A multiply-by-two sample-and-hold amplifier (SHA) for the front-end stage of a 9-bit $5 \mathrm{MS} / \mathrm{s}$ analog-to-digital converter is required. The needed SHA design specifications are as follows:

- Technology: $0.18 \mu \mathrm{~m}$
- Power supply voltage: 1.8 V
- Sampling frequency (fs): 5 MHz (Settling time < 100ns)
- Total settling error $\left\langle 2^{-10} \mathrm{~V}\right.$
- Maximum output swing $>1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
- Feedback capacitor of the SHA: $\mathrm{C}_{1}=\mathrm{C}_{2}=0.5 \mathrm{pF}$
- Load capacitance of the SHA: $\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$
- Power dissipation: as low as possible

- The first phase of project is to design an open-loop operational amplifier suitable for this sample-and-hold. This opamp should then be employed in the mentioned sample-and-hold to ensure the reliable performance.
- Suggest the amplifier optimum topology as well as its compensation network. (Depending on your decision for lower power consumption, the opamp could be implemented as twostage or single-stage with or without gain-boosting structures).
- Only one ideal reference current source should be used and the biasing network as well as the needed switches should be real.
- Simulate your amplifier AC open-loop frequency characteristics.
- Simulate the closed-loop sample-and-hold transient response.

Documentation:

-Prepare your documentation file in two-column format included followings:

- Introduction
- Design procedure and calculations
- Simulation results
- Frequency response of opamp
- Swing of opamp
- Transient response of SHA
- Output THD
- Discuss on the effect of the non-idealities of the opamp and switches on the SHA performance metrics
- Comments and conclusions

