speed, 
the constant bound CO is a function of the bias signal n. It can be viewed as a measurement 
of the compensation error. In the ideal case where the system is free of external disturbances 
and the robot parameters are accurate, then 7d = 0, kf= M(q) ,  c = C ( q d ,  q )  and 2 = g(q).  As 
a result, co will be reduced to zero. In general, one cannot expect perfect compensation for 
various practical reasons. It is reasonable to set a conservative constant value for CO. 

Another class of bias signals are synthesized by neural networks. The connection weights of 
a neural net are adjusted by some learning rules. If the outputs of the neurons are bounded and 
the connection weights are constrained within a finite ball in the weight space, then (6) is valid 
and the robustness result based on such a polynomial bound also applies to a class of neural 
net controllers with a lead compensator as the feedback control part. 

3. A LEMMA ON SOME POSITIVE DEFINITE FUNCTIONS 

In this study, a Lyapunov-type stability analysis is conducted to investigate the robustness of 
the closed-loop system (5) .  Since the nonlinear compensation error 70 could grow with a 
magnitude of 11 i. 1 1  as (6) suggests, it is very difficult to establish asymptotic stability for the 
closed-loop system. The main objective of this study is to establish uniformly ultimately 
boundedness to the tracking errors. The following Lemma plays an important part in the 
analysis. 

Lemma I 
If a positive definite function V( t )  satisfies a differential inequality 

v <  y ( t ,  V )  

where y ( t ,  V )  is bounded for V(t )  € [0, vb), and 

y ( t ,  v) < 0 whenever V ( t )  € (Va, Vb) 
then V ( t )  is uniformly bounded and limt+,V(t) < Va as long as V(0) < Vb. 

Proof. Let ( tk=k6t)  denote a sequence of sampling strobes with 6t+0. Then the 

(9) 

knowledge, given by (7) and (8) can be combined to a simple expression 

V( tk+ l )  < V(tk)  whenever 0 < V, < V ( f k )  < Vb 
The initial condition V(0) < Vb includes two possibilities: [ Va < V(0) < v b )  U (V(0) < Va). 

In the first case, V, < V(0) < Vb. A sequence of samples of V ( t )  can be obtained: 

Va= V(fa)  < V(tk+l )  < V(f&)  < ... < V(tZ) < V( t l )  < v(0) < v b  

The decreasing nature of such a sequence can be verified by the sufficient condition of (9). 
Since the above-sampled sequence is obtained with an infinitely small sampling interval At, V ( t )  
must be monotonously decreasing for 0 < t < fa. 
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v 

Figure 1. A visual illustration of Lemma 1 

In the second case, V(0) < Va, one must consider the worst possible case where V ( t )  
increases towards infinity. According to the given knowledge, V ( t )  cannot jump from 
V ( t )  < Va to V(t + 6 t )  2 Vb for an arbitrarily small at, because V is bounded from above by 
y ( t ,  V). However, V ( t )  could reach Va for the first time at some instant t = ta. (if V(0) = Va, 
then ta = 0.) 

Suppose somehow V( t )  manages to inch further towards Vb such that V(tE) = Va + 4 at 
ta < 4, where E is an arbitrarily small positive constant. Then (9) will force V(t€ + 6 t )  < V ( q )  
because Va < V ( q )  < Vb, making it impossible for V ( t )  to exceed Va + 4 after t = ta. By letting 
+ 0, one obtains limr+ V ( t )  < Va. Q.E.D. 
An illustrative picture is provided in Figure 1 to give a visual explanation of the proof. In 

Figure 1, V is plotted versus V. One can see that V is bounded from above by y ( t ,  V), which 
is represented by a family of functions because of another argument t. Figure 1 provides the 
following hints: 

(1) V ( t )  cannot jump from V ( t )  < Va to V(t + 6 t )  2 Vb for an arbitrarily small at, because 
f<  y ( t ,  V )  c CO when o < ~ ( t )  < Vb. 

(2) Since V < o whenever V E  (Va, Vb), the interval (Va, Vb) creates a region of attraction as 
demonstrated by arrow A1 in the figure. If initially Va < V(0) < Vb, then V ( t )  will be 
attracted towards Va. 

(3) Once V ( t )  < Va, it will not be able to bounce back, though it is possible that V ( t )  could 
be pushed towards Va as arrow A2 indicates. 

The robustness of the lead + bias controller is to be established by finding a positive definite 
function which satisfies the condition of Lemma 1. 

