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Objective 
 

 

This document presents generic EMT-type models for full size converter (FSC) and Doubly-fed 

induction generator (DFIG) based wind parks (WPs) that can be used for stability analysis and 

interconnection studies. These models are developed in EMTP Version 3.4 and above. This document 

is also intended to be used for educative purposes at Polytechnique Montréal. 
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1 INTRODUCTION 

The large scale wind parks (WPs) employ variable speed wind turbines (WTs) in order to increase 

energy capture, reduce drive train stresses and comply with grid code requirements. Doubly-fed 

induction generator (DFIG) and full size converter (FSC) WTs fall into this category. 

Interconnecting a large-scale WP into the bulk power system has become a more important issue 

due to its significant impact on power system transient behavior. Failure to perform proper 

interconnection studies could lead to not only non-optimal designs and operations of WPs, but also 

severe power system operation and even stability problems. Manufacturer-specific models of WPs are 

typically favored for the interconnection studies due to their accuracy. However, these WP models have 

been typically delivered as black box models and their usage is limited to the terms of nondisclosure 

agreements. Utilities and project developers require accurate generic WP models to perform the 

preliminary grid integration studies before the actual design of the WP is decided. Accurate generic WP 

models will also enable the researchers to identify the potential WP grid integration issues and propose 

necessary countermeasures. 

This document presents EMT-type models for FSC and DFIG based WPs that can be used for 

stability analysis and interconnection studies. In the aggregated WP model, the collector grid and the 

WTs are represented with their aggregated models. However, the model includes the wind park 

controller to preserve the overall control structure in the WP. The WT and the WP control systems 

include the necessary nonlinearities, transient and protection functions to simulate the accurate 

transient behavior of the WP to the external power system disturbances. 

The first part of this document briefly presents the FSC and DFIG based WPs. The developed 

EMTP models are presented in the second part. The last part presents the illustrative simulation 

examples.  
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2 WIND PARKS WITH VARIABLE SPEED WIND TURBINES 

A simplified single line diagram of a typical wind park is shown in Figure 1.  In wind parks, WTs are 

connected through a step-up transformer (WT transformer) to the medium voltage (MV) collector bus 

by means of subterranean cables. The collector bus voltage is stepped up to the high voltage (HV) level 

by means of wind park transformer. Depending on the selection of the function, either the reactive power 

or voltage or power factor at the point of interconnection (POI in Figure 1) is controlled by a central wind 

park controller (WPC) located at wind park substation. The wind park transformer usually contains an 

on load tap changer (OLTC) to maintain nominal voltage at MV collector bus.  

The available reactive power at the point of interconnection (POI) is usually much less than the 

specified WT capacity due to the reactive power losses at the WT transformers, the medium voltage 

(MV) collector grid and the wind park transformer. Therefore, reactive power compensation may be 

required to fulfill the grid code requirements regarding power factor control [1].  

The EMT model presented in this document does not include the wind park transformer OLTC and 

any reactive power compensation device (such as Static VAR Compensator). 

 

Figure 1  Simplified single-line diagram of a typical wind park 

2.1 Variable Speed Wind Turbines 

As the size of the WTs increase, the WT technology has switched from fixed speed to variable 

speed. The drivers behind these developments are mainly increasing the energy capture, reducing the 

drive train stresses and ability to comply with the grid code requirements. Most common configurations 

are FSC and DFIG WTs [2]. 

2.1.1 Wind Turbine Aerodynamics 

The wind turbine extracts kinetic energy from the swept area of the blades. The mechanical power 

extracted from the wind is given by [2]: 

      3
t p

1
P A C ,

2
 (1) 

where   is the air density (approximately 1.225 kg/m3), A  is the swept area of the rotor (m2),   is 

upwind free wind speed (m/s) and pC  is the power coefficient. 
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pC  is a characteristic of the WT and is usually provided as a set of curves ( pC  curves) relating   pC  to 

tip-speed-ratio   with the blade pitch angle   as a parameter, as shown in Figure 2 [3]. The tip-speed-

ratio is defined as 

     tR  (2) 

where t  is the WT rotational speed (rad/s) and R  is the blade radius (m). 

 
Figure 2  Wind power pC  curves 

At a specific wind speed and pitch angle, there is a unique WT rotational speed that achieves the 

maximum power coefficient p maxC , hence the maximum mechanical power as shown in Figure 2.  

The mathematical model of the WT aerodynamics is shown in Figure 3. In this modeling approach, 

the pC  curves of the WT are fitted with high order polynomials on   and  , as follows 

  
 

    
n n

i j
p ij

i 1 j 1
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Figure 3  Wind turbine model for aerodynamics 
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2.1.2 Mechanical System 

The mechanical system is constituted by the blades linked to the hub, coupled to the slow shaft, 

which is linked to the gearbox which multiplies the rotational speed of the fast shaft connected to the 

generator. Although the mechanical representation of the entire WT is complex, representing the 

fundamental resonance frequency of the drive train using its two mass model is sufficient as the other 

resonance frequencies are much higher and their magnitudes are lower [4]. By referring all magnitudes 

in the fast shaft (generator side), the state space equations of the two mass system can be written as 

                 t t t tg t g t t tg t g1 J T D D K  (4) 

   t t  (5) 

                 g g tg t g tg g t g g g1 J K D D T  (6) 

   g g  (7) 

where t , t , tT  are the rotor speed (rad/s), angular position of the rotor (rad) and the aerodynamic 

torque (Nm) of the WT referred to the fast shaft, respectively.  g , g , gT  are the speed, angular 

position and electromagnetic torque of the generator, respectively. tJ  and tD  are the moment of inertia 

(kgm2) and absolute speed self-damping coefficient (Nms/rad) of the WT referred to the fast shaft, 

respectively. gJ  and gD  are the moment of inertia and absolute speed self-damping coefficient of the 

generator, respectively. tgK  and tgD  are the equivalent spring constant (Nm/rad) and mutual damping 

coefficient (Nms/rad), between the WT and the generator, respectively. 

2.1.3 Control of Variable Speed Wind Turbines 

The control of variable speed WT calculates the generator power output and the pitch angle in 

order to achieve extracting the maximum energy from the wind and keeping the WT in safe operating 

mode. The WT remains shut down when the wind speed is too low for energy production (i.e. below 

cut-in speed cut in ). When the wind speed is above cut in  and below rated speed rated , the pitch 

angle is kept at zero (   00 ) and the power reference of the WT generator is produced by the MPPT 

(maximum power point tracking) function to achieve optimal operation. The conventional method is 

calculating the power reference using a cubic function of the turbine angular speed. 

  3
ref opt tP K  (8) 

where 

      
3

opt p max optK 1 2 C A R  (9) 

When the wind speed is above rated , the pitch angle is increased by the pitch controller (see 

Figure 4) in order to limit the mechanical power extracted from the wind and reduce the mechanical 

loads on the drive train. The pitch controller should ensure zero pitch angle (   00 ) for the wind speeds 

below rated  [5]. When the wind speed is above cut-off speed cut off , the WT is shut down. 
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Figure 4  Schematic diagram of pitch control 

2.2 Reactive Power Control in Wind Parks with Variable Speed Wind 
Turbines 

The active power at the point of interconnection (POI in Figure 1) depends on the wind conditions 

at each WT inside the WP and determined by MPPT function (see (8)) when the wind speed is between 

cut in  and rated . However, according to customary grid code requirements, the WP should have a 

central wind park controller (WPC) to control the reactive power at POI. 

