Aleksandr MikhRlovich Lyapunov @

Father astronomer, 7 children, 3 survived

Professor of mechanics at Kharkov and St. Petersburg

¢ Research on orbital mechanics and probability theory
A. M. Lyapunov died tragically at age 61

Completed his doctoral dissertation in 1892 under Chebyshev
¢ Stability of rotating fluids applied to celestial bodies

¢ Formulated his first and second methods (L1M and L2M)

French translation appeared in 1907 = 1892 + 15
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Part 3
Stability in the sense of Lyapunov

There are different kinds of stability problems that arise in
the study of dynamic systems: stability of equilibrium point,
input-output stability, stability of periodic orbits, etc. We
will study the stability of equilibrium or stability in the sense
- : y Ui of Lyapunov, a Russian mathematician and engineer.

/ Lu ¢ Wl& |

Plant:

() =f(t,x@), 120, (3.1)
/ /‘ Lo where - xeR" and f:R, xR —>R",
: S satisfies the Lipschitz condition.
Let :
f@,0)=0 V¢, ’ (3.2)

that is 0 is the equilibrium point.

Definitions of stability

1. The equation (1) is stable at time ¢, -if
for each £>0 there exista 6(z),€) >0 such that

)| < 8. &) = x| <e  Vizr, (3.3)

2. The point "0" is uniformly stable over [£,,c0) if
for each £>0 thereexista 6(g)>0 such that

k@) <d), n20=|x@<e Vizy (3.4)
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3. The point "0" is as mgtotlcally stable at time 7, if
(a) itis stable at ¢, ;
(b) there exist a number ,(¢,)>0 such that
[x(t)]| < 8,(5) = [x ()] > O as 1 — oo (3.5)

The set
B; (., = {x € R™|x| < 8,(5,)}

is called a region of attraction.

4. The point "0" is uniformly asymptotically s;ablg
over [t,,00) if )

(a) it is stable over [z,,o0) ;
(b) there exist 8, >0 such “at

@) <8, 21, =] =0 as t— e (3.6)
) AN )

The Lyapunov method
Definitions
1. V(x):R" — R+is positive definite (PD) if

V(0)=0and V>0 Vx=0

2. Any PD function L(x) where x e R” is “1e systém
state vector is called a Lyapunov Function Candi< .ie
(LFC).

3. The Euler derivative, or the Jenvatwe alons the

trajectones B.1)is

. oL oL oL .
L= <dL,f> = Ezfl +gz~f2 ...+ a_x;f" (37)
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Corollary
LetL beaLFCand S be any level surface of L , that is

Consider an autonomous (time-invariant) system given by
. L= Y
the equation

x=f(x); fO)=0 (3.8)

Theorem 1 (Lyapunov).
The null solution of (3.8) is stable if there exist a LFC such
that the Euler derivative is negative semi-definite along
trajectories (3.8), that is

L=(dL f(x)) =) f(x)<0  (3.9)
Such L is called a Lyapunov function for (3.8).
Theorem 2 (Lyapunov). . _
The null solution of (3.8) is asymptotically stable if there

exist a LFC such that the Euler derivative is strictlz negative
definite along trajectories (3.8), that is

L<0 : (3.10)

S(e)={xe R":L(x) = Co}; ¢y =const>0

Then solutions of (3.8) are uniformly ultimately bound:d
with respectto S if

L=(dL,f(x))<0
for x outside of § .

Theorem 3 (LaSalle). _
Given the system (3.8), suppose L is LFC and the Euler
derivative P

<0

Then (3.8) is asymptotically stable if L does not vanish
identically along any solution of (3.8) other then the nuli
solution, '




Quadratic form. A class of scalar functions that plays an important role in the stability
analysis based on the second method of Liapunov is the quadratic form. An example is

. o -
Puu Pz " P | &1
Piz P2z * " " Pan || X2

V) =xPx =[x, xo * - x,]

plrz pZn T pnn Xn

Note that x is a real vector and P is a real symmetric matrix.

The positive definiteness of the quadratic form or the Hermitian form V(x) can be de-
termined by Sylvester’s criterion, which states that the necessary and sufficient conditions
that the quadratic form or Hermitian form V' (x) be positive definite are that all the successive
principal minors of P be positive; that is, ) -

!@ |
P12 Pzzl 10" Pon
. i .
)

!

g

"

>0

p-ln p2n * " DPm

(Note that p;; is the complex conjugate of p;. For the quadratic form, p; = p;.)
V(x) = x*Px is positive semidefinite if P is singular and all the principal minors are
nonnegative. '
V(x) is negative definite if — V(x) is positive definite. Similarly, V(x) is negative sem-
idefinite if —V/(x) is positive semidefinite.