4. ROBUSTNESS OF THE LEAD COMPENSATOR 

Although the high-passed error signal J.  is synthesized by (4) without physically involving the 
velocity error t ,  mathematically, (4) is equivalent to 



ROBOTIC MANIPULATORS 207 

if the initial value of $ is set to zero. In the theoretical analysis, the closed-loop system will 
be described by ( 5 )  and (10). Their state-space representation is given by 

C =  -Ae+rs (1 1) 

where E = [ e, $, e ]  T, 

0 -M-'Bk M-'"] [M-:)rol 
A =  kI akI 0 and r s =  

[ - I  0 0 

In the Lyapunov-type stability analysis of a closed-loop system like (1 l), it is customary to find 
positive definite matrices P and Q such that PA + ATP= Q. The focal point is usually a 
positive function L = E ~ P E .  Its time derivative evaluated along (11) is written as 

(12) 

where ( 1  2 ~ ~ P r ~  + E ~ P E  1 1  could be proportional to 11 E ( 1  because 1 1  ro ( 1  cc 11 t I( '. In order to 
ensure stability to the closed-loop system, it is important to select P and Q such that Xgmin, 
the smallest eigenvalue of Q, can be set sufficiently large without affecting I (  2eTPrS + E ~ P E  (1. 

L = - E ~ Q E  + 2 ~ ~ ~ 7 ,  + E ~ P E  

4. I .  The positive dejinite matrix pair P and Q 

According to References 11 and 12, the inertia matrix M ( q )  is uniformly bounded and 
positive definite. Therefore, one can write 

A .  - .  min - inf inf 1 1  M(q)x  )I and X M ~ ~  = SUP SUP 11 M(q)x  II 
Q I l x l l = l  P I l x l l = l  

Now, the three design parameters p, U and p can be determined by 

0 < p < Xmin, U 2 3 and = p(2 + U )  

A possible P-Q matrix pair is given by 

M PI - I  (pk  - ;)I 0 0 

P =  p f  2pf  0 p k ( 2 u I -  PM-1) 0 
k 

PP 
0 0 - M-1 

where (14) has been substituted to eliminate the off-diagonal sub-matrices of Q. 
Denote as yT = [U:, y?, y:l where y ~ ,  y2, y 3  E R". Then yTPy  can be expressed as 

T T k 2 
P P Y PY = Y 1 MY1 + 2P 1 )  Y 2  I1 + - I( y3 I( + 2py ;%2 + - y :y3 

where (13) and (14) have been substituted. When 
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inequality (16) implies 
2 k 

a % i n  = inf inf yTPy  2 p and a m a x  = sup sup yTPy  6 - 
Q I I Y I I = l  4 I I Y I I = l  P 

The above inequality will be very helpful in the later stability analysis. 

As indicated by (15 ) ,  Q is positive definite if 
With the help of (14), it is not difficult to verify xT(2al -  PM-')x 2 x T x  for any xE R". 

1 p k > -  
P 

As long as (17) and (19) are satisfied, both P and Q are uniformly positive definite. The 
pk. smallest eigenvalue of Q is given by XQmin 

It is also interesting to note that 

cTP& + 2 ~ ~ ~ 7 ~  = eTk6 + 2(p+ + ~ - ' e ) ~ ~ - ' 7 0  + 2tT70 (20) 

which is independent of k. A substitution of (6) and ( 1 3 )  then results in 

l l e T P ~ + 2 ~ T P ~ s I I  < ~ o I I E ( I + ~ ~ I J & ( ( ' + ~ ~ I I & ~ ( ~  (21) 

where do > 0, dl > 0 and dz > 0. Particularly do oc CO. These constants are independent of k. 
The whole discussion of this subsection can be summarized into one sentence: by adjusting 

k, one can increase XQmin without afecting 11 &=P& + ~ & = P T ~  11, which is essential to the 
following analysis. 

4.2. A polynomial bound for L 

Substituting (21) into (12) results in 

L 6 do 11 11 - ( XQmin - d l )  11 I( + dz (1 E 11 
= dz II 1K11 E II - n)(ll II - r2) 

where rl c rz are given by 

(XQmin - d l )  k /(hQmin - d1)' - 4d0d2 rl < r2 = 
2 dz 

They are positive constants if 

(XQmin - dl)' > 4dodz Or XQmin > dl + 2- 

This condition can be easily satisfied by a sufficiently large k. 
By substituting 

one can express inequality (22) in terms of L 

where a ( t )  is defined as 

2 L ( t )  eTP& 
ET& ET& 

(y =--- - 
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When XQmin = pk is sufficiently large, one can write 

Similarly, it can be shown that 

Taking ( 1 8 )  into account, it is not difficult to show 

According to (25), L < 0 whenever r1amax < E< r2amin. In other words, L satisfies the 
conditions of Lemma 1 .  As long as the initial error ~(0) is small enough such that 

then L ( t )  is uniformly bounded. It will eventually converge into a final bound given by 

It must be emphasized that a large k will reduce ~ 1 ~ ~ m a x  and enlarge ~ 2 a m i n  as (26) indicates. 
This means that the area of attraction (27) can be enlarged and the ultimate error bound (28)  
can be reduced by increasing k alone. Even when k is not large enough to force a large r~~min ,  
the initial condition constraint (27) can be easily satisfied by specifying a smooth desired 
trajectory such that q d  = q and q d  = q at t = 0 (which implies 11 ~ ( 0 )  1 1  = 0). 