The WP reactive power control is based on the secondary voltage control concept [6]. At primary 

level, the WT controller (WTC) monitors and controls its own positive sequence terminal voltage ( 
wtV ) 

with a proportional voltage regulator. At secondary level, the WPC monitors the reactive power at POI 

( POIQ ) and control it by modifying the WTC reference voltage values ( V ) via a proportional-integral 

(PI) reactive power regulator as shown in Figure 5. In Figure 5 and hereafter, all variables are in pu 

(unless otherwise stated) and the apostrophe sign is used to indicate the reference values coming from 

the controllers. 

Although not shown in Figure 5, the WPC may also contain voltage control (V-control) and power 

factor control (PF-control) functions. When the WPC is working under V-control function, the reactive 

power reference in Figure 5 ( 
POIQ ) is calculated by an outer proportional voltage control, i.e. 

   POI Vpoi POI POIQ K V V  (10) 

where 
POIV  is the positive sequence voltage at POI and VpoiK  is the WPC voltage regulator gain. 

When WPC is working under PF-control function, 
POIQ  is calculated using the active power at POI 

( POIP ) and the desired power factor at POI ( POIpf ). 

When a severe voltage sag occurs at POI (due to a fault), the PI regulator output ( U ) is kept 

constant by blocking the input (  POI POIQ Q ) to avoid overvoltage following the fault removal. 

+
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Figure 5  Reactive power control at POI (Q-control function) 

2.3 Full Size Converter (FSC) Wind Turbines 

FSC WT may or may not have a gearbox and a wide range of electrical generators such as 

asynchronous, conventional synchronous and permanent magnet can be employed. As all the WT 

power is transferred through an ac-dc-ac converter system, the specific characteristics and dynamics 

of the electrical generator are effectively isolated from the grid [7].  

The considered topology in this paper is shown in Figure 6. It uses a permanent magnet 

synchronous generator (PMSG) and the ac-dc-ac converter system consists of two voltage source 

converters (VSCs): machine side converter (MSC) and grid side converter (GSC). The dc resistive 

chopper is used for the dc bus overvoltage protection. Although not shown in Figure 6, a line inductor 

(choke filter) and an ac harmonic filter are used at the GSC to improve the power quality. 

 
Figure 6  FSC wind turbine configuration 

The simplified diagram of FSC WT control and protection system is shown in Figure 7. The 

sampled signals are converted to per unit and filtered at “Measurements & Filters” block. The input 

measuring filters are low-pass (LP) type. “Compute Variables” block computes the variables used by 

the FSC WT control and protection system. “Pitch Control” block (see Figure 4) limits the mechanical 

power extracted from the wind by increasing the pitch angle when the wind speed is above its rated. 

“Protection System” block contains cut-in and cut-off speed relays, low voltage and overvoltage relays, 

MSC and GSC overcurrent protections and dc resistive chopper control.  

The control of the FSC WT is achieved by controlling the MSC and GSC utilizing vector control 

techniques. Vector control allows decoupled control of real and reactive powers. The currents are 

projected on a rotating reference frame based on either ac flux or voltage. Those projections are 

referred to d- and q- components of their respective currents. In flux-based rotating frame, the q-

component corresponds to real power and the d-component to reactive power. In voltage-based rotating 

frame (900 ahead of flux-based frame), the d and q components represent the opposite. 
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The control scheme is illustrated in Figure 8. In this figure, qmi  and dmi are the q- and d-axis currents 

of the MSC, qgi  and dgi  are the q- and d-axis currents of the GSC, dcV  is the dc bus voltage, T  is the 

electromagnetic torque of the PMSM, and 
wtV  is the positive sequence voltage at FSC transformer MV 

terminal. 

In the control scheme presented in Figure 8, the MSC operates in the stator flux reference (SFR) 

frame and the GSC operates in the stator voltage reference (SVR) frame. qmi  is used to control T ,  dgi  

is used to maintain dcV  and qgi  is used to control 
wtV . 

Both MSC and GSC are controlled by a two-level controller. The slow outer control calculates the 

reference dq-frame currents ( dmi , qmi , dgi  and 
qgi ) and the fast inner control allows controlling the 

converter ac voltage reference that will be used to generate the modulated switching pattern.  

The reference for PMSM electromagnetic torque is given by MPPT control (   2
opt tT K ) and the 

reference for the positive sequence voltage at FSC transformer MV terminal ( V ) is calculated by the 

WPC (see Figure 5). 

 
Figure 7  Simplified diagram of FSC WT control and protection system 

 

 

Figure 8  Schematic diagram of FSC WT control 
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2.4 Doubly-Fed Induction Generator (DFIG) Wind Turbines 

In WTs with DFIG, the stator of the induction generator (IG) is directly connected to the grid and 

the wound rotor is connected to the grid through an ac-dc-ac converter system as shown in Figure 9. 

The ac-dc-ac converter system consists of two voltage source converters (VSCs): rotor side converter 

(RSC) and grid side converter (GSC). A line inductor and shunt harmonic ac filters are used at the GSC 

to improve power quality (not shown in Figure 9). A crowbar is used to protect the RSC against 

overcurrent and the dc capacitor against overvoltage. During crowbar ignition, the RSC is blocked and 

the IG consumes reactive power. To avoid the crowbar ignition during faults, the dc resistive chopper 

is widely used to limit the dc voltage. DFIG WT also includes the protection functions presented in 

Section 2.3. 

 
Figure 9  DFIG wind turbine configuration 

The overall control and protection scheme in DFIG WT is similar to the one in FSC WT shown in 

Figure 7. The sampled signals are converted to per unit and filtered at the “Measurements & Filters” 

block. The input measuring filters are low-pass (LP) type. The “Compute Variables” block computes the 

variables used by the DFIG WT control and protection system. The “Pitch Control” block (see Figure 4) 

limits the mechanical power extracted from the wind by increasing the pitch angle when the wind speed 

is above its rated. However, the “Protection System” block contains crowbar protection in addition to 

the cut-in and cut-off speed relays, low voltage and overvoltage relays, RSC and GSC overcurrent 

protections and dc resistive chopper control. It should be noted that, the crowbar protection is not 

expected to operate unless the dc resistive chopper protection is deactivated. 

The DFIG converter control scheme is illustrated in Figure 10. In this figure, qri  and dri  are the q- 

and d-axis currents of the RSC, qgi  and dgi  are the q- and d-axis currents of the GSC, dcV  is the dc 

bus voltage, P  is the active power output of the DFIG, and 
wtV  is the positive sequence voltage at 

DFIG transformer MV terminal. The RSC operates in SFR frame and the GSC operates in SVR frame. 

qri  and dri  are used to control P  and 
wtV , respectively. On the other hand, dgi  is used to maintain the 

dc bus voltage ( dcV ) and qgi  is used to support the grid with reactive power during faults.  

Both RSC and GSC are controlled by a two-level controller. The slow outer control calculates the 

reference dq-frame currents ( dri , 
qri , 

dgi  and 
qgi ) and the fast inner control allows controlling the 

converter ac voltage reference.  