Show that the following quadratic form is positive definite:
VX) = 105 + 43 + X3 + 2xx, — 2%x; — 4x,x;

The quadratic form V(x) can be written

- 1 1 __x;

0
V) =xPx =[x, x xﬂt 1 4 —11|x
-2

Applying Sylvester’s criterion, we obtain

10 I =2
10 > 0, ]l(l) i >0, 1 4 —-1/>0
-2 -1 1

Since all the successive principal minors of the matrix P are positive, V(x) is positive definite.
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“XAMPLE 9-19

Consider the following system:

HEEEN

Clearly, the only equilibrium state is the origin, x = 0. Determine the stability of this state.
Let us choose the following scalar function as a possible Liapunov function:

V(x) = 2x} + x3 = positive definite
Then V(x) becomes

V) = dx,d, + 201 = 201 — 202

V(x) is indefinite. This implies that this particular V(x) is not a Liapunov function, and therefore
stability cannot be determined by its use. [Since the eigenvalues of the coefficient matrix are (=1 +
JV3)i2 and (=1 — j\V3)2, clearly the origin of the system is stable. This means that we have not
chosen a suitable Liapunov function.] ‘

If we choose the following scalar function as a possible Liapunov function,

V(x) = x{ + x3 = positive definite ‘
then

V(X) = 20X + 20k, = —243 & .

which is negative semidefinite. If V(x) is to vanish identically for ¢ = 1, then x, must be zero for all
t = t,. This requires that x, = 0 for r = r,. Since

.%2 = —X] - .X2

x, must also be equal to zero for ¢ = t,. This means that V(x) vanishes identically on‘ly at the origin.
Hence, by Theorem 9-2, { pilibrium state at the orisin js agymntotics y slable inthelaroo

To show that a different choice of a Liapunov function yields the same stability information, let
us choose the following scalar function as another possible Liapunov function:

he eq h bie in th

V(x) = 3[(x; + x)* + 213 + x3] = positive definite
Then V(x) becomes

V(x) = (X + x)(x, + X)) + 2xx; + XX,
= (X + x)(x, — X = x;) + 2xx, + X (=X, = xp)
(X)) € gy A
which is negative definite. Since V(x) — « as [Ix]| = ©, by Theorem 9-1, the equilibrium state at the
origin is asymptotically stable in the large.
Since the stability theorems of the second method require positive definiteness of V(x), we often

(but not always) choose V(x) to be a quadratic form or Hermitian form in x. (Note that the simplest

positive-definite function is a quadratic form or Hermitian form.) Then we examine if V(x) is at least
negative semidefinite, '

i
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Figure 1.1: Pendulum.

Pendulum Equation

Consider the simple pendulum shown in Figure 1.1, where ! denotes the
length of the rod and m denotes the mass of the bob. Assume the rod is
rigid and has zero mass. Let @ denote the angle subtended by the rod and
* the vertical axis through the pivot point. The pendulum is free to swing
in the vertical plane. The bob of the pendulum moves in a circle of radius
l. To write the equation of motion of the pendulum, let us identify the
forces acting on the bob. There is a downward gravitational force equal to
mg, where g is the acceleration due to gravity. There is also a frictional
force resisting the motion, which we assume to be proportional to the speed
of the bob with a coefficient of friction k. Using Newton’s second law of
motion, we can write the equation of motion in the tangential direction as

mlf = —mgsin 8 — klé

Writing the equation of motion in the tangential direction has the advantage
that the rod tension, which is in the normal direction, does not appear in
the equation. Note that we could have arrived at the same equation by
writing the moment equation about the pivot point. To obtain a state-
space model of the pendulum, let us take the state variables as z; = # and
Z2 = §. Then, the state equation is given by

T1 = g

. g .. k
Iz = - 78T — —Ig
[1 m



Example 3.2. Consider again the pendulum equation, but this time with

friction:

Ty = ‘T2
Ty = - (%)éinxl—<£—> Ty

Let us try again the energy as a Lyapunov function candidate.
- (%)% €O
m ) =2

V(z) is negative semidefinite. It is'not negative definite because V(z) =0
for £, = 0 irrespective of the value of zp; that is, V(z) = 0 along the ;-
axis.” Therefore, we can only conclude that the origin is stable. However,
using the phase portrait of the pendulum equation, we have seen that when
k > 0, the origin is asymptotically stable. The energy Lyapunov function
fails to show this fact. Let us look for a Lyapunov function V(z) that

would have a negative definite V(z). Starting from the energy Lyapunov

function, let us replace the term %m% by the more general quadratic form

It

) (1 —coszy) + %x%

LSV (@)
V()

1l

) Tysinzy + Tots

t

%xTPm for some 2 x 2 positive definite matrix P.