4.3. Determine the design parameters 

The design parameters are determined by several estimated parameters do, d l  and d2 given 
by (21) ,  as well as Amin and Xmax given by (13). If these parameters are not completely available, 
some conservative bounds on them can be substituted. 

The first step is to fix P ,  U and p according to (14). It must be emphasized that (14) is by 
no means a necessary condition. It is mainly intended to make Q, as given by (15), a block 
diagonal matrix. For analysis purposes, this make it easy to show the positive definiteness of 
Q. In fact, there are many other ways to determine these three parameters, such that P and 
Q are both uniformly positive definite. 

The next step is to choose k. It is subject to four sufficient conditions (17), (19), (24) and 
(26). The four inequalities represent four open sets, all of them extending to positive infinity. 
Therefore their intersection must be an open set k e  (kmin, + 00) where kmin is a finite positive 
constant. In practice, one can simply determine k by trial and error. The above four 
inequalities ensure a stable closed-loop when k is sufficiently large. 

The lead + bias controllerxan be simplified until the bias signal 7d is zero. Thus, do, dl and 
dz may be large. However, one can increase k to stabilize the system and make the tracking 
error arbitrarily small. This is suitable for industrial applications where another reason to 
avoid velocity feedback is to reduce cost, and where the tracking accuracy is not too strict. 

Of course, the most effective way to improve tracking accuracy is to reduce do. According 
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to (26), r:aLax a d;. By substituting (6) and (13) into (20) to derive (21), it is not difficult to 
find do oc CO = sup, ( 1  7d + AM& + ACqd + Ag (I. Thus one can reduce the ultimate error bound 
(28) by improving the estimated M, = M(q) ,  e = C(&, q )  
and f = g(q) ,  CO will be reduced to zero. This means that the tracking errors of the closed-loop 
system will eventually converge into zero. 

and 8. In the ideal case, 7d = 0, 

5 .  SIMULATION RESULTS 

A simulation experiment is conducted to demonstrate the performance of a lead + bias 
compensator. A two-link planar robot described by 

is used as the control object, where 

1 1 cos(q2) + I2)hmz + I:(ml+ m2) 1tm2 + 1112 cos(q2)mz 
~ ( q )  = [(21 /tm2 + /I12 cos(q2)rnz Itm2 

- 211hm2 sin(q2)qr - l l l2rn2 sin(q2)h 1 
1 

Mm2 sin(qd41 0 C(Cil Q )  = [ 

g(q)= [ 
and 

g(m212 cos(ql+ q2) + (ml + mdll cos(ql)) 
mdzg cos(ql+ 42) 

The parameters are chosen as 11 = 0-7, I2 = 0.5 (metre), m1 = 10 and m2 = 5(kg). 
The bias signal n, is synthesized with inaccurate parameters /I = 0-7 ,  h = 0.25 (metres), 

m1 = 10 and m2 = 1 (kg). The inaccurate parameters of the second link simulate those cases 
where the robot carries an unknown payload. The desired trajectory is given by 

q d i  = qd2 = 1 - cos(21rf) (radians) 

which is a relatively fast movement. The lead compensator is synthesized by 

with tracking errors plotted in Figure2. The relative tracking error is about 6 per cent 
measured peak versus peak. The control torques applied to the two joints are plotted in 
Figure 3. 

In order to observe the performance of the lead + bias controller when the bias signal is zero, 
another simulation experiment is conducted where everything is the same as the previous 
experiment, except that n, is an all-zero vector. The tracking errors and control torques are 
plotted in Figures 4 and 5 respectively. It is interesting to note that the tracking error is not 
too bad, when the bias signal is missing even because of the large gains used in synthesizing 
the lead controller. However, the effect of the bias signal is still obvious: the tracking error 
of joint 1 becomes larger. Joint 2 keeps approximately the same performance because its 
parameters m2 and 12 were not correct in the first experiment. 
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6. CONCLUSIONS 

The robustness of a class of lead + bias compensators is established for robotic manipulators. 
The result also applies to adaptive controllers with lead compensation plus an adaptive 
bounded bias signal. In order to decouple the effect caused by adapting the bias signal, a 
conservative polynomial bound is introduced to describe the worst possible feedback effects. 
The closed-loop system is then proved to be uniformly bounded. The area of attraction can 
be enlarged and the tracking error can be reduced simultaneously by increasing the feedback 
gain. The simulation result is presented to demonstrate the performance of the lead + bias 
compensator applied to a two-link planar robot. 
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