The reference for DFIG active power output ( P ) is given by MPPT control (see (8)). The reference 

for DFIG positive sequence voltage ( V ) is calculated by the WPC (see Figure 5). 
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Figure 10  Schematic diagram of DFIG WT control 
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3 EMTP IMPLEMENTATION 

The developed wind park model setup in EMTP is encapsulated using a subcircuit with a 

programmed mask as illustrated in Figure 11 and Figure 12. The model consists of a wind turbine, a 

LV/MV wind turbine transformer, equivalent PI circuit of the collector grid and a MV/HV wind park 

transformer.  

The first tab of the wind park mask enables the user to modify the general wind park parameters 

(number of WTs in the WP, POI and collector grid voltage levels, collector grid equivalent and zig-zag 

transformer parameters (if it exists)), the general wind turbine parameters (WT rated power, voltage 

and frequency), and wind park operating conditions (number of WTs in service, wind speed WPC 

operating mode and reactive power (or power factor) at POI). 

The second and the third tab is used for MV/HV WP transformer and LV/MV WT transformer 

parameters, respectively. 

The forth tab is used to modify the parameters of converter control system given below: 

- Sampling rate and PWM frequency at WT converters 

- WT input measuring filter parameters, 

- MSC (or RSC) control parameters, 

- GSC control parameters, 

- Coupled / Decoupled sequence control option for GSC 

The fifth tab is used to modify the parameters of voltage sag, chopper, crowbar (for DFIG only) 

and overcurrent protections. The sixth tab is used to modify the WPC parameters. 

The associated JavaScript file (DFIG_WP_Parameters.dwj and FC_WP_Parameters.dwj, for 

DFIG and FSC based WP, respectively) computes the internal model parameters. It also contains the 

data that is not accessible from the mask, such as the data for WT aerodynamics, mechanical system 

and pitch control. 

The wind farm transformer connection is wye-grounded on the HV side and Delta on the MV side. 

The WT transformer connection is wye-grounded on the LV side and Delta on the MV side. In both 

transformers the magnetizing branch is located at the Delta connection side. 

                       
Figure 11  FSC based wind park device, mask parameters shown in Figure 12 
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Figure 12  FSC based wind park device mask 

3.1 Detailed and Average Value Models 

The EMTP diagram of the wind turbine ac-dc-ac converter system detailed model (DM) is shown 

in Figure 13. A detailed two-level topology (Figure 14.a) is used for the VSCs in which the valve is 

composed by one IGBT switch, two non-ideal (series and anti-parallel) diodes and a snubber circuit as 

shown in Figure 14.b. The non-ideal diodes are modeled as non-linear resistances. The DC resistive 

chopper limits the DC bus voltage and is controlled by the protection system block. 

The PWM block in the ac-dc-ac converter system EMTP diagram receives the three-phase 

reference voltages from converter control and generates the pulse pattern for the six IGBT switches by 

comparing the voltage reference with a triangular carrier wave. In a two-level converter, if the reference 

voltage is higher than the carrier wave then the phase terminal is connected to the positive DC terminal, 

and if it is lower, the phase terminal is connected to the negative DC terminal. The EMTP diagram of 

the PWM block is presented in Figure 15. 
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Figure 13  ac-dc-ac converter system block in WT models (detailed model version) 

 

      
Figure 14  (a) Two-level Converter, (b) IGBT valve 

 

 

Figure 15  PWM control block 

The DM mimics the converter behavior accurately. However, the simulation of such switching 

circuits with variable topology requires many time consuming mathematical operations and the high 

frequency PWM signals force small simulation time step usage. These computational inefficiencies can 

be eliminated by using the average value model (AVM) which replicates the average response of 

switching devices, converters and controls through simplified functions and controlled sources [8]. 

AVMs have been successfully developed for wind generation technologies [9], [10]. The AVM obtained 

by replacing the DM of converters with voltage-controlled sources on the ac side and current-controlled 

sources on the dc side, as shown in Figure 16 and Figure 17. 

The forth (converter control) tab of the wind park device mask (see Figure 12) enables used AVM-

DM selection. 
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Figure 16  ac-dc-ac converter system block in WT models (average value model version) 

 

 

Figure 17  AVM Representation of the VSC 

 

3.2 FSC based Wind Park Model in EMTP-RV 

The EMTP-RV diagram of the FSC based Wind Park is shown in Figure 18. It is composed of  

- “Wind Turbine” block, 

- “WT Electrical System” block, 

- “WT Control System” block, 

- “WP Control System” block, 

- PI circuit that represents equivalent collector grid, 

- Wind park transformer, 

- Initialization Source with load flow (LF) constraint. 

The “Wind Turbine” block contains wind turbine aerodynamics given in Figure 3 and the 

mechanical system model given by (4) - (7). 

The initialization source contains the load flow constraint. It also prevents large transients at 

external network during initialization of WT electrical and control systems. 
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Figure 18  EMTP diagram of the FSC based Wind Park 

3.2.1 Wind Park Control System Block 

The function of WPC is to adjust the WT controller voltage reference in order to achieve desired 

reactive power at POI (see Figure 5). The “WP Control System” block consists a measuring block, an 

outer voltage (or power factor) control and a slow inner proportional-integral reactive power control as 

shown in Figure 19. The measuring block receives the voltages and the currents at POI (i.e. HV terminal 

of wind farm transformer) and calculates the voltage magnitude, active power and reactive power. The 

reactive power reference for the inner proportional-integral reactive power control is produced either by 

the outer proportional voltage control (V-control) or by the outer power factor control (pf-control) unless 

Q-control is selected. 

Similar to the “Wind Turbine” block, the “WP Control System” block is identical in both FSC and 

DFIG based WPs. 

3.2.2 FSC Wind Turbine Electrical System Block 

The EMTP diagram of the “WT Electrical System” block is composed of PMSM, ac-dc-ac converter 

system, choke filter, shunt ac harmonic filters and WT transformer, as shown in Figure 20.  

The measurement blocks are used for monitoring and control purposes. The monitored variables 

are MSC, GSC and total FC currents, and FC terminal voltages. The dc voltage is also monitored (in 

ac-dc-ac converter system block) as well as the PMSM electromagnetic torque. All variables are 

monitored as instantaneous values and meter locations and directions are shown in Figure 20. 

The ac-dc-ac converter system block details have been presented in Section 3.1. 
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Figure 19  EMTP diagram of “WP Control System” block 

  

 

Figure 20  EMTP diagram of FSC “WT Electrical System” block 
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The “shunt ac harmonic filters” block includes two band-pass filters as shown in Figure 21. These 

filters are tuned at switching frequencies harmonics n1 and n2. The filter parameters are computed as 

 


filter wt
f1 2

Q N
C

U (2 f)
 (11) 

 


wt
f1 2

f1 1

N
L

C (2 f n )
 (12) 

 


 1 f1
f1

wt

(2 f )n L Q
R

N
 (13) 

 f 2 f1C C  (14) 
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

wt
f2 2

f2 2

N
L

C (2 f n )
 (15) 

 


 2 f2
f2

wt

(2 f )n L Q
R

N
 (16) 

where U  is the rated LV grid voltage, filterQ  is the reactive power of the filter and Q  is the quality factor 

with a value of 1000.  