V(z)

il

%mTPI+ (%) (1~ cosz) V

_ 1 P P2 1 g -
= iz 7o) [ P12 P } [ . ] + (l) (1 — coszy)

For the quadratic form 12T Pz to be positive definite, the elements of the

matrix P must satisfy
p11 > 0; paz > 05 puip22 ~ pia >0
. M"—T'
The derivative V(z) is given by

V(z)

[Puzl + prazo + (%) sin 271} T

9\ o k
+(p12z1 + P22%2) [— (‘3—7) sinzy — (—n—z) 11;2}

g .
- 'l— P127181In 7T

k .
TyTy + |P12 — P22 | o z3

Now we want to choose p11, P12, and pa2 such that V{z) is negative defini

Since the cross product terms 2 SIn Ty and z,z- are sign indefinite, we will
cancel them by taking '

n
<.

With these choices, p12 must satisfy

k
O0<p2 < (:ﬂ_i

TR ==,

for V{(z) to be positive definite. Let us take p12 = 0.5(k/m). Then, Vi)
is given by
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v =4 (f) () e () 4

The term z;sinz; > 0 for all 0 < |zi| < w. Defining a domain D by

= {z < R? | |z1] < 7}, we.see that V(z) is positive definite and V(z)
is negat:xve definite over D. Thus, we conclude that the
origin is asymptotically stable. A

In searching for a Lyapunov function in Example 3.2 we approached the
problem in a backward manner. We investigated an expression for V(:c) and
went back to choose the parameters of V(z) so as to make V(z) negative
definite. This is a useful idea in searching for a Lyapunov function. A
procedure that exploits this idea is known as the variable gradient method.
To describe this procedure, let V(z) be a scalar function of z and g(z) =
VV = (8V/0z)T. The derivative V(z) along the trajectories is
given by

,V( )= —f( ) =97 (2)f(z)

The idea now is to try to choose g(z) such that it would be the gradient
of a positive definite function V(z) and, at the same time, V(z) would be
negative definite. It is not d*Hcult to verify that g(z) is the
gradient of a scalar function if and only if the Jacobian matrix [9g/8z] is
symmetric, that is,

dgi _9g; ..
=S Y i=1,...,
6a:j Bxi’ b "

Under this constraint, we start by choosing g(z) such that ¢"(z)f(x) is
negative definite. The function V'(z) is then computed from the integral

V)= [ 5w =[5 o) a

- The integration is taken over any path joining the origin to z. Usually, +' i3
is done along the axes; that is,

) I3
Viz) = / 91(%1,0,...,0) dy1+/ 92(z1,92,0,...,0) dyz
0 . 0
+ o +/ gn(T1,Z2,.. ., Tno1,Yn) dys
0

— . By leaving some parameters of g(z) undetermined, one would try to choose
them to ensure that V(z) is positive definite. The variable gradient method

can be used to arrive at the Lyapunov function of Example 3.2. Instead of
repeating the example, we luustrate the method on a slightly more general
systermn.

Example 3.3. Consider the second-order system

Ty = T
iz = —h(:z:l)-a:L‘g

where @ > 0, A(-) is locally Lipschitz, h(0) = 0 and yh(y) > 0 for all
y # 0, y € (~b,c) for some positive constants b and c. The pendulum
equation is a special case of this system. To apply the variable gradient
method, we want to choose a second-order vector g(z) that satisfies

991 _ 99

(9.‘132 5—.’17_;

V(z) = g1(z)z2 — ga(2)[h(z1) + aza] < 0, for z #0



Figure 3.1: Geometric fepresentation of sets jn the proof of ‘Theorem 3.1.