 The switching frequencies harmonics n1 and n2 are as follows 

 1 PWM gsc sn f f  (17) 

 2 1n 2n  (18) 

where PWM gscf  is the PWM frequency at GSC and sf  is the nominal frequency. 

 

Figure 21  “shunt ac harmonic filter” block 

3.2.3 FSC Wind Turbine Control System Block 

The EMTP diagram of the FSC WT control system block is shown in Figure 22. The sampled 

signals are converted to pu and filtered. The sampling frequencies are set to 12.5 kHz for both MSC 

and GSC from device mask as shown in Figure 12. The “sampling” blocks are deactivated in AVM due 

to large simulation time step usage. In the generic model, 2nd order Bessel type low pass filters are 

used. The cut-off frequencies of the filters are set to 2.5 kHz for both MSC and GSC. However, the 
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“GSC Compute Variables” blocks do the dq transformation required for the vector control. The MSC 

control (“PMSG Control” block) operates in the stator flux reference frame and the GSC (“Grid Control” 

block) operates in the stator voltage reference frame. The pitch control is activated when the wind speed 

increases above the rated value and given in Figure 4. The protection block includes the over/under 

voltage relay, the deep voltage sag detector, the dc chopper control and overcurrent detector. 

 

Figure 22  EMTP-RV diagram of FSC “WT Control System” block 

The transformation matrix T in (19) transforms the phase variables into two quadrature axis (d and 

q reference frame) components rotating at synchronous speed   d / dt . The phase angle   of the 

rotating reference frame is derived by the double synchronous reference frame (DSRF) PLL [11] (see 

Figure 23) from the FSC WT terminal voltages allowing the synchronization of the control parameters 

with the system voltage. In matrix the following T, the direct axis d is aligned with the stator voltage. 
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Figure 23  EMTP-RV diagram of DSRF PLL 

3.2.3.1 FSC Machine Side Converter Control 

The EMTP diagram of the “PMSG Control” block is shown in Figure 24. The function of the MSC is 

to control the electromagnetic torque of the PMSM. 

 

Figure 24  EMTP diagram of FSC “PMSG Control” block 
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where m  is the constant flux generated by the permanent magnet and   2
opt tT ( K )  is the reference 

for PMSM electromagnetic torque given by the MPPT control. 

The MSC inner control loop is designed based on internal model control (IMC) method. This 

method results dq-frame proportional integral (PI) or PI-type controllers, the parameters (gain and 

integration time) of which are expressed directly in certain machine parameters and the desired closed-

loop bandwidth. This simplifies the controller design procedure, eliminating or reducing the need for 

trial-and-error [12]. 

The PMSG stator voltages are found from 

      dm s dm d dm g q qmv R i L d i dt L i  (21) 

          qm s qm q qm g d dm mv R i L d i dt L i  (22) 

where sR  is the armature resistance, dL  and qL  are the d- and q-axis inductances of PMSG. 

The dmi  and qmi  errors are processed by the PI controller to give dmv  and qmv , respectively. To 

ensure good tracking, feed-forward compensating terms g q qmL i  in (21) and    g d dm mL i  in (22) are 

added. The converter reference voltages become 

         d d
dm p i dm dm g q qmv k k s i i L i  (23) 

             q q
qm p qm qm g d dm miv k k s i i L i  (24) 

Using IMC [12],  

 
 
  
  

d d
p i1c

msc msc q q
p i

k k s 0
F (s) G (s)

s 0 k k s
 (25) 

where  mscG s  is the transfer function that describes the link between MSC output current and voltage, 

and c  is the bandwidth.  mscG s  is given by 

 


 
 
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
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

1

s d
msc

s q

0

0

R
G (s)

R

sL

sL
 (26) 

The relationship between the bandwidth and the rise time (10%–90%) is  c riseln(9) / t .  

The PI controller parameters are found as 

  d
p c dk L  (27) 

  q
p c qk L  (28) 

   d q
i c sik k R  (29) 

The PI controller parameters are calculated for the MSC rise time given in the device mask. 

3.2.3.2 FSC Grid Side Converter Control 

The function of GSC is maintaining the dc bus voltage dcV  at its nominal value and controlling the 

positive sequence voltage at MV side of FSC WT transformer ( 
wtV ).The EMTP diagram of the “Grid 

Control” block is shown in Figure 25. The GSC control offers both coupled and decoupled sequence 
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control options. The user can select the GSC control option from the device mask as shown in Figure 

12. 

 

Figure 25  EMTP diagram of FSC “Grid Control” block 

3.2.3.2.1 FSC GSC Coupled Control 

The q-axis reference current is calculated by the proportional outer voltage control, as follows 

    qg V wti K V V  (30) 

where VK  is the voltage regulator gain. The reference for MV side of FSC WT transformer positive 

sequence voltage ( V ) is calculated by the WPC (see Figure 5). 

The positive sequence voltage at MV side of FSC WT transformer is not directly measured by the 

WT controller and it is approximated by 

       
2 2

wt dwt qwtV V V  (31) 

where 

      dwt dwt tr dwt tr qwtV V R I X I  (32) 

      qwt qwt tr qwt tr dwtV V R I X I  (33) 

In (31) - (33), 
dwtV and 

qwtV  are the d-axis and q-axis positive sequence voltage at MV side of FSC WT 

transformer, 
dwtV and 

qwtV  are the d-axis and q-axis positive sequence voltage at FSC WT terminals 

(i.e. the d-axis and q-axis positive sequence voltage at LV side of FSC WT transformer),  
dwtI and 

qwtI  

are the d-axis and q-axis positive sequence currents of FSC WT (i.e. the d-axis and q-axis positive 

sequence currents at LV side of FSC WT transformer), trR  and trX  are the resistance and reactance 

values FSC WT transformer. 

The d-axis reference current is calculated by the proportional outer dc voltage control. It is a PI 

controller tuned based on inertia emulation. 

   2
p 0 Cdck 2H  (34) 

   
i 0 Cdck 2 2H  (35) 
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where 0  is the natural frequency of the closed loop system and   is the damping factor. 

 Cdc Cdc wtH E S  is the static moment of inertia,  CdcE  is the stored energy in dc bus capacitor (in 

Joules) and wtS  is the wind park rated power (in VA). 

The schematic of the GSC connected to the power system is shown in Figure 26.   Z R j L  

represents the grid impedance including the transformers as well as the choke filter of the GSC. The 

voltage equation is given by 

    d dtabc gabc gabc gabcv R i L i v  (36) 

 

Figure 26  GSC arrangement 

The link between GSC output current and voltage can be described by the transfer function  

   gscG (s) 1 R sL  (37) 

Using (25), the PI controller parameters of the inner current control loop are found as 

  p ck L  (38) 

  i ck R  (39) 

The PI controller parameters are calculated for the GSC rise time given in the device mask. 

Similar to the MSC, the feed-forward compensating terms  choke qg d chokeL i v  and 

  choke dg q chokeL i v  are added to the d- and q-axis voltages calculated by the PI regulators, 

respectively. The converter reference voltages are as follows 

    
       dg p i dg dg choke qg d chokev k k s i i L i v  (40) 

    
       qg p i qg qg choke dg q chokev k k s i i L i v  (41) 

During normal operation, the controller gives the priority to the active currents, i.e. 

 
   

 

   

lim
dg dg

2 2
lim lim

qg qg g dg

i I

i I I i
 (42) 

where lim
dgI , lim

qgI  and lim
gI  are the limits for d-axis, q-axis and total GSC currents, respectively.  

The WTs are equipped with an FRT function to fulfill the grid code requirement regarding voltage 

support shown in Figure 27. The FRT function is activated when  

 
 wt FRT ON1 V V  (43) 
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and deactivated when  

 
 wt FRT OFF1 V V  (44) 

after a pre-specified release time FRTt . 

When the FRT function is active, the GSC controller gives the priority to the reactive current by 

reversing the d- and q-axis current limits given in (42), i.e.  

 
   

 

   

lim
qg qg

2 2
lim lim

dg dg g qg

i I

i I I i
 (45) 

The EMTP diagram of “Idq reference limiter” and “FRT decision logic” blocks are given in Figure 

28 and Figure 29, respectively. The limits for d-axis, q-axis and total GSC currents and FRT function 

thresholds can be modified from the device mask. 

 

Figure 27  Wind turbine reactive output current during voltage disturbances [13]. 

 

Figure 28  EMTP diagram of “Idq reference limiter” block 
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Figure 29  EMTP diagram of “FRT decision logic” block 

3.2.3.2.2 FSC Grid Side Converter Decoupled Sequence Control 

Ideally, the GSC control presented in the previous section is not expected to inject any negative 

sequence currents to the grid during unbalanced loading conditions or faults. However, the terminal 

voltage of FSC WT contains negative sequence components during unbalanced loading conditions or 

faults. This causes second harmonic power oscillations in GSC power output. The instantaneous active 

and reactive powers such unbalanced grid conditions can be also written as [14] 

 
    

    

0 C2 S2

0 C2 S2

p P P cos(2 t) P cos(2 t)

q Q Q cos(2 t) Q cos(2 t)
 (46) 

where 0P  and 0Q  are the average values of the instantaneous active and reactive powers respectively, 

whereas C2P , S2P , C2Q  and S2Q  represent the magnitude of the second harmonic oscillating terms in 

these instantaneous powers. 

With decoupled sequence control usage, four of the six power magnitudes in (46) can be controlled 

for a given grid voltage conditions. As the oscillating terms in active power C2P , S2P  cause oscillations 

in dc bus voltage dcV , the GSC current references (  
dgi ,  

qgi ,  
dgi ,  

qgi ) are calculated to cancel out these 

terms (i.e.  C2 S2P P 0 ). 

The outer control and Idq limiter shown in Figure 8 calculates dgi , qgi , lim
dgI  and lim

qgI . These values 

are used to calculate the GSC current references  
dgi ,  

qgi ,  
dgi  and  

qgi  for the decoupled sequence 

current controller. As the positive sequence reactive current injection during faults is defined by the grid 

code (see Figure 27), the GSC current reference calculation in [14] is modified as below: 
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i 1 0 0 0
i

v v v vi P

v v v v Pi

Pv v v vi

 (47) 

where 0P  is approximated by 

  0 wt dgP V i  (48) 

The calculated reference values in (47) is revised considering the converter limits lim
dgI  and lim

qgI . For 

example when      lim
qg qg qgi i I , the q-axis reference current references are revised as below 

++

-

c

1pu

1

f(u)1

ABS(u[1]) > #FRT_ON#

S-R flip-flop
ideal

S

R

Q

notQ

rcrv

0

+Inf

f(u) 1

u[1] > #FRT_time#

f(u)1

ABS(u[1]) < #FRT_OFF#

c
0

Vmv FRTTimer
0.5/+InfVmv FRT



 

Polytechnique Montréal   Page 30 of 58 

 
 

 

   

   

     
  

     
  

lim
qg qg qg qg qg

lim
qg qg qg qg qg

i i I i i

i i I i i

 (49) 

where 
qgI "  and 

qgI "  are the revised reference values for q-axis positive and negative currents, 

respectively. 

The revised d-axis positive and negative current references  
dgI "  and 

dgI "  can be obtained with 

the same approach using lim
dgI . It should be emphasized here that, during faults the priority is providing 


dgI  specified by the grid code. The remaining reserve in GSC is used for eliminating C2P  and S2P . 

Hence, its performance reduces with the decrease in electrical distance between the WP and the 

unbalanced fault location. 

As 
dgi , 

qgi , 
dgi  and 

qgi  are controlled, the decoupled sequence control contains four PI regulator 

and requires sequence extraction for GSC currents and voltages. The sequence decoupling method 

[15] shown in Figure 30 is used in EMTP implementation. In this method, a combination of a low-pass 

filter (LPF) and double line frequency Park transform ( 2P  and 2P ) is used to produce the oscillating 

signal, which is then subtracted. The blocks C  and P  represent the Clarke and Park transformation 

matrices, and the superscripts ±1 and ±2 correspond to direct and inverse transformation at line 

frequency and double line frequency, respectively. 

In EMTP implementation, the feed-forward compensating terms   choke qg d chokeL i v  and 

  choke dg q chokeL i v  are kept in coupled form and added to the PI regulator outputs in stationary αβ-

frame. 
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Figure 30  Sequence extraction using decoupling method. 

3.2.4 FSC Protection System Block 

The “protection system” block includes an over/under voltage relay, deep voltage sag detector, dc 

overvoltage protection and an overcurrent detector for each converter to protect IGBT devices when 

the system is subjected to overcurrent. For initialization, all protection systems, except for dc chopper 

protection, are activated after 300ms of simulation (i.e. init_Prot_delay = 0.3s). The protection system 

parameters (except over/under voltage relay) can be modified from the device mask. 

3.2.4.1 Over/Under Voltage Relay and Deep Voltage Sag Detector 

The over/under protection is designed based on the technical requirements set by Hydro Quebec 

for the integration of wind generation. The over/under limits as a function of time is presented in Figure 
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31. The voltages below the red line reference and above the black line reference correspond to the ride-

through region where the WT is supposed to remain connected to the grid. 

  

Figure 31  LVRT and HVRT requirements [16] 

This block measures the rms voltages on each phase and sends a trip signal to the FSC circuit 

breaker when any of the phase rms voltage violates the limits in Figure 31 (see the upper part of Figure 

32). The “Deep Voltage Sag Detector” block (lower part of Figure 32) temporary blocks the GSC and 

MSC in order to prevent potential overcurrents and restrict the FRT operation to the faults that occur 

outside the wind farm. 

 

Figure 32  Over/under-voltage relay and deep voltage sag protection  
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3.2.4.2 dc Overvoltage Protection Block 

 The function of dc chopper is to limit the dc bus voltage. It is activated when the dc bus voltage 

exceeds chopper ONU  and deactivated when dc bus reduces below chopper OFFU . The EMTP diagram 

of the “dc overvoltage protection” is shown in Figure 33. 

 

Figure 33  dc overvoltage protection block  

3.2.4.3 Overcurrent Protection Block 

 The overcurrent protection shown in Figure 34 blocks the converter temporarily when the 

converter current exceeds the pre-specified limit. 