Theorem 3.1 Let x =

0 %¢ an equilibrium
be g continuously

point for (3.1). Let v DR
differentiable Junction o

" & neighborhood D of z =,
such that
V(0) =0 ang V(z)>0in D~ {0} (3.2)
V(z)<0inD (3.3)
Then, z = ¢ 45 stable, Moreovyer, if
V(z)<0in D~ {0} (3.9)
thenz =0 js asymptotically sighle, ©°

Proof: Given¢ > 0, choose r € (o, €] such that

Br={zeR"| el <r}c D
Let a = minyzy.., V(z). Then,a > ¢ by (3.2). Take B € (0,a), and Jet

nﬁ={$€BrIV(I)Sﬂ}
Then, 0

2, {5 is entirely inside B2 see Figure 3.1. The set 5 has the property
2This fact can be shown iSy contradiction, Suppose 15 is not entirely inside By, then
there is a point P € Qp that lies op the boundary of By. At thig point, V(p) > o > B,
but, for all €0, V()< + & contradiction, )

L,



that any trajectory Starting in Qg at ¢ = 0, stays in £ for all ¢ 2 0. This
follows from (3.3) since

V(1) <0 = V) <viz(0) < g v, >0

Since Q is 5 €ompact set,S wo conclude by Theorem 2.4 that tquation (3.])
has a unique solutjon defined for aj 4 2 0, whenever z(0) Q5. Since V(z)
is continuoug and V() = 0, there js § ~ 0 such that

Izl <6 = Viz)< g

Then
: Bsc Qg ¢ B,
and
z(0) € B; = 2(0) € 0y = z(t) € Ny = z(¢) € B,
Therefore,

l=(0)) <6 » el <r<e, vy 20
which shows that the equilibriym point z = @ ig stable, Now, assume that
(3.4) holds as well. To show asymptotic stability we need to show that
z(t) — 0 as ¢ -, ©0; that is, for EVery a > 0, there js T > 0 such that
@) < a foralt > By repetition of previous arguments we know

V(x(t))—»czom-»co

To show that €= 0, we uge 5 contradiction argument, Suppose ¢ > 0.’
By continuity of V(z), there ig d > 0 such that B, Q. The limit
V() wes implies that the trajectory z(t) lieg outside the ha]] By for
all t >0, Let - = MaXycp.<, V{z). Then, =Y <0by (3.4). 1t follows
that

V(@) = V(z(0)) 4 /0 V(e(r) dr < Via(0)) -

Since the right-hand sjde will éventually become negative, the inequah'ty
tontradicts the assumption that ¢ » g, _ ]



Consider the first-order differential equation

E=-g(®)

b (1)

Qhere 9(z) is locally Lipschitz on (—a, a) and satisfies

9(0) =0; zglz)>0, Yz#£0,z¢ (~a,a)

The system has an
isolated equilibrium point at the origin. It is not difficult in this simple
example to see that the origin is asymptotically stable, because solutions
starting on either side of the origin will have to move toward the origin
due to the sign of the derivative . To arrive at the same conclusion using
Lyapunov’s theorem, consider the function

&
Ve = [T ay
Over the domain D = (~q, a), V(z) is continuously differentiable, V(0) = 0
and V(z) > 0 for all z # 0. Thus, V(z) is a valid Lyapunov function

candidate. To see whether or not V() is indeed a Lyapunov function, we
calculate its derivative along the trajectories of the system.

oo BV .
Viz) = 5 [-9@)] = ~g*(z) <0, Vo e D~ {0}

Thus, by Theorem 3.1 we conclude that the origin is asymptotically stable.
A
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Consider the system
£ = I9
3 = —g(z1) - h(za)
where g(-) and h(-) are locally Lipschitz and satisfy
9(0)=0, yg(¥) >0, Vy#0, y €(-a,a)

h(0) =0, yh(y)>0, Vy#0, y€(-a,a)

The system has an isolated equilibrium point at the origin. Depending upon
the functions g(-) and A(:) it might have other equilibrium points. The
equation of this system e¢an be viewed as a generalized pendulum equation
with h(zz) as the friction term. Therefore, a Lyapunov function candidate
may be taken as the energy-like function

V(z) = /0 - 9(y) dy + 373

Let D = {z € R? | —a < z; < a}. V(z) is positive definite in D. The
derivative of V(z) along the trajectories of the system is given by

V(2) = g(=1)2a + za[~g(21) = M(Fa)] = —zah(za) < 0
Thus, V(z) is negative semidefinite. To characterize the set S = {=z €
D | V(z) = 0}, note that
V(z) =0 = "rh(z2) =0 = z,=0, since —a<z3<a