 

Figure 34  Overcurrent protection block  

3.3 DFIG based Wind Park Model in EMTP-RV 

The EMTP diagram of the DFIG based Wind Park is shown in Figure 19. It is composed of “Wind 

Turbine”, “WT Electrical System”, “WT Control System”, “WP Control System” blocks, PI circuit that 

represents equivalent collector grid, wind park transformer and initialization source with load flow 

constraint. 
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This model is the same as with the FSC based wind park model except “WT Electrical System” 

and “WT Control System” blocks. 

 

 
Figure 35  EMTP diagram of the DFIG based Wind Park 

3.3.1 DFIG Wind Turbine Electrical System Block 

The EMTP diagram of the “WT Electrical System” block consists of IG, ac-dc-ac converter system, 

GSC choke filter, shunt ac harmonic filters, crowbar and WT transformer as shown in Figure 36.  

 

Figure 36  EMTP diagram of DFIG “WT Electrical System” block 
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are IG stator, IG rotor, GSC and total DFIG currents, and DFIG terminal voltages. The dc voltage is also 

monitored (in ac-dc-ac converter system block) as well as the IG electromagnetic torque. All variables 

are monitored as instantaneous values and meter locations and directions are shown in Figure 36. The 

ac-dc-ac converter system block details have been presented in Section 3.1. 
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Similar to the FSC WT, the “shunt ac harmonic filters” block includes two band-pass filters as 

shown in Figure 21. These filters are tuned at switching frequencies harmonics n1 and n2 of the GSC. 

3.3.2 DFIG Wind Turbine Control System Block 

The EMTP diagram of the DFIG WT control system block is shown in Figure 37. The sampled 

signals are converted to pu and filtered. The sampling frequency are set to to 22.5 kHz and 11.25 kHz 

(from device mask as shown in Figure 12) for GSC and RSC, respectively. The “sampling” blocks are 

deactivated in AVM due to large simulation time step usage. In the generic model, 4th order Bessel type 

low pass filters are used. The cut-off frequencies of the filters are set to 4.5 kHz and 2.25 kHz for GSC 

and RSC, respectively. However, the order (up to 8th order), the type (Bessel and Butterworth) and the 

cut-off frequencies of the low pass filters can be modified from device mask as shown in Figure 12. The 

“RSC Compute Variables” and “GSC Compute Variables” blocks do the dq transformation required for 

the vector control. The RSC control (“Rotor Control” block) operates in the stator flux reference frame 

and the GSC (“Grid Control” block) operates in the stator voltage reference frame. The pitch control is 

activated when the wind speed increases above the rated value and given in Figure 4. The protection 

block includes the over/under voltage relay, the deep voltage sag detector, the dc chopper control, the 

crowbar protection and overcurrent detector. 

 

Figure 37  EMTP diagram of DFIG “WT Control System” block 

The direct axis d is aligned with the stator voltage in transformation matrix (see (19)); therefore, 

the rotor and stator currents are shifted to align with the stator flux. The shifted-angle flux block used to 

achieve a Stator Flux Orientation (SFO) is shown in Figure 38. 

The frequency of the rotor voltage is controlled so that under steady conditions, the combined 

speed of the rotor plus the rotational speed of the rotor flux vector matches that of the synchronously 

rotating stator flux vector fixed by the network frequency. Manipulation of the rotor voltage permits 

control of the generator operating conditions. 
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Figure 38  Flux angle calculation 

3.3.2.1 DFIG Rotor Side Converter Control 

The EMTP diagram of the “Rotor Control” block is shown in Figure 39. The d- and q-axis currents 

of RSC ( dri  and qri  in Figure 10) are used to control the positive sequence voltage at MV side of DFIG 

transformer ( 
wtV  ) and the active power output of DFIG. The positive sequence voltage at MV side of 

DFIG WT transformer is not directly measured by the WT controller and it is approximated using (31) - 

(33). 

 

Figure 39  EMTP diagram of DFIG “Rotor Control” block 

The d-axis reference current is calculated by the proportional outer voltage control  

  


   dr V wt dr mi K V V i  (50) 

In (50) dr mi  is the compensating term for the reactive current absorbed by the IG and 

approximated by  

  
  dr m wt s mi V L  (51) 

where mL  is the IG magnetizing inductance and 
wtV  is the positive sequence voltage at DFIG WT 

terminals.  

The q-axis reference current is calculated by the power controller 

      qr PP IPi K K s P P  (52) 

During normal operation, the controller gives the priority to the active currents.  
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   

 

   

lim
qr qr

2 2
lim lim

dr dr r qr

i I

i I I i
 (53) 

where lim
drI , lim

qrI  and lim
rI  are the limits for d-axis, q-axis and total RSC currents, respectively.  

When the FRT function is activate, the RSC controller gives the priority to the reactive current by 

reversing the d- and q-axis current limits given in (53). 

The RSC inner control loop is designed based on the IMC method [12][17] considering the Г 

representation of the IG [17] shown in Figure 40. The Г representation eliminates the complexity of the 

well-known T representation without loss of information or accuracy. It is obtained by adjusting the 

rotor/stator turn ratio for eliminating the stator leakage inductance. The Г representation parameters are 

as follows: 

   s mL L  (54) 

  M s mL L L  (55) 

     2
ls lrL L L  (56) 

  2
R rR R  (57) 

where mL  is the magnetizing inductance, lsL  and lrL  are the stator and rotor leakage inductances, and 

sR  and rR  are the stator and rotor resistances of the machine. 

 

Figure 40  Г representation of induction machine 

After transformation, the rotor currents, fluxes and voltages become  

  rRi i  (58) 

   rR λλ  (59) 

   rRv v  (60) 

By neglecting dtd sλ [18], the rotor side voltages can be written as: 

    R r
dR

dR dR qR

d
R

dt

i
v i L L i  (61) 

      R r M M

qR
qR qR dR ds

d
R

dt

i
v i L L L i L i  (62) 

The dRi  and qRi  errors are processed by the PI controller to give dRv  and qRv , respectively. To 

ensure good tracking, feed-forward compensating terms for r qRL i  in (61) and 

   r M MdR dsL L i L i  in (62) are added. The converter reference voltages become 
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     
     p i dR dR rdR qRik k s iv L i  (63) 

       
       p i qR qR r M MqR dR dsik k s iv L L i L i  (64) 

Using (25) with  

   rsc RG (s) 1 R sL  (65) 

the PI controller parameters of the inner current control loop are found as 

  p ck L  (66) 

  i c Rk R  (67) 

The PI controller parameters are calculated for the RSC rise time given in the device mask as 

shown in Figure 12. 

The RSC inner current control has variable conversion blocks for the input RSC currents and the 

output RSC voltages as shown in Figure 41. 

 

Figure 41  Conversion at RSC input and output variables 

3.3.2.2 GSC Grid Side Converter Control 

The function of GSC is maintaining the dc bus voltage dcV  at its nominal value.  It operates at 

unity power factor except severe fault conditions. The EMTP diagram of the “Grid Control” block is 

shown in Figure 42. GSC control offers both coupled and decoupled sequence control options. User 

can select the GSC control option from the device mask as shown in Figure 12. 

 

Figure 42  EMTP diagram of DFIG “Grid Control” block 
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3.3.2.2.1 DFIG GSC Coupled Control 

Except the q-axis reference current calculation, the DFIG WT GSC control is similar to the FSC WT 

GSC control. In DFIG WTs, the GSC operates at unity power factor, hence the q-axis reference current 

is set to zero (i.e.  qgi 0 ). However, GSC starts injecting reactive currents during faults when the RSC 

reactive current contribution is not sufficient to satisfy the grid code requirement due to the reactive 

current absorbed by the IG. In that condition GSC q-axis reference current becomes 

    


    lim
qr V wt dr dr mi K V V I i  (68) 

Similar to RSC, the priority is given to the GSC reactive currents when FRT function is activate. In 

order to improve the high voltage ride through (HVRT) capability of the DFIG WT, reactive current 

contribution of GSC is also used. The GSC reactive current contribution is achieved by “LVRT boost” 

and “HVRT boost” blocks (shown in Figure 43 and Figure 44, respectively) during low voltage and high 

voltage conditions. 

The PI controller parameters are calculated for the GSC rise time given in the device mask as shown 

in Figure 12. The parameters regarding GSC reactive current contribution can be modified from the 

device mask as shown in Figure 12. 

 

Figure 43  EMTP diagram of “LVRT boost” block 

 

Figure 44  EMTP diagram of “HVRT boost” block 
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the resulting stress. Either RSC or GSC (or both of them) can be used for this purpose. The performance 

of these methods depends on the severity of the voltage dip at DFIG terminal as well as the severity of 

its asymmetry. The major limiting factor of the performances of these methods is the FRT requirement 

specified by the grid code. 

The implementation in this document considers the method in which the GSC compensates the 

negative sequence current required in the network during any unbalanced operation [23]. As the GSC 

will supply the negative sequence components for the currents to the grid, the stator currents will remain 

balanced as shown in Figure 45. 

The reference GSC currents (  
dgi ,  

qgi ,  
dgi ,  

qgi ) will become 

              dg dg qg qg dg dwt qg qwti i , i i , i i , i i  (69) 

The calculated reference values in (69) is revised considering the converter limit lim
gI . For example 

when             
2 2

lim
dg dg qg qg gi i i i I , the q-axis positive sequence current reference is revised as 

below 

         
 

         
  

2 2
lim

qg qg g dg dg qg qgi i I i i i i  (70) 

 

Figure 45  Negative sequence compensation through GSC 
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4 WIND PARK RESPONSE TO UNBALANCED FAULTS 

This section provides a comparison between the wind park responses with coupled and decoupled 

sequence controls. Although the comparison is conducted for various type unbalanced faults in the 120 

kV, 60 Hz test system shown in Figure 46 [25]-[27], only the 250 ms double line to ground (DLG) fault 

simulation scenarios are presented. The simulation scenarios are presented in Table I. The WT 

converters are represented with their AVMs. The simulation time step is 10 µs. 

In the test system, the loads are represented by equivalent impedances connected from bus to 

ground on each phase. The transmission lines are represented by constant parameter models and 

transformers with saturation. The equivalent parameters for the 34.5 kV equivalent feeders are 

calculated on the basis of active and reactive power losses in the feeder for the rated current flow from 

each of the WTs [28]. The aggregated model of 1.5 MW, 60 Hz DFIG wind turbines is used for 45 units. 

In all simulations, the WT is operating at full load with unity power factor (i.e. POIQ = 0).  

 

Figure 46  120 kV, 60 Hz test system 

 

Table I Simulation Scenarios 

Scenario Fault Location GSC Control Scheme 

M1 BUS4 Coupled Control 

M2 BUS4 Decoupled Sequence Control 

N1 BUS6 Coupled Control 

N2 BUS6 Decoupled Sequence Control 
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4.1 FSC based Wind Park Response to Unbalanced Faults 

4.1.1 Simulation Scenarios M1 and M2 with FSC based Wind Park 

As shown in Figure 47, the simulated unbalanced fault results second harmonic pulsations in the 

active power output of FSC WT in scenario M1. These second harmonic pulsations are eliminated in 

the scenario M2 with decoupled sequence control scheme in GSC at the expense of a reduction in the 

active power output of FSC WT as shown in Figure 48. On the other hand, the reactive power output of 

FSC WT is similar in scenarios M1 and M2. This is due to the strict FRT requirement on positive 

sequence reactive currents. 

The performance of the GSC decoupled sequence control is limited to the GSC rating as well as 

the FRT requirement specified by the grid code. The complete elimination of second harmonic 

pulsations cannot be achieved when the required GSC current output exceeds its rating. It should be 

noted that, when the electrical distance between the WP and unbalanced fault decreases, larger GSC 

currents are required to achieve both FRT requirement and the elimination of second harmonic 

pulsations. 

The negative and positive sequence fault currents ( nI  and pI ) of the WP in scenarios M1 and M2 

are also quite different as illustrated in Figure 49. This difference strongly depends on the unbalanced 

fault type, its electrical distance to the WP, GSC rating and the FRT requirement specified by the grid 

code. It becomes less noticeable especially for the electrical distant faults such as an unbalanced fault 

at BUS6 as presented in Section 4.1.2.  

 

Figure 47  PC2 and PS2 of aggregated FSC WT in scenarios M1 and M2 

 

Figure 48  P0 and P0 of aggregated FSC WT in scenarios M1 and M2 
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Figure 49  In and Ip of FSC WT based WP in scenarios M1 and M2 

4.1.2 Simulation Scenarios N1 and N2 with FSC based Wind Park 

As the electrical distance between the WP and the unbalanced fault is much larger in scenario N1 

compared to scenario M1, both the voltage sag and the second harmonic pulsations in the active power 

output are much smaller in scenario N1 compared to the scenario M1 (see Figure 50 and Figure 47). 

As a result, the decupled sequence control of GSC achieves elimination of these pulsations in scenario 

N2 without any reduction in the active power output of FSC WT (see Figure 51 and Figure 48). As seen 

from Figure 52 and Figure 49, the WP fault current contribution difference between the scenarios N1 

and N2 also becomes less noticeable especially for positive sequence fault currents compared to the 

difference between scenarios M1 and M2. 

 

Figure 50  PC2 and PS2 of aggregated FSC WT in scenarios N1 and N2 
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Figure 51  P0 and Q0 of aggregated FSC WT in scenarios N1 and N2 

 

  

Figure 52  In and Ip of FSC WT based WP in scenarios N1 and N2 

4.2 DFIG based Wind Park Response to Unbalanced Faults 

4.2.1 Simulation Scenarios M1 and M2 with DFIG based Wind Park 

As shown in Figure 53, the decoupled sequence control reduces the second harmonic pulsations 

in IG electromechanical torque. It should be noted that, the performance of decoupled sequence control 

is limited with the size of the GSC and the FRT requirement specified by the grid code as well as the 

unbalanced fault type, its electrical distance to the WP. With a larger size GSC, these pulsations can 

be totally eliminated as shown in Figure 54.  