Hence, S = {z € D | z = 0}. Suppose that z(t) is a trajectory that
belongs to S for all £,
z2(t)=0= 2,(t) =0=> z,(t) =¢, wherec € (—a,a)
Also,
() =0=>2()) =0=>g(c) =0=>c=0

Therefore, the only solution that can stay in S for all ¢ is the ‘trivial solution
z(t) = 0. Thus, the origin is asymptotically stable. JAN
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Consider the motion of a space vehicle about the principal axes of inertia. The Euler equations are
Aw, — (B — O, =T,

Bi, — (C ~ Ao, = T

¥

Co, — (A - Blww, =T,

where A, B, and C denote the moments of inertia about the principal axes; Wy, w,, and w, denote the
angular velocities about the principal axes; and 7, T,, and T, are the contro] torques.

Assume that the Space vehicle is tumbling in orbit. It is desired to Stop the tumbling by applying
control torques, which are assumed to be

T, = kAow,
7, = kBw,
7. = kCow.

Determine sufficient conditions for asymptotically stable operation of the system.
Solution. Let us choose the state variables as
X = o, X = w,, X3 = .

Then the system equations become

(B
X, A7 7 Xy = kx,
C A
Xy = E-Ex}ﬁ:kzxz
A B
3 E“Exlxz‘kﬂs
or
— l._ B c o -
X, k, Zx3 —Z.\‘z Fr,
A C
Xy f = | — Ex3 k, E.\', X,
A B
{3 Evz - E.\’, kq \3




The equilibrium state is the origin, or x = 0. If we choose

AT 0 0
Vx) =xPx =x"|0 B> 0 |x
0 0 ¢?

= A%} + B&I + Ci2
= positive definite

then the time derivative of V(x) is

V(x) = x"Px + x"Px
[ A Al .. i
kl *Ex_»; E"'Z A- O 0
B B .
= XT sz kz - Exl 0 B- 0 X
C C ,
—sz Exl ky 0 0 C-J
b - b
" r B C
A.— O O [ kl ZX3 - Z.\‘:
) ) A C
+ Xr 0 B- O _E.r3 k2 E-\"l
, A B
0 0 C~J EXZ - EX, k3
2k,A? 0 0
=x"| 0  2kB? 0 |x= —x"Qx
0 0 2k,C?

For asymptotic stability, the sufficient condition is that Q be positive definite. Hence we require

k<O, k, <0, ky <0

If the k; are negative, then noting that V(x) — o as x|l = %, we see that the equilibrium state is

asymptotically stable in the large.
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X = fit, ) (3.0)
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’,ﬁg orewndy: Let z =0 be an equilibrium point for (4,)
Let V : [0,00) x D — R be a continuously dszerentzable
function such that
ai(izl) < V(t, ) < ea(llzl)

0
a‘t/ avf(t z) < =ay(l=l))

Vi20,Vze€D, whereay(), as(-), and az(-) are class K functions
. Then x = 0 is uniformly asymptotically stable.
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A continuous function :[0,)[0,), is said to belong to class K if it is strictly increasing (0)=0 and (t) as t.
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A continuous function α:[0,∞)→[0,∞), is said to belong to class K if it is strictly increasing α(0)=0 and α(t)→∞ as t→∞.
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Tﬂewe wndy: Letz =0 be an equilibrium point for (41)
Let V : [0,00) x D — R be a continuously differentiable
function such that
ai(llzll) < V(t,z) < aa(llzl])

ov
a4 %V. f(t3) < ~as(|}))

Vt20,Yz €D, where o (), a2(), and as(-) are class K functions
. Thenz =0 43 uniformly asymptotically stable.
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Theorem 1: Given a continuous system
(t) = fa(t).t)

where .r(#) isan u x 1 vector, let V7 (.r 1) be the associated [.ydpunov
function - with the following propertics:

A jle(e) “ <V < /\2”.1'(!)” Vi{r ) e IR" x IR
Vt) < =Nl +¢ Y t) € R x It

where Ay, Ay, Ay, and ¢ are positive scalar constants. From the above
properties of the Lyapunov function, the state (1) is GUUB in the
sense that

(f)“< ’\2” .(0 I2'—.\l+__f__“ _ ‘——.\I] e
(i)} < X—l-.l NEe ) ‘

where A = Ay/\y, and e is used to denote the natural logarithm

exponential. {,7[0/7“( wn,‘fW.-v~ e i ywat e /;owuc(u(ne/)i
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Correspondence

Comments on “Adaptive PD
Controllgr for Robot Manipulators”

Rafael Kelly

Abstract—An alternative analysis without invoking the LaSalle invari-
ance principle of the PD controller with desired gravity compensation for
robots presented i Section III of Tomei’s paper [IEEE Trans. Robotics
Automat,, vol. 7, no. 4, pp. 565-570; Aug. 1991] is established in this work.
We use this result to straightforwardly develop a new PD controlier with
adaptive desired gravity compensation, and we give conditions to assure
closed-loop stability and global zero position error convergence,

1. INTRODUCTION

Following the nota%.4 of [1], in the absence 3}""friction and other
disturbances, the dynamics of a serial n-link rigid robot manipulator
can be written as

Blg)g+ Cly.d)g +elg) = u m
where ¢ is the n x 1 vector of joint displacements, u is the u x 1
vector of applied joint torques, B(q) is the n x n symmetric positive
definite manipulator inertia matrix, Clq.¢)q is the n x 1 vector of
centripetal and Coriolis torques, and c¢{g) is the n x 1 vector of
gravitational torques. We assume that the links are jointed together
with revolute joints.

We digress momentarily to present the following technical result.
Let us define § = go ~ ¢. Given two n x 1 vectors go and ¢, define
function flqy.q) as

f((jo.fj)=l(Q()—{{)—('(qo)-\*-c(qu)rq-f-_—qT[\pq 2)
2

where W'p = I/ is a » x n positive definite matrix, Ulg) =
U(q0 — 4) is the potential energy of the robot, and =, is a positive
constant. For all constant n X 1 vectors gq, function flgo.q) is a
positive definite function in § provided that

Jelq)

d¢

AlKpy> Zhag > 2L
(kl)>2 [1_2

where A, (I'p) indicates the smallest eigenvalue of J'p. As pointed
out in [1]. the positive constant A/, always-2xists for all ¢ € R".

II” PD WITH DESIRED GRAVITY COMPENSATION

In this section, we present an alternative analysis of the PD with
the desired gravity compensation controller presented in Section III
of [11.

The PD with desire. gzravity compensation control law is given
by (6) in [1)

u= —I\:p(q = 4o) — KNpg + cigo)

e .
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3)

where 'p and A'p are the n x n symmetric positive definite
proportional and derivative gain matrices, and go is the n x 1 desired
joint position vector (constant)., Matrix L'p is selected so that

/\m (I\-P) > 1‘{1 . (4)

As shown in [1], with this choice of A'p, for all positive definite
matrices A'p, and for all constant desired joint position vectors ¢,
the control aim lim—..c ¢(t) = gy is attained, and the closed-loop
system is globally asympiotically stable. These claims are proven in
[1] by invoking the LaSalle invariance principle.

In the following, we provide 4n alternative analysis with a different
Lyapunov function that obviates the LaSalle’s theorem.

Closed-Loop Analysis .

Let us define the joint position error vector as. ¢ = qu — ¢. The
closed-loop equation i; obtained by combining the robot model (1)
and control law (3):

d q -9

g Bq) ' [Kpd = Kpd = Cla.d)i + elgo) ~ elg)]
(5)

whose origin [(]T q'T] = 0 _is the unique equilibrium point because
I'p has been selected so that A (Ap) > M.

To carry out the stability analysis, we propose the following
Lyapunov function candidate:

P
a T 7 T T o S
i) 119 she “rranBa)] [
e(g.q) = 3
2la) -sgmB0 B0 | [

. S ST
+U(q)—-C'(00)+t'(qo)rq+;-ququ

<1

I(q0.9)
1, . . . .
= 54"Bla)i + U(g) = Ulgo) + e(40)T§
1 1\.7r,. . o T .
t{—+—= i hNpqg— ——— ¢'B(y) (6)
(51 s-z)’ T+gq ¢ 7
where f(qo. §) was defined in (2), and constants 0> 0.7 > 2 and
gy > 2 are selected as
2}\171(1‘:P)
———— > > 2 7
7”!71‘\’[1 1 ( )
' 2:’.’1 -
gy = > 2 (8)
: 8 B 2 8
©[2X L {Np)
— > 2y, (9
g2A01(B) ¢

y;

Condition. (7 assu : 1" at flgo.¢) is a positive definite func-ion
while cendition (9) guarantees that matrix P is positive definite; thus,
v(g.¢) is a positive definite function. Finally, condition (8) implies
that 1/zy 4+ 1/2y = 1/2,

The term 1/2[(}T (}T]TP[(]T q’T] with 22 = 2 in Lyapunov
function candidate ¢(§.¢), has been used in [3] to analyze the so-
called fixed nonlinear inverse dynamics controller.. On the other hand.