As shown in Figure 55, the active and reactive power outputs of the DFIG WT are similar for both 

coupled and decoupled sequence control schemes in GSC. However, the decoupled sequence control 

scheme in GSC results much higher negative sequence fault current contribution of the WP as shown 

in Figure 56. 
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Figure 53  IG electromagnetic torque in scenarios M1 and M2 

 

Figure 54  IG electromagnetic torque in scenarios M1 and M2 (with larger size GSC) 

 

Figure 55  P and Q of aggregated DFIG WT in scenarios M1 and M2 
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Figure 56  In and Ip of DFIG WT based WP in scenarios M1 and M2 

4.2.2 Simulation Scenarios N1 and N2 with DFIG based Wind Park 

As shown in Figure 57, decoupled sequence control totally eliminates the second harmonic 

pulsations in IG electromechanical torque. This is due to less severe voltage sag at POI due to large 

electrical distance between WP and the fault.  

Similar to the BUS4 fault scenario, the active and reactive power output of DFIG WT is similar for 

both control schemes in GSC as shown in Figure 58. 

Alike BUS4 fault scenario, the decoupled sequence control scheme in GSC results much higher 

negative sequence fault current contribution of the WP as shown in Figure 59. 

 

Figure 57  IG electromagnetic torque in scenarios N1 and N2 
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Figure 58  P and Q of aggregated DFIG WT in scenarios N1 and N2 

 

Figure 59  In and Ip of DFIG WT based WP in scenarios N1 and N2 
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5 AVERAGE VALUE MODEL PRECISION AND EFFICIENY 

5.1 120 kV Test System Simulations 

This section provides a comparison between average value model (AVM) and detailed model (DM) 

of the presented wind park models. The simulation scenario M2 in Table I is repeated for 50 µs 

simulation time step (M3) and for DM with 10 µs simulation time step (M4).  

5.1.1 Simulation Scenarios M2 - M4 with FSC based Wind Park 

As shown in Figure 60 - Figure 62, AVM usage instead of DM provides very accurate results even 

for 50 µs time step usage. 

 

Figure 60  PC2 and PS2 of aggregated FSC WT in scenarios M2 - M4 

 

 
Figure 61  P0 and Q0 of aggregated FSC WT in scenarios M2 - M4 
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Figure 62  In and Ip of FSC WT based WP in scenarios M2 - M4 

5.1.2 Simulation Scenarios M2 - M4 with DFIG based Wind Park 

As shown in Figure 63 - Figure 65, AVM usage instead of DM provides acceptable accuracy even 

for 50 µs time step usage. From Figure 60 - Figure 65, it can be said that AVM provides more accurate 

results when it is used to represent FSC WT converters. 

 

Figure 63  IG electromagnetic torque in scenarios in scenarios M2 - M4 

 

 
Figure 64  P0 and Q0 of aggregated DFIG WT in scenarios M2 - M4 
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Figure 65  In and Ip of DFIG WT based WP in scenarios M2 - M4 

5.2 IEEE 39 Bus System Simulations 

A multi wind park system is developed from the IEEE-39 bus system by replacing two of the thermal 

power plants (TPPs), as shown in Figure 66. Both WPs have 400 MW (266 x 1.5 MW) installed capacity. 

However, the WP at bus B2 is FSC type and the WP at bus B25 is DFIG type. In the presented 

simulation the WPs are operating at full load (i.e. under nominal wind speed) with unity power factor 

(i.e. POIQ  = 0). The transmission lines are modeled with constant parameter models, and the saturation 

of transformers are taken into account. 

In the simulated scenario, the disturbance is a DLG fault on transmission line that connects busses 

B3 and B4 (as bus B3 end). The fault is cleared with the operation of line circuit breakers indicated with 

CB1 and CB2 in Figure 66. The fault is applied at t = 1s. The fault clearing time is 200 ms (for testing 

purposes). The system is simulated for 3 s. The simulations are performed for the models and simulation 

time steps presented in Table II. 

The presented waveforms in Figure 67 - Figure 72 demonstrate that AVM usage instead of DM 

provides acceptable accuracy even for 50 µs time step usage while providing a significant computational 

gain as illustrated in Table III. The computational gain over DM is more than 9 when the AVM is used 

with 50 µs time step. 

Table II IEEE 39 Bus System Simulations 

Scenario WT Converter Model Simulation Time Step 

S1 DM 10 µs 

S2 AVM 10 µs 

S3 AVM 50 µs 

 

Table III IEEE 39 Bus System Simulations CPU Timings 

Scenario CPU time 

S1 1368 s 

S2 615 s 

S3 145 s 
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Figure 66  IEEE 39 Bus System with Wind Parks 
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Figure 67  PC2 and PS2 of aggregated FSC WT in IEEE 39 bus system simulation 

 

 

Figure 68  P0 and Q0 of aggregated FSC WT in IEEE 39 bus system simulation 

 

 

Figure 69  In and Ip of FSC WT based WP in IEEE 39 bus system simulation 
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Figure 70  IG electromagnetic torque in IEEE 39 bus system simulation 

 

 

Figure 71  P0 and Q0 of aggregated DFIG WT in IEEE 39 bus system simulation 

 

 

Figure 72  In and Ip of DFIG WT based WP in IEEE 39 bus system simulation 
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6 DETAILED WIND PARK MODELS AND AGGREGATED MODEL 
PRECISION 

Certain grid integration studies, such as analysing collector grid faults and collector grid 

overcurrent protection system performance, LVRT and HVRT capability studies [1], ferroresonance 

study [29], require EMT type simulations with detailed wind park model. These studies do not only 

require detailed MW collector grid model, but also detailed model of HV/MV wind park substation 

including overvoltage protection, overcurrent and differential current protections, measuring current and 

voltage transformers as shown in Figure 73 - Figure 75.  

 

 

Figure 73  EMTP diagram of the 45 x 1.5 MW wind park detailed model given in Figure 46. 

 

 
Figure 74  EMTP diagram of the HV/MV Wind Park Substation 
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Figure 75  EMTP diagram of MV Feeder-1 

The WT model in Figure 75 is obtained from the WP model presented in Chapter 3 by excluding 

the WPC, WP transformer and collector grid equivalent. The associated device mask is shown in Figure 

76. It does not include the tabs used for MV/HV WP transformer and WPC parameters. On the other 

hand, the first tab of the aggregated wind turbine mask includes certain wind park parameters (total 

number of WTs in the WP, POI and collector grid voltage levels, collector grid equivalent and the MV/HV 

WP transformer impedances) in addition to the general wind turbine parameters (WT rated power, 

voltage and frequency) and wind speed. It should be noted that, the MV/HV WP transformer and the 

collector grid equivalent impedances are used GSC parameter calculation (see section 3.2.3.2). 

Scenario M2 in Table I (DLG fault at BUS4 for GSC decoupled sequence control scheme) is 

simulated using the detailed wind park model to conclude on accuracy of the aggregated model.  As 

shown in Figure 77 - Figure 80, the aggregated models of wind parks provide accurate results. 
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Figure 76  Aggregated FSC based wind turbine device mask 

 

 

Figure 77  Active and reactive power at POI, Wind Park with FSC WTs 
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Figure 78  Positive and negative sequence currents at POI, Wind Park with FSC WTs 

 

Figure 79  Active and reactive power at POI, Wind Park with DFIG WTs 

 

Figure 80  Positive and negative sequence currents at POI, Wind Park with DFIG WTs 
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