1042-296X/93$03.00 © 1993 IEEE




118 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9. NO. 1. FEBRUARY 1993

term f(go.¢) with &1 = 2, which depends on potential energy,

5 considered in {2] and more recently in {4] to analyze the PD
with gravity compensation and PID controllers, respectively.

The Lyapunov function candidate (6) with o = 0, &, = 2, and
=2 = 2 together with the LaSalle invariance principle were used in (5]
and in [1] to prove asymptotic stability of PD with desired gravity
compensation. -

The Lyapunov function candidate (6) is also different from the one
proposed in [6], which provides an.unified framework to Lyapunov
studies of a large class of PD-type controllers, in the sense that the
former includes potential energy terms and the normalized-type term
=0 /(1 + [I4l]).

As a remark, a Lyapunov function similar to (6) can be obtained
from (12) and (22) in [1] to prove asymptotic stability without
invoking the LaSalle invariance principle. W
«,  After some simplifications and using the fact that, for a proper

definition of C(g. ¢), matrix (1/2)B(q)—C’(q,q’) is skew-symmetric
and B(g) = Clg.4) + C(q.¢)T, the time derivative #(g,¢) along
the trajectories of the closed-loop equation (12) can be written as

G.9) = =G KD+ 4" Blg)g — d Npd +cq" Kpg

~24TClq.§)q - £G7[e(g0) — e(g)] — €47 B(q)d. (10)
where = = zo/(1 + ||¢I])-
Now we provide upper bounds on the following terms:
-£47C(g.9)d < eoke || ¢ I an
—z¢7 e(go) ~ e(q)] < eMy || g |? (12)
—£¢" B(g)¢ < cornr(B) I} ¢ II° (13)

where we used (4) and (7) from [1].
From inequalities (11), (12), and (13), it now follows that time
derivative ©(§. ¢) in (10) gives (14), found at the bottom of this page.
Matrix @ is positive definite provided that

Am(Kp) > M) (15)
2A171(I\-D)(/\111(1\.P) - AI[)
T > 16
N, (kD) o0 (16)
and & > 0 if the following inequality is satisfied:
A")(I\D) > SO. (17)

2(ke + 2Ar(B))

It is important to remark that constant o is only necessary for
analysis purposes. Selecting o in such a way as to simultaneously
satisty (16) and (17), we have A, (@) > 0. Thus, from:(14) we obtain

g
I+ gl
which is a negative definite function. Finélly. by invoking Lyapunov’s

. .. T
direct method, we conclude that the origin [q

asymptotically stable equilibrium of the closed-loop equation; hence,
limi—ac(go — ¢(t)) = 0, as desired.

. 6. . .
#G.4) € =20Am(Q) -5ld II? (18)

¢T] = 0isaglobally

III. PD wWITH ADAPTIVE DESIRED GRAVITY COMPENSATION

When the payload changes during operation of the robot, or
the gravitational torque vector e{¢) parameters cannot be evaluated
accurately, the PD with desired gravity compensation controller (3)
causes an offset in final positioning {5].

_To compensate the offset in final positioning, [1] proposes the
adaptive PD controller:

u=Npi— Npg+ E(g)p
J/ E(q) {1+2q VT3 )-vq(a)

where the gravity vector e(g) has been expressed as ¢(¢) = E(¢)p, p
is the m X 1 unknown parameter vector, which is assumed constant,
E(g) is an n X m known matnx and  and ~y-are sunably selected
positive constants. —

Another solution to point-to-point robot control with parametric
uncertainty is to consider an adaptive version of the PD controller
with desired gravity compensation (3) given by

do + p(0)

u=~Kpj—NLpg+ E(g)p (19)

Sy T '[ .o .

where N'p and I'p are again the n X n symmetric positive
definite proportional and derivative matrices, p is the so-called m x 1
adaptive parameter vector, I is the m x m symmetric positive definite
adaptation gain matrix, p(0) is any m x 1 vector usually selected in
practice as the “best"” a priori approximation available of the unknown
vector p, and €¢ is a positive constant.

Among the design matrices 'p, J'p, I, vector §(0), and constant
g0, only K'p and o must be carefully chosen using a priori weak
knowledge on the robot dynamic model. Specifically, we assume to
know the constants Axr(B), ke, and Ay,

The symmetric positive definite matrix L'p and the positive
constant o must be chosen in such a way to verify

© Am(Kp) > M

22m(Kp.
LRk > o
lf\m(}\D) Am{Kp)—My) £ and
A (K D)
Am l\ ~ ol
(kC’H'\M(B)) -
where 2 is given in (8).

— glo)| do + p(0) (20)

Closed-Loop Analysis ,
Let us denote the unknown parameter error vector p = p — 5. The
closed-loop equation is obtained by combining the robot model (1)

g1l

- % (K D) = 2¢0(ke + 2Aas(B

Am(Ip) = M,

 —iau(KDp)

Q
-3 (Ep) ] [y
22%;)\111(1\-0) “ ({. “
Mlall*. (4

'

e

&
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and the adaptive contro] law (19) and (20):

g

2
[ —~q
Blg) ' [Kp§ - Kpg ~ Clg.4)i+ elgo) = e(g) + Elqo)p)
T El0)” (573 - d]
E @1

whose origin [¢7 47 57] = 0is an equilibrium point. To carry
out the origin stability analysis, we consider the following Lyapunov
function candidate:

TR, Bl 0 714
> G
S 1] . ‘
vlyog.p) = 219 |~ Ble) Bg) 0 q
p 0 0 r-!

. . - 1 ... .
U9 = Ulgo) + el90) G+ =T pq (22)
z

where =, and’ Iy are given in (7) and
arguments presented in
function.

Taking the time derivative of the Lyapunov function candidate (22)
along the trajectories of the closed-loop equation (21) and after some
tedious but straightforward simplifications, we have

(8), respectively. Due to
previous section, (22) is a positive definite

G Kpg+ =G K pg

g py = ~(1'T[x'[)(j + fq'TB(q)q' -
~24'Cg.4)g = 24"[e(g0) — ()] = 24" B(qg)q.

23)

Notice that right-hand side in (23) and (10) are the same. Thus,
by using inequality (18) we obtain

i o B - Il a ”z b

’((/-U.Q)S ~()/\m((2)m 2”(1”
which is a nonpositive function because of the choice of Kp and
Zu. It follows that t{g.q.p) is bounded; hence, 4, 4. and p are in
turn bounded vectors. Using Lyapunov's direct method we conclude
immediately stability of the origin. To prove that the control objective
Is attained. j.e.. iy _ o () = 4v, we invoke standard adaptive
control arguments. To this end, by integrating both sides of inequality
(24). we conclude that VZ¢ and ¢ are square integrable functions.
Since ¢ was proven to be bounded, it follows that V7 is bounded
away from zero. Thus, q is also a square integrable function. Byt
a square integrable function whose derivative ((} = —¢) is bounded

hamas {

must tend to zero; hence, iy — o (g ~ ¢(t)) = 0, as desired.

(24)

IV. ConcLubing REMARKS

This work presented an alternative analysis of the PD controller
with desired gravity compensation for set-point control of robot
manipulators developed in Section I of {13 By using a suitable
Lyapunov function. and without invoking LaSalle’s theorem, we
showed, as in [1], that closed-loop global asymptotic stability can
be attained. Also, we have proposed a PD controller with adaptive
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desired gravity compensation where, under adequate conditions,

the closed-loop system s stable and global zero position error
convergence is assured.
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(2]

Correction to “Robust Adaptive Controller
Designs for Robot Manipulator Systems”

Kye Y. Lim and Mansour Eslami

There are two important typing errors in the above paper.' First,
in (8d) where it is written

'IIl(f) > “/\min(Q)”C'pnz/{/\min(U)”U:Hz}
the Amin (U) should read
)\max(U)

(this typing error has somehow been propagated throughout many
of our papers). We thank our many colleagues who brought this
fact to our attention, and we thank S.J. Xu, M. Darouach, and I,
Schaefers, who brought it to the attention of the IEEE TRANSACTIONS
ON ROBOTICS AND AUTOMATION,

Second, the second term in the denominator of (16)

/\nmx(b’)/?““: ”2

should read
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